10
Sources and Fates of Atmospheric Polycyclic
Atmospheric Aerosol Downloaded from pubs.acs.org by KTH ROYAL INST OF TECHNOLOGY on 12/10/15. For personal use only.
Aromatic Hydrocarbons
RONALD A. HITES School of Public and Environmental Affairs and Department of Chemistry, Indiana University, 400 East Seventh Street, Bloomington, IN 47405 P o l y c y c l i c aromatic hydrocarbons (PAH) are produced by the combustion, under f u e l r i c h c o n d i t i o n s , of almost any f u e l . Although a few PAH with vinylic bridges (such as acenaphthylene) are l o s t , most PAH are q u i t e s t a b l e i n the atmosphere and e v e n t u a l l y accumulate i n environmental sinks such as marine sediments. S p a t i a l and historical measurements of PAH i n sediments i n d i c a t e that these compounds are s t a b l e , conservative markers of man's energy producing activities. I n 1775, P u r s e v i l P o t t f i r s t n o t e d t h a t t h e compounds a s s o c i a t e d w i t h s o o t c a u s e d s c r o t a l c a n c e r i n B r i t i s h chimney sweeps ( 1 ) . N o t h a v i n g modern methods o f i n s t r u m e n t a l a n a l y s i s a v a i l a b l e t o h i m , P o t t was u n a b l e t o s p e c i f y t h e c h e m i c a l s t r u c t u r e s o f t h e s e compounds. I t r e m a i n e d u n t i l 1933 b e f o r e Cook e t a l . i d e n t i f i e d t h e e x a c t s t r u c t u r e o f b e n z o [ a ] p y r e n e and d e m o n s t r a t e d i t s c a r c i n o g e n i c i t y ( 2 ) . Thus, p o l y c y c l i c a r o m a t i c hydrocarbons (PAH) a r e one o f t h e f e w g r o u p s o f compounds w h i c h a r e known t o be c a r c i n o g e n i c t o man. A l t h o u g h t h e r e a r e few chimney sweeps i n b u s i n e s s t o d a y , p e o p l e a r e s t i l l e x p o s e d t o c o n s i d e r a b l e amounts o f p o l y c y c l i c a r o m a t i c h y d r o c a r b o n s . C i g a r e t t e smoking, f o r example, i s a m a j o r s o u r c e o f PAH (3_) ; c o k e p r o d u c t i o n a l s o h a s h i g h PAH emissions ( 4 ) . The e x a c t s y n t h e t i c c h e m i s t r y w h i c h p r o d u c e s PAH i n a f u e l r i c h f l a m e i s n o t w e l l known, e v e n t o d a y . I t i s c l e a r , h o w e v e r , t h a t PAH c a n b e p r o d u c e d f r o m a l m o s t a n y f u e l b u r n e d u n d e r o x y g e n deficient conditions. S i n c e s o o t i s a l s o formed under t h e s e cond i t i o n s , PAH a r e a l m o s t a l w a y s f o u n d a s s o c i a t e d w i t h s o o t . As an example o f t h e PAH a s s e m b l a g e p r o d u c e d b y c o m b u s t i o n s y s t e m s , F i g u r e 1 shows g a s c h r o m a t o g r a p h i c mass s p e c t r o m e t r y (GCMS) d a t a f o r PAH p r o d u c e d b y t h e c o m b u s t i o n o f k e r o s e n e ( 5 ) . The s t r u c t u r e s o f t h e m a j o r compounds a r e a l s o g i v e n i n F i g u r e 1. We draw t h e r e a d e r ' s a t t e n t i o n t o a number o f f e a t u r e s o f t h i s PAH m i x -
0097-6156/81/0167-O187$05.00/0 © 1981 American Chemical Society
Atmospheric Aerosol Downloaded from pubs.acs.org by KTH ROYAL INST OF TECHNOLOGY on 12/10/15. For personal use only.
00 oo
Atmospheric Aerosol Downloaded from pubs.acs.org by KTH ROYAL INST OF TECHNOLOGY on 12/10/15. For personal use only.
10.
HiTES
Polycyclic
Aromatic
189
Hydrocarbons
T a b l e I . PAH I d e n t i f i e d b y GCMS ( s e e F i g u r e s 1-3)
2 4 8 10 14 15 18 19 22 23 25 27 30 31
Biphenyl Acenaphthylene Fluorene C H Phenanthrene Anthracene Methylphenanthrene 4H-cyclopenta[def]phenanthrene Fluoranthene Benz[e]acenaphthylene Pyrene ^ Me t h y I f l u o r a n t h e n e Benzo[ghi]fluoranthene CisHiQ(unknown) a
1 4
8
^Probably cyclopent[bc o r f g ] 3
32 33 34 35 37 38 39 40 42 43 44 46 47 48
Cyclopenta[cd]pyrene Benz[a]anthracene Chrysene Methylchrysene Benzofluoranthene Benzo[e]pyrene Benzo[a]pyrene Perylene C21H12(unknown) C21H12(unknown) Ideno[l,2,3-cd]pyrene Dibenz[a,c]anthracene Benzo[ghi]perylene Anthanthrene
acenaphthylene.
C o u l d be methylpyrene.
"Could be m e t h y l b e n z [ a ] a n t h r a c e n e .
Atmospheric Aerosol Downloaded from pubs.acs.org by KTH ROYAL INST OF TECHNOLOGY on 12/10/15. For personal use only.
190
ATMOSPHERIC AEROSOL
ture. F i r s t , f l u o r a n t h r e n e (peak 22) and p y r e n e (peak 25) a r e p r e s e n t i n about e q u a l abundances. S e c o n d , t h e abundance o f p h e n a n t h r e n e f a r e x c e e d s t h a t o f a n t h r a c e n e (peak 1 5 ) , a l e s s s t a b l e compound. T h i r d , b e n z o [ a ] p y r e n e (peak 39) i s a l w a y s f o u n d w i t h i t s n o n c a r c i n o g e n i c i s o m e r b e n z o [ e ] p y r e n e (peak 3 8 ) . A p a r t i c u l a r l y i n t e r e s t i n g g r o u p o f compounds i n c o m b u s t i o n e f f l u e n t s a r e t h o s e w i t h a v i n y l i c b r i d g e s u c h as a c e n a p h t h y l e n e (peak 4) and c y c l o p e n t e n o [ c d ] p y r e n e (peak 3 2 ) . P e a k 2 3 , a l t h o u g h n o t l a b e l e d , has b e e n p o s i t i v e l y i d e n t i f i e d as a c e p h e n a n t h r y l e n e , a compound w h i c h a l s o has a v i n y l i c b r i d g e . We e m p h a s i z e t h i s s t r u c t u r a l f e a t u r e b e c a u s e o f i t s c h e m i c a l r e a c t i v i t y (compared to t h e f u l l y a r o m a t i c p o r t i o n s o f t h e PAH). We s h a l l s e e l a t e r t h a t t h i s r e a c t i v i t y i s i m p o r t a n t when c o n s i d e r i n g t h e f a t e o f PAH i n t h e a t m o s p h e r e . The PAH shown i n F i g u r e 1 a r e t y p i c a l o f t h o s e p r o d u c e d f r o m the c o m b u s t i o n o f v a r i o u s f u e l s ( 5 ) . W i t h o u t e x c e p t i o n , t h e comb u s t i o n o f a l m o s t any f u e l w i l l p r o d u c e t h e s u i t e o f compounds shown i n F i g u r e 1. The r e l a t i v e a b u n d a n c e s , h o w e v e r , can be s u b s t a n t i a l l y d i f f e r e n t d e p e n d i n g on t h e t e m p e r a t u r e o f c o m b u s t i o n . In f a c t , t h e r e l a t i v e abundance o f t h e a l k y l h o m o l o g s o f PAH, i s h i g h l y dependent on t h e t e m p e r a t u r e a t w h i c h t h e f u e l i s b u r n e d (6). A l t h o u g h F i g u r e 1 shows v e r y modest amounts o f a l k y l homol o g s ( s e e t h e r e g i o n b e t w e e n p e a k s 25 and 3 0 ) , o t h e r f u e l s , b u r n e d u n d e r o t h e r c o n d i t i o n s , c a n show c o n s i d e r a b l y g r e a t e r ab u n d a n c e s o f a l k y l PAH, One c a n , i n f a c t , u s e t h e r e l a t i v e abundance o f t h e a l k y l homologs t o deduce t h e t e m p e r a t u r e a t w h i c h the f u e l was b u r n e d . Once t h e p o l y c y c l i c s a r e r e l e a s e d f r o m t h e c o m b u s t i o n s y s t e m , p r e s u m a b l y a d s o r b e d on s o o t o r f l y a s h , t h e y a r e t h e n e x p o s e d t o p o t e n t i a l a t m o s p h e r i c d e g r e d a t i o n . A s i m p l e way i n w h i c h t o n o t e the r e l a t i v e d e g r a d a t i o n s u s c e p t i b i l i t y o f t h e v a r i o u s PAH i s t o compare t h e GCMS d a t a o f t h e PAH coming f r o m a c o m b u s t i o n s y s t e m (see F i g u r e 1) w i t h t h e PAH p r o f i l e o f a t m o s p h e r i c p a r t i c u l a t e s (see F i g u r e 2) ( 7 ) . We s e e t h a t t h o s e PAH w i t h o u t v i n y l i c b r i d g es a r e s t i l l p r e v a l e n t , t h a t t h e r a t i o o f f l u o r a n t h r e n e t o p y r e n e i s s t i l l a b o u t 1:1, and t h a t t h e r a t i o o f p h e n a n t h r e n e t o a n t h r a cene i s a b o u t 10:1. Those compounds w i t h v i n y l i c b r i d g e s [ a c e n a p h t h y l e n e (peak 1 4 ) , a c e p h e n a n t h r y l e n e (peak 2 3 ) , and c y c l o p e n t e n o [ c d ] p y r e n e (peak 3 2 ) ] h a v e c o m p l e t e l y v a n i s h e d f r o m t h e PAH m i x t u r e found i n the atmosphere. C l e a r l y , the i n c r e a s e d chemical r e a c t i v i t y o f t h e r e l a t i v e l y l o c a l i z e d d o u b l e bond f o u n d i n t h e s e compounds makes them s u s c e p t a b l e t o p h o t o l y t i c o x i d a t i o n . A s s u m i n g most PAH a r e s t a b l e i n t h e a t m o s p h e r e , w h i c h we f e e l i s an e x c e l l e n t a s s u m p t i o n , we a s k what happens t o t h e s e compounds a f t e r t h e y a r e r e l e a s e d f r o m c o m b u s t i o n s y s t e m s t h r o u g h o u t t h e w o r l d . We s u g g e s t t h a t PAH a r e t r a n s p o r t e d t o aq u a t i c s e d i m e n t s e i t h e r by d i r e c t a i r b o r n e t r a n s p o r t o r by s e d i ment r e s u s p e n s i o n and r e d e p o s i t i o n . The b a s i s f o r t h e s e arguments i s e x t e n s i v e a n a l y s e s o f PAH i n s e d i m e n t s w h i c h we h a v e c a r r i e d o u t o v e r t h e l a s t s e v e r a l
Atmospheric Aerosol Downloaded from pubs.acs.org by KTH ROYAL INST OF TECHNOLOGY on 12/10/15. For personal use only.
HITES
Polycyclic
Aromatic
22
191
Hydrocarbons
38 37 139
25
Ml Temp. (°C) ~ i — 70
90
10
110
20
130
30
150 —ι 40
ι— 170
50
190 — ι — 60
— ι — 210
230
70
80
240 —ι— 90
Time (min.) Analytical Chemistry
Figure 2. Capillary-column gas chromatogram of the total polynuclear hydrocar bon fraction of air^articulate matter (1). Conditions: 11 m X 0.26 mm-Id. glass capillary coated with SE-52 methylphenylsilicone stationary phase; see Table I for peak identities.
Atmospheric Aerosol Downloaded from pubs.acs.org by KTH ROYAL INST OF TECHNOLOGY on 12/10/15. For personal use only.
192
ATMOSPHERIC AEROSOL
years. The d a t a shown i n F i g u r e 3 a r e among t h e f i r s t we obt a i n e d on s e d i m e n t a r y PAH ( 6 , 8 ) . T h i s i s a GCMS a n a l y s i s o f PAH i n t h e sediment of t h e C h a r l e s R i v e r , a r a t h e r p o l l u t e d body of w a t e r i n B o s t o n . By c o m p a r i n g t h i s f i g u r e w i t h t h e d a t a shown i n F i g u r e 2, one s e e s c o n s i d e r a b l e r e s e m b l a n c e . The r a t i o s o f t h e m a j o r g r o u p s o f compounds a r e t h e same. The PAH w i t h v i n y l i c b r i d g e s a r e m i s s i n g as t h e y w e r e i n t h e a t m o s p h e r e , and t h e a l k y l homologs a r e a b o u t as abundant as one m i g h t e x p e c t . We h a v e obt a i n e d s i m i l a r d a t a , b u t i n a more q u a n t i t a t i v e f a s h i o n , f r o m o v e r 50 s e d i m e n t s a m p l e s f r o m a r o u n d t h e w o r l d ( 9 ) . T h e s e d a t a i n d i c a t e t h a t PAH a r e u b i q u i t o u s and t h a t t h e y a r e f o u n d i n a l most a l l s a m p l e s b o t h n e a r t o and remote f r o m u r b a n a r e a s . The PAH p a t t e r n i n a l l o f t h e s e s a m p l e s , even t h e most remote i s s i m i l a r t o t h a t shown i n F i g u r e 3. Even though the r e l a t i v e d i s t r i b u t i o n remains c o n s t a n t , the t o t a l l e v e l o f PAH d e c r e a s e s d r a m a t i c a l l y w i t h d i s t a n c e f r o m u r ban c e n t e r s . F i g u r e 4 shows a p l o t o f t h e t o t a l PAH abundance i n f i v e m a r i n e s e d i m e n t s a m p l e s t a k e n f r o m M a s s a c h u s e t t s Bay as a f u n c t i o n o f d i s t a n c e f r o m B o s t o n ( 1 0 ) . One can s e e t h a t t h e r e i s a t h r e e o r d e r o f m a g n i t u d e d e c r e a s e i n t h e t o t a l abundance o f PAH w i t h i n 100 k i l o m e t e r s o f B o s t o n . A t t h a t p o i n t , t h e t o t a l PAH l e v e l i s a b o u t 100 ppb; r e m a r k a b l y , t h i s i s what we s e e i n a l m o s t a l l o t h e r remote s a m p l e s . B a s e d on t h e s e and o t h e r measurements o f PAH l e v e l s , we s u g g e s t t h e f o l l o w i n g s c e n a r i o f o r t h e t r a n s p o r t o f PAH. The v a r ious f u e l s which are burned i n m e t r o p o l i t a n areas produce a i r b o r n e p a r t i c u l a t e m a t t e r ( s o o t and f l y a s h ) on w h i c h p o l y c y c l i c a r o m a t i c h y d r o c a r b o n s a r e adsorbed. These p a r t i c l e s a r e t r a n s p o r t e d by t h e p r e v a i l i n g w i n d f o r d i s t a n c e s w h i c h a r e a s t r o n g f u n c t i o n o f t h e p a r t i c l e ' s d i a m e t e r . We s u g g e s t t h a t t h e l o n g r a n g e a i r b o r n e t r a n s p o r t o f s m a l l p a r t i c l e s a c c o u n t s f o r PAH i n deep o c e a n s e d i m e n t s . L a r g e r a i r b o r n e p a r t i c l e s w i l l s e t t l e back onto the urban a r e a ; r a i n t h e n washes them f r o m t h e s t r e e t s and b u i l d i n g s . The PAH i n t h i s u r b a n r u n - o f f e v e n t u a l l y a c c u m u l a t e i n l o c a l s i n k s . We s u g g e s t t h a t t h e s e h i g h l y c o n t a m i n a t e d s e d i m e n t s a r e t h e n s l o w l y t r a n s p o r t e d by r e s u s p e n s i o n and c u r r e n t s t o s e a - w a r d l o c a t i o n s w h e r e t h e s e d i m e n t s a c c u m u l a t e i n b a s i n s o r t h e deep oc e a n . The r a p i d d e c r e a s e i n PAH t o a l e v e l o f 160 ppb w i t h i n 94 km o f B o s t o n ( s e e F i g u r e 4) i n d i c a t e s t h a t t h i s t r a n s p o r t mode i s a r a t h e r s h o r t range e f f e c t (10). The s t a b i l i t y o f PAH i s a l s o a p p a r e n t when one examines s e d i m e n t s a m p l e s t a k e n i n s u c h a way as t o p r e s e r v e t h e h i s t o r i c a l r e c o r d ( 1 1 ) . T h i s can be done by c a r e f u l l y c o r i n g s e d i m e n t s , p a r t i c u l a r l y a t a n o x i c l o c a t i o n s where t h e r e i s l i t t l e b i o t u r b a t i o n , s e g m e n t i n g t h e c o r e i n t o 2-4 cm s e c t i o n s , and a n a l y z i n g e a c h s e c t i o n f o r PAH q u a n t i t a t i v e l y . An example o f s u c h d a t a i s shown i n F i g u r e 5; t h i s r e p r e s e n t s a c o r e f r o m t h e P e t t a q u a m s c u t t R i v e r i n Rhode I s l a n d , a h i g h l y a n o x i c b a s i n ( 1 2 ) . The t o t a l PAH c o n c e n t r a t i o n r a n g e s f r o m 14,000 ppb n e a r t h e s e d i m e n t s u r f a c e t o
l*e] Ι
Figure
3.
High-resolution
gas chromatogram of PAH in Charles River for peak identities.
i4o
sediment (6).
See Table I
Geochimica et Cosmochimica Acta
Atmospheric Aerosol Downloaded from pubs.acs.org by KTH ROYAL INST OF TECHNOLOGY on 12/10/15. For personal use only.
ATMOSPHERIC AEROSOL
194 Ί
Γ
Ί
Ί
Γ
Γ
Atmospheric Aerosol Downloaded from pubs.acs.org by KTH ROYAL INST OF TECHNOLOGY on 12/10/15. For personal use only.
10"
J 10
10
L 20
_1_ 30
J 40
L 50
J_ 60
70
DIST FROM BOSTON
_L 80
90
100
(km) Geochimica et Cosmochimica Acta
Figure
4.
Total PAH
1820
concentrations vs. distance from Boston Bay samples (10)
1840
I860
1880 1900 1920 Year of Deposition
1940
I960
for
Massachusetts
1980
Geochimica et Cosmochimica Acta
Figure 5. Total PAH abundance in the various Pettaquamscutt River sediment core sections vs. date of deposition (( Μ λ left scale); benzo[a]pyrene abundance in the Gosser Ploner Sea (14) vs. date of deposition ( ® , right scale) (12).
Atmospheric Aerosol Downloaded from pubs.acs.org by KTH ROYAL INST OF TECHNOLOGY on 12/10/15. For personal use only.
10.
HiTES
Polycyclic
Aromatic
Hydrocarbons
195
l e s s t h a n 120 ppb a t t h e c o r e b o t t o m . D e s p i t e t h e range o f con c e n t r a t i o n s , t h e r e l a t i v e d i s t r i b u t i o n o f t h e PAH ( e x c l u d i n g r e tene and p e r y l e n e ) i s i n d i c a t i v e o f combustion. F o r example, t h e r a t i o o f t h e CigH^o i s o m e r s ( n o n a l k y l a t e d ) t o t h e i r m o n o a l k y l h o m o l o g s (C17H12) i s 3.0 + 0.4. I n no c a s e does t h i s r a t i o become l e s s than u n i t y which would be expected i f t h e s o u r c e were d i r e c t f o s s i l f u e l c o n t a m i n a t i o n . The r a t i o o f t h e CigH^o i s o m e r s t o t h e C13H12 i s o m e r s i s 2.7 + 0.3, and t h e r a t i o o f t h e C I I + H I Q i s o mers t o t h e C2 0 12 i s o m e r s i s 0.46 + 0.08. T h e s e r a t i o s a r e c o n s i s t e n t t h r o u g h o u t t h e c o r e and a r e i n d i c a t i v e o f c o m b u s t i o n s o u r c e s ( 6 , 1 1 , 1 2 ) . We, t h e r e f o r e , c o n c l u d e t h a t c o m b u s t i o n g e n e r a t e d PAH p r e d o m i n a t e i n a l l s e c t i o n s o f t h e c o r e . U s i n g t h e 3 mm/yr d e p o s i t i o n r a t e r e p o r t e d b y G o l d b e r g e t a l . ( 1 3 ) a p l o t o f t o t a l PAH ( e x c l u d i n g r e t e n e a n d p e r y l e n e ) i n t h e P e t t a q u a m s c u t t c o r e v s . y e a r o f d e p o s i t i o n was d e v e l o p e d ( s e e F i g u r e 5 ) . F o r comparison, t h e benzo[a]pyrene data r e p o r t e d by Grimmer and Bohnke ( 1 4 ) f o r a c o r e f r o m t h e G r o s s e r P l o n e r S e a a r e a l s o p l o t t e d i n F i g u r e 5. The s i m i l a r i t y b e t w e e n t h e s e two core p r o f i l e s i s q u i t e remarkable. B o t h show r a p i d i n c r e a s e s i n PAH c o n c e n t r a t i o n s b e g i n n i n g a r o u n d 1900. As d i s c u s s e d e l s e w h e r e ( 1 1 , 12) t h i s i n c r e a s e i s c e r t a i n l y due t o t h e h e a v y i n d u s t r i a l i z a t i o n o c c u r r i n g a t t h e t u r n o f t h e c e n t u r y and t h e combustion associated with i t . A s l i g h t d e c r e a s e i n t o t a l PAH a r o u n d 1930 i s p r e s e n t i n b o t h c o r e s (see F i g u r e 5 ) . I t i s i n t r i g u i n g t o s p e c u l a t e t h a t t h i s r e f l e c t s a n e v e n t o c c u r r i n g b o t h i n E u r o p e a n d New E n g l a n d a t t h i s t i m e . The D e p r e s s i o n c o u l d b e s u c h an e v e n t . D u r i n g t h e D e p r e s s i o n , t h e U n i t e d S t a t e s ' t o t a l energy consumption decreased f r o m 25 χ 1 0 BTU i n 1929 t o 18 χ 1 0 BTU i n 1932 b e f o r e r e s u m ing i t s increasing trend (15). The P e t t a q u a m s c u t t d a t a a r e f r o m a s u f f i c i e n t l y deep c o r e t o a l l o w us t o a s s e s s t h e PAH b u r d e n p r i o r t o 1900. The PAH c o n c e n t r a t i o n s a r e a t a l o w a n d c o n s t a n t l e v e l (^200 p p b ) f o r t h e 50 y r p r e v i o u s t o t h e t u r n o f t h e c e n t u r y . T h i s l e v e l may b e i n d i c a t i v e o f PAH f r o m n a t u r a l c o m b u s t i o n p r o c e s s e s s u c h a s f o r e s t fires. C o n t r i b u t i o n s from n a t u r a l p r o c e s s e s appear t o be i n s i g n i f i c a n t i n areas o r periods of high anthropogenic a c t i v i t y . The d e c r e a s e i n PAH l e v e l s a f t e r 1950 i s i n t e r e s t i n g a n d i s s i m i l a r t o that observed a t other l o c a t i o n s (14). I n our case, we t h i n k t h i s r e f l e c t s t h e change f r o m c o a l t o o i l a n d n a t u r a l gas a s home h e a t i n g f u e l s w h i c h o c c u r r e d i n t h e 1950's. During t h e p e r i o d 1944-1961 t h e u s e o f c o a l i n t h e U n i t e d S t a t e s d e c r e a s e d by 40% w h i l e t h e u s e o f o i l and gas i n c r e a s e d by 200% (15). S i n c e c o m b u s t i o n o f c o a l u s u a l l y p r o d u c e s more PAH t h a n o i l and g a s ( 1 6 ) , t h i s change i n f u e l u s a g e w o u l d r e s u l t i n a d e c r e a s e i n PAH p r o d u c t i o n d u r i n g t h e same p e r i o d . We s h o u l d p o i n t out t h a t t h e p o s s i b i l i t y o f r e t u r n i n g t o c o a l as a major energy s o u r c e m i g h t , t h e r e f o r e , h a v e a s i g n i f i c a n t e f f e c t on man's i n p u t o f PAH i n t o t h e s e d i m e n t a r y e n v i r o n m e n t . H
1 5
1 5
196
ATMOSPHERIC
AEROSOL
I n summary, we a r e s u g g e s t i n g t h a t most PAH a r e a s t a b l e , c o n s e r v a t i v e m a r k e r o f man's e n e r g y p r o d u c i n g a c t i v i t i e s a n d t h a t t h i s PAH r e c o r d c a n b e r e a d w i t h b o t h s p a t i a l a n d h i s t o r i c a l r e s olution. I n t h i s c o n t e x t , PAH may b e g o o d , l o n g - t e r m i n d i c a t o r s of a i r q u a l i t y .
Atmospheric Aerosol Downloaded from pubs.acs.org by KTH ROYAL INST OF TECHNOLOGY on 12/10/15. For personal use only.
Acknowledgements We a r e g r a t e f u l t o t h e N a t i o n a l S c i e n c e F o u n d a t i o n ( G r a n t Numbers OCE-77-20252 a n d OCE-80-05997) a n d t h e D e p a r t m e n t o f E n e r g y ( G r a n t Numbers EE-77-S-02-4267 a n d AC02-80EV-10449) f o r t h e i r s u p p o r t o f o u r r e s e a r c h on PAH. The a u t h o r a l s o t h a n k s M i l t L e e , Bob L a f l a m m e , J o h n W i n d s o r , a n d J o h n F a r r i n g t o n f o r t h e i r c o l l a b o r a t i o n on t h e t o p i c s d i s c u s s e d h e r e . Literature Cited 1. P o t t , P. " C h i r u r g i c a l Observations"; Hawkes, C l a r k e , C o l l i n s : London, 1775. 2. Cook, J. W.; Hewett, C. L.; Hieger, I . J . Chem. Soc. 1933, 395. 3. Wynder, E. L.; Hoffman, D. "Tobacco and Tobacco Smoke. Studies i n Experimental Carcinogenesis"; Academic Press: New York, 1967; p. 730. 4. S e a r l , T. D.; Cassidy, F. J . ; King, W. H.; Benson, R. A. Anal. Chem. 1970, 42, 954. 5. Lee, M. L.; Prado, G. P.; Howard, J. B.; H i t e s , R. A. Biomed. Mass Spec. 1977, 4, 182. 6. Laflamme, R. E.; H i t e s , R. A. Geochim. Cosmichim. Acta 1978, 42, 289. 7. Lee, M. L.; Novotny, M.; B a r t l e , K. D. Anal. Chem. 1976, 48, 1566. 8. H i t e s , R. Α.; Biemann, W. G. Adv. Chem. 1975, 147, 188. 9. H i t e s , R. Α.; Laflamme, R. E.; Windsor, J. G. Jr. Adv. Chem. 1980, 185, 289. 10. Windsor, J . G. Jr.; H i t e s , R. A. Geochim. Cosmochim. A c t a . 1979, 43, 27. 11. H i t e s , R. Α.; Laflamme, R. E.; F a r r i n g t o n , J . W. Science. 1977, 198, 829. 12. H i t e s , R. Α.; Laflamme, R. E.; Windsor, J. G. Jr.; F a r r i n g t o n , J . W.; Deuser, W. G. Geochim. Cosmochim. 1980, 44, 873. 13. Goldberg, E. D.; Gamble, E.; Griffin, J . J . ; Koide, M. E s t u a r i n e C o a s t a l Mar. S c i . 1977, 5, 549. 14. Grimmer, G.; Bohnke, H. Cancer L e t t . 1975, 1, 75. 15. H o t t l e , H. C.; Howard, J. B. "New Energy Technology - Some Facts and Assessments"; MIT Press:Cambridge, 1971. 16. N a t i o n a l Academy of Sciences " P a r t i c u l a t e P o l y c y c l i c Organic Matter"; Nat. Acad. Sci.:Washington, D.C., 1972. R E C E I V E D March 10,1981.