1
New Developments in Receptor Modeling Theory
Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch001
S. K. FRIEDLANDER Department of Chemical, Nuclear, and Thermal Engineering, University of California—Los Angeles, Los Angeles, CA 90024
Receptor modeling has become an important tool for developing particulate air pollution control strategies. Current receptor models for ambient aerosol source resolution begin with the measured chemical properties of the aerosols at a given site and infer the mass contributions of various sources to the total measured mass. Rate processes are not involved in these models. In this paper, the theory is extended to the resolution of the v i s i b i l i t y degrading components of the aerosol and to chemically reactive families of chemical compounds. Conditions are discussed under which a linear relationship with constant coefficients exists between the aerosol light extinction coefficient and source mass contributions. Linear models for reactive chemical species are set-up and applied to polycyclic aromatic hydrocarbons using data from the literature. In both cases-light extinction and chemical r e a c t i v i t y - i t is useful to introduce rate process models in developing the theory. Emission inventories strategies
are often
used t o develop
control
f o r p a r t i c u l a t e p o l l u t i o n , butthere are d i f f i c u l t i e s
0097-6156/81/0167-0001 $ 0 5 . 0 0 / 0 © 1981 American Chemical Society
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
2
ATMOSPHERIC AEROSOL
w i t h t h e i r use t r a n s p o r t and size.
i n c l u d i n g secondary a e r o s o l f o r m a t i o n ,
s u c h as s o i l
A different
dust
and
these d i f f i c u l t i e s .
the marine a e r o s o l .
Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch001
the
i s a b l e t o d e a l w i t h some o f
A e r o s o l p r o p e r t i e s can be d e s c r i b e d by means
of d i s t r i b u t i o n f u n c t i o n s w i t h r e s p e c t and
composition.
The
to p a r t i c l e s i z e
and
d i s t r i b u t i o n f u n c t i o n s change w i t h
s p a c e as a r e s u l t o f v a r i o u s a t m o s p h e r i c p r o c e s s e s ,
and
d y n a m i c s o f t h e a e r o s o l can be d e s c r i b e d m a t h e m a t i c a l l y equations
which take
sedimentation wind f i e l d ,
O,
to
hard-to-characterize
approach which a l s o s t a r t s from
c h a r a c t e r i s t i c s of the emissions
chemical
range
p a r t i c l e d e p o s i t i o n from the atmosphere a c c o r d i n g
There a r e , i n a d d i t i o n , important
sources
long
time
the
by c e r t a i n
i n t o account p a r t i c l e growth, c o a g u l a t i o n
Chap. 1 0 ) .
These e q u a t i o n s
p a r t i c l e d e p o s i t i o n v e l o c i t y and
g a s - t o - p a r t i c l e conversion
can be rates
and
s o l v e d i f the
of
a r e known, t o p r e d i c t t h e p r o p e r t i e s o f
t h e a e r o s o l downwind f r o m e m i s s i o n
sources.
This approach i s
known as d i s p e r s i o n m o d e l i n g . W h i l e s u c h c a l c u l a t i o n s can be c a r r i e d out are
in principle,
i n f a c t r a r e l y p o s s i b l e i n t h e d e t a i l needed f o r
r e l i a b l e a i r q u a l i t y / e m i s s i o n source pollution.
relationships for particulate
D i s p e r s i o n m o d e l i n g however, i s n e c e s s a r y
t h e a i r q u a l i t y e f f e c t s o f a new
to p r e d i c t
s o u r c e w h i c h i s t o be
a r e g i o n where a i r q u a l i t y / e m i s s i o n s o u r c e poorly
they
developing
located i n
r e l a t i o n s h i p s are
understood.
A t h i r d method o f r e l a t i n g a i r q u a l i t y t o e m i s s i o n s f r o m the c h a r a c t e r i s t i c s o f t h e a e r o s o l a t a r e c e p t o r sites).
(A r e c e p t o r
site
i s a measurement p o i n t not
l o c a t e d i n t h e e f f l u e n t s t r e a m f r o m an e m i s s i o n
starts
site
(or
directly
source.)
The
m e a s u r e d p r o p e r t i e s o f t h e a e r o s o l i n c l u d i n g t o t a l mass,
light
e x t i n c t i o n or chemical
the
separate those
sources
composition
are then a l l o c a t e d to
c o n t r i b u t i n g t o t h e a e r o s o l by methods s u c h as
d e s c r i b e d below.
This approach-starting
from
the
measurement s i t e and w o r k i n g b a c k t o t h e s o u r c e s - i s known as r e c e p t o r m o d e l i n g . The reviewed
by Gordon
Aside
r e c e p t o r m o d e l a p p r o a c h has
r e c e n t l y been
(2).
from a p p l i c a t i o n s to s p e c i f i c r e g i o n s
or
l o c a t i o n s , new
d e v e l o p m e n t s i n r e c e p t o r m o d e l i n g have t e n d e d t o t a k e p l a c e i n of t h r e e broad c a t e g o r i e s : e x p e r i m e n t a l
one
m e t h o d s , d a t a a n a l y s i s and
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
1.
FRIEDLANDER
Receptor
physical theory.
Modeling
Theory
3
The d e v e l o p m e n t o f n o v e l e x p e r i m e n t a l t e c h n i q u e s
has been s t i m u l a t e d by t h e need f o r c l o s i n g mass b a l a n c e s on t h e c o l l e c t e d a e r o s o l o r o f measuring substances.
c o n c e n t r a t i o n s o f key t r a c e
C a r b o n and i t s compounds have b e e n a p a r t i c u l a r l y
d i f f i c u l t component o f t h e a e r o s o l on w h i c h t o c l o s e mass b a l a n c e s b e c a u s e o f measurement
difficulties.
A c o n s i d e r a b l e e f f o r t has statistical
gone i n t o t h e a p p l i c a t i o n o f
techniques t o the a n a l y s i s o f a e r o s o l data f o r t h e
Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch001
e x t r a c t i o n of source c o n t r i b u t i o n s .
The use o f n o v e l
methods has been s t i m u l a t e d by u n c e r t a i n t i e s
statistical
i n the data
collected
i n f i e l d measurements and i n s o u r c e c h a r a c t e r i z a t i o n ; i n some c a s e s n o t a l l o f t h e s o u r c e s a r e known. The
b a s i c t h e o r e t i c a l e q u a t i o n (3.) r e l a t i n g
source
c o n t r i b u t i o n s and c h e m i c a l c o m p o s i t i o n i s a mass b a l a n c e r e q u i r e s no c o n s i d e r a t i o n o f r a t e p r o c e s s e s . theory i s extended
which
I n t h i s paper, t h e
t o the r e s o l u t i o n o f the v i s i b i l i t y
degrading
components o f t h e a e r o s o l and t o c h e m i c a l l y r e a c t i v e f a m i l i e s o f c h e m i c a l compounds. analyses which and
These e x t e n s i o n s r e q u i r e new t h e o r e t i c a l
take i n t o account
the dynamics o f a e r o s o l growth
chemical k i n e t i c s , r e s p e c t i v e l y .
processes are the s u b j e c t o f t h i s
The e x t e n s i o n t o t h e s e
We s t a r t f r o m t h e c h e m i c a l e l e m e n t b a l a n c e s o u r c e r e s o l u t i o n as a r e f e r e n c e a p p r o a c h necessary t o a l l o f the d i s c u s s i o n which
c o n c e n t r a t i o n o f element
measured a t a r e c e p t o r s i t e
i
(CEB) method (3.) o f
a l t h o u g h i t i s not follows.
C h e m i c a l E l e m e n t B a l a n c e s : Maximum L i k e l i h o o d The
rate
paper.
Method
(mass p e r u n i t volume o f a i r )
i s r e l a t e d t o the source
contributions
by
p.
-
Z
c. .
i = 1,
m
2
(1)
n
where c . . = mass f r a c t i o n o f s p e c i e s from source
j
a t the r e c e p t o r
i
m. = mass o f m a t e r i a l f r o m s o u r c e at
1
the r e c e p t o r The
i n the p a r t i c u l a t e
matter
site. j
p e r u n i t volume o f a i r
site.
source c o n c e n t r a t i o n m a t r i x
c.. should correspond
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
t o the
ATMOSPHERIC
4 p o i n t o f measurement.
AEROSOL
I f t h e r e i s no f r a c t i o n a t i o n between t h e
s o u r c e and r e c e p t o r s i t e ,
c..
i s equal to i t s v a l u e at the
s o u r c e ; t h i s i s t h e assumption* u s u a l l y made. The g o a l o f t h e a n a l y s i s i s t o d e t e r m i n e contributions equations m.
Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch001
a least
the source
U s u a l l y t h e r e a r e more
t h a n unknowns, t h a t i s , more m e a s u r e d e l e m e n t a l p.
concentrations of
by i n v e r t i n g E q . ( 1 ) .
m.
t h a n s o u r c e c o n t r i b u t i o n s m. . The v a l u e s
f o r t h i s over-determined s q u a r e s method i n w h i c h
system
estimated
can be
the f o l l o w i n g assumptions
using are
made: 1.
P.
The e r r o r s a f f e c t i n g t h e measurement o f
are
n o r m a l l y d i s t r i b u t e d and u n c o r r e l a t e d . 2.
The m e a s u r e d v a l u e s o f t h e s o u r c e c o n c e n t r a t i o n s a r e exact.
3.
s e t (maximum l i k e l i h o o d If
p.
The s e t o f measurements o f
the f i r s t
i s t h e most
probable
principle).
two c o n d i t i o n s a r e met, t h e p r o b a b i l i t y ,
o b s e r v i n g a s e t o f m e a s u r e d c o n c e n t r a t i o n s between p.
p +dp
, . . . p + dp
where
c^.m.
1 1
n
n
is
l
(A) :
P.
represents the exact v a l u e of
1
the a b s e n c e ^ ' ' e r r o r
i n the measurements;
a
P , of
, . . . P n
and
obtained i n
i s the standard P.
d e v i a t i o n i n t h e measurement o f By t h e t h i r d a s s u m p t i o n p.
P
i n Eq.
.
1
above, the measured s e t o f v a l u e s o f
r e p r e s e n t s t h e most p r o b a b l e
maximizing
p.
s e t , which
i s equivalent to
(2).
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
1.
FRIEDLANDER
Receptor
The v a l u e o f P 1f
m. s m^
Modeling
i s m a x i m i z e d by c h o o s i n g t h e v a l u e s o f t h e
w h i c h m i n i m i z e tt h e argument o f t h e
function
5
Theory
exponential
i n Eq. ( 2 ) :
fp . - E c. .m.\ X
=
; Z
r
i = i
-
3
1
^
J
J
n
/
'
(3)
Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch001
1 = 1
S e t t i n g the d e r i v a t i v e o f X
with
r e s p e c t t o each
z e r o r e s u l t s i n an e x p r e s s i o n w h i c h c a n be s o l v e d i n d i v i d u a l source c o n t r i b u t i o n s
equal t o
m. .
o f t h e CAB method have b e e n r e v i e w e d by
Previous applications the
m.
for*'the
NAS ( 5 ) . The method has been a p p l i e d
by M i z o h a t a and Mamuro
(6.) t o s e p a r a t e s i z e r a n g e s o f t h e Osaka ( J a p a n ) a e r o s o l with
a cascade impactor.
t o c a s e s where t h e r e a r e u n c e r t a i n t i e s source concentrations
V i s u a l Range-Emission Source The v i s u a l r a n g e by
the
o f known v a l u e i n t h e
a s w e l l as i n P . .
c.
( b a s e d on F r i e d l a n d e r ,
collected
Watson (7_) h a s e x t e n d e d t h e CEB method
Relationships
Chap. 11 (1_) a n d O u i m e t t e ( 8 ) ) s
i s r e l a t e d t o the e x t i n c t i o n c o e f f i c i e n t
expression: s* =
1412
(4)
The e x t i n c t i o n c o e f f i c i e n t f o r an a e r o s o l particles
i s given by: r°° , 2 TTd j£K
e x t
composed o f s p h e r i c a l
(x,m) n ( d ) d ( d ) p
p
(5)
where K
i s the p a r t i c l e e x t i n c t i o n c r o s s - s e c t i o n , x = TTd / X , ext . . p m = r e f r a c t i v e i n d e x and X i s the wavelength o f the i n c i d e n t light.
I t i s necessary t o c l a r i f y
cross-section.
the nature o f the e x t i n c t i o n
I f a l l the p a r t i c l e s i n the aerosol
are s p h e r i c a l
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
6
and
ATMOSPHERIC AEROSOL
composed o f t h e same m a t e r i a l , t h e r e i s no a m b i g u i t y , and
e x t i n c t i o n c r o s s - s e c t i o n can be o b t a i n e d f r o m Mie homogeneous s p h e r e
of a g i v e n r e f r a c t i v e
o r i g i n a t e from d i f f e r e n t
sources
and
index.
the
theory for a I f the
consequently
particles
are of
different
c h e m i c a l c o m p o s i t i o n (and r e f r a c t i v e i n d e x ) , a s t r o n g c o a g u l a t i o n p r o c e s s w o u l d be n e c e s s a r y particle level.
The
to achieve uniform composition at
the
time t o a c h i e v e t h i s d e g r e e o f c o a g u l a t i o n i s
u s u a l l y t o o g r e a t compared w i t h a t m o s p h e r i c
residence times.
Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch001
Hence s u c h a e r o s o l s , i n t e r n a l m i x t u r e s , a r e u s u a l l y n o t good r e p r e s e n t a t i o n f o r a p o l l u t e d atmosphere c o n t a i n i n g p a r t i c l e s many d i f f e r e n t
sources.
I n t h e g e n e r a l c a s e , i n d i v i d u a l p a r t i c l e s have compositions in detail
from
and r e f r a c t i v e
i n d i c e s and
differing
to take t h i s
into
i s not p o s s i b l e from a p r a c t i c a l p o i n t of view.
a l l o w f o r a v a r i a t i o n of r e f r a c t i v e
account To
i n d e x , a convenient model i s
t h a t of a m i x t u r e of a e r o s o l s from the s e v e r a l s o u r c e s , each w i t h its
own
extinction cross-section.
The
particles
a r e assumed n o t
t o c o a g u l a t e so t h a t t h e a e r o s o l i s n o t m i x e d on t h e particle basis.
individual
Such an a e r o s o l i s known as an e x t e r n a l m i x t u r e .
T h i s m o d e l w o u l d a l s o be a p p l i c a b l e , a p p r o x i m a t e l y , t o an a e r o s o l m i x t u r e whose p a r t i c l e s
are growing
i n s i z e by
gas-to-particle
conversion. Equation aerosol.
(5)
can t h e n be a p p l i e d t o e a c h component o f
F o r component
r e w r i t t e n as
i
the
o f t h e m i x t u r e , t h i s e x p r e s s i o n can
follows:
r
0
0
b. = — m. \ - — r l 2 l I p ,d ) i 1
p K
i
.m. l
dM. —^ — d log d
d log d P
P
(6)
where dM. = p. , n . ( d ) d ( d ) i s t h e mass o f m a t e r i a l f r o m l i o i p p source I i n the p a r t i c l e s i z e range between d and d + d ( d ) , P P p. i s the d e n s i t y of the m a t e r i a l from source i and m. i s t n e t o t a l mass o f m a t e r i a l f r o m s o u r c e The
extinction coefficient b =
£ b. = i 1
E i
i .
f o r the m i x t u r e
i s t h e n g i v e n by
Y.m. 1
1
Macias and Hopke; Atmospheric Aerosol ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
(7)
be
1.
FRIEDLANDER
where
y.
component
Receptor
Modeling
7
Theory
t h e e x t i n c t i o n c o e f f i c i e n t p e r u n i t mass f o r e a c h i s g i v e n by t h e e x p r e s s i o n : dM. 1
Downloaded by KAOHSIUNG MEDICAL UNIV on June 10, 2018 | https://pubs.acs.org Publication Date: October 13, 1981 | doi: 10.1021/bk-1981-0167.ch001
p.m. d l o g d l i p
(8)
d log d p
T h e r e a r e a t l e a s t two ways t o e v a l u a t e t h e c o e f f i c i e n t s
y. : l
They c a n be c a l c u l a t e d f r o m t h e o r y i f t h e e x t i n c t i o n c r o s s - s e c t i o n and mass d i s t r i b u t i o n s a r e known.
C a l c u l a t i o n s o f t h i s t y p e have
r e c e n t l y been made by O u i m e t t e ( 8 ) . The c o e f f i c i e n t s measuring
y.
c a n a l s o be o b t a i n e d e m p i r i c a l l y b y
b , t h e m.'s and t h e n c a r r y i n g o u t a r e g r e s s i o n
a n a l y s i s t o determine
the best set o f values f o r
C o n d i t i o n s f o r Constant Values
o f y.
Y^ ( 9 ) .
y^
v a r y f o r d i f f e r e n t a e r o s o l components, t h e
l a r g e v a l u e s c o r r e s p o n d i n g t o t h e components w i t h t h e h i g h e s t e x t i n c t i o n c o e f f i c i e n t s p e r u n i t mass o f a e r o s o l m a t e r i a l . y.
i s constant, the e x t i n c t i o n c o e f f i c i e n t
through
the c o e f f i c i e n t s
y.
i s linearly
t o t h e mass c o n t r i b u t i o n s o f t h e
various sources; t h i s considerably s i m p l i f i e s analyses visibility
degradation t o source
E q u a t i o n (8) shows t h a t
When
related
y.
relating
contributions. depends p r i m a r i l y on two f a c t o r s ,
the e x t i n c t i o n c r o s s - s e c t i o n K
a n d t h e n o r m a l i z e d mass ext
d i s t r i b u t i o n o f the a e r o s o l .
F o r y.
t o be c o n s t a n t a t a g i v e n
l o c a t i o n , t h e n o r m a l i z e d mass d i s t r i b u t i o n must be i n d e p e n d e n t o f time.
Similarly
f o r y. t o be i n d e p e n d e n t
of location, the
n o r m a l i z e d mass d i s t r i b u t i o n must n o t v a r y f r o m p l a c e t o p l a c e . R e c e n t measurements by O u i m e t t e (