Atmospheric Ozone and Its Relation to Meteorological Conditions

Jul 22, 2009 - Atmospheric ozone in Tokyo has been determined at the Meteorological Research Institute by Stair's method. The principal apparatus ...
0 downloads 0 Views 309KB Size
Atmospheric Ozone and Its Relation to Meteorological Conditions Y. MIYAKE and K. KAWAMURA

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 15, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch035

Meteorological

Research Institute, Tokyo, Japan

Atmospheric ozone in Tokyo has been determined at the Meteorological Research Institute by Stair's method. The principal apparatus consisted of a cadmium phototube and a glass filter. The instru­ mental calibration for determining the total amount of ozone was made through simultaneous obser­ vations with Dobson's spectrophotometer. Using the observed data of the day-to-day variations in atmos­ pheric ozone concentration, the relation of the ozone to the meteorological conditions at higher levels and to the location of jet streams was determined. The range of ozone concentration in Tokyo coincides closely with that observed in Washington, D. C., a n d other cities in the temperate zone.

T h e d e t e r m i n a t i o n of a t m o s p h e r i c ozone i n T o k y o has b e e n c a r r i e d o n a t t h e M e t e ­ o r o l o g i c a l R e s e a r c h I n s t i t u t e (35° 42'N, 139° 3 9 Έ ) b y u s i n g S t a i r ' s m e t h o d (5). T h e p r i n c i p a l a p p a r a t u s consists of a c a d m i u m p h o t o t u b e w h i c h is s e n s i t i v e t o t h e s p e c t r a l u l t r a v i o l e t of w a v e l e n g t h s h o r t e r t h a n 3250 A . a n d a glass f i l t e r w h i c h is t r a n s p a r e n t t o r a d i a n t e n e r g y of w a v e l e n g t h s l o n g e r t h a n 3000 A . ( F i g u r e 1). T h e s e n s i t i v i t y of t h e p h o t o t u b e h a s b e e n c h e c k e d s e v e r a l t i m e s w i t h a n i n c a n d e s c e n t e l e c t r i c l a m p ( i n a q u a r t z glass e n v e l o p e ) of k n o w n c o l o r t e m p e r a t u r e a n d t h r e e glass n i t e r s h a v i n g different s p e c t r a l t r a n s m i t t a n c e s . T h e s p e c t r a l d i s t r i b u t i o n of t h e t r a n s ­ m i t t a n c e of e a c h filter h a s b e e n e x a m i n e d r e p e a t e d l y w i t h a B e c k m a n m o n o c h r o m e t e r . T h e r e w a s n o a p p r e c i a b l e change i n t h e s e n s i t i v i t y of t h e p h o t o t u b e d u r i n g t h e p e r i o d of o b s e r v a t i o n . T h e t o t a l t r a n s m i t t a n c e of t h e filter t o t h e i n c i d e n t s o l a r r a d i a t i o n changes a c ­ c o r d i n g t o t h e a m o u n t of ozone a n d t h e o p t i c a l d e p t h of t h e a i r m a s s . T h e i n s t r u ­ m e n t a l c a l i b r a t i o n f o r d e t e r m i n i n g t h e t o t a l a m o u n t of ozone w a s m a d e t h r o u g h simultaneous observations w i t h Dobson's spectrophotometer. T h e r e s u l t s of these c a l i b r a t i o n s a r e s h o w n i n F i g u r e 2, i n w h i c h t h e a m o u n t of ozone i s expressed i n 1 0 cm. - 3

T h e t o t a l a m o u n t of ozone m e a s u r e d d u r i n g t h e p e r i o d f r o m J u n e 1953 t o S e p ­ t e m b e r 1955 is g i v e n i n F i g u r e 3. A s s h o w n i n F i g u r e 3, t h e r e i s a m a x i m u m a m o u n t of ozone i n t h e s p r i n g a n d a m i n i m u m a m o u n t i n t h e f a l l . T h e range of ozone c o n ­ c e n t r a t i o n i n T o k y o o b t a i n e d b y S t a i r ' s m e t h o d coincides closely w i t h t h a t o b s e r v e d i n W a s h i n g t o n , D . C , a n d o t h e r places i n t h e t e m p e r a t e zone. R e c e n t l y , N o r m a n d (3) a n d t h e p r e s e n t a u t h o r s (2) s t u d i e d t h e r e l a t i o n b e t w e e n 226

OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

Κ A W A M U R A—R Ε L AT I O N TO METEOROLOGICAL CONDITIONS

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 15, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch035

MIYAKE A N D

Wave Length (A.) Figure 1.

Sensitivity of experimental apparatus

Optical Figure 2.

depth

Total amount of ozone as determined by instru­ mental calibration

OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

227

228

A D V A N C E S IN CHEMISTRY SERIES

0280-



240





200 .160

I

I

ι

ι



··

· · ·

A

Λ

·

•·Φ·

1

ι

1354

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 15, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch035

• · \

Φ

*» « V

• 1

I

ι

ι

ι

I

1

"·· · · · ·· 20

1

Jan.

1

Feb.

1

1

1

Mar. Apr.

I

I

I

Nov-

:· •

1

1

May Jun.

ι

1

Jul.

1

Aug. Sep.

I

Oct.

I

Dec

Month Figure 3.

Total amount of ozone measured during period from June 1953 to September 1955

Ozone devia­ tion in Wcm. + E l o α 0-3 Ο π 10-13 20-23

Ω Ο

%

Π 30-33

π



^40

SeptrDec. 1354

— /# •

Ο



·

w

ο

ο

— 200

&(

• L

— 300 Ja.nr Apr. 1355

οΟ

— 100

— 150 — 200

•300 May-Sept 1955



100

— 150 •

10°Ν Figure 4.

'et

°

5

ο

·

-°200

_L • 300 10"S

Relation between ozone a n d location

OZONE CHEMISTRY AND TECHNOLOGY of jet streams Advances in Chemistry; American Chemical Society: Washington, DC, 1959.

MIYAKE AND

Κ Α W A M U R A — R E L A T I O N TO METEOROLOGICAL CONDITIONS

229

Downloaded by UNIV OF CALIFORNIA SANTA BARBARA on May 15, 2018 | https://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0021.ch035

t h e d a y - t o - d a y v a r i a t i o n i n ozone c o n c e n t r a t i o n a n d t h e m e t e o r o l o g i c a l c o n d i t i o n s a t h i g h e r l e v e l s . T h e ozone c o n c e n t r a t i o n increases w h e n a t r o u g h i n t h e u p p e r l a y e r passes o v e r a n o b s e r v a t i o n p o i n t ; i t decreases b y t h e passage of a r i d g e . L a n g l o (1) p o i n t e d o u t t h a t a s u d d e n change i n ozone c o n c e n t r a t i o n o f t e n o c c u r s b e t w e e n t h e l a t i t u d e s 25° a n d 4 5 ° . B e c a u s e t h e p o l a r a n d t r o p i c a l a i r masses a r e i n c o n t a c t i n t h i s zone, i t is e x p e c t e d t h a t t h e ozone c o n c e n t r a t i o n w i l l be l a r g e r o n t h e n o r t h e r n side of t h e p o l a r f r o n t a n d s m a l l e r o n i t s s o u t h e r n side. R a m a n a t h a n (4) suggested t h a t t h e s u d d e n change i n c o n c e n t r a t i o n i n t h i s a r e a m i g h t be r e l a t e d t o t h e a t m o s ­ pheric jet stream. U s i n g t h e o b s e r v e d d a t a of t h e d a y - t o - d a y v a r i a t i o n s i n t h e a t m o s p h e r i c ozone i n T o k y o , t h e r e l a t i o n b e t w e e n t h e ozone a n d t h e l o c a t i o n of jet s t r e a m s w a s d e t e r m i n e d . T h e results s h o w e d t h a t t h e r e is no c o r r e l a t i o n b e t w e e n t h e sense of v a r i a t i o n i n ozone c o n c e n t r a t i o n a n d t h e p o s i t i o n of jet s t r e a m i n r e l a t i o n t o t h e o b s e r v e d p o i n t . How­ e v e r , g r e a t d e v i a t i o n s i n ozone c o n c e n t r a t i o n s o c c u r r e d c h i e f l y i n t h e r e g i o n b e l o w t h e axis of a jet s t r e a m ( F i g u r e 4 ) . F i g u r e 5 shows t h e t o p o g r a p h i c r e l a t i o n b e t w e e n t h e ozone c o n c e n t r a t i o n w h i c h

Figure 5. Topographic relation between ozone on ground and air pressure at 3 0 0 millibars was o b s e r v e d o n t h e g r o u n d a n d t h e a i r p r e s s u r e a t 300 m i l l i b a r s . G e n e r a l l y s p e a k i n g , the m a x i m u m a m o u n t of ozone is o b s e r v e d n e a r a n d s o u t h of t h e m i d d l e p a r t of t r o u g h s ; t h i s m a y be a t t r i b u t e d t o t h e decline of t h e v e r t i c a l m o v e m e n t i n t h a t r e g i o n . Literature

Cited

(1) Langlo, K., Geofys. Publikasjoner, Norske Videnskaps-Akad., Oslo 18, No. 6, 1 (1952). (2) Miyake, Y., Kawamura, K., "Studies on Atmospheric Ozone at T o k y o , " Sci. Proc. In­ tern. Assoc. Meteorology, Tenth General Assembly, Rome, September 1954. (3) Normand, C., Quart. J. Roy. Meteorol. Soc. 7 9 , 39-50 (1953). (4) Ramanathan, K. R., Nature 174, 1078-80 (1954). (5) Stair, R., J. Research Natl. Bur. Standards 4 0 , 9 (1948) (Research Paper 1 8 5 1 ) . RECEIVED for review M a y 17, 1957.

Accepted June 19,

1957.

OZONE CHEMISTRY AND TECHNOLOGY Advances in Chemistry; American Chemical Society: Washington, DC, 1959.