Atmospheric Physical Chemistry - The Journal of Physical Chemistry A

Wren, Gordon, Valley, McWilliams, and Richmond. 2015 119 (24), pp 6391–6403. Abstract: Aqueous-phase processing of methylglyoxal (MG) has been ...
0 downloads 0 Views 133KB Size
Editorial pubs.acs.org/JPCA

Atmospheric Physical Chemistry

T

saturated and unsaturated hydrocarbons, which can result in the formation of species with progressively lower vapor pressures and lead to the formation of atmospheric aerosol particles, to interface-selective spectroscopic studies of aerosol surfaces. Innovative physical measurement approaches for tackling the issue of complexity in atmospheric chemistry are included and placed on an equal footing with the detailed mechanistic studies that are made possible by the use of idealized model systems. It is the vision of this editor that the current collection may serve as a useful tool for generating new ideas, pushing existing boundaries, and motivating new research in atmospheric chemistry. Moreover, this virtual issue may serve as a basis for putting together or updating a graduate course on atmospheric physical chemistry. For further papers on the topic of atmospheric physical chemistry, this editor recommends the Physical Chemistry of Environmental Interfaces special issue, as well as the more recent Mario Molina Festschrift and the James Anderson Festschrift.

his virtual issue consists of 25 papers published in the Atmospheric Chemistry section of the Journal of Physical Chemistry A (JPC A) since 2013 (Table 1). The papers have been compiled with the goal of providing a cross section of recent progress in studying atmospheric processes from a physical chemistry perspective. Physical chemistry research on atmospheric processes can be coarsely grouped into gas phase and condensed phase investigations. A key link between the two is the atmospheric aerosol, as it consists of the aerosol gas and a particle phases. Where they touch, one finds the thriving field of environmental interfaces. The Atmospheric Physical Chemistry virtual issue therefore covers homogeneous and heterogeneous systems, many of which constitute some of the least understood constituents in the Earth’s climate. Atmospheric physical chemistry represents a wide range of opportunities for fundamental investigations that range from spectroscopy, photochemistry, and excited states to kinetics and dynamics, to atomistic computational studiesin short, the core topics of JPC A. Topics covered in this virtual issue range from mechanistic studies of inorganic reactions to the oxidation of

Franz M. Geiger, Senior Editor Northwestern University

Table 1. Atmospheric Physical Chemistry Virtual Issue Articles publication date 18-Dec-14 21-Oct-14

authors Chen Cai, David J. Stewart, Jonathan P. Reid, Yun-hong Zhang, Peter Ohm, Cari S. Dutcher, and Simon L. Clegg Tomasz Gierczak, M. Baasandorj, and James B. Burkholder

citation J. Phys. Chem. A 2015, 119 (4), 704−718 DOI: 10.1021/jp510525r J. Phys. Chem. A 2014, 118 (46), 11015−11025 DOI: 10.1021/jp509127h

21-Aug-14

Geoffrey K. Yeh and Paul J. Ziemann

J. Phys. Chem. A 2014, 118 (38), 8797−8806 DOI: 10.1021/jp505870d

25-Jun-14

Joseph W. DePalma, Douglas J. Doren, and Murray V. Johnston

J. Phys. Chem. A 2014, 118 (29), 5464−5473 DOI: 10.1021/jp503348b

13-Jun-14

S. Riikonen, P. Parkkinen, L. Halonen, and R. B. Gerber Henning Henschel, Juan C. Acosta Navarro, Taina Yli-Juuti, Oona Kupiainen-Mäaẗ tä, Tinja Olenius, Ismael K. Ortega, Simon L. Clegg, Theo Kurtén, Ilona Riipinen‡, and Hanna Vehkamäki Kelvin H. Bates, John D. Crounse, Jason M. St. Clair, Nathan B. Bennett, Tran B. Nguyen, John H. Seinfeld, Brian M. Stoltz, and Paul O. Wennberg Yingdi Liu, Kyle D. Bayes, and Stanley P. Sander

J. Phys. Chem. A 2014, 118 (27), 5029−5037 DOI: 10.1021/jp505627n J. Phys. Chem. A 2014, 118 (14), 2599−2611 DOI: 10.1021/jp500712y

Theo Kurtén, Kirsi Tiusanen, Pontus Roldin, Matti Rissanen, Jan-Niclas Luy, Michael Boy, Mikael Ehn, and Neil Donahue Sara M. Aschmann, Noriko Nishino, Janet Arey, and Roger Atkinson

J. Phys. Chem. A 2016, 120 (16), 2569−2582 DOI: 10.1021/acs.jpca.6b02196

21-Mar-14

29-Jan-14

8-Jan-14 6-Apr-16

31-Dec-13

article title Organic Component Vapor Pressures and Hygroscopicities of Aqueous Aerosol Measured by Optical Tweezers OH + (E)- and (Z)-1-Chloro-3,3,3trifluoropropene-1 (CF3CHCHCl) Reaction Rate Coefficients: StereoisomerDependent Reactivity Identification and Yields of 1,4Hydroxynitrates Formed from the Reactions of C8−C16 n-Alkanes with OH Radicals in the Presence of NOx Formation and Growth of Molecular Clusters Containing Sulfuric Acid, Water, Ammonia, and Dimethylamine Ionization of Acids on the Quasi-Liquid Layer of Ice Hydration of Atmospherically Relevant Molecular Clusters: Computational Chemistry and Classical Thermodynamics

J. Phys. Chem. A 2014, 118 (7), 1237−1246 DOI: 10.1021/jp4107958

Gas Phase Production and Loss of Isoprene Epoxydiols

J. Phys. Chem. A 2014, 118 (4), 741−747 DOI: 10.1021/jp407058b

Measuring Rate Constants for Reactions of the Simplest Criegee Intermediate (CH2OO) by Monitoring the OH Radical α-Pinene Autoxidation Products May Not Have Extremely Low Saturation Vapor Pressures Despite High O:C Ratios

J. Phys. Chem. A 2014, 118 (2), 457−466 DOI: 10.1021/jp410345k

Products of the OH Radical-Initiated Reactions of Furan, 2- and 3-Methylfuran, and 2,3- and 2,5-Dimethylfuran in the Presence of NO

Published: July 7, 2016 © 2016 American Chemical Society

4429

DOI: 10.1021/acs.jpca.6b05749 J. Phys. Chem. A 2016, 120, 4429−4430

The Journal of Physical Chemistry A

Editorial

Table 1. continued publication date

authors

citation

Sumi N. Wren, Brittany P. Gordon, Nicholas A. Valley, Laura E. McWilliams, and Geraldine L. Richmond O. S. Ryder, N. R. Campbell, M. Shaloski, H. Al-Mashat, G. M. Nathanson, and T. H. Bertram Christopher Lee, Camille M. Sultana, Douglas B. Collins, Mitchell V. Santander, Jessica L. Axson, Francesca Malfatti, Gavin C. Cornwell, Joshua R. Grandquist, Grant B. Deane, M. Dale Stokes, Farooq Azam, Vicki H. Grassian, and Kimberly A. Prather Manoj Kumar and Joseph S. Francisco

J. Phys. Chem. A 2015, 119 (24), 6391−6403 DOI: 10.1021/acs.jpca.5b03555

A. Habartová, L. Hormain, E. Pluhařová, S. Briquez, M. Monnerville, C. Toubin, and M. Roeselová Elizabeth A. Pillar, Ruixin Zhou, and Marcelo I. Guzman Santino J. Stropoli and Matthew J. Elrod

J. Phys. Chem. A 2015, 119 (39), 10052−10059 DOI: 10.1021/acs.jpca.5b06071

Stella Corsetti, Rachael E. H. Miles, Craig McDonald, Yuri Belotti, Jonathan P. Reid, Johannes Kiefer, and David McGloin Joel D. Rindelaub, Rebecca L. Craig, Lucy Nandy, Amy L. Bondy, Cari S. Dutcher, Paul B. Shepson, and Andrew P. Ault

J. Phys. Chem. A 2015, 119 (51), 12797−12804 DOI: 10.1021/acs.jpca.5b10098

2-Feb-16

Cassandra J. Gaston and Joel A. Thornton

J. Phys. Chem. A 2016, 120 (7), 1039−1045 DOI: 10.1021/acs.jpca.5b11914

18-Mar-13

Neha Sareen, Samar G. Moussa, and V. Faye McNeill Adam P. Bateman, Allan K. Bertram, and Scot T. Martin

J. Phys. Chem. A 2013, 117 (14), 2987−2996 DOI: 10.1021/jp309413j J. Phys. Chem. A 2015, 119 (19), 4386−4395 DOI: 10.1021/jp508521c

Amanda L. Mifflin, Luis Velarde, Junming Ho, Brian T. Psciuk, Christian F. A. Negre, Carlena J. Ebben, Mary Alice Upshur, Zhou Lu, Benjamin L. Strick, Regan J. Thomson, Victor S. Batista, Hong-Fei Wang, and Franz M. Geiger Hanna Lignell, Scott A. Epstein, Margaret R. Marvin, Dorit Shemesh, Benny Gerber, and Sergey Nizkorodov Allison E. Reed Harris, Barbara Ervens, Richard K. Shoemaker, Jay A. Kroll, Rebecca J. Rapf, Elizabeth C. Griffith, Anne Monod, and Veronica Vaida

J. Phys. Chem. A 2015, 119 (8), 1292−1302 DOI: 10.1021/jp510700z

19-May-15 8-Jul-15 21-Jul-15

14-Sep-15

3-Sep-15 25-Sep-15 18-Sep-15 3-Dec-15

8-Jan-16

14-Nov-14 3-Feb-15

19-Nov-13 11-Apr-14



J. Phys. Chem. A 2015, 119 (31), 8519−8526 DOI: 10.1021/jp5129673

article title Hydration, Orientation, and Conformation of Methylglyoxal at the Air−Water Interface Role of Organics in Regulating ClNO2 Production at the Air−Sea Interface

J. Phys. Chem. A 2015, 119 (33), 8860−8870 DOI: 10.1021/acs.jpca.5b03488

Advancing Model Systems for Fundamental Laboratory Studies of Sea Spray Aerosol Using the Microbial Loop

J. Phys. Chem. A 2015, 119 (38), 9821−9833 DOI: 10.1021/acs.jpca.5b07642

The Role of Catalysis in Alkanediol Decomposition: Implications for General Detection of Alkanediols and Their Formation in the Atmosphere Molecular Simulations of Halomethanes at the Air/Ice Interface

J. Phys. Chem. A 2015, 119 (41), 10349−10359 DOI: 10.1021/acs.jpca.5b07914 J. Phys. Chem. A 2015, 119 (40), 10181−10189 DOI: 10.1021/acs.jpca.5b07852

J. Phys. Chem. A 2016, 120 (6), 911−917 DOI: 10.1021/acs.jpca.5b12699

Heterogeneous Oxidation of Catechol Assessing the Potential for the Reactions of Epoxides with Amines on Secondary Organic Aerosol Particles Probing the Evaporation Dynamics of Ethanol/Gasoline Biofuel Blends Using Single Droplet Manipulation Techniques Direct Measurement of pH in Individual Particles via Raman Microspectroscopy and Variation in Acidity with Relative Humidity Reacto-Diffusive Length of N2O5 in Aqueous Sulfate- and ChlorideContaining Aerosol Particles Photochemical Aging of Light-Absorbing Secondary Organic Aerosol Material Hygroscopic Influence on the Semisolid-toLiquid Transition of Secondary Organic Materials Accurate Line Shapes from Sub-1 cm−1 Resolution Sum Frequency Generation Vibrational Spectroscopy of α-Pinene at Room Temperature

J. Phys. Chem. A 2013, 117 (48), 12930−12945 DOI: 10.1021/jp4093018

Experimental and Theoretical Study of Aqueous cis-Pinonic Acid Photolysis

J. Phys. Chem. A 2014, 118 (37), 8505−8516 DOI: 10.1021/jp502186q

Photochemical Kinetics of Pyruvic Acid in Aqueous Solution

AUTHOR INFORMATION

Notes

Views expressed in this editorial are those of the author and not necessarily the views of the ACS.

4430

DOI: 10.1021/acs.jpca.6b05749 J. Phys. Chem. A 2016, 120, 4429−4430