Atomic absorption, atomic fluorescence, and flame emission

For scientific methods and technologies the word “mature” has come to have a somewhat ominous connotation. In electronic technology a mature techn...
0 downloads 0 Views 4MB Size
Anal. Chem. 1904, 56, 278R-292R

Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry Gary Horlick Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

A. INTRODUCTION For scientific methods and technologies the word “mature” has come to have a somewhat ominous connotation. In electronic technology a mature technology, 8080 microprocessors, for example, implies a nondeveloping technology and a similar connotation to the use of the word has been implied with respect to analytical methodologies (11A). Thus it is significant and interesting that one review in the area of atomic absorption spectrometry (1OA) was entitled “Furnace Atomic Absorption - a Method Approaching Maturity”, perhaps presaging the fate of atomic absorption in the next few years. In many ways such a maturation has already occurred for flame emission spectrometry and is well under way for flame atomic absorption spectrometry. This does not mean to imply that utilization is waning, but in both of the above areas (FES and FAAS) few researchers are actively pursuing basic research from an analytical spectroscopy point of view. Such cannot yet be said about electrothermal atomic absorption spectrometry but the above entitled paper means that such thoughts are starting to run through the minds of some researchers. Several excellent review papers on the general area of atomic absorption spectrometry have recently been published by Price (16A),Slavin (17A),and Walsh (19A). In addition, Ottaway (15A),Prech et al. @A), and in particular the fine review by Slavin and Manning (18A) provide an excellent overview of electrothermal methods at this point in time. The Slavin and Manning review is highly recommended. The overall theme of these reviewers is that several aspects of electrothermal AAS have significantly matured in the last few years and that when taken as a whole, they give a new perspective to the method. In other words, when one combines, refines, and optimizes methodology such as the L’vov latform, matrix modification, surface pretreatment (pyro- an /or metalization), background correction (Zeeman), rapid heating, high-speed measurement electronics, and precise autosampling, the method takes on an essentially new mature capability. Perhaps the most important development in the last 2 years is the recognition of the synergic effect of these methodologies on the capability of electrothermal AAS, a point emphasized by Slavin. This is an important step for the maturation of electrothermal AAS but much remains to be done and as seen in the following review the field is still very active. The main aim of this review, as in the past (9A) is to be reasonably complete in dealing with the fundamental aspects of the field and representative with applications. Applications are covered in a tabular format. The Royal Society of Chemistry continues to publish its comprehensive reviews on analytical spectroscopy (4A,5A) and semiannual bibliographies have been compiled by Lawrence (12A-14A). Several general books on atomic absorption spectroscopy have appeared (3A, 6A, 7A) but without question the most significant book to appear was “Metal Vapours in Flames” by Alkemade, Hollander, Snelleman, and Zeegers ( I A ) . This is an excellent book, a real tome of some 1000 plus pages detailing much of our present knowledge about analytical flame spectrometry. It does, however, have few references beyond 1979. In a way, this book is another indication of the maturity of the field. Such a book can only be written when a field has reached a high degree of scientific maturity. In light of the comments at the beginning of this section, it could also signal the end of an era, perhaps as Bouman’s book “Theory of Spectrochemical Excitation” did for dc arc in 1966 (2A). This review is broken down into several sections. First developments in instrumentation, measurement techniques, and procedures will be covered. Highlights and important

B

278 R

trends here include new background correction systems, the rapid development of FIA sample introduction systems since the last review, and the development and refinement of furnace structures and methodologies that allow some independent control of vaporization and atomization and that allow vaporization into a hot furnace. In the section on performance studies both flames and electrothermal atomizers are reviewed. Little activity is in evidence for analytical flame systems while much work continues in the development of models for electrotherma1 atomizers and in interference characterization. Applications of atomic absorption spectrometry are tabulated and then analytical comparisons, particularly those to the ICP are outlined. Finally, recent developments in atomic fluorescence spectrometry and flame emission spectrometry are briefly discussed.

B. DEVELOPMENTS IN INSTRUMENTATION, MEASUREMENT TECHNIQUES, AND PROCEDURES 1. General Developments in Instrumentation. One of the most interesting developments in AAS instrumentation is the background correction method described by Smith and Hieftje (Heef yeh) (137B-139B). In this method background correction is accomplished using a single source, the analyte hollow cathode lamp. Two absorption measurements are made, one with the lamp run a t a normal low current value and a second with the lamp pulsed to a large current value. The first measurement yields an absorbance value indicative of analyte and background absorbancies while the second measurement yields an absorbance value indicative primarily of background absorbance. This occurs because the line width of the lamp emission when pulsed to a high current broadens significantly and also tends to self-reverse. Thus subtraction of these two absorbance measurements results in a background corrected absorbance value for the analyte. In comparison to the D2arc background correction system only one light beam is involved simplifying alignment and correction can be made at essentially any analyte wavelength (UV to visible). In comparison to Zeeman-based background correction systems it involves considerably less costly infrastructure to implement. It is a very elegant but simple idea and certainly goes under the catagory “Gee, why didn’t I think of that.” Siemer (132B)has also described a background correction method that although not identical with the method described above is similar in concept. In Siemer’s system two measurements are again made, one just after a high current pulse is applied to the hollow cathode lamp and one at the end of the high current pulse. It has been shown that it takes some time for the onset of self-reversal; thus the first measurement is analogous to the first measurement in the Smith-Hieftje system. Again, the two measurements are subtracted to obtain a background corrected value. On the basis of information in an abstract (8B) Baranov et al. are thinking along similar lines for a background correction system. In this same general area Falk (32B) has reviewed AAS radiation sources with respect to intensity and line profile. In other instrumental areas a transient recorder system has been described for the measurement of AAS signals produced by a tungsten filament atomizer (31B),a new design of droplet generator has been described by Seymour and Boss (119B) and a slot burner with a thermal evaporator has been described (69B). Lamdahl et al. (85B)discussed the utilization of demountable hollow cathode lamps, Parker e t al. (104B)discussed the regeneration of normal hollow cathode lamps by turning them into demountable lamps, and a capillary discharge lamp for the AAS determination of iodine (at 183.0

0003-2700/84/0356-278R$06.50~0 0 1984 American Chemical Society

ATOMIC ABSORPTION. ATOMIC FLUMIESCENCE. AND FLAME EMISSION SPECTROMETRY

I

nm)has been described (888). McDonald and Neil (958) described an interface between a Commodore PET microcomputer and a Varian-Techtron M 6 , an ASCII character buffer interface has been developed for a PE 5000 a t the EPA Cincinnati laboratory (298), a microcomputer system has been interfaced to the threechannel AAS developed a t the Macaulay Institute in Aberdeen (18).and some atomic absorption programs have been developed for the H P 975 programmable calculator (1058). Several on-line AA systems have recently been described. Ca, Mg, and AI have been monitored on-line in the primary coolant of water-mled nuclear reactors (498),Schulze (1188) described an automated furnace AAS for the determination of metals directly in flowing streams, and atomic absorption has been used to continuously monitor Fe in a V melt (908). Several discussions of commercial instruments and accessories have appeared. The new Varian GTA-95 graphite tube atomizer has been deacribed in several articles (98,148,1168, 11 78,1288), Routh (158)has commented on the importance of accurately tracking transient signals in graphite furnace atomization, and Liddell (848) has described the automated Varian AA-975. In a patent report Smith and Shapiro (1408) described a modification to the burnernebulizer system that maintains a positive pressure in the premix chamber. Broekaert (168) described an automatic hydride system for Pye Unicam AA equipment, and Wittmer (1588)described an automatic gas control system for AAS. Patents were reported by Hitachi (598) for a flameless atomizer, by Matsushita (928) for carbidization of an atomizer with Ti, Zn, La, Y, Th, and Eu, by Shinadzu (1258)for a modified D2 lamp background correction system, and by Philips (828) for a unique pyrrolytic graphite tube-shaped cuvette electrothermal atomizer. Finally, Klein (728) described a sequential AAS with an autosampler that could be programmed via magnetic cards for the automatic determination of eight elements, and Dulude (288) and Sotera published a survey of the applications of two-channel AAS. Several reports on the analytical capability and application of the continuum source atomic absorption spectrometer developed by Harnly and OHaver have appeared. Messman et al. (968) reported on the overall performance of the continuum-source wavelength-modulated AAS, Harnly (558) discussed the optimization of slit parameters on this system and as well carried out a comparison of modulation wave forms (548). Miller-Mi et al. (988) studied flame atomic absorption spectral interferences with this system and Harnly et al. (568)

applied this instrument to simultaneous multielement AAS. Compromise operating conditions with respect to flame gas parameters and observation height were determined and computer software for this system was described by Harnly et al. (578). Timeresolved electrothermal AAS mensurements were carried out by Miller-Ihli et al. (978) using this system and different time behavior was observed for analyte and background absorptions. Harnly and OHaver in colaboration with Ottaway (588) compared continuum source, echelle monochromator, wavelength-modulated AAS, and wavelength-modulated AES for the electrothermal atomization determination of Cr in urine. The emission system had a detection limit that was about 5 times better than that of the AAS system. Finally a continuum source atomic absorption flame spectrometer with a resonance flame detector has been described by Blackburn and Winefordner (138). 2. Sample Introduction. Nebulizers remain, perhaps, the most important system for sample introduction. In two recent papers Gustavsson (518,528) provides considerable insight to the fundamental aspects of the nebulization process; however, most nebulizer research is now directed toward sample introduction into the ICP rather than into flames. It is perhaps time to asaess the rather large body of work that has gone into nebulization systems for the ICP and apply some of the developments to flame systems. Yanagisawa et al. (1608) have combined an activated charcoal reactive column with an electrothermal atomizer and a quartz T tube absorption cell. This system has the potential for directly determining Hg and Cd in complex matrices. Knapp (738) reported, in a patent application, on a sample introduction system that converted elements incapable of forming volatile hydrides into volatile complexes. The complexing agents included diethylammonium diethyldithiocarbamate or trifluoroacetyl. Sharpstein (1228).in another patent, described a system based on capillary action, for precisely delivering liquid sample to an atomic absorption furnace atomizer and Shabushnig and Hieftje (1218) described a microdrop system for delivering liquid samples to an electrothermal atomizer. Wei et al. (1538)presented an application of the aerosol de osition technique for the determiindicated that halide nation of Cu in blood anrfFrazakas (338) interferences are reduced with aerosol deposition. A number of workers have reported on nebulization systems designed to deliver a small volume of a sample. They t y p i d y involve pulse nebulization or sam le injection into a flowing stream. A patent was granted to ghimadzu Seisakusho, Ltd. (1248),for a system in which sample is injected into a flowing carrier solution, Futekov et al. (448,458) described a system for valving or gating samples into a flowing stream, and Prudnikor (1088) used a pulsed introduction system for microvolumes (-1 pL) of sample solutions. Mukherjee (BB), using a small sample cup, injected 1-3 pL samples into the nebulizer for the analysis of crevicular fluid, and a plastic cone sample injection system was used for the determination of Zn in blood at up to 240 measurementslh (1548). Clearly these injection and flowing systems are very close in concept to actual flow injection analysis systems and there has been a dramatic increase in the utilization of FIA and related subsystem for sample introduction in AAS in the last 2 years. A patent was granted to Shimadzu (1268) for a flowing system in which an interference suppressor is continuously fed to the atomizer and into which the sample is injeaed. An on-line diluter has been described (109B), a triple capillary aspiration system that allows for the addition of a La solution and implementation of the standard addition method has been presented (135B),Ni (1008) described a similar system for the simultaneous addition of sample solution and standard solution to the nebulizer, and Watling and Watling (1528)described a branched capillary system to deliver analyte solution and an ionization suppressant to the nebulizer. Tyson and his colleagues at Loughborough have been d e veloping several applications of FIA to AAS. Tyson et al. (1468) and %on (1448) described the basic features of FIA as a sample introduction system for AAS and illustrated ita application to the automation of the standard addition method. Tywn et al. (1458)also discussed FIA-based calibration methods for AAS. FIA-AAS was applied by Olsen (1038)to the determination of trace metals in seawater and by Rocks et al. to the determination of Fe in serum (1148). Zn and Cu ANALYTICAL CHEMISTRY. VOL. 56, NO. 5. APRIL 1984

270R

ATOMIC ABSORPTION, ATOMIC FLUORESCENCE, AND FLAME EMISSION SPECTROMETRY

in serum (111B), and Li in serum (112B).Burguera et al. applied FIA-AAS to the determination of Na and K in serum (19B)and described a system for Ca and Mg in serum using EDTA in the carrier stream (20B)which was critically commented on by Rocks et al. (113B). Two FIA-AAS systems utilizing La as an interference suppressor were described, one by Kimura et al. (71B) for Ca in silicate rocks and the other by Uchida et al. (147B) for Ca and Mg in serum. Finally two FIA-AAS have been described that implement on line extractions. Nord and Karlberg (101B) extracted metal ions into 4-methyl-2-pentanone with NH4 pyrrolidinedithiocarbamate. Plugs of the organic extractant in an aqueous carrier stream are pumped to the nebulizer. The second system involving solvent extraction FIA was described by Ogata et al. (102B). Andrade et al. ( 3 ) automated a Hg cold vapor determination with FIA methodology and a Teflon phase seperator. Wennrich and Dittrich (155B)used a Q switched ruby laser to generate solid aerosol for atomic absorption analysis. The solid aerosol was transported to a hot graphite furnace for atomization. A Russian patent was issued for the utilization of laser vaporization/atomization with direct atomic absorption measurements on the laser plume (127B). Also in the Russian literature (27B) a cooled pulsed hollow cathode discharge has been used for sample atomization with subsequent atomic absorption analysis of the vaporized plume. Electrochemical preconcentration on a tungsten filament has been applied to the determination of Pb in seawater (89B), and Cd and Zn have been determined after electrochemical preconcentration on a graphite rod (123B). Atom trapping as a preconcentration method continues to be developed by the group at the Macaulay Institute for Soil Research. Lau et al. (76B) presented a general discussion of the techni ue and Khalighie et al. (70B)evaluated water-cooled metal tules as collectors. Ni and Cu tubes were studied as well as the effect of Cu and Ni deposited on silica tubes. Atom trapping methodology was used for the determination of Se (77B)and for P b and Cd (78B). 3. Electrothermal Atomizer Structure, Form, and Composition. One of the most significant trends in electrothermal instrumentation is the development of systems and structures that allow for some separation and independent control of volatilization and atomization and in particular the development of systems in which atomization occurs into a preheated zone. The driving force, in part, for these developments is refinement of the concepts embodied in the L‘vov platform modification developed a few years ago for furnace atomizers. Siemer (130B) developed an atomizer with full independent control of volatilization and atomization from the point of view of both temperature and spatial position. Documented matrix effects were greatly reduced or eliminated with this system compared to conventional furnaces. Frech and Jonsson (41B) developed a system where samples were vaporized from a graphite cup into a preheated constant temperature tube. The cup was heated by an independent power supply. Giri et al. (46B, 47B) from Ottaway’s laboratory in Glasgow used a graphite probe that was used to insert the sample in a hot, constant-temperature graphite furnace. Classic furnace interference effects were reduced by such probe atomization. Holcombe and Sheehan (53B)presented a very interesting modification of a graphite furnace in which an actual condensation site (the plug) is located. Analyte is “distilled” and condenses on this site during a high temperature ash and during the vaporization cycle analyte is revaporized from the plug into a higher temperature furnace environment. Atsunza and Itoh (5B)used a miniature cup inside a furnace to provide a L’vov platform type effect and applied their system to the direct determination of trace metals in NBS powdered botanical standards. A two-stage Mo atomizer which provided independent sections for atomization and vaporization was developed by Robinson and Jowett (11OB). While there has been this recent increase in research activity in constant temperature furnaces and the refinement of vaporization into an already heated furnace environment, it is useful to remember that Ray Woodriff had been telling us for years about just such an approach. In the time frame of this review Jenke and Woodriff (64B,65B)described a system for the direct introduction of desolvated aerosol into a constant temperature “Woodriff type” furnace. Lawson and Woodriff (81B)described a double-walled furnace designed to achieve

L

280R

ANALYTICAL CHEMISTRY, VOL.

58, NO. 5, APRIL 1984

spatially isothermal atomization and Lawson et al. (BOB) illustrated the potential of reduced matrix effects with a constant temperature furnace. Lawson et al. (7%) also wrote an extensive review (106 references) on the influence of furnace design on operation, sensitivity, and matrix interferences in electrothermal atomic absorption spectrometry. Siemer at Exxon Nuclear in Idaho Falls has been active in developing modifications to the carbon rod atomizer. A four-rod modification of the Varian M63 has been described (129B) that results in reduced matrix effects and improved sensitivity. With the goal of increasing the effective gas temperature experienced by volatile analytes, Siemer and Lewis (131B, 133B) used a top-clamped cup geometry for a carbon rod atomizer. In a patent description, Wiseman and Masters (157B) of Varian Techtron described a tubular graphite furnace, and a segmented graphite rod design that allows the direct atomization of solutions without drying and pyrolysis (ashing) cycles has been described and applied (6B, 7B). A number of papers and studies have appeared in the area of metal atomizers. In a review containing 106 references, Suzuki and Ohta (142B) discussed the whole area of electrothermal AAS with metal atomizers. Suzuki and Ohta (141B)developed a theoretical model for atomization in a Mo microtube atomizer, and Suzuki et al. (143B) used this atomizer for the determination of Pb and Cu in foods. Thiourea was used as a matrix modifier. Fudagawa et al. (42B) compared three ribbon materials as atomizers (W, Mo, and Ta) for the determination of Zn, Ca, Mn, Ni, Co, and Fe and found W to be the best material. Daidoji and Tamura ( 2 1 4 22B) described the use of a Ta boat inside a graphite furnace. This system greatly facilitated the determination of carbide forming elements such as Li, Na, K, Ca, Si, Ba, Sn, and Ge as well as providing excellent sensitivity for elements such as Zn, Hf, Y, Dy, and Sa. A coiled tungsten atomizer was described by Atanshev et al. (4B). Berndt and Messerschmidt (11B)reviewed the utilization of metal loops (Pt, Pt Ir, or Ir) for discrete sample introduction into flames. T e benefits of using an Ir loop in place of a Pt loop were discussed (12B)and the Ir loop method was applied to the determination of P b in wine (IOB). It is well known that the nature of the graphite surface in rod and furnace atomizers and its pretreatment is important with respect to optimized analytical performance. Fukino and Matsui (43B) described the preparation of a pyrolytic graphite-coated carbon tube atomizer and applied it to the determination of Dy. Slavin et al. (136B)studied the performance of pyrolytic coated tubes for the determination of A1 and T1. Fazakas (34B) reported that pyrocoated tubes result in sharper peak shapes when compared to normal graphite and are considerably better for the determination of A1 and Mo. Erspamer and Niemczyk (30B)compared pyrolytically coated graphite tubes and nonpyrolytic raphite tubes for the determination of Pb and Ni in a Mg& matrix and found some advantages for the nonpyrolytic tubes with respect to matrix volatilization. Glaeser (48B),in a patent report discusses the testing of pyrolytic graphite coatings. In an interesting and effective alternative to pyrocoated tubes, De Galan and De Loss-Vollebregt (25B)described the utilization of glassy carbon tubes for electrothermal atomization. Advantages stated include uniform heating, resistance to chemical attack, long lifetime, and consistent sensitivity. In addition to pyrocoating, metalization with Ta, Zr, and La as well as combining graphite tubes with metal liners has been shown to be analytically useful. Zhao et al. (161B) studied the determination of rare-earth elements with pyrolytic graphite-coated tubes and tubes coated with carbides of Ta, Zr, or La and a Ta foil lined tube. Chakrabarti (50B) discussed the mechanism of atom formation of U, V, Mo, Ni, Mn, Cu, and Mg atomized from pyrolytic graphite and Ta metal surfaces. Wu and Ma (159B)used a W-Ta metal liner with a pyrolytic graphite coated tube for the determination of rare earths and U and found such a combination to be very suitable for these analyses. Finally, Severin et al. (12OB)tested Zr, Nb, Ta, Mo, and W for surface pretreatment of graphite furnaces, and for the determination of Cd, Ta proved to be the best surface. 4. General Developments in Technique. Organic complexing agents are frequently used in atomic absorption spectrometry and in a review with 108 references Komarek

h

ATOMIC ABSORPTION, ATOMIC FLUORESCENCE, AND FLAME EMISSION SPECTROMETRY

and Sommer (75B)covered this area. Preconcentration and separation are also frequently carried out by using Chelex-100, and Danielsson et al. (23B)discuss the possible matrix effect of high NH4+ when using this system. Alder and Batoreu (2B) described an interestin use of ion-exchange resin beads. They showed that the ad ition of known masses of Cu or A1 to individual beads of cation exchanger could provide a stable matrix of known metal content for use in calibrating a carbon furnace system. In a somewhat related study Isozaki et al. (62B,63B) added resin chelated analyte directly to a carbon tube furnace. Both P b and A1 were determined by using this approach. In a series of papers Fazakas discussed the influence of pressure on the determination of several elements by graphite furnace AAS. For Pd (36B)he studied the relative sensitivities of resonance and nonresonance lines. Peak heights and peak areas of the resonance lines decreased with increasing pressure while for nonresonance lines they increased; however, Calibration curve linearity (resonance lines) was improved. Similar trends were observed for T1(35B),Be (38B),Ag (37B),and Au (39B). Hoenig (60B) also noted that pressurized atomization linearized the calibration curve for Cd. Burakov et al. (17B) applied dye laser intracavity spectroscopy to the determination of trace levels of A1 and Ca. Detection of 5 x g of aluminum was possible. A similar system was used for the determination Fe and Cr (18B).In both studies, a Ta-Re alloy furnace was used for atomization. Vul'fson et al. (151B) also reported on intracavity absorption experiments in which a laser was used for sample vaporization/atomization. In an auxiliary role atomic absorption has been used to study glow discharges (86B, 87B, 93B, 94B) and as a detector in thermal analysis (68B, 134B). 5. Zeeman Atomic Absorption Spectrometry. Zeeman atomic absorption instruments are now widely available and well established for measurements that require background correction. Broekaert (15B) outlined the characteristics of several commercial Zeeman-based instruments, and in patent applications the Perkin-Elmer system has been described (61B, 106B).Pinta et al. (107B) discussed the utility of the Zeeman effect for the direct determination of Cd in solid geological samples. Massmann (91B) pointed out that errors may occur in Zeeman effect based background measurements if the background is caused by molecules such as OH, NO, NOz, and SO , all of which show a Zeeman effect. Fernandez and Giddings (40B)showed that certain spectral interferences that occur with continuous background correction are eliminated by using Zeeman effect background correction. A short two part review of Zeeman systems has been presented by Voellkopf and Schulze (1494 150B). De Loss-Vollebregt and De Galan (26B) described a Zeeman system that allowed correction for background absorption and stray radiation. This is a sinusoidally modulated system with measurements made at three field strengths. The magnet power supply for this system is described by Van Uffelen et al. (148B).A short review on Zeeman AAS has been presented by De Galan (24B). Double valued calibration curves are a source of concern in Zeeman effect AAS. Koizumi et al. (74B)have indicated that when the calibration curve becomes double valued fast transient absorption peaks appear a t the beginning and end of sample aspiration and that these can be used to signal the need to dilute the sample. Overall there has been much less research activity in Zeeman methods in the last 2 years as it has moved into the work place as a standard methodology for background correction. It will, however, be strongly challanged in the next couple of years by the pulsed hollow cathode lamp background correction schemes mentioned at the beginning of this section which are considerably simpler to implement. The Zeeman effect (source modulated) has been applied to atomic absorption measurements using a dc plasma atom cell (156B).Limited papers have appeared concernin the Voigt effect. Kankare and Stephens (67B)discussefi the signal-to-noise ratio characteristics of the atomic Voigt effect, Jolly and Stephens (6623)described a Voigt effect optical fiiter based on a flame, and Li et al. (83B) determined Ag, Pb, and Rb by using the atomic Voigt effect.

d

C. PERFORMANCE STUDIES While it can be said that almost all papers advance the performance of atomic absorption spectrometry, the papers

covered in this section deal primarily with fundamental characterization of flames and electrothermal atomizers from the point of view of analytical spectroscopy. 1. Flame Performance Studies. As mentioned in the introduction, while the flame continues to be a widely used source for analytical atomic spectrometric determinations, few research groups continued to be involved in fundamental studies of flame systems from the point of view of characterizing, understanding, and improving analytical performance. It is, perhaps, a little harsh to declare the flame dead as a research interest of analytical spectroscopists, but it is a conclusion that could be reached based on the small number of papers published in this area in the last 2 years. Clearly the fundamental research efforts of analytical spectroscopists are being more and more focused on the ICP. However, a few interesting papers on analytical flame spectroscopy did appear and are summarized in this section. Seymour and Boss (48C) published an interesting study on the enhancement of Ti, Zn, and V signals in a flame when A1 is present. It was found that A1 enhances both atomic and molecular signals for Ti and the degree of enhancement depended on the N/Ti molar ratio. Studies, aided with a droplet generator, indicated that A1 appeared to cause explosive fragmentation of solute particles. Such fragmentation was not observed when either the element or A1 were aspirated alone. An excellent and detailed paper was published by Alkemade et al. (2C) on spatial and spectral cross correlation noise properties in flames. Kono and Kojima (28C, 29C) studied the effects of organic solvents and the addition of graphite powder on the formation of dry particles in AAS and showed that the exact nature of the particles formed after desolvation (i.e., amorphous, crystalline, porous) varied considerably from solvent to solvent. The effect of organic solvents specifically on the determination of Sn in an air-hydrogen flame was studied by Anwar and Marr (3C)and organic solvent effects in general were reviewed by Cresser (1OC). A theoretical model of the interference of K on Na in an air-CzHzflame was developed by Koscielniak and Paraczewski (30C),and Millner (39C) discussed the optimization of instrumental parameters in order to minimize flame interferences. Gonchanova et al. (18C) indicated that inorganic acids (up to 5 % ) had no effect on Ca emission and absorption signals in a propane-N20 flame. In a more fundamental vein, Barakat et al. (4C) determined the ratio of oscillator strengths for Sn 407.8 and Sn 460.7 nm lines, the fraction of In atomized in an air-CzHz flame (@= 0.085) was determined by Kozyreva ( 3 1 0 , escape factors were determined from atomic absorption measurements of Li, K, Cu, and Ag ( 5 0 , high-temperature (1890-2460 K) diffusion coefficients for Ag, Cd, Cu, Mg, and Mn atom vapor were determined (43C),and thermally assisted fluorescence of Na was used to study collisional population redistribution of Na in nine acetylene-0, flames (13C). Steglich and Stahlberg (56C,57C) studied the optimization of an AAS method from the point of view of precision with particular emphasis on the determination of Ni, Fe, Cr, and Cu. Sotera et al. (55C)indicated that stored working curves could be reused as long as parameters which affect curve shape &e., wavelength, slit width) are not varied. Ikrenyi and Bartha (22C) found that the stability of a N20-C2H2 flame could be improved by water cooling the burner. Both the sensitivity and precision of analytical determinations were improved. An interesting new flame system was described by Kono and Kojima (26C, 27C). The flame is air-CzHz sandwiched between oxygen and the burner is water cooled. It was shown that a wide range of organic solvents could be aspirated into this flame and that common vaporization interferences were suppressed for Ca and Mg determinations. Huang (202) used an oxygen-shielded air-acetylene flame for the determination of Ga in iron ores. 2. Electrothermal Atomization Performance Studies. The current concepts and models for the mechanism of thermal atomization in atomic absorption analysis have been reviewed (174 references) by Katskov (24C). Frech et al. (15C) presented a critical study of the constant temperature and rising temperature methods used t o investigate atom formation processes in graphite furnace AAS. Sturgeon and Berman (58C) measured the efficiency of the HGA-2200 furnace for ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

281 R

ATOMIC ABSORPTION, ATOMIC FLUORESCENCE, AND FLAME EMISSION SPECTROMETRY

the production and containment of atomic vapor for Al, K, Rb, Cs, Na, Ca, Ba, Ga, and Sn. Efficiencies averaged 12% with a range from 1%for Sn to 30% for Cs. These measurements also involved electron density measurements in the atomizer using microwave attenuation techniques. Holcombe (I9C)discussed vapor expulsion and loss from a furnace atomizer. A rate model of atomization processes in graphite furnace AAS has been presented by Chakrabarti (9C), and Baymore et al. (6C)described an automated system for preparing Arrhenius plots. Holcombe (46C)however, published a cautionary warning on the meaning of Arrhenius plots. Katskov et al. (25C)described an instrument developed specifically to study thermochemical behavior. It has an independently heated evaporator and atomizer and the pressure, gas comosition, and atomizer and evaporator temperatures can all e! controlled. A model of electrothermal atomization has been presented by Musil and Rubeska (42C)which includes the interaction (redeposition) of free atoms with the cuvette wall and Gil'mutdinov and Fishman (16C,I7C) modeled semienclosed furnace atomizers. Longitudinal temperature gradients and temperature-time characteristics of graphite furnace electrothermal atomizers have been measured (44C,450. Human et al. (21C)developed a computer program to calculate the temperature of any part of a graphite furnace tube at any point in time after onset of the heating cycle and Bragin and Sadagov (7C)measured the spatial distribution of temperature in graphite tubular furnaces. In two very interesting papers L'vov and Ryabchuk (35C, 36C)discussed the importance of oxygen in the atomization process in electrothermal AAS as did Chakrabarti (8C).In addition Salmon and Holcombe (47C)discussed the effect of chemisorbed oxygen on the appearance temperature of several analyte species. All of these papers contain a lot of ideas and information on the vaporization behavior of analyte oxides and should be consulted for details. Ishibashi and Kikucki (23C)investigated the effect of various sheath gases (Nz, He, Ar, and 10% Hz mixed with each) on the absorption-time profiles of Al, Cu, and Ca. Nitrogen decreased the A1 and Ca signals and H2 decreased the A1 and Ca signals. Fazakas (14C) investigated the effect of purge gas flow rate for Pd determinations both with and without a platform. Radiotracer studies aided the design of some graphite atomizers (49C)and assisted the development of a method for the determination of Cu in biological (tissue, blood, urine) matrices ( 3 2 0 Mass spectrometry has also been used to study atomization. Sturgeon et al. (59C)studied the atomization of Pb from a furnace by using a quadrupole mass spectrometer, and Btyris and Kaye (60C)studied the vaporization of vanadium pentaoxide from vitreous carbon and tantalum furnaces by mass spectrometry. In a good overview paper Slavin et al. (52C) discussed the current state of methodology with respect to stabilized temperature platform furnace determinations using matrix modifiers and Zeeman background correction. Slavin et al. (51C)also discussed Mg(N03), as a matrix modifier for Mn and A1 determinations. Atomization was delayed, they felt, because the analyte was imbeded in MgO. Sotera et al. (54C) showed that interferences in furnace AAS could be minimized by use of a microboat and aerosol deposition. L'vov and Savin (34C)indicated that solid phase reduction of A1203,Ybz03, Smz03, and Tm203 was occurring during atomization. Yoshimura and Matsumura (64C)showed that the addition of carbon black enhanced Mo and V signals in electrothermal AAS. They further tested the effect of several powdered reductants (carbon black, CaH2, LiH, Na13H4, and S) on the determination of Be (63C).In all cases enhanced absorbance was observed. The interference suppression effect of ascorbic acid and related compounds was studied by Tominaga and Umezaki (61C,62C).Interferences from Na, Ca, and Fe chlorides were suppressed in the determination of Pb, Sn, Mn, V, and Mo. Shcherbakov et al. (50C) indicated that the mechanism might depend on the activation of the graphite surface by the pyrrolysis products of the ascorbic acid. Matsusaki (38C)studied the mechanism of halide interferences in electrothermal AAS and showed that EDTA was effective in removin such intereferences. Ebdon et al. (12C) observed that chlorite exhibited a strong negative interference 282R

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

on the determination of Zn with a carbon filament atomizer but not with a graphite furnace atomizer. The interference was attributed to the formation of ZnC1, and could be overcome with the addition of AgN03 as a matrix modifier. In the furnace method it was felt that the chloride was removed as HC1. Martinsen and Langmyhr (37C)studied interference problems associated with H2S04in graphite furnace determinations. Some specific and reasonably detailed studies of interferences have been carried out for the determination of Si (40C),Pb in blood using matrix modifiers, oxygen ashing Mo (41C), Sn (33C),and As (IC).And and surfactants (IC), last but by no means least, Slavin and Manning (53C) prepared a major guide to the literature of graphite furnace interferences containing 489 references.

D. APPLICATIONS OF ATOMIC ABSORPTION SPECTROMETRY The literature of atomic absorption spectrometry is dominated by reports of applications. In this section a number of representative applications are presented in tabular form. Applications emphasizing the determination of one element are summarized in Table I. It is interesting to note that such reports are primarily concerned with only 10 elements: Ag, As, Au, Hg, Pb, Pt, Se, Sn, Zn, and Cd. Elements that were determined with primary emphasis on a particular matrix are listed in Table 11. These applications fall into nine basic categories: fossel fuels and petroleum products; metallurgical samples; natural waters-seawater; ores and geological materials; plants and food products; blood serum (biological fluids); sludges, sediments, and particulates, and soil; tissue, bone, and hair (biological solids); and urine. Chemists have been very ingenious in developing indirect AAS methods for organic compounds. Several indirect determinations are summarized in Table 111. It is difficult to over emphasize the need to develop effective subsystems for the direct analysis of solid samples for trace metals. Progress in this area is slow, but some applications are presented in Table IV. Hydride methods remain important for several elements and developments in hydride generation techniques and determinations are summarized in Table V.

E. ANALYTICAL COMPARISONS In many ways this is the most significant and important section of this review. Out of 25 comparisons of the analytical capability of atomic absorption spectrometry to other methods, 19 concern the ICP, and in these comparisons lie the future of AAS. Herber et al. (7E)compared ICP to AAS for the determination of Cu and Zn in serum and ICP results were more precise. Riandey et al. (I8E)determined the major elements in soils and rocks by using an ICP and compared the results with AAS, FES, and spectrophotometric methods. Eaton et al. (5E) determined the trace metal content of drinking waters with an ICP and compared results to AAS and AES analyses. The multielement aspect of the ICP was a significant advantage. Jones et al. ( I I E ) evaluated an analytical scheme for the determination of elements in plant and animal tissues (10 NBS biological reference materials) using a combination of the ICP and hydride evolution AAS. Barnett et al. (3E)determined Pb in freeze-dried human milk by electrothermalAAS and Ni in the same sample by ICP with electrothermal sample introduction. Jones et al. (IOE)developed an extraction method for trace elements in brine and used both atomic absorption and ICP spectrometry to determine the elements. Aten et al. (2E)determined Mg, Fe, and Zn in fertilizers by flame AA and by ICP and noted that no matrix effects or spectral interferences were encountered with the ICP analyses. Results obtained by the two techniques agreed to within 5%. In a comparison of AAS and ICP-OES for the determination of Sn in biological materials (9E), ICP-OES was the best method as it was 100 times more sensitive, had a wide linear dynamic range, and no spectral or chemical interferences. For the determination of trace metals in concentrated electrolyte solutions (7 M ZnC1, and KOH) Skidmore and Greitham (20E)found that the ICP was more precise than AAS and, becuase of the simultaneous capability, the time for analysis was greatly reduced. Kempf and Sonneborn (13E)in the determination of trace elements in water found the direct determination of P and S with the ICP to be an advantage over AAS. For the elemental analysis

ATOMIC ABSORPTION, ATOMIC FLUORESCENCE, AND FLAME EMISSION SPECTROMETRY

Table I. Determinations of Specific Elements ores, concentrates, and zinc process solutions: tribenzylamine-silver bromide extraction ( 8 1 0 ) ; Ag marine sediments: APDC-MIBK extraction ( 8 0 0 ) ;Pb flux fusion, HC10, parting ( 7 6 0 ) ; potable waters and sewage effluents: pretreatment with I and CN- ( 3 6 4 0 ) As plants: P interference, and As3' separation ( 1 3 8 0 ) ;biological materials: wet ashing-NH, pyrrolidinedithiocarbamate extraction and oxygen-flask combustion, KI reduction, and acid) (11 3 0 ) ; benzene extraction ( 2 7 8 0 ) ;roxarsone ((4-hydroxy-3-nitrobenzo)arsonic spectral interference of A1 on As 193.7 ( 2 8 5 0 ) ;water-cooled HCl: ZnOC1, coprecipitant ( 2 4 3 0 ) ;volatilization stabilization with Ni (21OD) and Pd ( 3 1 2 0 ) ;As5+and As3tspeciation by extraction ( 2 7 9 0 ) ;inorganic and organic speciation by ion-exchange ( 2 5 8 0 )and HPLC ( 3 8 6 0 ) ;removing Ni matrix modifier from the furnace ( 2 2 2 0 ) round-robin comparison of AAS and fire assay ( 6 7 0 ) ;desorption from ion exchan%er (11OD); Au biological media: NaCl matrix effect ( 3 1 4 0 ) ;water: H,PO, reductant, Te coprecipitant ( 2 3 5 0 ) ;on line: aerosol-deposition method ( 2 8 6 0 ) ;extraction methods ( 3 5 4 0 , 3 5 7 0 ) CVAA in fish ( 3 3 2 0 , 3 4 2 0 ) ;antifouling paints ( 1 5 3 0 ) ;geological materials ( 1 2 0 ) ;hair ( 2 3 6 0 ) ; Hg coal ( 8 2 0 ) ;marine sediment reference materials using NaBH, as the reducing agent ( 2 1 3 0 ) ; biological materials ( 2 9 4 0 , 3 1 9 0 ) ;automated for total and inorganic Hg ( 1 1 5 0 ) ;static CVAA systems ( 2 7 0 , 1 4 0 0 ) ;complications with polypropylene flasks ( 1 8 6 0 ) ;ascorbic acid reductant (2660);silvered A1,0, collection tubes for airborne Hg ( 3 5 3 0 ) ;comparison of CVAA to dithiooxamide potentiometric titration ( 2 1 2 0 ) ;speciation with GC-CVAAS ( 8 4 0 ); phenylmercuric acetate in air with GC-CVASS ( 2 9 5 0 ) ;speciation with HPLC-CVAAS ( 1 0 9 0 ) ; inorganic/organic Hg via immobilized iminoacetate and dithiocarbamate ( 3 8 9 0 ) ;quartz T atomizer for urine ( 2 9 0 0 ) ,sweat (219D),water ( 2 8 7 0 ) ,and saliva ( 2 8 8 0 ) ,and speciation with a Pt loop atomizer ( 2 8 9 0 ) ;geological materials, carbon rod atomizer, Ag matrix modifier ( 3 0 3 0 ) ;Zeeman AAS, KBr/Br matrix modifier ( 2 1 4 0 ) ;pharmaceutical products, electrothermal ( 3 5 1 0 ) ;electrothermal, PdCl, matrix modifier ( 7 9 0 ) ;solid samples ( 1 9 3 0 ) ;atomization losses in an electrothermal procedure ( 2 0 2 0 ); electrothermal with electrolytic preconcentration ( 1 0 7 0 )or electrostatic preconcentration ( 3 5 8 0 ) ;solid samples, dc arc nebulization, flameless AAS ( 3 0 5 0 ) ;Au-Pt guaze collector, reduced with NaBH, in a hydride apparatus ( 2 6 9 0 ) natural waters, coprecipitation on Zr(OH), ( 3 2 0 0 ) ;natural waters, lanthanum pretreatment to Pb suppress CaCl, and Na,SO, interferences ( 2 0 0 ) ;blood, paint, soil, house dust in Auckland, N.Z. ( 2 8 3 0 ) ;alkyleads, Na diethyldithiocarbamate chelation/extraction, butylation, GC-AAS ( 5 1 0 ) ;tetraalkyllead compounds ( 7 8 0 ) ;pyrrolidinedithiocarbamate extraction ( 10 0 , 31 0 , 1 6 2 0 ) ;GC method for Et,Pb and Me,Pb ( 8 5 0 ) Pt, urban air, Pt-Sn complex extraction ( 1 5 1 0 ) ;Pt, Pd, Rh, Ru, Ir: Ni sulfide collector ( 1 2 1 0 ) ; Pt group Pt, Pd, Rh: electrothermal ( 9 4 0 ) ;Pt, Pd, Rh, Ru, Ir: NiS collector after fusion ( 1 2 0 0 ) ;Ir, separation from other noble metals and Ni, Cu, Fe, Cr, Ca, and Na ( 7 7 0 ) ;Au, Ag, Pd, Pt, and Rh extracted from Pb buttons after fire assay ( 1 0 2 0 ) ;Pd, 8 nonresonance lines, 340.5 nm as good as 276.3 nm ( 9 7 0 ) ;Pd, platform, 340.5-nm line ( 9 8 0 ) ;Ru, A1,0, and Si0,-Al,O, matrix as base catalysts ( 9 2 0 ) ;Rh, polymer-supported catalysts ( 1 2 6 0 ) biological materials, problems with incomplete mineralization ( 2 5 2 0 ) ;Ni and Co based alloys, Se coprecipitation with As, volatilization stabilization with Zn ( 1 8 5 0 ) ;milk and liver extracts, volatilization stabilization with Ni and Ag sulfonates ( 2 5 4 0 ) ;blood serum and seminal fluid, phosphate interference, proton precipitation with TCA, thermal stabilization with Ag, Ni, or Cu ( 2 9 8 0 ) ;selenite/selenate speciation, ion chromatography-Zeeman GFAA ( 5 0 0 ) ;alkyl selenide speciation, GC-AAS (15 6 0 , 15 7 0 ) PVC ( 6 0 ) ;canned foods, soft drinks ( 2 9 6 0 ) ;optimization study ( 7 3 0 ) ;(NH,),HPO,, Sn Mg(NO,), , HNO, matrix modifier, platform, pyrrolytically coated tubes, Zeeman ( 2 7 5 0 ) ;Sn in organotin compounds ( 2 2 5 0 ) ;methyltin(1V) and tin(IV), GC-AAS ( 5 2 0 ) Zn, cerebrospinal fluid, pulse nebulization ( 2 5 9 0 ) ;Zn metalloproteins, NH,H,PO, matrix Zn-Cd modifier (18 9 0 ) ;Zn in neutrophils and lymphocytes ( 2 7 2 0 ) ;picolinealdehyde salicycloylhydrazone extraction of Zn into i-BuCOMe (111 0 ) ;Zn-Cd extraction with 1,2-naphthoquinone 2-thiosemicarbazone into i-BuCOMe ( 3 4 2 0 ) ;Cd, M o microtube atomizer, thiourea interference suppresant ( 3 4 4 0 ) ;Cd, ZnO, coprecipitation ( 2 5 0 0 ) ;Cd in blood, urine, and hair, closed system digestion ( 3 1 5 0 ) misc. elements Al, sulfate-type soil acidifiers ( 17 6 0 ) ;Ba, paper mill stock ( 2 6 2 0 ) ;Be, triodylamine extraction ( 4 5 0 ) ;Ca, effect of aliphatic carborylic acids ( 1 6 4 0 ) ;Ca, utilization of the 430.3-nm line ( 2 8 0 ) ;Co, extraction, comparison of 4 ligands ( 2 6 0 ) ;Cr, effect of flame type, oxidation state, Fe, and NH,C1 on determination ( 8 3 0 ) ;Cu, APDC extraction ( 6 9 0 ) ;Cu, selective extraction ( 3 9 2 0 ) ;Cu, free metal ion determination ( 3 6 0 0 ) ;Cu, 1,2-naphthoquinonethiosemicarbazone extraction ( 3 2 3 0 ) ;Cu, synovial fluid ( 1 6 1 0 ) ;Fe, determination of chelated Fe ( 3 2 2 0 ) ;Ga, ETAAS, EDTA to suppress interferences ( 2 4 8 0 ) ;Ge, ETAAS ( 3 5 0 ) ;Li, lithium isotope determination, 6Li, 7Li HCl's ( 2 3 7 0 ) ;Ni, oxime extraction ( 1 6 9 0 ) ;Sb, organoantimony ( 2 2 6 0 ) ;Ti, TiO, in soap ( 2 0 3 0 ) ;V, ETAAS ( 2 1 9 0 ) ;V, tissue and serum, ETAAS ( 3 4 4 0 ) ;Yt, ETAAS, pyrrolytically coated tube ( 3 2 7 0 ) ;Zr, flame, AlCl, releasing agent (3650)

of coals, fly ash, shale, rocks, and slag, Nadkarni et al. (17E) found the accuracy and precision to ICP-OES and AAS to be about the same (-f3%) and approximately the same amount of time was required for each. Wallace (22E)compared AAS and ICP-OES for the determination of P and Pb in three aluminum brasses. Phosphorus could be satisfactorily determined only in the ICP while P b could readily be determined by both methods. Care was required in choosing the ICP wavelengths in order to avoid spectral interferences. Drenski et al. ( 4 8 )compared ICP-OES and AAS for the determination

of 25 elements in fly ash leachate solution. ICP-OES was considerably faster and interferences had to be overcome in the AAS method. Kahn (12E) briefly compared ICP-OES to AAS. Werbicki (23E,24E) presented a comparison of fire-assay, AAS,ICP, constant potential coulometry, gravimetry, titration, and polarography for the determination of Au. In a roundrobin interlaboratory comparison fire-assay had the best interlab precision but ICP and AAS were more accurate than fire-assay, which gave low results. ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

283R

ATOMIC ABSORPTION, ATOMIC FLUORESCENCE, AND FLAME EMISSION SPECTROMETRY

Table 11. Determination of Elements in Specific Matrices (a) Fossel Fuels and Petroleum Products tar-sands fly ash, Si ( 1 7 4 0 ) ;oil spill identification: V, Ni, Mg, Fe ( I D ) ;shale oil, As ( 9 1 0 , 1 0 1 0 ) ;gas oil, Ni ( 3 2 0 ) ;petroleum residues: Ni, Fe, Cu ( 3 1 6 0 ) ;asphaltene, resinous petroleum fractions: organometallic Fe and Cu ( 3 0 8 0 ) ;gasoline: Pb ( 8 9 0 , 1 0 8 0 , 1 4 7 0 , 2110, 3 0 6 0 ) ;gasoline: Mn ( 7 0 0 ) ;lubricating oils: Pb ( 2 6 0 0 ) ,P, B ( 1 3 9 0 ) ,Ca ( 7 1 0 ) ;wear metals ( 2 0 , 1 5 5 0 , 3 4 1 0 ) ;petroleum distillate: V, Ni, Fe ( 3 8 2 0 ) ;coal: Pt group ( 1 0 0 0 ) ; coal: Hg, As, Se ( 3 8 3 0 ) ;coal: AAS-XRF comparison ( 1 3 2 0 ) ;coal: oxygen bomb ( 2 4 0 ) ;coal: Li,B,O, fusion (24D)

(b) Metallurgical Samples scrap copper: Au, Pd, Ag ( 2 6 5 0 ) ;silver: 18 elements ( 1 8 8 0 ) ;ferroniobium: Ta ( 1 5 4 0 ) ;copper-nickel alloys: As, P ( 2 9 7 0 ) ;aluminum alloys: Sr ( 5 0 ) ,In ( 1 7 0 ) ;uranium: Mg, Mn, Ni, Zn ( 2 6 4 0 ) ;nickel-copper matte: Ag ( 1 4 0 ) ;silicon: A1 ( 3 4 6 0 ) ;sodium: Cr, Ni, Co, Cd, Pb ( 2 1 5 0 ) ;bearing steel: Ba ( 3 9 1 0 ) ;ferrous alloys: Al, Ba, Ca, Pb, Mg, Ag ( 2 8 0 0 ) ;copper: Se, Te ( 2 4 4 0 ) ;aluminum: Pb, Cu, Mg ( 2 3 0 0 ) ;Ni-Co base alloys: Te ( 1 8 4 0 ) ; steel: P ( 3 8 0 0 ) ;lithium: Cr, Fe, Ni (150);lead concentrates: Bi (1420);steels: Cu ( 8 0 ) ;steel: M o ( 4 4 0 ) (c) Nat,ural Waters-Seawater monooctyl ester 2-(2-carboryani1ino)benzylphosphonicacid extraction: Cr,Mn, Fe, Co, Ni, Cu, Zn ( 2 2 1 0 ) ;sodium diethyldithiocarbamate extraction: Cd ( 1 3 0 ) ;platform furnace: Al, As, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, V ( 2 2 3 0 ) ;A1 ( 1 7 2 0 ) ;trialkyllead ( 6 8 0 ) ;Mo: 1,4-dihydroxyphthalimidedithiosemicarbazone extraction ( 3 5 5 0 ) ;Fe: dimercaptomaleonitrile extraction ( 1 4 6 0 ) ;dithiocarbamate extraction into Freon-TF: Cd, Cu, Fe, Pb, Ni, Zn ( 6 6 0 ) ;Cr6+: coprecipitation of PbCrO, with PbSO, ( 2 2 7 0 ) ;Varian furnace method: As, Ba, Cd, Cr, Pb, Se, Ag ( 3 1 8 0 ) ;As in seawater and marine organisms ( 3 3 3 0 ) ;dithiocarbamate extraction: Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn ( 2 0 6 0 ) ;Cd: capriquat extraction ( 3 4 5 0 ) ;Cd: platform, Zeeman, (NH,),HPO,-HNO, matrix modifier ( 2 7 6 0 ) ; Chelex-100 separation: Cd, Cr, Pb ( 1 9 6 0 ) ;Ba: Dowex 50WX8 separation ( 2 9 2 0 ) ;Cr: immobilized diphenylcarbazone separation ( 3 8 5 0 ) ;Be: cellulose ion-exchanger separation ( 3 4 0 ) ;improved graphite tube performance for metals in seawater ( 3 2 9 0 , 3 3 0 0 ) ;Bi: Pd matrix modifier ( 1 6 0 0 ) ;Sb3’, Sb5+: Cu matrix modifier, N-benzoylN-phenylhydroxylamine extraction ( 3 4 3 0 ) ;basic study of electrothermal atomization for trace metals in seawater ( 1 3 7 0 ) ;Cd, Cu, Zn: preconcentration with Chelex-100 or Chromosorb W-DMCS ( 2 0 0 0 ) ;Mn, Fe, Ni, Cu, Zn: La(OH), coprecipitation ( 3 5 9 0 ) ;Cu: N lauryl sulfate collector for dithiazone ( 4 9 0 ) ;urban snow: Al, Mn, Fe, Ni, Cu, Zn, Cd, Pb ( 1 9 7 0 ) ;As5+,As3+: APDC-MIBK extraction, Ni matrix modifier ( 3 3 9 0 ) ;Cd: electrodeposition on amalgamated Au wire ( 2 4 5 0 ) ;Ni: carbonyl separation ( 1 9 8 0 ) (d) Ores and Geological Materials silicate rock matrix: Yt, Ho, Dy, Tb ( 2 3 4 0 ) ;iron ore: separation of trace metals from ( 1 6 3 0 , 3 0 2 0 ) ;lanthanide ores ( 3 2 1 0 ) ;igneous rocks: Sc, La ( 3 1 0 0 ) ;1 3 US Geological Survey Standard Rocks: T1 ( 1 4 5 0 ) ;T1 extraction procedure ( 8 8 0 ) ;Sn: Na,O, fusion ( 1 2 5 0 ) ;silicate rocks: Sn ( 3 3 7 0 ) ;U: W platform ( 1 2 3 0 ) ; M nmodules ( 1 6 8 0 ) ;pyrite ( 2 0 9 0 ) ;sulfide ores: Bi (24 7 0 ) ;microwave assisted dissolution ( 2 3 2 0 ) ;lithium metaborate fusion ( 2 3 0 , 6 3 0 , 37 0 )

(e) Plants and Food Products Se ( 2 5 5 0 ) ;Cr ( 4 3 0 ) ;In, Tl(90D); corn oil: Cu, Fe, K, Na, Ni, Zn ( 2 5 6 0 ) ;Gouda and Edam cheese: Pb, Cd ( 1 8 1 0 ) ;results of a workshop on the determination of Pb in foods ( 6 4 0 ) ;Pb: L’vov platform ( 1 7 9 0 , 2 8 1 0 ) ;Pb: round-robin, 3 methods compared ( 8 7 0 ) ;garden vegetables: Pb ( 2 7 3 0 ) ;carbonaceous slurry atomization ( 9 3 0 ) ; vegetable oils and fats: Ni, Cr, Cu, Fe ( 2 5 1 0 ) ;oils and fats: oxygen combustion ( 2 8 2 0 ) ;low-temperature oxygenfluorine radio frequency ashing ( 3 8 4 0 ) ( f ) Serum-Blood A1 ( 2 1 0 , 1 0 6 0 , 1 1 9 0 , 1 8 2 0 , 2 0 4 0 , 2 6 3 0 , 3 7 6 0 ) ;Bi ( 2 2 0 ) ;Ca-Mg, ultrafiltrable fraction ( 6 5 0 ) ;Cd ( 7 4 0 ) ;Cd-Zn, normotensive and hypertensive humans ( 3 6 1 0 ) ;Cd-Pb ( 5 9 0 ) ;Co ( 7 5 0 ) ;Cu ( 3 7 0 0 ) ;Cu-Zn, leukocytes ( 1 3 5 0 ) ; Cu-Zn, plasma protein fractions ( 1 1 0 ) ;Fe ( 9 5 0 ) ;Li ( 3 0 7 0 ) ; M n( 9 6 0 , 3 7 8 0 ) ;Pb ( 7 3 0 , 990, 1340, 1910, 2740, 3 1 1 0 ) ;Se ( 4 0 , 2 6 3 0 ) ;Se, attempted correlation to glutathione peroxidase activity ( 2 6 8 0 ) ;Si ( 1 6 0 ) ;Zn ( 1 0 3 0 , 1040, 1050, 1410, 2200, 2310, 31 7 0 , 3 3 1 0 ) ;small volume discrete nebulization ( 1 8 0 0 ) ;gel-permeation, diagnosis of anemia ( 1 5 0 0 ) ;oxygen flask combustion ( 3 0 1 0 ) (9) Sludges, Sediments, Particulates, and Soil Sewage sludge-determination of Bi, T1, V ( 1 7 3 0 ) ,pretreatment ( 3 2 0 ) ,four digestion methods ( 5 8 0 ) ;compost, sample preparation ( 5 7 0 ) ;sediments ( 2 9 0 ) ;river sediments ( 4 1 0 , 2010, 3 0 0 0 ) ;estuarine sediments ( 3 3 6 0 ) ;urban dust ( 3 5 6 0 ) ;airborne particulates ( 1 8 0 , 4 0 0 , 5 3 0 ) ;soils ( 9 0 , 1 9 0 ) (h) Tissue-Bone-Hair fish tissues, Pb ( 2 3 3 0 ) ;liver tissue, Wilson’s disease ( 6 1 0 ) ;brain tissue, rats, Ca ( 1 6 7 0 ) ;pancreatic tissue, Mn ( 2 9 3 0 ) ;bone, Cd ( 1 6 7 0 ) ;bone, Be ( 2 4 9 0 ) ;hair, Holstein heifers ( 3 7 7 0 ) ;human scalp hair, Cu, Zn ( 6 0 0 ) ,Cr ( 1 9 0 0 ) , Pb ( 2 2 9 0 ) ,Zn ( 5 4 0 ) (i) Urine Cd ( 1 3 3 0 , 2610, 3400, 3 6 6 0 ) ;Cr ( 1 2 2 0 , 2420, 3680, 3 6 9 0 ) ;Cr, diabetic patients ( 2 6 7 0 ) ;Cu ( 4 2 0 ) ;Pb ( 1 770, 3 1 3 0 ) ;Pb-Sb ( 3 2 5 0 ) ;V ( 3 3 0 ) ( j ) Miscellaneous Matrices NaCl: Pb, Cd, Mn, Cu, L’vov platform (17 4 0 ) ;tannery materials: Ca, Cr ( 1 6 6 0 ) ;beer: Pb, Cd, Al, Sn ( 2 7 0 0 ) ; brines: Ca, Mg, Sr, Si ( 2 7 1 0 ) ;phosphoric acid: Ca, Fe, Eu,Dy, Pb ( 3 8 8 0 ) ;phosphoric acid: Cu, Cd, Pb, Bi (2530)

In a general review Kirkbright (14E) discussed the general applications of AAS, ICP-OES, and AFS. X-ray fluorescence, ICP and arc emission, and AAS have been compared by Zolotov et al. ( B E )for the determination of the Pt group metals and Nadkarni (16E)determined major and trace elements in coal and fly ash by ICP-OES, AAS, XRF, ion selective electrode, and colorimetry. 284R

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

Adams (1E) reviewed AAS and XRF techniques with respect to bulk analysis, Elbers (6E)used both XRF and AAS to determine Mg, P, K, Ca, and Fe in egg cells and Hobart et al. (8E)compared AAS and XRF for the analysis of P b in air. In this last study it was stated that XRF was less expensive, easier, and had the advantage of rapidly scanning for other elements. Voltammetric, spectrophotometric, and AAS

ATOMIC ABSORPTION, ATOMIC FLUORESCENCE, AND FLAME EMISSION SPECTROMETRY

Table 111. Indirect Determinations a review, 237 references (1120); sulfur forms in natural fuel, Ba (1360); iodine, Hg (1870);amygdalin, Ag (1280); anionic surfactants, Cu (3040);anion-active detergents, Cu (3280); a-amino acids, Cu (2410); ascorbic acid, Cu or Ag ( 3 0 ) ; molecular weight of hemoglobin and myoglobin, Fe (3870); nitro and nitroso groups, Cd (1290); nonionic detergents, Ca ( 11 6 0 ) ; reducing sugar and aliphatic secondary amines, Cu (550); aminoquinoline antimalarials, Co (1270); perchlorate, Co ( I 700); barbituric acid derivatives, Cu (2400);selenium, Cd (3730); 2-amino-2-deoxyheroses, Co (2390): histamine. Cu (2990) Table IV. Direct Analysis of Solid Samples powdered and ground biological samples, graphite furnace (11 8 0 ) ; graphite crucible inserted in a graphite tube atomizer (1430); graphite cup cuvette, Zeeman, Cu and Ag in a tin ingot (3470); Zeeman, L’vov, Pb in rock (11 7 0 ) ; graphite cup cuvette, Zeeman, Bi in tin (3500); brief review ( 1 940); graphite furnace, automated for solid samples ( I 950); Zeeman ( 1920); peak signals (3480);steel: Cu, Mn, Ag, Pb (3490); induction furnace (steel): Bi, Pb, Ag, Te; feasibility of aqueous standards (1300);nickel-base alloys: As Sb, Se, Te (1310);nickel-base alloys: Cd, In, Zn (370); soil (Pb): slurry into furnace (1520); Teflon Babington slurry nebulizer (3810); soil: Fe, Mn, Mg, Cu, slurry nebulization (3350); coal: As, slurry-electrothermal (860); polymersupported catalysts : Pd, slurry-electrothermal (560) Table V. Hydride Generation Techniques and Determinations As: marine organisms (1590); As: glycerin (3630); As: Zn column reductor (2170); As-Hg: automated method (2840); As-Sb: geological materials, automated (620); As-Sb: water and soil, interferences of other hydride forming elements (1240); As-Se: foods, dry ashed (3520);As-Se: AAS-ICP comparison (2770); As-Se: human kidney and liver (3380);As, Sb, Se, Te: separation with thiol cotton (3900); Bi: environmental samples, collected on a carbon rod atomizer (1990); Bi: steel and cast iron (3670);Ge (1490); Ge: coal ashes (460); In (360);Pb (1580); Sb: mineral oils (2280);Sb: atmospheric particulates (470, 480); Sb: raw coffee beans and processed coffee (1830);Se: serum, hydride-furnace comparison (2570); Se: interferences of Sn, Pb, As, Sb, Bi, Te, Hg (720); Se: marine samples, hydridefurnace comparison (1650); Se: optimization study (300); Se: Wickbold combustion (3090); Se: in sulfonic acid (390); Se: hydride-furnace combination (1480); Se: blood, plasma, erythrocytes (2070); Sn: marine organisms (2160);Te ( I 780); Te (2180); masking agents to reduce interferences of noble metals on hydride procedures ( 1 710); automatic hydride system (2060); determination of hydride forming elements in coal (2460); FIA based hydride method ( 7 0 ) ; fundamental study of hydride atomization mechanism, atomization caused by free H radicals not thermal decomposition (3790) ;interference minimization (2380); silica tube deterioration effects ( 3 7 2 0 ) ;stability of NaBH, solutions -( 3 8 0 ) methods were compared by Stryjewska and Rube1 (21E) for the determination of Ag in industrial wastewaters and wastes and Hsich et al. (9E) compared amperometry and AAS for the determination of Pb, Hg, Cd, and T1 in food and marine fishes. Finally, Kleinhaus et al. (15E)compared EPR and AAS for the determination of Cu in serum. Both methods agreed and no advantage was found for EPR measurements, in dis-

agreement with some previous reports.

F. ATOMIC FLUORESCENCE SPECTROMETRY In a critical review, with 38 references, Winefordner (40F) discussed the past, present, and future of atomic fluorescence spectrometry, and Walsh (39F) also reviewed the merits and limitations of AFS in conjunction with AAS. Hieftje (16F) discussed the application of low-cost tunable lasers to AFS, and Bol’shov et al. (4F,5F) discussed several applications of laser excited atomic fluorescence spectrometry. A detailed discussion of laser-excited atomic fluorescence spectrometry for chemical analysis has been presented by Goff (15F). Among the topics covered are wavelength modulated continuous wave dye laser excitation, ICP atomization cells, and presented a theoretical off-resonant excitation. Matveev (BF) evaluation of the minimum atom concentration that can be recorded in flames by using resonance ionization detection in laser excited atomic fluorescence and indicated that single atom detection limits are possible, and Bol’shakov et al. (3F) discussed some possibilities (forced destruction of metastable states) for improvements in AFS detection limits. Joklik and Daily (17F) indicated that two-line atomic fluorescence temperature measurements offered a number of advantages for combustion research. The most important was the potential for high data rates (10 kHz). They used the In 410 and 451 nm transition for their measurements. Alden et al. (IF) described spatially resolved temperature measurements in a flame by using two-line laser induced fluorescence from In and diode array detection. Thermally assisted AFS was used by Zizak and Winefordner (42F) for temperature measurements in a gasoline-air flame. McCaffrey and Michel(29F) described further studies with a sectored wheel wavelength modulation system for AFS and Seltzer and Michel (37F) reported on a method for the fabrication of EDL’s as sources for AFS and applied their method to the construction and optimization of a Mn EDL. Lewis et al. (24F) reported on atomic fluorescence studies of species in analytical laser plumes and Prodan et al. (32F) described the development of an atomic fluorescence velocimeter. ICP source-flame atom cell atomic fluorescence measurements have been continued since their report in the last review. Cavalli et al. (7F, 8F) used such a system for the determination of Pd in nuclear waste samples and for Cd in lake sediments and Omenetto et al. (31F) reviewed the capabilities of ICP-AFS. As predicted in the last review, a system in which two ICP’s are used, one as the source and one as the atomization cell, has been developed and tested (209. Both Zn atomic and Ca ionic fluorescence signals have been measured. Also general reports on the Baird HCL source-ICP atomization cell AFS continue to appear (1OF,23F). A nondispersive atomic fluorescence spectrometer has been built for the determination of the hydride forming elements (SF)and Mackey (25F-27F) has used nondispersive AFS as a detection system for liquid chromatography and applied his system to the measurement of metals in seawater. Continuum source AFS has been used for the determination of Cu, Ni, Co, and Zn in Fe-Mn modules from the ocean (22F). Several specific determinations have been reported. Kuga and Tsujii (21F) reported on the determination of As in steel by nondispersive AFS using hydride generation. Ebdon et al. (13F) also reported an AFS hydride based method for As and Se determinations. Doebele and Rueckle (11F, 12F) reported the determination of atomic C in a nuclear fusion reactor plasma. An ArF laser was used to excite fluorescence at 193 nm and fluorescence was observed at 248 nm. Chernov et al. (9F) determined Ca and Mg in nickel sulfate and nickel hydroxide by AFS. Rando and Heithmar (338‘) determined Fe by first volatilizing Fe as the trifluoroacetylacetone into an Ar-Hz-entrained air flame with subsequent atomic fluorescence detection. Several Hg atomic fluorescence determinations have been reported. Mercury was determined in coal by a cold vapor atomic fluorescence procedure (14F) and in H 2 0 by CVAFS utilizing a KMn04 preconcentration trap (ZF). Two nondispersive atomic fluorescence cold vapor methods for Hg in air and water were described by Kimoto et al. (18F,19F),and Rigin (34F) described an AFS method for Hg in air. The method utilized KMnO, for preconcentration as well as ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

285 R

ATOMIC ABSORPTION, ATOMIC FLUORESCENCE, AND FLAME EMISSION SPECTROMETRY

electrolytic deposition of Hg on Au. Rigin (35F) also describe a complex multistep procedure for the determination of Os by AFS. An atomic fluorescence procedure for the determination of P b in blood has been described by Sthapit et al. (38F).Xu and Wu (4137 determined Se in coal ash water with a nondispersive AFS method by using hydride generation techniques, and Rigin (63F) described a complete method for the AFS determination of Se, As, and Hg in soil, air, wheat roots, stalk, and grain. Finally, Nakahara ( 3 0 0 compared hydride generation procedures for the determination of Te by nondispersive AFS.

G. FLAME EMISSION SPECTROMETRY A limited but interesting group of papers were published in the last 2 years in the area of flame emission spectrometry (FES). In addition to alkali and alkaline-earth determinations, clever indirect and molecular emission methods have been described. Bosher and Warren (2G) reviewed the determination of elemental concentrations in small volumes of biological fluids by flame emission spectrometry. Stewart and Rosenfeld (20G) used FES as a detector in an FIA system, E l Hag and Townshend (5G)described the use of a siliconintensified target camera as a detector for molecular emission cavity analysis (MECA), and Calokerinos and Townshend (9G) reviewed MECA applications. Britske and Slabodenyuk (3G) compared the precision and accuracy of flame AAS and FES and stated that when detection limits are comparable, the methods are equally capable. Fluctuations of free atom concentration in the flame make the greatest contribution to the total error, and improvements in precision can be achieved if aerosol generation is stabilized and by utilization of internal standards. Koscielniak and Parczewski (1lG) presented a theoretical model of the alkali-metal interferences in FES and specifically discussed the determination of K in the presence of Na. An ion exchange separation method for the determination of Li, Na, K, Rb, and Cs in minerals and rocks has been described by Hansen (9G). By use of two columns, cations of higher valency are removed and the alkalis are all eluted in their chloride form. Depending on the elements of interest CsCl or RbCl is added as an ionization buffer. A molecular emission method (air-H flame) for As based on hydride generation has been descriked by Matsumoto and Fuwa (13G). The detection limit was 0.2 ng of As and the method was successfully applied to the analyses of river water and NBS orchard leaves and coal fly ash SRMs. Two methods have been reported for the flame emission determination of boron (19G,24G). Both methods rely on the measurement of the green boron oxide band emission at 548 nm. In the first method (19G)boron is determined in nuclear fuel reprocessing plant streams by conversion to its volatile trimethoxyboron ester which is aspirated into an air-C2H2flame; in the second method an extraction procedure is described (24G). Ba has been determined in the presence of excess Ca by first separating the two with an ion-exchange method (IOG),and Ba, 41, and Ca in ferrous alloys have been determined by FES with repetitive optical scanning (18G). Melnik et al. (14G) showed that Ce could be used (much in the same manor as La) to minimize interferences (Al) in the flame emission determination of Ca and Sr in soils and plant material. Gruber (7G,8G) described an amalgam electrolysis system to separate lanthanides from copper alloys. The lanthanides were subsequently determined by emission in a N20-C2H flame. A procedure for the determination of Na in a salt sukstitute in an instrumental analysis laboratory has been presented by Goodney (6G). The molecular emission of HPO (528 nm bandhead) was used by Ogasawara et al. (15G) for the determination of P in water. A method has been described for the determination of sulfate in rainwater based on the indirect measurement of Ba by FES (21G, 22G), and an indirect method for sulfur and sulfur compounds has been described by Puacz (16G,17G). Marr and Anwar (12G) described a FES method for the determination of Sn in organotin compounds, a procedure for the determination of Sr in aluminum alloys has been described (IG),and the effect of organic ligand on the flame emission response for V has been measured (23G).

ACKNOWLEDGMENT The secretarial assistance of Annabelle Wiseman in the preparation of this review is gratefully acknowledged. 286R

ANALYTICAL CHEMISTRY, VOL.

56,NO. 5, APRIL 1984

LITERATURE CITED A. INTRODUCTION (1A) Alkemade, C. Th. J.; Hollander, TI.; Snelleman, W.; Zeegers, P. J. Th. "Metal Vapours In Flames"; Pergamon Press: Oxford, 1982. (2A) Boumans, P. W. J. M. "Theory of Spectrochemical Excitation"; Hllger and Watts: London, 1966. (3A) Cantle, J. E., Ed. "Techniques and lnstrumentatlon in Analytical Chemistry, Vol. 5: Atomic Absorption Spectrometry"; Elsevier: Amsterdam, 1982. ( 4 4 Cresser, M. S., Sharp, B. L., Eds. "Annual Reports on Analytical Spectroscopy"; The Royal Society of Chemistry: London, 1981; Vol. 10, reviewing 1980. (5A) Cresser, M. S.,Sharp, 8. L., Eds. "Annual Reports on Analytical Atomic Spectroscopy"; The Royal Society of Chemlstry: London, 1982; Vol. 11, reviewing 1981. (6A) Dittrich, K. "Sclentific Pocketbooks, Vol. 276: Chemistry Series: Atomic Absorption Spectrometry"; Akad.-Verlag: Berlin, 1982, 225 pp, (7A) Ebdon, L. "An Introductlon to Atomic Absorption Spectroscopy: A Self-Teaching Approach"; Heyden: London, 1982; 138 pp. (EA) Frech, W.; Cedergren, A.; Lundberg, E.; Siemer, D. D. Spectrochlm. Acta, Part B 1983, 388, 1435. (9A) Horllck, G. Anal. Chem. 1982, 5 4 , 276R-293R. (10A) Kottyohann, S. R.; Kaiser, M. L. Anal. Chem. 1982, 5 4 , 1515A. (11A) Laltlnen, H. A. Anal. Chem. 1973, 45, 2305. (12A) Lawrence, D. M. At. Spectrosc. 1982, 3 , 93-119. (13A) Lawrence, D. M. At. Spectrosc. 1983, 4 , 10. (14A) Lawrence, D. M. At. Spectrosc. 1983, 4 , 118. (15A) Ottaway, J. M. At. Spectrosc. 1982, 3 , 89-92. (18A) Price, W. J. Annu. Rep. Anal. At. Spectrosc. 1981, 10, 1-30. (17A) Slavin, W. Anal. Chem. 1982, 5 4 , 685A-886A, 689, 690A, 693A694A. (18A) Slavin, W.; Manning, D. C. Prog. Analyt. Atom. Spectrosc. 1982, 5 , 243. (19A) Walsh, A. Phllos. Trans. R . SOC. London, Ser. A 1982, 305, 485-498. B. DEVELOPMENTS I N INSTRUMENTATION, MEASUREMENT TECHNIOUES, AND PROCEDURES

(IB) Adams, J. J.; Mltchell, M. C.; Ewen, G. J. Anal. Chim. Acta 1983, 149, 101-106. (28) Alder, J. F.; Batoreu, M. C. C. Anal. Chlm. Acta 1982, 135, 299-234. (38) de Andrade, J. C.; Pasqulni, C.; Baccan, N.; Van Loon, J. C. Spectrochim. Acta, Part8 1983, 386,1329. (48) Atnashev, V. B.; Muzgln, V. N.; Atnashev, Yu. B. Zh. Anal. Khim. 1982, 3 7 , 1590-1595; Chem. Abstr. 9 8 , 64771. (5B) Atsuga, I.; Itoh, K. Spectrochim. Acta, Part B 1983, 388, 1259. (6B) Bahreynl-Toosi, M. H.; Dawson, J. B. Analyst (London) 1983, 708, 225-234. (78) Bahreyni-Toosl, M. H.; Dawson, J. B.; Ellis, D. J. Analyst (London) 1982, 107, 124-125. (8B) Baranov, S. V.; Grachev, B. D.; Shikheeva, I. A.; Zemskova, I. A. Zh. Anal. Khlm. 1982, 3 7 , 1756-1761; Chem. Abstr. 9 8 , 10725. (9B) Bennett, P. Varian Instrum. Appl. 1982, 16, 19-20; Chem. Abstr. 9 8 , 118600. (lOB) Berndt, H.; Guecer, S.; Messerschmldt, J. J. Clin. Chem. Clin. Biochem. 1982, 2 0 , 85-90; Chem. Abstr. 9 6 , 137248. ( I l e ) Berndt, H.; Messerschmldt, J. Atmospektrom. Spurenanal., Vortr. Kolloq. 1981, 411-418; Chem. Abstr. 9 8 , 226970. 128) Berndt, H.;Messerschmldt, J. Anal. Chim. Acta 1982, 136, 407-411. 138) Blackburn, M. B.; Winefordner, J. D. Can. J. Spectrosc. 1982, 2 7 , 137- 140. 14B) Brodle, K.; Doldge, P.; McKenzle, T.; Routh, M. Varian Instrum. Appl. 1983, 17, 24-26; Chem. Abstr. 9 9 , 47107. 15B) Broekaert, J. A. C. Spectrochim. Acta, Part B 1982, 378, 65-68. 16B) Broekaert, J. A. C. Spectrochim. Acta, Part B 1982, 378, 732. 178) Burakov, V. S.; Verenik, V. N.; Malashonok, V. A,; Naumenkov, P. A.; Nechaev, S. V.; Puko, R. A. Zh. Prikl. Spektrosk. 1982, 37, 197-200; Chem. Abstr. 9 7 , 207292. 18B) Burakov, V. S.;Verenik, V. N.; Malashonok, V. A,; Nechaev, S. V.; Puko, R. A. Zh. Anal. Khlm. 1983, 38, 90-93; Chem. Abstr. 9 8 , 118767 . . -. - . . (19B) Burguera, J. L.; Burguera, M.; Galllgnanl, M. An. Acad. Bras. Clenc. 1983, 55. 209-211; Chem. Abstr. 9 9 , 118740. (208) Burguera, J. L.; Buguera, M.; Gallignani, M.; Alarcon, 0. M. Clin. Chem. (Winston-Salem, N . C . ) 1983, 29, 568-569. (218) Daldoil. H.: Tamure. S.Bunsekl Kaaaku 1982, 3 1 , 217-218; Chem. ' Abstr. 9 7 , 32749. (228) DaldoJl,H.; Tamura, S. Bull. Chem. SOC.Jpn. 1982, 5 5 , 3510-3514. (238) Danieisson, L. G.; Magnusson, B.;Zhang, K. At. Spectrosc. 1982, 3 , 39-40. (248) De Galan, L. Trends Anal. Chem. (Pers. Ed.) 1982, 1 , 203-205. (258) De Galan, L.; De Loos-Vollebregt, M. T. C.; Oosterllng, R. A. M. Analyst (London) 1983, 108, 138-144. (268) De Loos-Vollebregt, M. T. C.; De Galan, L. Spectrochim Acta, Part B 1982, 378, 659-672. (278) Drobyshev, A. 1.; Rlsh, A. M.; Turkin, Yu. I . Vestn. Leningr. Univ., Flz., Khlm. 1982, 3 , 117-120; Chem. Abstr. 9 7 , 229234. (288) Dulude, G. R.; Sotera, J. J. Can. Res. 1982, 15, 21, 49-53. (298) EPA Cinclnnatl Laboratory Gov. Rep. Announce. Index (U.S.) 1982, 82, 4418; Chem. Abstr. 9 7 , 229242. (308) Erspamer, J. P.; Niemczyk, T. M. Anal. Chem. 1982, 5 4 , 2150-2154. (31B) Falthfull, N. T. Lab. Pract. 1983, 32, 78. (328) Falk, H. Prog. Anal. At. Spectrosc. 1982, 5 , 205-241. (338) Fazakas, J. Spectrosc. Lett. 1982, 15, 221-232. '

.

ATOMIC ABSORPTION, ATOMIC FLUORESCENCE, AND FLAME EMISSION SPECTROMETRY (348) Farakas, J. Anal. Lett. 1982, 75, 573-580. (358) Fazakas, J. Anal. Lett. 1982, 15, 1523-1531. (368) Fazakas, J. Spectrochlm. Acta, Part B 1982, 378, 921-927. (378) Fazakas, J. Mikrochlm. Acta 1983. 7 , 249-254. (368) Fazakas, J. Mlkrochim. Acta 1983, 2 , 217-224. (398) Fazakas, J. Rev. Roum. Chlm. 1982, 2 7 , 685-689; Chem. Absfr. 98, 10836. (408) Fernandez, F. J.; Giddings, R. At. Spectrosc. 1982. 3. 61-65. (418) Frech, W.; Jonsson, S. Spectrochlm. Acta, Part B 1982, 378, 1021-1028. (428) Fudagawa, N.; Nakamura, S.; Kawase, A. BunsekiKagaku 1982, 3 1 , 324-329; Chem. Abstr. 97, 103420. (438) Fu)ino, 0.; Matsul, M. Bunsekl Kagaku 1982, 3 7 , 619-623; Chem. Abstr. 9 8 , 46092. (448) Futekov, L.; Bekyarov, G.; Parlchkova, R. Brlt. UK Pat. 49640, Nov. 12 1980; Chem. Abstr. 9 7 , 119790. (458) Futekov, L.; Bekzharov, G.; Parlchkova, R. fresenlus' 2.Anal. Chem. 1983, 375, 12-19; Chem. Abstr. 99, 32306. (468) Girl, S. K.; Littlejohn, D.; Ottaway, J. M. Analyst (London) 1982, 707, 1095-1098. (478) Girl, S. K.; Shields, C. K.; Littlejohn, D.; Ottaway, J. M. Analyst (London) 1983, 708, 244-253. (488) Giaeser, E. Ger. (East) Pat, 158428, Jan. 1983; Chem. Absfr. 9 9 , 47246. (49B)-Gockiey, 0. 8 . ; Skrlba, M. C. Aufom. Stream Anal. Process Control 1982, 1 , 69-93. (508) Gregoire, D. C.; Chakrabarti, C. L. Specfrochim. Acta, Part B 1982, 378. 611-623. (51B)-Gustavsson, A. Anal. Chem. 1983. 5 5 , 94. (528) Gustavsson, A. Spectrochim. Acta, Part B W83, 388, 995. (538) Halcombe, J. A.; Sheehan, M. T. Appl. Spectrosc. 1982, 3 6 , 631-636. (548) Harniy. J. M. Anal. Chem. 1982, 54, 876-879. (558) Harnly, J. M. Anal. Chem. 1982, 5 4 , 1043-1048. (568) Harniy, J. M.; Kane. J. S.; Mlller-Ihll, J. Appl. Spectrosc. 1982, 3 6 , 637-643. (578) Harnly, J. M.; Miller-Ihli, N. J.; O'Haver, T. C. J. Autom. Chem. 1982, 4, 54-60. (588) Harnly, J. M.; Patterson, K. Y.; Veiiion, C.; Wolf, W. R.; Marshall, J.; Llttlejohn, D.; Ottaway, J. M.; Miller-Ihli, N. J.; OHaver, T. C. Anal. Chem. 1983, 5 5 , 1417-1419. (598) Hitachi. Ltd., Jpn. Pat. 8115682, Feb. 6, 1981; Chem. Abstr. 98, 118793. (608) Hoenig. M. Spectrochim. Acta, Part B 1982, 378, 929-935. (618) Huber, 8. Ger. Pat., 3113678, Oct. 14, 1982; Chem. Absfr. 98, 64856. (628) Isozaki, A.; Kawakaml, T.; Utsumi, S. Bunseki Kagaku 1982, 3 7 , E311-E318; Chem. Abstr. 98, 46061. (638) Isozakl, A.; Fukuda, Y.; Utsumi, S. Bunsekl Kagaku 1982, 3 1 , 404406; Chem. Abstr. 9 7 , 174024. (6481 Jenke, D. R.; Woodriff, R. Appl. Spectrosc. 1982, 36,657-661. (658) Jenke, D. R.; Woodriff, R. Appl. Spectrosc. 1983, 3 7 , 470. (66B) Jolly, G. S.;Stephens, R. Anal. Chlm. Acta 1982, 739, 323-327. (676) Kankare, J. J.; Stephens, R. Spectrochim. Acta, Part B 1983, 388, 1301. (688) Kantor. T.; Bezur, L.; Sztatisz, J.; Pungor. E. J. Therm. Anal. 1981, 22. 179-197. (698) .Katskov, D. A.; Kopeikin, V. A. Zh. Rlkl. Spektrosk. 1983, 38, 863865: Chem. Abstr. 9 9 . 83367. (706) Khallghie, J.; Ure, A. M.; West, T. S. Anal. Chim. Acta 1982, 734. 271-281. (716) Kimura, H.; Oguma, K.; Kuroda, R. Bunsekl Ka$aku 1983, 3 2 , T79T 8 3 Chem. Abstr. 9 9 . 98397. (728) Klein, A. A. ASTM Spec. Tech. Pubi. 1981, 747, 29-42; Chem. Abstr. 9 8 . 10781. (738) Knapp, 0. Ger. Pat. 3042907, May 27 1982; Chem. Abstr. 9 7 , 137868. (748) Koizumi, H.; Sawakabu, H.; Koga, M. Anal. Chem. 1982, 54, 1029-1 032. (758) Komarek, J.; Sommer, L. Talanta 1982, 3 9 , 159-166. (768) Lau, C. M.; Ure, A. M.; West, T. S. Anal. Proc. (London) 1983, 2 0 , 114-117. (778) Lau, C. M.; Ure, A. M.; West, T. S. Anal. Chim. Acta 1982, 741, 213-224. (788) Lau, C. M.; Ure, A. M.; West, T. S. Anal. Chim. Acta 1983, 146, 171- 179. (798) Lawson, S. R.; DewaR, F. G.; Woodriff, R. Prog. Anal. At. Spectrosc. 1983. 61 1-48. (808) Lawson, S. R.; Nichols, J. A.; Viswanadham, P.; Woodrlff, R. Appl. Spectrosc. 1982, 36. 375-378. (818) Lawson, S. R.; Woodriff, R. Anal. Chem. 1982, 5 4 , 2050-2053. (828) Lersmacher, 8.; Wassail, M. P.; Connor, P. J. Ger. Pat. 3,140,458, Apr. 21, 1983; Chem. Abstr. 9 9 , 47270. (838) LI, J.; Deng, Y.; Yang, X. MICONEX'83, Proc. Munl-Natl. Instrum. Conf. 1983, 7, 93-100; Chem. Abstr. 9 9 , 47191. (848) Llddell, P. R. Am. Lab. (Fairflekt, Conn.) 1983, 75, 111-112, 114, 116-117, 119. (858) Lomdahl, 0. S.; Norrls, T.; Sulllvan, J. V. Am. Lab. (Fairfiekt, Conn.) 1983, 75, 66-71. (66B) Loving, T. J.; Harrison, W. W. Anal. Chem. 1983, 55, 1523-1526. (878) Loving, T. J.; Harrison, W. W. Anal. Chem. 1983, 5 5 , 1526-1530. (888) Lowe, M. D.; Sutton, M. M.; Clinton, 0. E. Appl. Spectrosc. 1982, 36. 22-25. (89B) Ma, J.; Chen, J. Huaxue Tongbao 1982, 5, 276-277; Chem. Abstr. 9 7 , 115050. I

(908) MaJorov,I. A.; Timofeev, E. F.; Eiiutin, A. V.; Nedier, V. V. Spectrochlm. Acta, Parts 1981, 368, 1223-1231. (918) Massmann, H. Talanta 1982, 2 9 , 1051-1055. (928) Matsushita Electric Industrial Co., Ltd. Jpn. Pat. 8,251,618, Nov. 2, 1982; Chem. Abstr. 9 8 , 227192. (938) McDonald, D. C. Anal. Chem. 1982, 5 4 , 1052-1056. (948) McDonald, D. C. Anal. Chem. 1982, 5 4 , 1057-1059. (958) McDonald, D. C.; Neil, R. S. Anal. Chlm. Acta 1982, 738,145-151. (968) Messman, J. D.; Epsteln, M. S.; Rains, T. C.; O'Haver, T. C. Anal. Chem. 1983, 55, 1055-1058. (978) Mlller-lhli, N. J.; O'Haver, T. C.; Harnly, J. M. Appl. Spectrosc. 1983, 3 7 , 429. (988) Miller-lhii, N. J.; O'Haver, T. C.; Harnly, J. M. Anal. Chem. 1982, 54, 799-803. (998) Mukherlee, S. Arch. Oral Blol. 1983. 2 8 , 45-49. (1008) Ni, M. Huaxue Shyi 1982, 4, 253, 255; Chem. Abstr. 9 8 , 100299. (1018) Nord, L.; Karlberg, 6. Anal. Chlm. Acta 1983, 745, 151-158. (1028) Ogata, K.; Tanabe, S.;Imanari, T. Chem. fharm. Bull. 1983, 3 1 , 1419-142 1. (1038) Oisen, S.S. Dan. Kemi1983, 64, 68-70; Chem. Abstr. 9 9 , 27657. (1048) Parker, W. C.; Lozada, R.; LaBrecque, J. J. Appl. Spectrosc. 1982, 3 6 , 452-453. (1058) Pearton, D. C. G. Rep.-MINTEK 1982, 13 pp; Chem. Abstr. 9 7 , 229222. (1068) Perkln-Elmer Ltd. Jpn. Pat. 82154036, Feb. 22, 1981; Chem. Abstr. 9 8 , 118817. (1078) Pinta, M.; DeKersabiec, A. M.; Richard, M. L. Analusis 1982, 70, 207-2 15. (l08B) Prudnlkov, E. S. Zh. Anal. Khim. 1982, 3 7 , 1133-1135; Chem. Abstr. 9 7 , 174022. (1098) Ramsey, M. H.; Thompson, M. Analyst (London) 1982, 707, 232-234. (llOB) Robinson, J. W.; Jowett, P. L. H. Spectrosc. Left. 1983, 76, 159-1 79. (1118) Rocks, B. F.; Sherwood, R. A.; Bayford, L. M.; Riley, C. Ann. Ciin. Biochem. 1982, 79, 338-344. (1128) Rocks, 8. F.; Sherwood, R. A.; Riley, C. Clln. Chem. (Wlnston-Saiem, N.C.) 1982, 28, 440-443. (1138) Rocks, 8. F.; Sherwood, R. A.; Riley, C. Clin. Chem. (Winston-Sa/em, N.C.) 1983, 2 9 , 569-570. (1148) Rocks, 8. F.; Sherwood, R. A,; Turner, 2 . J.; Riley, C. Ann. Clin. Biochem. 1983, 2 0 , 72-76. (1158) Routh, M. W. Appl. Spectrosc. 1982, 3 6 , 585-587. (1168) Routh, M. W.; Doidge, P. S.; Chldzey, J.; Frary, B. Am. Lab. (Fairfield, Conn.) 1982, 14, 80, 82-90, 92, 95. (1178) Routh, M. W.; Doidge, P. S.; Chidzey, J.; Frary, B. Int. Lab. 1982, 72, 101-2, 104, 106, 108, 110, 112, 114. 116, 118. (1188) Schulze, H. D. Int. Lat. 1981, 1 7 , 92, 94-6, 98. (1198) Seymour, R. J.; Boss, C. 8. Appl. Spectrosc. 1983, 37, 375. (1208) Severln, G.; Schumacher, E.; Umiand, F. fresenius' 2.Anal. Chem. 1982, 371, 201-204. (1218) Shabushnlg, J. G.; Hieftje, G. M. Anal. Chim. Acta 1983, 748, 181-192. (1228) Sharpsteen, J. T. Eur. Pat. 82263, Jun. 29, 1983; Chem. Abstr. 9 9 , 98489. (1238) Shcherbakov, V. I.; Belyaev, Yu. I.; Demkln, A. M. Zavod. Lab. 1983, 49, 35-36; Chem. Absfr. 9 8 , 172175. (1248) Shimadzu Seisakusho Ltd. Jpn. Pat. 82142545, Sep. 3, 1982; Chem. Abstr. 9 8 , 118808. (1258) Shimadzu Seisakusho Ltd. Jpn. Pat. 82157143, Sep. 28, 1982; Chem. Abstr. 98, 138813. (1268) Shimadzu Seisakusho Ltd. Jpn. Pat. 82181638, Oct. 5, 1982; Chem. Absfr. 9 8 , 136885. (1278) Shirokanov, A. D.; Yankovskll, A. A. USSR Pat. 1000101, Feb. 28, 1983; Chem. Abstr. 9 8 , 209304. (1288) Shrader, D. E.; Voth, L. M. Am. Lab. (Fairfield, Conn.) 1983, 75, 66-70. (1298) Siemer, D. D. Anal. Chem. 1982, 54, 1659-1663. (1308) Siemer, D. D. Anal. Chem. 1983, 5 5 , 692-697. (1318) Slemer, D. D. Appl. Spectrosc. 1983, 37, 73-75. (1328) Slemer, D. D. Appl. Spectrosc. 1983, 3 7 , 552. (1338) Slemer, D. D.; Lewis, L. C. Anal. Chem. 1983, 5 5 , 99-104. (1348) Simon, J.; Kantor, T.; Kozma, T.; Pungor, E. J. Therm. Anal. 1982, 2 5 , 57-77. (1358) Slnha, R. C. P. Fert. Technoi. 1981, 78,99-101. (136B) Siavin, W.; Carnrlck, G. R.; Manning, D. C. Anal. Chim. Acta 1982, 138, 103-110. (1378) Sotera, J. J.; Kahn, H. L. Am. Lab. (Fairfield, Conn.) 1982, 14, 100-4, 106, 108. (1388) Smith, S. B., Jr.; Hieftje, G. M. Fr. Pat. 2501373, Sep. I O , 1982; Chem. Abstr. 9 8 , 100478. (1398) Smith, S. E., Jr.; Hieftje, G. M. Appl. Spectrosc. lQ83, 37, 419. (1408) Smith, S.B., Jr.; Chaplro, C. US Pat. 4367042, Jan. 4, 1983; Chem. Abstr. 98. 100483. (1418) Suzuki, M.; Ohta, K. Kenkyu Hokoku-Asahl Garasu Kogyo Guutsu Shoreikai 1982, 40, 219-226; Chem. Abstr. 9 9 , 98278. (1428) Susukl. M.; Ohta, K. Prog. Anal. At. Spectrosc. 1983, 6, 49-162. (1438) Susuki. M.; Ohta. K.; Katsuno, Takafumi Mikrochim. Acta 1982, 2, 225-230. (1448) Tyson, J. F. Anal. Proc. (London) 1981, 78, 542-545. (1458) Tyson, J. F.; Appleton, J. M. H.; Idris, A. B. Anal. Chim. Acta 1983, 145, 159-168. (1468) Tyson, J. F.; Appleton, J. M. H.; Idris, A. E. Analyst (London) 1983, 708, 153-158. ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

287R

ATOMIC ABSORPTION, ATOMIC FLUORESCENCE, AND FLAME EMISSION SPECTROMETRY (1478) Uchida, T.; Wei, C. S.; Iida, C.; Wada, H. Nagoya Kogyo Daigaku Gakuho 1981, 3 3 , 97-101; Chem. Abstr. 9 8 , 103771. (1488) Van Uffelen, J. W. M.; De Loos-Voilebregt, M. T. C.; De Galan, L. Spectrochlm. Acta, Part B 1982, 376, 527-531. (1498) Voeilkopf, U.;Schulze, H. LaborPraxls 1983, 7 , 410-415. (150B) Voeiikopf, U.; Schulze, H. LaborPraxls 1983, 7 , 544, 547-8, 550, 552. (I5lB) Vulfson, E. K.; Dvorkin, V. I.; Karyakln, A. V.; Khomyak, A. S. Zh. Prlkl. pektrosk. 1983, 38, 537-542; Chem. Abstr. 9 8 , 209294. (1528) Watiing, R. J.; Watling, H. R. Spectrochlm. Acta, Part B 1982, 378, 633-636. (1538) Wei, F.; Yang, J. T.; Yin, F. Anal. Lett. 1983, 16, 501-508. (1548) Weinstock, N.; Weissert, M.; Kohlschuetter, 8. Trace Elem. Anal. Chem. Med. Bol., Proc. Int. Workshlp, 2nd 1982, 453-61; Chem. Abstr. 9 9 , 118733. (1558) Wennrich, R.; Dittrich. K. Spectrochlm. Acta, Part B 1982, 378, 913-919. (1568) Wirz, P.; Gross, M.; Garry, S.; Scharmann, A. Spectrochlm. Acta, Part B 1983, 388, 1217. (1578) Wiseman, A. G.; Masters, M. K. Brit. UK Pat. 819946, Jui. 28, 1981; Chem. Abstr. 99, 81760. (158B) Wittmer, C. M. Eur Pat. 277351, Jun. 25, 1981; Chem. Abstr. 9 9 , 15782. (159B) Wu, 2.; Ma, Y. Huanjlng Huaxue 1982, 1 , 228-234 Chem. Abstr. 98, 100368. (l60B) Yanagisawa, M.; Kltagawa, K.; Tsuge, S. Spectrochlm. Acta, Part B 1982, 378, 493-500. (16lB) Zhao, 0.; Wang, S.;Zhu, M.; Sakai, K. Bunsekl Kagaku 1983, 3 2 , 164-168; Chem. Abstr. 98, 190768. C. PERFORMANCE STUDIES (IC) Akman, S.;Genc, 0.; Balkis, T. Spectrochlm. Acta Part B 1982, 376, 903-912. (2C) Aikemade, C. Th. J.; Hollander, Ti.; Jansen, J.; Snlppe, H.; Zyistra, R. J. J. Spectrochlm. Acta, Part 6 1983, 388, 669. (3C) Anwar, J.; Marr, I.L. Anal. Proc. (London) 1982, 19, 302-305. (4C) Barakat, N.; El-Nour, F. A,; Abdel-Rahman, M. J. Coll. Sci., Klng Saud Unlv. 1983, 14, 167-175; Chem. Abstr. 9 9 , 45608. (5C) Bassyouni, A. H. J. Ouant. Spectrosc. Radiat. Transfer 1982, 2 8 , 161- 167. (6C) Bayunov, P. A.; Savin, A. S.; L'vov, B. V. At. Spectrosc. 1982, 3 , 16 1-1 64. (7C) Bragln, 0. Ya.; Sadagov, Yu. M. Zh. Prlkl. Spektrosk. 1982, 36, 185188; Chem. Abstr. 96, 192425. (8C) Chakrabarti, C. L.; Chang, S. B.; Roy, S. E. Spectrochlm. Acta, Part B 1983, 388, 447. (9C) Chakrabarti, C. L.; Chang, S. 8.; Lawson, S. R.; Wing, S. M. Spectrochlm. Acta, Part B 1983, 388, 1287. (1OC) Cresser, M. S. Prog. Analyt. Atom. Spectrosc. 1982, 5 , 35. ( I l C ) Eaton, D. K.; Hoicombe, J. A. Anal. Chem. 1983, 55, 946-950. (12C) Ebdon, L.; Ellls, A. T.; Ward, R. W. Talanta 1982, 2 9 , 297-302. (13C) Eider, M. L.; Van Dijk, C. A,; Winefordner, J. D. Spectrochlm. Acta, Part B 1983, 386, 1183. (14C) Fazakas, J. Spectrosc. Lett. 1982, 15, 21-38. (15C) Frech, W.; Zhou, N. 0.; Lundberg, E. Spectrochlm. Acta, Part B 1982, 376, 691-702. (16C) Gil'mutdinov, A. Kh.; Fishman, I.S. Zh. Prlkl. Spektrosk. 1982, 3 7 , 541-548; Chem. Abstr. 9 8 , 26872. (17C) Gil'mutdinov, A. Kh.; Fishman, I. S. Zh. Prlkl. Spektrosk. 1983, 38, 208-215; Chem. Abstr. 9 8 , 154368. (18C) Goncharova, N. N.; Banchak, L. A.; Ivanova, E. I.; Potanina, L. V. Zh. Anal. Khlm. 1982, 3 7 , 2174-2177; Chem. Abstr. 9 8 , 82983. (19C) Hoicombe, J. A. Spectrochim. Acta, Part B 1983, 388, 609. (20C) Huang, C. Fenxl Huaxue 1983, 1 1 , 135-137; Chem. Abstr. 9 9 , 115093. (21C) Human, H. G. C.; Ferreira, N. P.; Rademeyer, C. J.; Faure, P. K. Spectrochim. Acta, Part B 1982, 378, 593-602. (22C) Ikrenyi, K.; Bartha, A. Anal. Chlm. Acta 1982, 142, 339-42. (23C) Ishibashi, W.; Kikuchi, R. Bunsekl Kagaku 1982, 3 1 , El43-E150; Chem. Abstr. 9 7 , 32720. (24C) Katskov, D. A. Zh. Prlkl. Spektrosk. 1983, 3 8 , 181-208. (25C) Katskov, D. A,; Kopeikln, V. A,; Grinshtein, I. L.; Burtseva, I. G. Zh. Prlkl. Spektrosk. 1983, 3 8 , 682-668; Chem. Abstr. 9 8 , 209169. (26C) Kono, T.; Kojima, T. Bunseki Kagaku 1982, 31, 278-281; Chem. Abstr. 9 7 , 84186. (27C) Kono, T.; Kojima, T. Bunsekl Kagaku 1982, 31, 282-285; Chem. Abstr. 9 7 , 84288. (28C) Kono, T.; Kojlma, T. Bunsekl Kagaku 1982, 3 1 , 570-575; Chem. Abstr. 9 8 . 64710. (29C) Kono,' T.; Kojima, T. Bunsekl Kagaku 1983, 3 2 , 327-332; Chem. Abstr. 9 9 , 63333. (30C) Koscielniak, P.; Parczewskl, A. Spectrochlm.Acta, PartB 1982, 378, 88 1-887. (31C) Kozyreva, G. V.; Shcherbakova, S. L.; Kuzyakov, Yu. Ya. Zh. Anal. Khlm. 1982, 3 7 , 1205-1208; Chem. Abstr. 9 7 , 192313. (32C) Krivan, V.; Lang, M. Fresenius' 2 . Anal. Chem. 1982, 312, 324-330. (33C) Lundberg, E.; Bergmark, B.; Frech, W. Anal. Chlm. Acta 1982, 142, 129-142. (34C) L'vov, B. V.; Savin, A. S. Zh. Anal. Khlm. 1982, 3 7 , 2116-2124; Chem. Abstr. 9 8 , 100227. 135'2) L'vov. B. V.: Rvabchuk. G. N. Zh. Anal. Khim. 1982, 3 7 , 2125-2136; ' Chem. Abstr 98: 82868. (36C) L'vov, B. V.; Ryabchuk, G. N. Spectrochlm. Acta, Part B 1982, 378, 673-684. (37C) Martinsen, I . ; Langmyhr, F. J. Anal. Chim. Acta 1982, 135, 137-143. (36C) Matsusaki, K. Anal. Chlm. Acta 1982, 141, 233-240.

.

288R

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

(39C) Millner, B. A.; Heiden, E. Chem. Labor Betr. 1983, 34, 200-204; Chem. Abstr. 99. 47083. (40C) Mueller-Vogt, G.;Wendi, W. Atomspektrom. Spurenanal., Vortr. KO/loq. 1981, 385-393; Chem. Abstr. 9 9 , 15643. (41C) Mueller-Vogt, G.; Wendl, W.; Pfundstein, P. Fresenius' 2 . Anal. Chem. 1983, 314, 638-641. (42'2) Musii, J.; Rubeska, I.Analyst (London) 1982, 107, 588-590. (43C) Ohta, K.; Smith, B. W.; Suzuki, M.; Winefordner, J. D. Spectrochlm. Acta, Part B 1982, 3 7 6 , 343-347. (44C) Peiieva, L. A.; Bukhantsova, V. G.; Davidyuk, 0. A. Zh. Prlkl. Spektrosk. 1983, 38, 533-536; Chem. Abstr. 98, 209168. (45C) Pelieva, L. A.; Prostetsova, E. V.; Bukhantsova, V. G. Zh. Prlkl. Spektrosk. 1982, 36, 898-902; Chem. Abstr. 9 7 , 173982. (46C) Rayson, G. D.; Holcombe, J. A. Spectrochlm. Acta, Part B 1983, 388, 987. (47C) Salmon, S. G.; Holcornbe, J. A. Anal. Chem. 1982, 5 4 , 630-634. (48C) Seymour, R. J.; Boss, C. B. Anal. Chem. 1982, 5 4 , 1037-1042. (49C) Shcherbakov, V. I.; Belyaev, Yu. I.; Myasoedov, 8. F. Zh. Prlkl. Spektrosk. 1982, 3 6 , 693-897; Chem. Abstr. 9 7 , 173981. (50C) Shcherbakov, V. 1.; Belyaev, Yu. I.; Myasoedov, B. F.; Marov, I. N.; Kallnichenko, N. Zh. Anal. Khlm. 1982, 3 7 , 1717-1721; Chem. Abstr. 9 8 , 64711. (51C) Slavin, W.; Carnrlck, G. R.; Manning, D. C. Anal. Chem. 1982, 5 4 , 62 1-624. (52C) Slavin, W.; Carnrick, G. R.; Manning, D. C.; Pruszkowska. E. At. Spectrosc. 1983, 4 , 69-86. (53C) Slavin, W.; Manning, D. C. frog. Anal. At. Spectrosc. 1982, 5 , 243-340. (54C) Sotera, J. J.; Cristiano, L. C.; Conley, M. K.; Kahn, H. L. Anal. Chem. 1983, 55, 204-208. (55C) Sotera, J. J.; Smith, S. B.; Kahn, H. L. Analyst (London) 1982, 107, 1484-1488. (56C) Stegiich, F.; Stahlberg, R. Fresenlus' Z . Anal. Chem. 1983, 314, 402-406. (57C) Steglich, F.; Stahlberg, R. Fresenlus' 2 . Anal. Chem. 1983, 315, 321-328. (58C) Sturgeon, R. E.; Berman, S. S. Anal. Chem. 1983, 55, 190-200. (59C) Sturgeon, R. E.; Mitchell, D. F.; Berman, S. S. Anal. Chem. 1983, 55, 1059-1064. (60C) Styris, D. L.; Kaye, J. H. Anal. Chem. 1982, 5 4 , 864-869. (61C) Tomlnaga, M.; Umezaki, Y. Anal. Chlm. Acta 1982, 139, 279-285. (62C) Tominaga, M.; Umezakl, Y. Anal. Chlm. Acta 1983, 148, 285-291. (63C) Yoshimura, C.; Huzino, T. Nlppon Kagaku Kaishi 1983, 5 , 659-664; Chem. Abstr. 9 9 , 15760. (64C) Yoshimura, C.; Matsumura, K. Nippon Kagaku Kaishi 1982, 8 , 13371340; Chem. Abstr. 98, 10714. D. APPLICATIONS OF ATOMIC ABSORPTION SPECTROMETRY

(1D) Abu-Elgheit, M. A. Prepr.-Am. Chem. Soc., Div. Pet. Chem. 1981, 26, 666-7 1. (2D) Abu-Eigheit, M. A. Indlan J. Techno/. 1983, 2 1 , 128-129; Chern. Abstr. 9 9 , 90691. (3D) Ai-Zamil, 1. 2.; Aziz-Alrahman, A. M.; AI-Hajjaji, M. A. J. C h m . SOC. Pak. 1982, 4, 249-250; Chem. Abstr. 9 8 , 149649 (4D) Alfthan, G.; Kumpuiainen, J. Anal. Chim. Acta 1982, 140, 221-227. (5D) Aller, F.; Abundio, J. Aluminium (Duesseldorf) 1982, 58,660-663. (6D) Anwar, J.; Marr, I.L. Talanta 1982, 2 9 , 869-870. (7D) Astroem, 0. Brit. UK Pat. Appl. GB 2099579, Dec. 1982. (ED) Atsuya, I.; Ito, K.; Otomo, M. Anal. Chlm. Acta 1983, 147, 185-192. (9D) . . Aziz-Alrahman, A. M.; Ai-Haliaii, .. . M. A. I n t . J. Envlron. Anal. Chem. 1983, 15, 9-18. (10D) Aznarez, J.; Palacios, F.; Vldal, J. C. At. Spectrosc. 1982, 3 , 192-1 93. (1 1D) Bahreyni-Toosi, M. H.; Dawson, J. B.; Chiivers, D. C.; Ellis, D. J. Trace Elem. Anal. Chem. Med. Blol., Proc. Int. Workshop, 2nd 1982, 811818; Chem. Abstr. 9 9 , 118601. (12D) Bartha, A.; Ikrenyi, K. Anal. Chlm. Acta 1982, 139, 329-332. (13D) Beaupre, P. W.; Holland, W. J.; McKenney, D. J. Mlkrochlm. Acta 1983, 2 , 415-420. (140) Beaupre, P. W.; Holland, W. J.; Dupuis, L. T. Mlkrochim. Acta 1983, 2 , 401-404. (15D) Benlschek-Huber, I.; Benischek, F. Anal. Chlrn. Acta 1982, 140, 205-2 12. (16D) Berlyne, G. M.; Caruso, C. Clln. Chlm. Acta 1983, 129, 239-244. (17D) Bernai, J. L.; Del Nozai, M. J.; Deban, L.; Aiier, A. J. Talanta 1982, 2 9 , 1113-1116. (18D) Bernard, H.; Pinta, M. At. Spectrosc. 1982, 3 , 8-12. (190) Berrow, M. L.; Stein, W. M. Analyst (London) 1983, 108, 277-285. (20D) Bertenshaw, M. P.; Gelsthorpe, D.; Wheatstone, K. C. Analyst (London) 1982, 107, 163-171. (210) Berthoif, R. L.; Brown, S.;Renoe, B. W.; Wills, M. R.; Savory, J. Clln. Chem. (Wlnston-Salem, N.C.) 1983, 2 9 , 1087-1089. (22D) Bertholf, R. L.; Renoe, B. W. Anal. Chlm. Acta 1982, 139, 287-295. (23D) Bettinelli, M. Anal. Chlm. Acta 1983, 148, 193-201. (24D) Bettinelli, M. At. Spectrosc. 1983, 4 , 5-9. (25D) Boehmer, R. G.; Nieuwenhuis, J, J.; Theron, J. J. S. Afr. J. Chem. 1983, 3 6 , 27-31. (26D) Borggaard, 0.K.; Christensen, H. E. M.; Nieisen, T. K.; Wiilems, M. Analyst (London) 1982, 107, 1479-1483. (27D) Bourcier, D. R.; Sharma, R. P.; Drown, D. B. Am. Ind. Hyg. Assoc. J. 1982, 43, 329-332. (28D) Bramaii, N.; Thompson, K. C. Analyst (London) 1982, 107, 922-926. (29D) Breder, R. Fresenlus' 2.Anal. Chem. 1982, 313, 395-402. 130D) Brooks. R. R.: Wiilis. J. A.: Liddle. J. R. J. Assoc. Off. Anal. Chem. 1983, 66, 130-134. (31D) Brueggemeyer, T. W.; Caruso, J. A. Anal. Chem. 1982, 5 4 , 872-875.

ATOMIC ABSORPTION, ATOMIC FLUORESCENCE, AND FLAME EMISSION SPECTROMETRY (32D) Bruhn, F.; Caballn, G. V. Anal. Chlm. Acta 1983, 747, 193-203. (33D) Buchet, J. P.; Knepper, E.; Lauwerys, R. Anal. Chlm. Acta 1982, 136, 243-248. (34D) Burba, P.; Willmer, P. G.; Betz, M.; Fuchs, F. Inf. J . Environ. Anal. Chem. 1983, 13, 177-191. (35D) Burns, T. D.; Dadgar, D. Analysf (London) 1982, 107, 452-455. (36D) Busheina, I. S.;Headrldge, J. B. Talanfa 1982,29, 519-520. (37D) Busheina, I. S.; Headrldge. J. B. Anal. Chim. Acta 1982, 142, 197-205. (38D) Bye, R. Talanfa 1982,29, 797-798. (39D) Bye, R.; Holen, B. Anal. Chlm. Acta 1982, 144, 235-238. (40D) Byrne, R. E. Anal. Chlrn. Acta 1983, 151, 187-194. (41D) Caravajal, G. S.; Mahan, K. I.; Goforth, D.; Leyden, D. E. Anal. Chim. Acta 1983, 747, 133-150. (42D) Carelli, G.; Altavlsta, M. C.; Aldrighettl, F. At. Spectrosc. 1982, 3, 200-202. (43D) Cary, E. E.; Rutzke, M. J. Assoc. Off. Anal. Chem. 1983, 66, 850-852. (44D) Castlllo, J. R.; Belarra, M. A.; Aznarez, J. At. Specfrosc. 1982, 3, 58-80. ._

(45D) Castillo, J. R.; Belarra, M. A,; Domlnguez, M.; Aznarez, J. Talanta 1982,29, 485-488. (46D) Castillo, J. R.; Lanaja, J.; Aznarez, J. Analysf (London) 1982, 107, 89-95. (470) Castlllo, J. R.; Lanaja, J.; Aznarez, J. fergamon Ser. Environ. Scl. 1982, 7, 407-412. (48D) Castlllo, J. R.; Lanaja, J.; Martinez, M. C.; Aznarez, J. Analyst (London) 1982, 107, 1488-1498. (49D) Cervera, J.; Cela, R.; Perez-Bustamante, J. A. Analyst (London) 1982, 107. 1425-1430. (50D) Chakraborti, D.; Hlllman, D. C. J.; Irgolic, K. J.; Zlngaro, R. A. J. Chromafogr. 1982,249, 81-92. (51D) Chau, Y. K.; Wong, P. T. S.; Krama 0. Anal. Chim. Acta 1983, 146, 211-217. (52D) Chau, Y. K.; Wong, P. T. S.; Bengert, G. A. Anal. Chem. 1982,54, 246-249. (53D) Chen, G. H.; Risby. T. H. Anal. Chem. 1983,55,943-946. (54D) Chen, W.; Llu, D. 8eJlng Shlfan Daxue Xuebao, Zlran Keuxueban 1982,37-42; Chem. Abstr. 98, 49874. (55D) Chen, Y.; Yang, C. Huazue Xuebao 1982, 40, 1066-1069; Chem. Abstr. 98, 83079. (56D) Chiricosta, S.;Cum, G.; Gallo, R.; Spadaro, A.; Vitarelll, P. Af. SpecfrOSC. 1982,3, 185-187. (57D) Christensen, T. H. Int. J. Envlron. Anal. Chem. 1982, 12, 211-221. (58D) Christensen, T. H.; Pedersen, L. R.; TJell,J. C. I n f . J. Environ. Anal. Chem. 1982, 72, 41-50. (59D) Claeys-Thoreau, F. At. Specfrosc. 1982,3, 188-191. (60D) Clanet, P.; DeAntonio, S.M.; Katz, S. A,; Schelner, D. M. Clln. Chem. (Wlnston-Salem, N.C.) 1982,28, 2450-2451. (61D) Clegg. M. S.; Keen, C. L.; Lonnerdai, B.; Hurley, L. S. Biol. Trace Hem. Res. 1982,4, 145-156. (62D) Crock, J. G.; Llchte, F. E. Anal. Chlm. Acta 1982, 144, 223-233. (63D) Curtlus, A. J. Mlkrochlm. Acta 1983. 2, 125-130. (64D) Dabeka, R. W. J. Assoc. Off. Anal. Chem. 1982,65,1005-1009. (65D) Danielson, B. G.; Pallln. E.; Sohtell, M. Upsala J. Med. Scl. 1982,87, 43-53; Chem. Abstr. 97, 178152. (68D) Danlelsson, L. G.; Magnusson, B.; Westerlund, S.;Zhang, K. Anal. Chlm. Acta 1982, 144, 183-188. (67D) Davidowski, L.; Werbickl, J. J., Jr. At. Specfrosc. 1983,4, 104-107. (68D) De Jonghe, W. R. A.; Van Mol, W. E.; Adams, F. C. Anal. Chem. 1983,55, 1050-1054. (69D) De la Guardia, M.; Vldal, M. T. At. Spectrosc. 1983, 4, 39-41. (70D) De la Guardla, M.; Sanchez, M. J. At. Spectrosc. 1982, 3, 36-8. (71D) De la Guardia, M.; Salvador, A.; Berenguer, V. An. Quim., Ser. 8 1982, 78, 321-328; Chem. Abstr. 98, 92119. (72D) Dedlna, J. Anal. Chem. 1982,54. 2097-2102. (73D) Del Rosario, A. R.; Gulrguis, G. N.; Perez, G. P.; Matias, V. C.; LI, T. H.; Flessel, C. P. Inf. J. Environ. Anal. Chem. 1982, 72, 223-231. (74D) Delves, H. T.; Woodward, J. Heavy Met. Envlron., Inf. Conf., 3rd 1981,622-627; Chem. Abstr. 97, 121455. (75D) Delves, H. T.; Mensikov, R.; Hlnks, L. Trace Elem. Anal. Chem. Med. Bioi., froc. Int . Workshop, 2nd 1982, 1123- 1127; Chem. Absfr. 99, 117299. (78D) Dlamantatos, A. Anal. Chim. Acta 1983, 148, 293-298. (77D) Diamantatos, A. Anal. Chlm. Acta 1983, 147, 219-226. (78D) Dlehl, K. H.; Rosopulo, A.; Kreuzer, W. Fresenlus’s 2.Anal. Chem. 1983,314, 755-757. (79D) Diggs, T. H.; Ledbetter, J. 0. Am. Ind. Hyg. Assoc. J. 1983, 44,

606-608.

(80D) Dllion, J. J.; Martin, E. A. At. Spectrosc. 1982,3, 66-69. (8lD) Donaldson, E. M. Talanta 1982,29, 1069-1075. (82D) Doolana, K. J. Anal. Chim. Acta 1982, 740, 187-195. (83D) Dorn, von L.; Knopf, H. Chem.-Ztg. 1983, 107, 106-108; Chem. Absfr. 98, 190893. (840) Dumarey, R.; Dams, R.; Sandra, P. J. High Resolot. Chromafogr. Chromafogr. Commun. 1982,5. 687-689. (85D) Ebdon, L.; Ward, R. W.; Leathard, D. A. Analyst (London) 1982, 707, 129-143. (66D) Ebdon, L.; Pearce, W. C. Analyst (London) 1982. 107, 942-950. (870) Elkins, E. R. J. Assoc. Off. Anal. Chem. 1982,65,985-969. (88D) Elson. C. M.; Albuquerque, C. A. R. Anal. Chlm. Acta 1982, 134, 393-396. (89D) Epsteln, M. S. At. Specfrosc. 1983,4, 62-63. @OD) Evans, W. H.; Brooke. P. J.; Lucas, B. E. Anal. Chim. Acta 1983, 148, 203-210. (91D) Fabec, J. L. Anal. Chem. 1982,54, 2170-2174.

(92D) Fabec, J. L. At. Spectrosc. 1983,4, 46-48. (93D) Fagloll, F.; Landi, S.; Locatelll, C.; Bighl, C. Anal. Left. 1983, 16, 275-288. (94D) Farago, M. E.; Parsons, P. J. Analyst (London) 1982, 107, 1218- 1228. (95D) Favler, A.; Maljournal, B.; Decoux, G.; Ruffleux, D. Ann. 8lol. C/in. (Parls) 1983,41, 45-50. (96D) Favler, A.; Ruffieux, D.; Alcaraz, A.; Maljournal, B. Ciin. Chlm. Acta 1982, 124, 239-244. (97D) Fazakas, J. Fresenlus’ Z. Anal. Chem. 1982,372, 227-233. (98D) Fazakas, J. Anal. Lett. 1982, 15, 245-265. (99D) Fernandez, F. J.; Hllligoss, D. At. Specfrosc. 1982,3, 130-131. (100D) Finkelman, R. B.; Aruscavage, P. J. Inf. J. Coal Qeol. 1981, 1, 95-99. (IOlD) Fish, R. H.; Brinckman, F. E.; Jewett, K. L. Envlron. Scl. Technol. 1982, 76, 174-179. (102D) Flshkova, N. L.; Talyplna, 0. P. Zh. Anal. Khim. 1983,38, 452-457; Chem Absfr 98, 209268. (103D) Foote, J. W.; Delves, H. T. Analyst (London) 1982, 707, 121-124. (104D) Foote, J. W.; Delves, H. T. Analyst (London) 1983, 708, 492-504. (105D) Foote, J. W.; Delves, H. T. Analyst (London) 1982, 707, 1229-1234. (108D) Frech, W.; Cedergren, A.; Cederberg, C.; Vessman, J. Clin. Chem. (Winston-Salem, N.C.) 1982,28, 2259-2263. (107D) Frlck, D. A.; Tallman, D. E. Anal. Chem. 1982, 54, 1217-1219. (108D) Frigerlo, I. J.; McCormlck, M. J.; Symons, R. K. Anal. Chim. Acta 1982, 743,261-264. (109D) Fujlta, M. Anal. Chem. 1983,55,454-457. (1100) Gabriel, N. E.; Law, H. H. Anal. Chern. 1983,55, 1647-1648. ( I l l D ) Gallego, M.; Garcia-Vargas, M.; Valcarcel, M. Mlcrochem. J. 1982, 27, 328-338. (112D) Garcia-Vargas, M.; Mllla, M.; Perez-Bustamante, J. A. Analyst (London) 1983, 106, 1417. (113D) George, 0. M.; Frahm, L. J.; McDonnel, J. P. J. Assoc. Off. Anal. Chem. 1982,65,711-719. (114D) Gomez-Bueno, C. 0.; Rempel, G. L.; Spink, D. R. Talanta 1982,29. 461-465. (115D) Goto, M.; Shlbakawa, T.; Akita, T.; Ishii, D. Anal. Chim. Acfa 1982, 140, 179-185. ( l l 6 D ) Grasso, 0.; Sannino, A. Cuolo, fell/, Mater. Conclanti 1982, 58, 286-290; Chem. Abstr. 98. 77805. (117D) Grobenskl, 2.; Lehmann, R. At. Spectrosc. 1983,4, 111-112. (118D) Grobenskl, 2.; Lehmann, R.; Tamm, R.; Welz. B. Mikrochim. Acta 1982, 1, 115-125. (119D) Guillard, 0.; Piriou, A.; Mura, P.; Relss, D. Clln Chem . (Winston-&/em, N.C.) 1982,28, 1714-1715. (120D) Haines, J.; Robert, R. V. D. Rep.-MINT€K 1982, M35, 15 pp; Chem. Absfr. 97, 137854. (1210) Haines, J.; Robert, R. V. D. Rep.-MINTEK 1982, M34, 19 pp; Chem. Abstr. 98, 46155. (122D) Halls, D. J.; Fell, G. S.Hem. Anal. Chem. Med. Blol., Roc. Int. Workshop, 2nd 1982,667-673; Chem. Absfr. 99, 118734. (1230) Hamm, U.; Baechmann, K. Fresenius’ 2.Anal. Chem. 1983,315, 591-597. (124D) Harlng, B. J. A.; Van Delft, W.; Bom, C. M. Fresenlus’ Z. Anal. Chem. 1982,370,217-223. (125D) Harley, M. L. At. Spectrosc. 1982,3, 76-78. (126D) Hartley, F. R.; Murray, S.G.; Nicholson, P. N. J. Organomet. Chem. 1982,237, 369-372. (127D) Hassan, S.M.; Metwally, M. E. S.;Abou Ouf, A. A. Analyst (London) lS82, 1235-1240. (128D) Hassan, S. S. M. Fresenius’ Z. Anal. Chem. 1982,312, 354. (129D) Hassan, S. S. M.; Tadros, F. Microchem. J. 1983,28, 20-25. (130D) Headrldge, J. 8.; Riddington, I. M. Mlkrochlm. Acta 1982, 2, 457-467. (131D) Headrldge, J. B.; Nicholson, R. A. Analyst (London) 1982, 707, 1200-1211. (132D) Heaton, M. G.; Buyer, J. S.;Hershey, J. P.; Duedall, I . W.; Giaugue, R. D. Environ. Techno/. Left. 1982,3, 529-540. (133D) Helrlch, R.; Angerer, J. Trace Hem. Anal. Chem. Med. Biol., R o c . Int. Workshop, 2nd 1982,675-683; Chem. Absfr. 99, 117297. (134D) Herber, R. F. M.; Van Deyck, W. Clln. Chlm. Acta 1982, 120, 313-320. (135D) Hlnks, L. J.; Colmsee, M.; Delves, H. T. Analyst (London) 1982, 107, 815-823. (136D) Hocklng, T. J.; Gulick, W. M., Jr. Anal. Chlm. Acta 1983, 757, 195-202. (137D) Hoenlg, M.; Woliast, R. Spectrochim. Acta, Part 8 1982, 376, 399-415. (138D) Hoenig, M.; Van Hoeyweghen, P. Spectrochim. Acta, Part 8 1982, 378, 817-828. (139D) Holding, S. T.; Rowson, J. J. R o c . Inst. Pet., London 1982, 227-23 1. (140D) Hon, P. K.; Lau, 0. W.; Wong, M. C. Analyst (London) 1983, 108, 84-70. ( 1 4 W Hong, 2.;Zhou, J.; Guo, D. Zhonghua Ylxue Jianyan Zazhi1982,5 , 226-227; Chem. Absfr. 98, 85653. (142D) Howell, D. J.; Dohnt, B. R. Talanfa 1982,29, 391-395. (1430) Huber, B.; Tamm, R.; Tomoff, T. Ger. Pat. DE 3044627, June, 1982. (144D) Hudnlk, V.; Marolt-Gomlscek, M.; Zargi, R.; Gomlscek, S. Trace Elem. Anal. Chem. Med. Biol., froc. Inf. Workshop, 2nd 1982,389400; Chem. Abstr. 99, 118732. (1450) Ikramuddln, M. At. Specfrosc. 1983,4, 101-103. (1480) Inoue, S.;Sasaki, M. Bunsekl Kagaku 1982,37,E127-El30; Chem. Absfr. 97, 115023. (147D) Institute of Petroleum Inst. f e f . , [Tech. Pap.] I f 82-008 1982,15 PP.

.

.

.

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

289R

ATOMIC ABSORPTION, ATOMIC FLUORESCENCE, AND FLAME EMISSION SPECTROMETRY (148D) Inul, T.; Terada. S.; Tamura, H.; Ichlnose, N. Fresenlus' 2. Anal, Chem. 1982, 311, 492-495. (149D) Inui, T.; Terada, S.; Tamura, H.; Ichinose, N. Fresenlus' Z . Anal. Chem. 1983, 315, 598-601. (150D) Ishll. M. Kyorin IgakkalZasshl 1982, 13, 47-59; Chem. Absfr. 9 7 , 123385. (151D) ItO, E.; Kidanl, Y. Bunsekl Kagaku 1982, 31, E381-E388; Chem. Absfr. 98, 46096. (152D) Jackson, K. W.; Newman, A. P. Analyst (London) 1983, 108, 261-264. (153D) James, A. D.; Judson, L. P. Chem. N . Z . 1982, 46, 60-81; Chem. Absfr. 9 7 , 73940. (154D) Janousek, I . Fresenlus' 2.Anal. Chem. 1983, 315, 248. (155D) Jantzen, E.; Buck, V.; Kaegler, S. H. Wear 1983, 8 7 , 331-338. (156D) Jiang, S.; Robberecht, H.; Adams, F.; Vanden Berghe, D. Toxlcol. Envlron. Chem. 1983, 6 , 191-201. (157D) Jlang, S.;De Jonghe, W.; Adams, F. Anal. Chim. Acta 1982, 136, 183-1 90. (158D) Jin, K.; Taga, M. Anal. Chlm. Acta 1982, 143, 229-236. (159D) Jin, K.; Ogawa, H.; Taga, M. BunseklKagaku 1983, 32, E171-E176; Chem. Abstr. 9 9 , 83358. (160D) Jin, L. 2.; NI, 2. M. Can. J. Specfrosc. 1981, 2 6 , 219-223. (161D) Johnsen, A. C.; Wibetoe, G.; Langmyhr, F. J.; Aaseth, J. Anal. Chlm. Acta 1982, 135, 243-248. (162D) Jonas. D. M.; Parker, L. R., Jr. Anal. Chlm. Anal. 1992, 134, 389-391. (163D) Jones, E.A. Rep.-MINTEK 1992, M47, 13 pp.; Chem. Absfr. 9 8 , 100399. (164D) Juhai, E.; Szlvos. K.; Trischler, R. Mlkrochim. Acfa 1983, 1, 389-394. (165D) Julshamn, K.; Ringal, 0.; Sllnnlng, K. E.; Braekkan, 0. R. Specfrochim. Acta, Part B 1982, 378, 473-482. (l66D) Kallenberger, W. E. J. Am. Leather Chem. Assoc. 1983, 78, 78-86. (167D) Kamata, E.; Nakashlma, R.; Goto, K.; Furukawa, M.; Shlbata, S. Anal. Chlm. Acfa 1982, 144, 197-203. (168D) Kane, J. S.; Harnly, J. M. Anal. Chim. Acta 1982, 139, 297-305. (169D) Kasprzak, K. S.; Stoeppler, M.; Gorskl, 2.; Kopczynskl, T. Chem. Anal. (Warsaw) 1982, 2 7 , 115-124; Chem. Absfr. 9 9 , 115110. (170D) Kataoka, M.; Mlyashlta. F.; Kambara, T. BunseklKagaku 1982, 31, 588-592; Chem. Abstr. 98, 46059. (171D) Kellerman, S . P. Rep.-MINTEK 1982, M39, 14 pp; Chem. Absfr. 9 8 , 26949. (172D) Kelty, K. C.; Miller, R. G.; Ulmer, N. S.; Facclolo, A. Proc.-AWWA Water Qual. Technol. Conf. 1983, 83-72. (173D) Kempton, S . ; Sterrltt, R. M.; Lester, J. N. Talanfa 1982, 2 9 , 675-88 I , (1740) Khavezov, I.; Ivanova, E. Fresenlus' 2.Anal. Chem. 1983, 315, 26-29. (175D) Kiss, E. Anal. Chlm. Acta 1982, 140, 197-204. (176D) Knutson, A. J. Assoc. Off. Anal. Chem. 1983, 66, 946-948. (177D) Knuttl, R. Atmospektrom. Spurenanal., Vortr. Kolloq. 1981, 57-66; Chem. Absfr. 98, 174201. (178D) Kobayashl, R.; Imai, M.; Hashimoto, Y. Bunseki Kagaku 1982, 31, 467-469; Chem. Afrs. 97, 174045. (179D) Kolrtyohann, S. R.; Kaiser, M. L.; Hinderberger, E. J. J. Assoc. Off. Anal. Chem. 1982, 65, 999-1004. (18OD) Kojlma, I.; Ilda, C. Anal. Left. 1982, 15, 543-548. (181D) Koops, J.; Westerbeek, D. Neth. Mllk D a h J. 1983, 3 7 , 21-25. (182D) Kostyniak, P. J. J. Anal. Toxlcol. 1983, 7 , 20-23. (183D) Kuennen, R. W.; Hahn, M. H.; Fricke, F. L.; Wolnlk, K. A. J. Assoc. Off. Anal. Chem. 1982, 65, 1146-1149. (184D) Kujirai, 0 . ;Kobayashl, T.; Ide, K.; Sudo, E. Talsnta 1982, 29, 27-30. Kobayashi, T.; Ide, K.; Sudo, E. Talanfa 1983, 30, 9-14. (185D) Kujlrai, 0.; (186D) Kuldvere, A. Analyst (London) 1982, 107, 179-184. (187D) Kuidvere, A. Analyst (London) 1982, 107, 1343-1349. (188D) Kulish, N. 0.; Burylev, B. P. Zavod. Lab. 1993, 49, 37-38; Chem. . Abstr. 98, 172178. (189D) Kumamaru, T.; Rlordan, J. F.; Vallee, B. L. Anal. Biochem. 1982, 126, 214-221. (190D) Kumpulalnen, J.; Saimela, S.; Vuorl, E.; Lehto. J. Anal. Chlm. Acta 1982, 138, 381-384. (1910) Kurfuerst, U. Fresenlus' 2.Anal. Chem. 1982, 313, 97-102. (192D) Kurfuerst, U. Fresenius' Z . Anal. Chem. 1983, 315, 304-320. (193D) Kurfuerst. U.; Rues, B. Laborpraxis 1982, 6 , 1094, 1099; Chem. ' Absfr. 9 8 , 1257. (194D) Kurfuerst, U.; Grobecker, K. H. GIT Fachz. Lab. 1982, 2 6 , 825-828. Abstr. 625-826, 829-830; Absfr. 9 8 ., 100247. _-. 829-830: . ~ -..,. Chem. . . Wachter, K. H. Fresenius' Z . Anal. Chem. (195D) Kurfuerst, U.; Rues, 6.; Wachter,'K. 1983. 314. 1-5. (l96D) iamaihe, J.; Magurno, C.; Equel, J. C. Anal. Chlm. Acta 1982, 142, 183-188. (197D) Landsberger, S.; Jervls, R. E.; Aufrelter, S.; Van Loon, J. C. Chemosphere 1982, 1 1 , 237-247. (198D) Lee, D. S. Anal. Chem. 1982, 5 4 , 1182-1184. (199D) Lee, D. S. Anal. Chem. 1982, 5 4 , 1882-1686. (200D) Leenanupan, V.; Sirlsena, K.; Chalyasut, N. Report 1981, 29 pp.; Chem. Abstr. 9 9 , 110340. (201D) Legret, M.; Demare, D.; Marchandise, P.; Robbe, D. Anal. Chlm. Acta 1983, 149, 107-114. (202D) Lendero, L.; Krivan, V. Anal. Chem. 1982, 5 4 , 579-581. (203D) Lercari, C.; Sartorel, 6.; Sedea, L.; Toninelll, G. J. Am. Oil Chem. SOC 1983, 60, 858-857. (204D) Leung. F. Y.; Henderson, A. R. At. Spectrosc. 1983, 4 , 1-4. (205D) Lindahl, P. C.; Bishop, A. M. Fuel 1982, 61, 858-662. '

--..

290R

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

(206D) Llu, Y.; Gong, 6.; Sun, J.; Lln, T. BunseklKagaku 1983, 32, E9-El5; Chem. Abstr. 9 8 . 118843. (207D) Lloyd, 6.; Holt, P.; Delves, H. T. Analyst (London) 1982. 107, 927-933. (208D) Lo, J. M.; Yu, J. C.; Hutchinson, F. I.; Wal, C. M. Anal. Chem. 1982, 5 4 , 2536-2539. (209D) Lord, C. J., I l l Sediment. Petrol. 1982, 5 2 , 864-686. (210D) Lovell, M. A.; Farmer, J. G. Int. J. Environ. Anal. Chem. 1983, 14, 181-192. (211D) Lowry, J. H.; Meszaros, T. J.; Conlon, L. J. Autom. Chem. 1982. 4 , 112-1 15. (212D) Lugowska, M.; Rubel, S. Anal. Chlm. Acta 1982, 138, 397-402. (213D) MacPherson, H. B.; Mykytiuk, A. P.; Berman, S. S.; Russell, D. S. Can. J . Specfrosc. 1982, 2 7 , 132-136. (2140) Magyar, V.; Vonmont, H.; Circciarelll, R. Mlkrochlm. Acta 1982, 2 , 407-41 8. (2150) Mahaiingam, T. R.; Geetha, R.; Thiruvengadasami, A.; Mathews, C. K. Anal. Chim. Acta 1982, 142, 189-195. (2160) Maher, W. Anal. Chlm. Acfa 1982, 138, 385-370. (217D) Maher, W. A. Talanta 1982, 2 9 , 532-534. (2180) Maher, W. A. Analyst (London) 1983, 108, 305-309. (219D) Mahmood, M.; Jaslm. F. Talsnta 1082, 2 9 , 107-111. (220D) Makino, T. Clln. Chem. (Wlnsfon-Salem, N . C . ) 1983, 2 9 , 1313- 1314. (2210) Mandlc, M.; Mesarlc, S. Fresenlus' 2. Anal. Chem. 1982, 313, 403-408. (222D) Manning, B. E. At. Spectrosc. 1983, 4 , 159-160. (223D) Manning, D. C.; Slavin, W. Appl. Specfrosc. 1983, 37, 1-11. (224D) Marabini, A.; Barbaro, M.; Passarleilo, 8. At. Spectrosc. 1982, 3. 140- 142. (225D) Marr, I. L.; Anwar, J. Analyst (London) 1982, 107, 260-268. (226D) Marr, I. L.; Anwar, J.; Slthole, B. B. Analyst (London) 1982, 107, 1212-12 17. (227D) Martin, T. D.; Riley, J. K. At. Specfrosc. 1982, 3 , 174-179. (228D) Martinez, C.; Castlllo, J. R. At. Specfrosc. 1083, 4 , 83-65. (229D) Matsumoto, H. Sangyo Igaku 1982, 2 4 , 298-304; Chem. Abstr. 9 7 , 194054. (230D) Matsusaki, K.; Yoshino, T.; Yamamoto. Y. Anal. Chlm. Acta 1982, 144, 189-195. (231D) Matsuura, S. Kurume Med. J. 1982, 2 9 , 35-47; Chem. Absfr. 9 8 , 103768. (232D) Matthes, S. A.; Farrell, R. F.; Mackie, A. J. Tech. Prog. Rep.-US., Bur. Mines 1983, TPR 120, 12 pp; Chem. Abstr. 9 9 , 32302. (2330) May, T. W.; Brumbaugh, W. G. Anal. Chem. 1982, 54, 1032-1037. (234D) Mazzucotelll, A.; Galli, M.; Frache, R. Analyst (London) 1982, 107, 104-109. (235D) McHugh, J. B. At. SpeCtrOSC. 1983, 4 , 66-68. (236D) McMullln, J. F.; Pritchard, J. G.; Sikondarl, A. H. Analyst (London) 1982. 107, 803-814. (237D) Meier, A. L. Anal. Chem. 1982, 5 4 , 2158-2161. (238D) Melcher, M.; Welz, B. Afomspekfrom. Spurenanal., Vortr. Kolloq. 1081, 419-25; Chem. Abstr. 98, 209142. (239D) Mlnami, Y.; Mltsul, T.; Fujimura, Y. Bunseki Kagaku 1982, 3 1 , 334337; Chem. Absfr. 9 7 , 174193. (2400) Mlnami, Y.; Mltsul, T.; Fujlmura, Y. Bunseki Kagaku 1982, 3 1 , 604607; Chem. Abstr. 9 8 , 40656. (241D) Minami, Y.; Mitsl, T.; Fujlmura, Y. Bunsekl Kagaku 1983, 32, 206209; Chem. Absfr. 9 9 , 15852. 12420) Minoia, C.; Mazzucotelll. A.; Cavallerl. A.; Mlngantl, V. Analyst (London) 1983, 108, 481-484. (2431)) Mlyahara, S.; Ishibashi, T. Fukuoka -shl Else/ Shlkenshoho 1982, 7 , 97-99;-Chem. Abstr. 9 9 , 115079. (244D) Mulr, M. K.; Anderson, T. N. At. Spectrosc. 1982, 3 , 149-151. (245D) Mulbaler, J.; Stevens, C.; Graczyk, D.; Tisue, T. Anal. Chem. 1982, 54, 496-499. (246D) Nadkarni, R. A. Anal. Chlm. Acta 1982, 135, 363-368. (247D) Nakahara, T. Bull. Unlv. Osaka Prefect., Ser. A 1982, 31, 57-68; Chem. Absfr. 9 9 , 63473. (248D) Nakamura, K.; Fujimorl, M.; Tsuchlya, H.; Orii, H. Anal. Chim. Acta 1982, 138, 129-136. (249D) Nakashima, R.; Kamata, E.; Shlbata, S. Bunsekl Kagaku 1983, 3 2 , T70-T74; Chem. Abstr. 9 9 , 84620. (250D) Nakashlma, S.; Yagi, M. Anal. Chim. Acta 1983, 147, 213-218. (251D) Nash, A. M.; Mounts, T. L.; Kwolek, W. F. J. Am. Oil Chem. SOC. 1982, 60, 811-814. (252D) Neve, J.; Hanocq, M.f Molle, L.; Lefebrve, G. Analysf (London) 1982, 107, 934-941. (253D) Nlkolova, B.; Jordanov, N. Talanta 1982, 2 9 , 861-866. (254D) Norhelm, G.; Saeed, K.; Thomassen, Y. At. Spectrosc. 1983, 4 , 99-100. (255D) Olson, 0. E.; Emerick, R. J.; Palmer, I.S. At. Spectrosc. 1983, 4 , 55-58. (256D) Ooms, R.; Van Pee, W. J. Am. OilChem. Soc. 1983, 8 0 , 957-960. (257D) Oster, 0.; Preilwltz, W. Clln. Chlm. Acta 1982, 124, 277-291. (258D) Pacey, G. E.; Ford, J. A. Talanta 1981, 2 8 , 935-938. (259D) Palm, R.; Sjoestroem, R.; Hallmans, G. Clln. Chem. (Wlnston-Salem, N . C . ) 1983, 2 9 , 486-491. (260D) Palmer, J. M.; Rush, M. W. Analyst (London) 1982, 107, 994-999. (261D) Panlholzer, M.; Raptis, S. E.; Mueller, K. Mlkrochlm. Acta 1982, 2 , 189-1 98. (2620) Parlgi, J. S. At. Specfrosc. 1982, 3 , 128-129. (263D) Parkinson, I. S.; Ward, M. K.; Kerr, D. N. S. Clln. Chlm. Acta 1982, 125, 125-133. (284D) Patel, B. M.; Goyal, N.; Purohlt, P.; Dhobale, A. R.; Joshi, B. D. Fresenlus' 2.Anal. Chem. 1983, 315, 42-46. 42651)) Perslanl, C.; Durkin, F. At. Specfrosc. 1982, 3 , 194-196. '

ATOMIC ABSORPTION, ATOMIC FLUORESCENCE, AND FLAME EMISSION SPECTROMETRY (266D) Plkhart, M. Czech. Pat.; Chem. Abstr. 99, 63546. (267D) Ping, L.; Matsumoto, K.; Fuwa, K. Anal. Chim. Acta 1083, 147, . 205-212: (268D) Pleban, P. A.; Munyanl, A.; Beachum, J. Clin. Chem. (Winston-Salem. N.C.) 1082, 28,311-316. (269D) Polos. L.; Fdor, P.; Pungor, E. Hung. Scl. Instrum. 1083, 53, 1114; Chem. Abstr. 99, 81730. (2700) Postel, W.; Meler, B.; Markert, R. Monatsschr. Brauwlss. 1083, 36, 300-304; Chem. Absstr. 99, 86532. (271D) Powell, L. A.; Tease, R. L. Anal. Chem. 1082, 54, 2154-2158. (272D) Prasad, A. S. Curr. Top. Nutr. Dis. 1082, 7 ,141-149. (273D) Preer, J. R.; Stephens, B. R.; Bland, C. W. J . Assoc. Off. Anal. Chem. 1082, 6 5 , 1010-1015. (274D) Pruskowska, E.; Carnrlck. G. R.; Slavln, W. At. Spectrosc. 1083, 4 , 59-61. (275D) Pruszkowska, E.; Manning, D. C.; Carnrlck, G. R.; Slavln, W. At. Spectrosc. 1083, 4 ,87-93. (2760) Pruszkowska, E.; Carnrlck, G. R.; Slavln, Walter Anal. Chem. 1083, 55, 182-186. (277D) Prwzkowska. E.; Barrett, P.; Ediger, R. ; Wallace, G. At. Spectrosc . 1083, 4 ,94-98. (2781)) Puttemans. F.; Van den Wlnkel, P.; Massart. D. L. Anal. Chim. Acta 1083, 149, 123-128. (279D) Puttemans, F.; Massart, D. L. Anal. Chim. Acta 1082, 141, 225-232. (280D) Rains, T. C. ASTM Spec. Tech. Pub. 747 1081, 43-54. (2810) Rains, T. C.; Rush, T. A.; Butler, T. A. J . Assoc. Off. Anal. Chem. 1082, 65, 994-998. (282D) Raptls, S. E.; Kaiser, G.; Toelg, G. Anal. Chim. Acta 1082, 738, 93-101. (283D) Reeves, R.; Kjellstroem, T.; Dallow, M.; Mulllns, P. N.Z. J. Sci. 1082, 25. 221-227. (284Dj Renoe. B. W. J . Autom. Chem. 1082, 4 ,61-65. (285D) Riley, K. W. A t . Spectrosc. 1082, 3 , 120-121. (286D) Robert, R. V. D.; Ormrod, 0. T. W. Rep.-MINT€KlO82, M50, 26 pp; Chem. Abstr. 98, 118635. (287D) Robinson, J. W.; Skelly, E. M. Spectrosc. Lett. 1083, 16,33-58. (268D) Robinson, J. W.; Skeily, E. M. Spectrosc. Lett. 1082, 75, 631-661. (289D) Robinson, J. W.; Skelly, E. M. J . Environ. Sci. Health, PartA 1082, A 17,391-425. (290D) Robinson, J. W.; Skelly, E. M. Spectrosc. Lett. 1083, 16, 117-132. (2910) Robinson, J. W.; Skelly, E. M. Spectrosc. Lett. 1083, 76, 133-150. (282D) Rollemberg, M. C. E.; Curtlus, A. J. Mlkrochim. Acta 1082, 2, 44 1-447. (293D) Rorsman, P.; Berggren, P. 0. Anal. Chim. Acta 1082, 140, 325-329. (294D) Roschlg. M.; Wuenscher, R. G. Zentralbl. Pharm ., Pharmakother. Laboratoriumsdlagn. 1082, 727,893-901; Chem. Abstr. 98, 1259. (295D) Rosell. M. G.; Guardlno, X.; Gadea. E.; Martl, A. Pergamon Ser. Environ. Sci. 1082, 7 ,299-300. (296D) Royal Society of Chemistry Analyst (London) 1083, 108, 109-1 15. (297D) Ruseva, E.; Khavezov, I.; Spivakov, 6.Ya.; Shiklnev, V. M. Fresenius’ 2.Anal. Chem. 1083, 375,499-501. (2980) Saeed, K.; Thomassen, Y. Anal. Chlm. Acta 1082, 743,223-226. (299D) Sakal, T.; Ohno, N.; Waklsaka, T.; Kidanl, Y. Bunseki Kagaku 1082, 31,356-361; Chem. Abstr. 97, 155628. (300D) Sakata, M.; Shlmoda, 0. Bunsekl K8gaku 1082, 37, T81-T86; Chem. Abstr. 98, 46060. (301D) Sakla, A. B.; Badran, A. H.; Shalaby, A. M. Mlkrochim. Act8 1082, 1, 483-490. (302D) Sandrock, T. L.; Streiow, F. W. E.; Llebenberg, C. J. CHEMSA 1083, 9, 64-66. (30313) Sanzolone, R. F.; Chao, T. T. Analyst (London) 1083, 108,58-63. (304D) Sawada, K.; Inomata, S.; Gobara, B.; Suzukl, T. Talanta 1083, 30, 155-159. (3033) Schlerllng, P.; Schaller, K. H. Atmospektrom. Spurenanal., Vortr. Kolloq. 1081, 97-110; Chem. Abstr. 98, 192804. (306D) Scott, D. R.; Holboke, L. E.; Hadeishl, T. Anal. Chem. 1083, 55. 2006-2007. (307D) Scott, 1. M. B. Forensic Sci. SOC.1982, 22,41-42. (3080) Sebor, 0.;Lang, I.; Kollhova, D.; Welsser, 0. Analyst (London)1082, 107, 1350-1355. (309D) Selfert, D. Landwlrtsch. Forsch. 1082, 35,214-219; Chem. Abstr. 99, 118731. (310D) Sen Gupta, J. G. Anal. Chim. Acta 1082, 738,295-302. (311D) Shamberger, R. J. J . Clh. Chem. Clin. Biochem. 1083, 21, 107-111. (312D) Shan. X.; NI, 2.; Zhang, L. Anal. Chlm. Acta 1083, 757, 179-185. (313D) Shan, X. 0.; NI, 2. M. Can. J . Spectrosc. 1082, 27,75-81. (314D) Sharma, R. P. Ther. Drug Monlt. 1082, 4 ,219-224. (315D) Sharma, R. P.;, McKenzle, J. M.; Kjellstrom, T. J. Anal. Toxicol. 1082. 6, 135-138. (316D) Sharma, S. N.; Slngh, I.D. Res. Ind. 1082, 27,354-356. (317D) Shaw, J. C. L.; Bury, A. J.; Barber, A,; Mann, L.; Taylor. A. Clln. Chim. Acta 1082, 118,229-239. (318D) Shrader, D.; Voth, C.; Covlck, L. Varlan Instrum. Appl. 1082, 76, 17-18. (319D) Shrivastava, A. K.; Tandon, S. G. Int. J . Envlron. Anal. Chem. 1082, 1 1 , 221-226. (320D) Shrlvastava, A. K.; Tandon, S. G. Int. J . Envlron. Anal. Chem. 1082, 72,169-176. W I D ) Slcinska, P.; Michalewska, M. Fresenlus’ Z . Anal. Chem. 1082, 372,530-532. (322D) Slkley. J. R. J . Assoc. Off. Anal. Chem. 1083, 66, 952-955. (323D) Sikra, M.; Valcarcel, M. Analyst (London) 1082. 107,51 1-518. (324D) Silva, M.; Valcarcel, M. Mlkrochim. Acta 1083, 1 , 315-324.

.

(325D) Smith, 8. M.; Grlfflths, M. B. Analyst (London) 1082, 107,253-259. (326D) Smith, R. Water SA 1083, 9 , 31-36. (327D) Sneddon, J.; Fuavo, V. A. At. Spectrosc. 1082, 3,51-53. (328D) Sourova, J.; Suchanova, V. Vodni Hospod., B 1083, 33, 82-84; Chem. Abstr. 98, 221522. (3290) Sperllng, K. R. Fresenlus’ 2. Anal. Chem. 1082, 317, 656-664. (330D) Sperllng, K. R.; Bahr, B. Fresenius‘ 2. Anal. Chem. 1083, 314, 760-761. (331D) Sprenger, K. B. 0.;Franz, H. E. Clin. Chem. (Winston-Salem,N.C.) 1083, 29, 1522-1526. (332D) Stiff, A. C. Report 1083, K-2038, 23 pp; Chem. Abstr. 99,33978. (333D) Stoeppler, M.; Mohl, C.; Nurnberg, H. W. J . Etud. Pollut. Mar. Mediterr., 5th 1080, 281-263 Chem. Abstr. 97, 65628. (334D) Stroop, S. 0.; Hellnek, G.; Greene, H. Clin. Chem. (Winston-Salem, N.C.) 1082, 28,79-82. (335D) Stupar, J.; Ajlec, R. Analyst (London) 1982, 107,144-156. (336D) Sturgeon, R. E.; Desaulnlers, J. A. H.; Berman, S. S.; Russell, D. S. Anal. Chlm. Acta 1082, 134,283-291. (337D) Subramanlan, K. S. Int. Lab. 1081, 17, 32, 34-5. (338D) Subramanlan, K. S.; Meranger, J. C. Analyst (London) 1082, 707, 157-162. (339D) Subramanlan, K. S.; Leung, P. C.; Meranger, J. C. Int. J . Envlron. Anal. Chem. 1082, 7 1 , 121-130. (340D) Subramanlan, K. S.; Meranger, J. C.; MacKeen, J. E. Anal. Chem. 1083, 55, 1064-1067. (3410) Suhardono, E.; Djuneaenl, A. Lembaran Publ. Lemigas 1082, 16, 26-45 Chem. Abstr. 98, 92113. (342D) Sullivan, J. R.; Delflno, J. J. J . Envlron. Sci. Health, Part A 1982, A 77,265-275. (343D) Sun, H. W.; Shan, X. 0.; NI, 2. M. Talanta 1082, 29, 589-593. (344D) Susukl, M.; Ohta, K. Anal. Chem. 1082, 54, 1686-1689. (34.92) Susukl, T.; Kobayashl, H.; Sawada, K. Nippon Kagaku Kaishi 1082, 7 ,1167-70; Chem. Ab&. 97,187917. (3460) Taddii, M. Anal. Chim. Acta 1082, 142,333-336. (347D) Takada, K. BunseklKagaku, 1083, 32,197-200; Chem. Abstr. 98, 172186. (348D) Takada, K.; Hlrokawa, K. Talanttl 1082, 29, 849-855. (349D) Takada, K.; Hlrokawa, K. Fresenius’ 2. Anal. Chem. 1082, 312, 109-113. (350D) Takada, K.; Shojl, T. Fresenlus’ 2.Anal. Chem. 1083, 315,34-37. (351D) Takla, G. P.; Valljanian, V. Analyst (London) 1082, 107,378-384. (352D) Tam, G. K. H.; Lacrolx, G. J . Assoc. Off. anal. Chem. 1082, 65, 647-650. (353D) Taylor, M. Analyst (London) 1083, 708, 265-276. (354D) Telia, N. M.; Aklmov, V. K.; Ivanov, V. K.; DolMze, L Sh. Izv. Akad. NaukCiruz. SSR, Ser. Khim. 1083, 9, 69-71; Chem. Abstr. 99, 98400. (3550) Ternero, M.; Gracla, I . Analyst (London) 1983, 708, 310-315. (356D) Tinsiey, D. A.; Baron, A. R.; Critchley, R.; Williamson, R. J. Int. J. Envlron. Anal. Chem. 1083, 14,285-298. (357D) Torgov, V. G.; Korda, T. M.; Yudelevich, I. 0. Zh. Anal. Khim. 1083, 38,424-428. (3589 Torsi, G.; Desimonl, E.; Palmlsano, F.; Sabbatlnl, L. Analyst (London) 1082, 707,96-103. (359D) Toyota, Y.; Okabe, S.; Kanamori, S.; Kltano, Y. J . Oceanogr. SOC. Jpn. 1083, 38, 357-361; Chem. Abstr. 98, 166669. (360D) Trek J.; Nlelsen, J. S.; Kratochvll, B.; Cantwell, F. F. Anal. Chem. 1983, 55, 1650-1653. (361D) Tulley, R. T.; Lehmann, H. P. Clln. Chim. Acta 1082, 122,189-202. (362D) Tulley, R. T.; Lehmann, H. P. Clin. Chem. (Winston-Salem,N.C.) 1082, 28, 1448-1450. (363D) Ullman, A. H. J . Am. OilChem. SOC.1083, 60, 614-615. (364D) United Kingdom Dept. of the Environment Methods Exam. Waters Assoc. Mater. 1082. 18 pp. (365D) Urbaln. H.; Chambosse, A. At. Spectrosc. 1082, 3, 143-145. (366D) Van Deljck, W.; Herber, R. F. Clin. Chlm. Acta 1083, 128,379-386. (367D) Vanloo, B.; Dams, R.; Hoste, J. Anal. Chim. Acta 1083, 151, 391-400. (368D) Velllon, C.; Patterson, K. Y.; Bryden, N. A. Clin. Chem. (Winston&lem, N.C.) 1082, 28, 2309-2311. (369D) Velllon, C.; Patterson, K. Y.; Bryden, N. A. Anal. Chlm. Acta 1082, 736,233-241. (370D) Velghe, N.; Campe, A. At. Spectrosc. 1082, 3 , 48-50. (371D) Verbeck, A. A.; Mitchell, M. C.; Ure, A. M. Anal. Chlm. Acta 1082, 135,215-228. (372D) Verlinden, M. Anal. Chim. Acta 1082, 740,229-235. (373D) Vijayakumar, M.; Ramakrlshna, T. V.; Arvamudan, G. Tafanta 1082, 29, 61-63. (374D) Volynskil, A. B.; Sedykh, E. M.; Splvakov, B. Ya.; Zolotov, Yu. A. Zh. Anal. Khim. 1983, 38,435-442; Chem. Abstr. 98, 209267. (375D) Wawschinek, 0.; Beyer, W. J . Clln. Chem. Clin. Blochem. 1082, 20,929-930. (376D) Wawschinek, 0.; Petek, W.; Lang, J.; Pogglltsch, H.; Holzer, H. Mikrochlm. Acta 1082, l , 335-339. (377D) Wegner, T. N.; Schuh, J. D. J . Dalty Scl. 1983, 66, 924-926. (378D) Wel, F. S.; Qu, W. 0.; Yln, F. Anal. Lett. 1082, 15,721-729. (379D) Welz, B.; Melcher, M. Analyst (London) 1983, 108,213-224. Voellkopf, U.; Grobenskl, 2. Anal. Chim. Acta 1082, 136, (380D) Welz, 6.; 201-214. (381D) Wlchman, M. D.; Fry, R. C.; Mohamed, N. Appl. Spectrosc. 1083, 37,254-258. (382D) Wieckowska, Jadwiga Mikrochlm. Act8 1082, 7 , 195-201. (383D) Wilkinson, J. R.; Ebdon, L.; Jackson, K. W. Anal. Proc. (London) 1082, 79, 305-307. (384D) Wllliams, E. V. Analyst (London) 1082, 107, 1006-1018. (385D) Wlllle, S. N.; Sturgeon, R. E.; Berman, S. S. Anal. Chem. 1983, 55, 98 1-983. ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

291R

ATOMIC ABSORPTION, ATOMIC FLUORESCENCE, AND FLAME EMISSION SPECTROMETRY (386D) Woolson, E. A. Pestic. Chem .: Hum. Welfare Environ ., Proc. Int. Congr . Pestic. Chem ., 5th 1982, 4 , 79-82; Chem Abstr 99 32439. (3870) Worley, J. D.; Londo, T. J. Chem. Educ. 1983, 60, 650. (388D) Yang, C. Y.; Yeh, Y. C. Analyst (London) 1982, 107, 1492-1495. (3891)) Yao, T.; Akino, M.; Musha, S. Bunsekl Kagaku 1982, 31, 409-412; Chem. Abstr. 97, 187916. (3900) Yu, M. Q.;Liu, G. Q.; Jln, Q. Talanta 1983, 30, 265-270. (391D) Zhukova, M. P. Zh. Anal. Khim. 1982, 37, 1629-35; Chem. Abstr. 98, 10804. (392D) Zolotov, Yu. A.; Nizheva, N. V.; Ionov, V. P.; Kumlna, D. M.; Ivanov, 0. V. Mikrochim. Acta 1983, I , 381-388.

.

.

~

E. ANALYTICAL COMPARISONS (1E) Adams, F. Comm. Eur. Communities, [Rep.] EUR 1983, 43-89; Chem. Abstr. 99, 15544. (2E) Aten, C. F.; Bourke, J. 8.; Walton, J. C. J. Assoc. Off. Anal. Chem. 1983, 66,766-768. (3E) Barnett. N. W.; Chen, L. S.;Kirkbrlght, G. F. Anal. Chlm. Acta 1983, 149. .- , 155-121. .- . - . . (4E) Drenskl, T. L.; Paxton, C. A.; Varnes, A. W. ASTM Spec. Tech. Pub/. 1981, 760, 225-239. (5E) Eaton, A.; Oelker, 0.; Leong, L. At. Spectrosc. 1982, 3, 152-156. (6E) Elbers, P. F. J. Microsc. (Oxford) 1983, 131, 107-114. (7E) Herber, R. F. M.; Pleters, H. J.; Elgersma, J. W. Fresenius' Z. Anal. Chem. 1982, 373, 103-107. (8E) Hobart, E. W.; Van Dien, J. E.; Green, M. H. Electron Microsc. X-ray Appl. Environ. Occup. Health Anal. 1981, 2, 51-73. (9E) Hsleh, S. A. K.; Chong, Y. S.;Tan, J. F.; Ma, T. S. Mikrochim. Acta 1982, 2, 337-346. (10E) Jones, J. S.;Harrington, D. E.; Leone, B. A,; Bramdstedt, W. R. At. SpeCtrOSC. 1983, 4, 49-54. ( l l E ) Jones, J. W.; Capar, S. G.; O'Haver, T. C. Analyst (London) 1982, 107. 353-377. (12E) Kahn, H. L. Ind. Res. Dev. 1982, 24, 156-160. (13E) Kempf, T.; Sonneborn, M. Mlkrochlm. Acta 1983, 2, 445-453. (14E) Kirkbright, G. F. Pure Appl. Chem. 1982, 54, 769-786. (15E) Klelnhans, F. W.; Kline, S.C.; Dugan, W. M., Jr.; Wllliams, J. G. Canc e r R e s . 1 9 8 3 , 43, 3447-3450. (16E) Nadkarni, R. A. ACS Symp. Ser. 1982, 205, 147-62. (17E) Nadkarnl, R. A.; Botto, R. I.; Smlth, S. E. At. Spectrosc. 1982, 3, 180-184. (18E) Rlandey, C.; Alphonse, P.; Gavlnelli, R.; Pinta, M. Analusis 1982, 10, 323-332. (19E) Sanz-Medel, A.; Rodriguez, R. R.; Perez-Conde, C. Analyst (London) 1983, 108, 204-212. (20E) Skidmore, P. R.; Greetham, S. S. Analyst (London) 1983, 108, 171-1 77. (21E) Stryjewska, E.;Aubel, S. Chem. Anal. (Warsaw) 1982, 26, 815-825; Chem. Abstr. 98, 185257. (22E) Wallace, G. F. ASTM Spec. Tech. Publ. 1981, 747, 55-63; Chem. Abstr. 98, 10783. (23E) Werbicki, J. J., Jr. Prod. Finish. (Cincinnati) 1982, 46, 42-53. (24E) Werbicki, J. J., Jr. Precious Met. [Proc. Int. Precious Met. Inst. Conf.], 6th 1982, 381-391. (25E) Zolotov, Yu. A.; Petrukhin, 0. M.; Malofeeva, G. I.; Marcheva, E. V.; Shiryaeva, 0. A,; Shestakov, V. A,, Mlskar'yants, V. G.; Nefedov, V. I.; Murlnov, Yu. I.; Nikitin, Yu. E. Anal. Chim. Acta 1983, 148, 135-157. F. ATOMIC FLUORESCENCESPECTROMETRY (1F) Alden, M.; Grafstroem, P.; Lundberg. H.; Svanberg, S. Opt. Lett. 1983, 8, 241-243. (2F) Bertenshaw, M. P.; Wagstaff, K. Analyst (London) 1982, 707,664-672. (3F) Bolshakov, A. A,; Krylov, A. S.;Oshemkov, S.V.; Petrov, A. A. Vestn. Leningr. Univ., Fiz., Khim. 1982, 3, 84-87; Chem. Abstr. 97, 229201. (4F) Bolshov, M. A,; Zybln, A. V.; Koloshnikov, V. G.; Smirenkina, I.I. Metro/. Assur. Meas. Environ. Control, Proc. Symp. IMEKO Tech. Comm. Metrol.-TC8, 1st 1981, 264-72; Chem. Abstr. 97, 155430. (5F) Bolshov, M. A,; Zybin, A. V.; Smirenkina, I. I.Spectrochim. Acta, Part 6 1981, 368, 1143-1152. (6F) Braun, K.; Slavin, W.; Walsh, A. Spectrochim. Acta, Part 6 1982, 378, 721-726. (7F) Cavalll, P.; Omenetto, N.; Rossl, G. At. Spectrosc. 1982, 3 , 1-4. (8F) Cavalii, P.; Rossi, G.; Omenetto, N. Analyst (London) 1983, 108, 297-304. (9F) Chernov, A, I.; Berlova, T. E.; Gordeeva, T. M. Zavod. Lab. 1982, 48, 74. (1OF) Demers, D. R.; Busch, D. A.; Allemand, C. D. Int. Lab. 1982, 12, 40, 42-4, 46-8, 50. (11F) Doebele, H. F.; Rueckle, 8 . J. Nucl. Mater, 1982, 771-112, 102- 104. (12F) Doebele, H. F.; Rueckle, B. Plasma Phys. 1982, 24, 1419-1428. (13F) Ebdon. L.; Wllklnson, J. R.; Jackson, K. W. Anal. Chim. Acta 1982, 736. 191-199.

292R

ANALYTICAL CHEMISTRY, VOL. 56, NO. 5, APRIL 1984

(14F) Ebdon, L.; Wllkinson, J. R.; Jackson, K. W. Analyst (London) 1982, 107, 269-275. (15F) Goff, D. A. INIS Atomindex 1983, 14, Abstr. No. 76-432; Chem. Abstr. 98, 132814. (16F) HeiRje, G. M. Am. Lab. (Fairfield, Conn.) 1983, 15, 66-70, 72, 74. (17F) Joklik, R. G.; Daily, J. W. Appi. Opt. 1982, 21, 4158-4162. (18F) Kimoto, T.; Morimune, H.; Morita, H.; Sakurai, H.; Shimomura, S. BunsekiKagaku 1982, 31, 637-641; Chem. Abstr. 98, 46093. (19F) Kimoto, T.; Morita, H.; Sakurai, H.; Shimomura, S. Bunseki Kagaku, 1983, 32, 324-327; Chem. Abstr. 99, 42874. @OF) 688-692. Kosinski, M. A.; Uchida, H.; Winefordner, J. D. Anal. Chem. 1983, 55, (21F) Kuga, K.; Tsujii, K. Anal. Lett. 1982, 75,47-55. (22F) Kurochkina, A. M.; Rubinovich, R. S.Zh. Anal. Khim. 1983, 38, 989992; Chem. Abstr. 99, 91234. (23F) Lancione, R. L.; Drew, D. M. Ind. Res. Dev. 1983, 25, 100-104. (24F) Lewis, A. L., 11; Beenen, G. J.; Hosch, J. W.; Piepmeier, E. H. Appl. SpeCtfOSC. 1983, 37, 263-269. (25F) Mackey, D. M. J. Chromatogr. 1982, 236, 81-95. (26F) Mackey, D. 2. J. Chromatogr. 1982, 237, 79-88. (27F) Mackey, D. J. Mar. Chem. 1983, 13, 169-180. (28F) Matveev, 0. I.Zh. Anal. Khim. 1983, 38, 736-744; Chem. Abstr. 99, 15576. (29F) McCaffrey, J. T.; Michel, R. G. Anal. Chem. 1983, 55, 488-492. (30F) Nakahara, T. Bunseki Kagaku l9S2, o 7 , 534-538. (31F) Omenetto, N.; Cavalli, P.; Rossi, G. Rev. Anal. Chem. 1981, 185-205. (32F) Prodan, J. V.; She, C. Y.; Falrbank, W. M., Jr. Opt. Commun. 1982, 43, 2 15-220. (33F) Rando, L. C.; Heithmar, E. W. Spectrosc. Lett. 1983, 16, 95-108. (34F) Rigln, V. I.U S S R Pat. 979966, Dec. 7, 1982; Chem. Abstr. 98, 112970. (35F) Rigin, V. I . Zh. Anal. Khim. 1983, 38, 462-466; Chem. Abstr. 98, 190916. (36F) Rigin, V. 1. Zh. Anal. Khim. 19838 38, 1060-1065; Chem. Abstr 99, 115134. (37F) Seltzer, M. D.; Michel, R. G. Anal. Chem. 1983, 55, 1817-1819. (38F) Sthapit, P. R.; Ottaway, J. M.; Fell, G. S. Analyst (London) 1983, 108, 235-243. (39F) Walsh, A. Philos. Trans. R. SOC. London, Ser. A 1982, 305, 485-498. (40F) Winefordner, J. D. Recent Adv. Anal. Spectrosc., Proc. Int. Conf. At. SPeCtrOSC., 9th 1981, 151-164. (41F) Xu, B.; Wu, G. Huaning Kexue 1982, 3 , 60-62; Chem. Abstr. 96, 222922. (42F) Zizak, G.; Winefordner, J. D. Combust. Flame 1982, 4 4 , 35-41. 0. FLAME EMISSION SPECTROMETRY

(1G) Aller, Fernandez, A. J. Aluminium (DuesseMorf) 1982, 58, 660-663. (2G) Bosher, S. K.; Warren, R. L. Tech. Life Sci. Physiol. 1982, 13 pp. (3G) Britske, M. E.; Siabodenyuk, I.V. Zn. Anal. Khim. 1982, 37, 14171423; Chem. Abstr. 97, 229190. (4G) Calokerinos, A. C.; Townshend, A. Prog. Anaiyt. Atom. Spectrosc. 1982, 5 , 63. (5G) El Hag, I.H.; Townshend, A. Anal. Proc. (London) 1983, 20, 135-136. (6G) Goodney, D. E. J. Chem. Educ. 1982, 59, 875-876. (7G) Gruber, H. Atmospektrom, Spurenanal., Vortr. Kollog, 1981, 183-186; Chem. Abstr. 99, 15581. (8G) Gruber, H. Metali. (Serlin) 1982, 36, 1074-1076; Chem. Abstr. 98, 46079 _. (9G) Hansen, N. B. Report 1981, 55 pp. (10G) Johnson, K. E.; Yerhoff, F. W.; Robinson, J.; Dehm, C. Anal. Chim. Acta 1983, 149, 129-135. (11G) Koscielniak, P.; Parczewski, A. Spectrochim. Acta, Part 6 1982, 376, 881-887. (12G) Marr, I.L.; Anwar, J. Analyst (London) 1982, 707, 260-268. (13G) Matsumoto, K.; Fuwa, K. Anal. Chem. 1982, 54, 2012-2015. (14G) Meinlk, S.; Bartha, S.; Dobias, M. Chem. Zvesti 1982, 36, 369-377; Chem. Abstr. 97, 90960. (15G) Ogasawara, I.; Nishikawa, T.; Harada, T.; Ohyagl, Y. Bunko Kenkyu 1982, 31, 251-255; Chem. Abstr. 97, 222621. (16G) Puacz, W. Mikrochim. Acta 1982, 1, 271-275. (17G) Puacz, W.; Puacz, J. Mikrochim. Acta 1983, 2, 271-276. (18G) Rains, T. C. ASTM Spec. Tech. Pubi. 1981, 747, 43-54. (19G) Siemer, D. D. Anal. Chem. 1982, 54, 1321-1324. (20G) Stewart, K. K.; Rosenfeld, A. G. Anal. Chem. 1982, 54, 2368-2372. (21G) Wagner, G. H.; Steele, K. F. Int. Lab. 1982, 72, 12, 14, 16, 18, 20. (22G) Wagner, G. H.; Stelle, K. F. Am. Lab. (Fairfield,Conn.) 1982, 14, 12, 14-15, 17-18, 20. (23G) Wood, B. J.; Galobardes, J. A,; Rogers, L. B. Energy Res. Abstr. 1982, 7, Abstr. No. 15096; Chem. Abstr. 97, 65627. (24G) Zulkova, N. V.; Semenenko, K. A; Dzene. A.; Svarcs, E.; Kritinina, L. 0. Law. PSRZinat. Akad. Vestis. Kim. Ser. 1982, 2 , 190-193; Chem. Abstr. 97, 65587.