10 Automated Data Acquisition and Treatment in Inorganic Mass Spectroscopy R O B E R T J . LOYD and
FRED
E. STAFFORD
Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch010
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Ill.
Apparatus and
for
handling
systems
for
various are
rapid
mass spectrometry reduction
data
bility,
The
and
data
reported.
throughput,
less stringent and/or
in terms of their variety
of
as in high requirements.
precision,
include resolution
effluents,
the quality
possibly
acquisition
These
time, and errors are greatly
ning time is shortened, increased
of digital
and
of gas chromatograph
as for systems with dling,
aspects
reviewed
as
well
Data
han-
reduced;
run-
of the results
detail,
rapid
informative
is
availa-
presentations.
c a p a c i t y of a mass spectrometer to p r o d u c e i n f o r m a t i o n is f a r greater t h a n that of a n i n d i v i d u a l to receive or r e d u c e i t . T h e n e e d
f o r m o r e d e t a i l e d a n d precise results d e m a n d s that this c a p a c i t y b e u s e d . T h e c a p a c i t y for r a p i d d a t a o u t p u t m u s t b e u s e d w h e n s a m p l e size a n d corrosiveness l i m i t the d u r a t i o n of the e x p e r i m e n t .
R a p i d r e d u c t i o n of
d a t a is p a r t i c u l a r l y i m p o r t a n t i n i n o r g a n i c w o r k w h e r e l o n g s a m p l e p r e p a r a t i o n a n d e x p e r i m e n t a l p r o c e d u r e s are i n v o l v e d — t h e results m u s t b e a v a i l a b l e d u r i n g t h e r u n i n o r d e r that unforeseen p r o b l e m s b e i d e n t i fied a n d r e s o l v e d before the e x p e r i m e n t is t e r m i n a t e d . F o r these reasons a u t o m a t e d d a t a h a n d l i n g t e c h n i q u e s , i n c l u d i n g d i r e c t d i g i t a l a c q u i s i t i o n , c o m p u t e r treatment of d a t a , a n d o n - l i n e c o m p u t e r c o n t r o l of the mass spectrometer are e s p e c i a l l y a t t r a c t i v e . S i n c e F o r t r a n p r o c e d u r e s for c o m p u t a t i o n are e s t a b l i s h e d a n d r e a d i l y accessible, t h e l i m i t i n g step is often the a c q u i s i t i o n of i n f o r m a t i o n d i r e c t l y i n c o m p u t e r c o m p a t i b l e f o r m . T h i s w i l l b e the subject of the present p a p e r . Techniques T h e t e c h n i q u e s c a n b e d i v i d e d into t w o categories—those for r a p i d a c c u m u l a t i o n of l a r g e v o l u m e s of
i n f o r m a t i o n , as i n h i g h r e s o l u t i o n
127
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
128
MASS
(m/Am
~10
4
S P E C T R O M E T R Y
I N INORGANIC
C H E M I S T R Y
— 10 ) analyses, e s p e c i a l l y o f c h r o m a t o g r a p h effluents, a n d r>
those for l o w flow rates o f i n f o r m a t i o n . H i g h Data Volume Techniques. R a p i d d a t a a c c u m u l a t i o n a n d h a n d l i n g techniques are receiving considerable attention from the various mass spectrometer m a n u f a c t u r e r s , e s p e c i a l l y f o r h i g h r e s o l u t i o n o r g a n i c applications.
F o r t h e spectrometer,
spectra w i t h r e s o l u t i o n o f m/Am
~ 1 0 * s h o w t h a t the o u t p u t o f the secondary electron m u l t i p l i e r c a n b e r e c o r d e d r a p i d l y i n a n a l o g f o r m d i r e c t l y o n m a g n e t i c tape ( 1 3 ) . scan rates are fast e n o u g h t o b e usable f o r gas c h r o m a t o g r a p h
The
effluent
analysis. E q u i p m e n t m u s t b e a v a i l a b l e for subsequent c o n v e r s i o n o f t h e
Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch010
a n a l o g tape t o c o m p u t e r language.
TO X AXIS OF X-Y RECORDER, COMPUTER,etc..
RANGE
/
1.35 V
R
f
R ZERO
SLI DEW I RE/ SHAFT
Figure 1. Retransmitting slidewire circuit used to encode shaft positions. Breaking connection 1-2 and connecting 1-3 may give a more convenient zeroing arrangement T h e mass s p e c t r o g r a p h offers the p o s s i b i l i t y of i n t e g r a t i n g a l l o f t h e i o n intensities s i m u l t a n e o u s l y o n the p l a t e a n d o f t r a n s l a t i n g the p l a t e p a r a l l e l t o the slit t o o b t a i n a t i m e - r e s o l v e d mass s p e c t r u m . T h e d a t a h a n d l i n g p r o b l e m becomes one o f c a l i b r a t i n g a n d r a p i d l y d i g i t i z i n g the vast a m o u n t o f i n f o r m a t i o n ( a b o u t 10° readings o f o p t i c a l d e n s i t y p e r s p e c t r u m p r o d u c e d b y the m i c r o d e n s i t o m e t e r u s e d t o r e a d the p l a t e s ) , l o c a t i n g t h e peaks, i d e n t i f y i n g o v e r l a p p e d ( b l e n d e d ) peaks, a n d c o m p u t i n g t h e masses to o n e p a r t i n a b o u t 10 . S u b s t a n t i a l progress has b e e n r e p o r t e d i n a u t o 5
m a t i n g microdensitometers, i n w r i t i n g computer programs, a n d i n devisi n g p a r t i c u l a r l y i n f o r m a t i v e w a y s t o present the i n f o r m a t i o n ( J , 2, 3 , 5, 7, 8, 11, 13, 16,. 18, 20). T h e s u b s t a n t i a l c a p i t a l i n v e s t m e n t i n v o l v e d l i m i t s the a v a i l a b i l i t y o f s u c h f a c i l i t i e s . Lower Volume Techniques. I n m a n y other experiments, the a v a i l a b l e i o n intensities are so s m a l l that measurements m u s t b e m a d e o v e r l o n g e r
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
10.
L O Y D
A N D
Automated
S T A F F O R D
Data
129
Acquisition
p e r i o d s of t i m e to o b t a i n u s a b l e signal-to-noise r a t i o . h u m a n a c q u i s i t i o n a n d treatment, this i n f o r m a t i o n
W h i l e fast f o r
flow
still may
be
h a n d l e d easily b y a p p a r a t u s that is b e c o m i n g r e a d i l y a v a i l a b l e to e v e r y laboratory. Shaft Encoding: Ionization Efficiency Curves. V a r i o u s a p p l i c a t i o n s r e q u i r e e n c o d i n g of a shaft p o s i t i o n . W h i l e d i g i t a l shaft encoders are a v a i l a b l e , t h e y are u s u a l l y p r o h i b i t i v e i n p r i c e . A s i m p l e s o l u t i o n w h i c h n e e d n o t sacrifice a c c u r a c y is to use a r e t r a n s m i t t i n g s l i d e w i r e a n d t h e c i r c u i t s h o w n i n F i g u r e 1. T h i s a p p a r a t u s w i l l generate a n a n a l o g s i g n a l p r o p o r t i o n a l to t h e
Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch010
p o s i t i o n of a n y c o n t r o l shaft. S u c h a c i r c u i t has b e e n u s e d i n o u r l a b o r a t o r y f o r the past t w o years to r e c o r d i o n i z a t i o n efficiency curves.
The
r a n g e a n d zero controls w e r e selected to p e r m i t a n y 10-volt segment of i o n i z i n g e l e c t r o n energy to give f u l l scale deflection o n the X - a x i s of a 10 m i l l i v o l t X - Y recorder.
T h e t i m e constant of the entire c i r c u i t , c o m -
p r i s i n g the electron voltage r e g u l a t o r , detector, a n d r e c o r d e r w a s l a r g e enough that a small t i m i n g motor ( A . W . H a y d o n C o . , W a t e r b u r y , C o n n . , 1 / 6 o r 1 / 3 0 r . p . m . ) w a s u s e d to generate a r e p r o d u c i b l e sweep.
With
m o d e r a t e l y intense i o n currents, a p p e a r a n c e potentials c o u l d b e
repro-
d u c e d to 0.04 e. v. F o r a w e a k i o n c u r r e n t of a b o u t 40 ions p e r s e c o n d f u l l scale, a r e c o r d i n g is s h o w n i n F i g u r e 2. It w a s p r o d u c e d i n a b o u t 20 m i n u t e s of easy w o r k c o m p a r e d w i t h a h a r d h o u r for m a n u a l processing. A
buffer m e m o r y ,
a time averaging computer
( t h a t of N o r t h e r n
Scientific C o r p . , M a d i s o n , W i s e , is p a r t i c u l a r l y s u i t a b l e because of f a c i l e m e m o r y a d d r e s s i n g ) , or a s m a l l c o n t r o l c o m p u t e r m i g h t b e s u b s t i t u t e d f o r t h e X - Y recorder.
Such units can provide in-place time averaging
as w e l l as i n p u t for a large, c e n t r a l c o m p u t e r .
A n on-line computer for
a u t o m a t e d d e t e r m i n a t i o n of a p p e a r a n c e potentials also is r e p o r t e d
(12).
Direct Recording of Low Resolution Spectra. A p p a r a t u s is a v a i l a b l e commercially
from
Non
Linear
Systems
(Del
Mar, Calif.)
(19).
D u r i n g a l o w r e s o l u t i o n scan, b o t h the v a r y i n g i o n - a c c e l e r a t i n g voltage a n d the i o n i n t e n s i t y are d i g i t i z e d a n d r e c o r d e d . calculated b y computer. m/e
250 is r e p o r t e d
(10).
T h e mass s p e c t r u m is
M a s s a c c u r a c y of better t h a n 1 / 4
a.m.u. at
F o r magnetic scanning instruments, both
N u c l i d e C o r p . (State C o l l e g e , P a . ) a n d V a r i a n Associates C a l i f . ) h a v e a n n o u n c e d n e w , h i g h a c c u r a c y gaussmeters.
(Palo Alto,
O f additional
interest is u s i n g t w o H a l l effect probes i n series s u c h t h a t a s i g n a l p r o p o r t i o n a l to the m a g n e t i c field s q u a r e d , a n d l i n e a r w i t h mass is p r o d u c e d . Averaging and Digitization of Ion Currents. I n m a n y aspects of the mass spectrometry of h i g h t e m p e r a t u r e systems or of r e a c t i v e i n t e r m e d i ates, the i o n intensities are s u c h that the c u r r e n t at e a c h p e a k m u s t b e a v e r a g e d o v e r a p e r i o d of t i m e d u r i n g w h i c h the spectrometer
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
settings
130
MASS
m u s t r e m a i n constant.
S P E C T R O M E T R Y
I N
INORGANIC
C H E M I S T R Y
A n integrating digital voltmeter ( D V M )
(Vidar
C o r p . , M o u n t a i n v i e w , C a l i f . , M o d e l 500) c o u l d not b e u s e d to measure the electrometer
o u t p u t d i r e c t l y because the i n t e g r a t i o n p e r i o d of
20
msec, is too short f o r the s m a l l i o n currents a v a i l a b l e . C o n s e q u e n t l y t h e system of F i g u r e 3 w a s b u i l t . T h e integrator c i r c u i t is s h o w n i n F i g u r e 4; u s i n g the h i g h q u a l i t y o p e r a t i o n a l a m p l i f i e r makes it easy to construct.
Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch010
12r-
10
111
12
13
Nominal e l e c t r o n e n e r g y , Courtesy S. M .
14 e.v. Schildcrout
Figure 2. Automatically recorded ionization efficiency curve for the metastable process Ni(CO) ~* NiCO + CO: ion intensity vs. ionizing electron energy in e.v. Scan rate, 1 /3 volt per minute; maximum ion intensity shown corresponds to about 40 ions per second. The graininess of the low resistance retransmitting slide wire needed to match the recorder available causes the curve to look as if it is composed of a series of vertical lines +
2
+
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
10.
L O Y D
A N D
STAFFORD
Automated
Data
Acquisition
131
T h e p r e c i s i o n t i m e r is a preset counter set to c o u n t the 60-herz l i n e f r e q u e n c y for 1/4, 1 / 2 , 1, o r 2 m i n u t e s . S e v e r a l advantages accrue f r o m this apparatus. T h e u n i f o r m i t y o f r e c o r d i n g the intensities a n d o f t i m e a v e r a g i n g are s i g n i f i c a n t l y i m p r o v e d over a v e r a g i n g b y eye.
D a t a r e d u c t i o n is less tedious, a n d t h e t i m e
r e q u i r e d is r e d u c e d b y about 2 5 % .
Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch010
Multiplier Electrometer
Grid Electrometer
Integrator
Integrator
2 Pen Recorder
Τ imer
A
Digital Voltmeter Figure 3. Direct digital data output system. The timer is a preset counter that activates the relays shown in Figure 4. Line frequency is counted M a n u a l t r a n s c r i p t i o n o f the d a t a , w i t h its consequent errors, w a s e l i m i n a t e d b y e n c o d i n g
delays a n d
t h e v a r i o u s spectrometer
controls,
a u t o m a t i c a l l y s c a n n i n g the v a r i o u s d a t a stations, a n d w r i t i n g t h e i n f o r m a t i o n w i t h a 12-line p a r a l l e l e n t r y tape perforator.
T h e mechanics of
the C o m p u t i n g C e n t e r n o w m a k e i t d e s i r a b l e t o use o n e o f the i n c r e m e n t a l m a g n e t i c recorders that are b e c o m i n g a v a i l a b l e at l o w cost. T h e system comprises t h e f o l l o w i n g : ( 1 ) D i g i t a l e n c o d i n g o f s u c h i d e n t i f i c a t i o n m a t e r i a l as mass o r date. ( 2 ) D i g i t a l e n c o d i n g o f s u c h i n s t r u m e n t settings as i n p u t resistor, electrometer ranges, a n d emission c u r r e n t as w e l l as t i m e . ( 3 ) A n a l o g - t o - d i g i t a l c o n v e r s i o n of t h e r m o c o u p l e readings, elec trometer o u t p u t , shaft e n c o d e r o u t p u t . ( 4 ) S c a n n i n g a n d " w r i t i n g " the p r e c e d i n g sources o f i n f o r m a t i o n w i t h the d e s i r e d a m o u t of operator i n t e r v e n t i o n . T h e i d e n t i f i c a t i o n m a t e r i a l is entered d i r e c t l y onto the tape b y means of a selector s w i t c h a n d 12 b a n k s o f f o u r - p o l e w a f e r switches p r o v i d i n g b i n a r y c o d e d d e c i m a l ( B C D ) output.
I n s t r u m e n t settings also are e n
c o d e d s i m p l y b y c o u p l i n g t h e a p p r o p r i a t e c o n t r o l shafts t o f o u r - p o l e w a f e r switches that p r o d u c e signals c o r r e s p o n d i n g to 0 t h r o u g h 9 i n B C D
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
132
MASS
output.
S P E C T R O M E T R Y
I N
INORGANIC
C H E M I S T R Y
A n a l o g - t o - d i g i t a l c o n v e r s i o n i n a l l cases is a c c o m p l i s h e d
with
the D V M . T h e heart of the system is t h e scanner w h i c h presents e a c h of t h e a n a l o g signals to the D V M i n u n v a r y i n g sequence.
A possible
i n v o l v i n g a c o m m e r c i a l scanner, a n d a n I B M ( P o u g h k e e p s i e , c a r d p u n c h is d e s c r i b e d elsewhere
(4).
system Ν.
Y.)
T h e present u n i t w a s b u i l t t o
h a v e f a c i l e e n t r y of s p e c i a l c o n t r o l i n f o r m a t i o n ( E r r o r , E n d of D a t a Subset, etc. ) a n d a series of i n t e r l o c k s to m i n i m i z e operator error.
The
o p e r a t i o n of this u n i t is s h o w n i n T a b l e I. T h e scanner is a c t i v a t e d b y C o n t r o l a. T h i s causes a s p e c i a l p u n c h o n the tape w h i c h the c o m p u t e r is p r o g r a m m e d to i n t e r p r e t as "start n e w subset of d a t a . " T h r e e s u c h Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch010
p u n c h e s are c o d e d to m e a n "start n e w p a g e or n e w set of d a t a , " a n d five s u c h p u n c h e s m e a n " e n d of r u n . " P r e s s i n g this b u t t o n also readies the scanner to start C y c l e I. T h e first step of the c y c l e is to r e a d "preset" i n f o r m a t i o n set m a n u a l l y o n the 12 w a f e r switches. S u c h i n f o r m a t i o n i n c l u d e s the i o n mass, e l e c t r o n energy, etc.
A selector s w i t c h o n the perforator chooses
between
the "preset" or the " e x t e r n a l " i n f o r m a t i o n a n d is i n t e r l o c k e d so that step I A c a n b e p e r f o r m e d o n l y i f it is i n the correct p o s i t i o n . S i m i l a r l y , I B a n d I C are i n t e r l o c k e d w i t h the " e x t e r n a l " p o s i t i o n . I n the " e x t e r n a l " p o s i t i o n , three channels accept o u t p u t f r o m a d i g i t a l c l o c k ; f o u r m o r e channels a c c e p t i n f o r m a t i o n f r o m the encoders f o r t h e secondary electron m u l t i p l i e r o u t p u t resistance, m u l t i p l i e r electrometer range setting, " g r i d " ( u n m u l t i p l i e d i o n c u r r e n t ) electrometer r a n g e set t i n g , a n d i o n i z i n g electron emission regulator setting. A n e i g h t h c h a n n e l accepts the d i g i t a l v o l t m e t e r ( D V M ) range, a n d f o u r m o r e a c c e p t t h e D V M r e a d i n g itself. T h e D V M p o l a r i t y s i g n a l is not u s e d . I n p o s i t i o n I B , the D V M reads either a t h e r m o c o u p l e a t t a c h e d to a K n u d s e n c e l l , a n a u t o m a t i c o p t i c a l p y r o m e t e r o u t p u t if a v a i l a b l e , or a shaft e n c o d e r ( F i g u r e 1 ) a t t a c h e d to the s l i d e w i r e of a m a n u a l o p t i c a l pyrometer. T h e scanner is a d v a n c e d to p o s i t i o n I C . T h e operator t h e n measures the i o n c u r r e n t u s i n g the integrators. If v i s u a l o b s e r v a t i o n of the s t r i p c h a r t r e c o r d i n g indicates that the measurement is satisfactory, C o n t r o l c ( p e r f o r m C y c l e I I ) is a c t i v a t e d a n d the t w o integrator outputs r e c o r d e d . T h i s c y c l e m a y b e r e p e a t e d as m a n y times as d e s i r e d . S h o u l d a n error be m a d e , C o n t r o l d causes a p u n c h w h i c h is p r o g r a m m e d to m a k e the c o m p u t e r d i s r e g a r d the p r e c e d i n g t w o frames of i n f o r m a t i o n c o r r e s p o n d i n g to the p r e c e d i n g steps I I . 1 a n d II.2. W h e n the a p p r o p r i a t e n u m b e r of readings has b e e n t a k e n , C o n t r o l a is p u s h e d one, three, or five times, a n d the scanner is set to a c c e p t i n f o r m a t i o n for the next mass peak, the next set of peaks, or to e n d the r u n respectively.
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
10.
L O Y D
Automated
A N D S T A F F O R D
Data
Acquisition
133
|] Reset OPEN
INTEGRATOR
{Γ
»
- ^ K Z >
CLOSED 100
Input CLOSED jj
OPEN
L,
INPUT
Φ
Π
3
ι
—
OUTPUT
Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch010
4.64M
Figure 4. Integrator circuit simply constructed using a high qual ity operational amplifier. This circuit affords more precision than the pen recorder. The operational amplifier is a Philbrick Re searches, Inc. (Dedham, Mass.), Model SP-2A; a Keithley Instru ments, Inc. (Clevefond, Ohio), Model 300 also seems suitable Table I. Cycle I A. B. C.
Operation of the Scanner" for Direct Tape O u t p u t
Record "preset" information ( interlocked ). Read with D V M a n d record "thermocouple" station. Activate C y c l e II. h
Cycle II 1. 2. 3.
(a) Read with D V M a n d (b) print integrator 1 output. (a) Read with D V M and (b) print integrator 2 output. Hold.
Controls a. b. c. d.
G o to C y c l eI.,A . Advance i n C y c l e I. Perform C y c l e II. Error.
The scanner comprises two counting rings—Silicon Controlled Rectifiers. Cycle I can be initiated only if the perforator interlock is activated, and if Control a is pushed. It advances one step at a time. Cycle II has five steps and once activated is advanced through all steps back to " H o l d " by an R - C timing network. Additional steps might be added to permit "shutter position," electron energy, gaussmeter reading, etc. to be recorded. Clare Corp. HGSM-1016, bistable, single pole mercury relays are used for switching. See text. Circuits may be obtained from "Motorola Semiconductor Circuits Manual," Motorola, Inc., Phoenix, Arizona, 1964. tt
6
0
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
134
MASS
S P E C T R O M E T R Y
I N
INORGANIC
C H E M I S T R Y
E a c h of t h e t i m e steps I I . l a n d II.2 are r e p e a t e d , the five channels of i n f o r m a t i o n r e p r e s e n t i n g the e n c o d e r positions a n d the D V M range are r e c o r d e d .
T h e c o m p u t e r is p r o g r a m m e d to scan these a n d p r i n t out
a s p e c i a l s i g n a l i f a n y one s h o u l d change w i t h i n a p a r t i c u l a r subset of d a t a . T h i s has p r o v e d u s e f u l i n s p o t t i n g operator or r e c o r d e r errors. A s a result of this system, almost a l l m a n u a l treatment is e l i m i n a t e d a n d the C D C 3400 c o m p u t e r reduces i n one m i n u t e of r u n n i n g t i m e d a t a t h a t p r e v i o u s l y r e q u i r e d 100 m a n hours s i m p l y to o b t a i n a t a b l e of i o n intensities. T h e s e intensities are p r o v i d e d i n t a b u l a r f o r m a n d o n p u n c h e d cards, a n d m u s t b e c o m p a r e d
w i t h the o r i g i n a l s t r i p chart r e c o r d i n g
b e c a u s e of v a r i o u s i n s t r u m e n t a l a n d operator errors.
(Such
comparson
Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch010
is r e l a t i v e l y fast b u t n e e d not b e d o n e i m m e d i a t e l y i f r o u g h results are n e e d e d d u r i n g a r u n . ) T h e cards are c o r r e c t e d a n d reprocessed to m a k e a n y necessary c a l c u l a t i o n s a n d to present the results i n a v a r i e t y of potentially informative ways. A p a r t f r o m the o b v i o u s
t i m e s a v i n g a n d the m o r e t h o r o u g h d a t a
treatment, there are other benefits. O p e r a t o r fatigue is d i m i n i s h e d , p r o b a b l y because of t h e r h y t h m i m p o s e d
by
the apparatus.
T h e r e is a
t e n d e n c y to take m o r e d a t a . M o s t i m p o r t a n t , the results are a v a i l a b l e soon e n o u g h to b e u s e d for p l a n n i n g the r e m a i n d e r of the r u n a n d thus p e r m i t the w o r k e r to take a m o r e efficient role i n d e s i g n i n g his e x p e r i m e n t . O n - l i n e C o m p u t e r C o n t r o l . T h e v a r i o u s steps as w e l l as the decisions described above under Computer Compatible Output can and have 8) b e e n p e r f o r m e d b y a s m a l l , o n - l i n e c o n t r o l c o m p u t e r .
(7,
Such an instru-
m e n t w o u l d c o m p l e t e l y r e p l a c e b o t h the scanner a n d d a t a - w r i t e r i n the system d e s c r i b e d above, as w e l l as a n y t i m e a v e r a g i n g c o m p u t e r .
New
units w i t h i n c r e a s i n g m e m o r y c a p a c i t y a n d d e c r e a s i n g cost are c o n t i n u a l l y b e c o m i n g a v a i l a b l e ; t h e i r cost m a y b e l o w e r t h a n t h a t of t h e s c a n n e r / t i m e a v e r a g i n g systems.
I n a d d i t i o n , t h e y c a n p r o v i d e buffer m e m o r y for a
central, shared-time computer
and can continually monitor
i n l e t t e m p e r a t u r e , etc., for p o s s i b l y a b n o r m a l c o n d i t i o n s .
pressure,
Convenient
p r o g r a m m i n g p e r m i t s a n y of a w i d e v a r i e t y of sequences to b e d e s i g n e d a n d i n t e r c h a n g e d as necessary.
F o r t r a n packages are a v a i l a b l e o n m a n y
units. I n a system o p e r a t i n g for i s o t o p i c analyses, o n l y m o d e r a t e r e s o l u t i o n a n d a r e l a t i v e l y n a r r o w mass range are r e q u i r e d (7,8).
A gauss meter
is u s e d to o b t a i n a mass i n d i c a t i o n , a n d the c o m p u t e r is p r o g r a m m e d to i d e n t i f y a n d r e c o r d o n l y the t o p of the peak.
E l e c t r o m e t e r ranges are
c o m p u t e r c o n t r o l l e d b y means of relays. T h e c o m p u t e r also decides w h e n e n o u g h scans o v e r the s p e c t r u m h a v e b e e n m a d e to o b t a i n preselected r e p r o d u c i b i l i t y l i m i t s . T h e n e w h i g h a c c u r a c y gauss meters m e n t i o n e d p r e v i o u s l y m a y i m p r o v e p e r f o r m a n c e w h e r e w i d e r mass ranges a c c u r a c y are d e s i r e d .
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
and/or
10.
L O Y D
A N D
STAFFORD
Automated
Data
Acquisition
135
P r o g r a m s a n d interfaces d e v e l o p e d (6) t o enable a s m a l l P D P c o m p u t e r ( D i g i t a l E q u i p m e n t C o r p . , M a y n a r d , M a s s . ) to c o n t r o l a f o u r - c i r c l e x - r a y diffractometer s h o u l d b e r e a d i l y a d a p t a b l e to the mass spectrometer. T h e p r o g r a m s d e v e l o p e d i n c l u d e those f o r p r e l i m i n a r y scans t o find s i g nificant intensities i n a n e w system, a n d a r o u t i n e to m a x i m i z e i n t e n s i t y o n t h e detector.
S u c h a m a x i m i z a t i o n r o u t i n e is essential i n cases, as
i m p l i e d elsewhere (17) f o r a s i m p l e i n o r g a n i c system, w h e r e t h e gauss m e t e r does n o t give a sufficiently accurate i n d i c a t i o n of mass. A system f o r o n - l i n e c o m p u t e r c o n t r o l l e d a n d processed d e t e r m i n a t i o n o f a p p e a r a n c e potentials b y the r e t a r d i n g p o t e n t i a l difference m e t h o d has b e e n r e p o r t e d
(12).
(RPD)
D a t a reduction using a shared time
Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch010
c o m p u t e r also is r e p o r t e d ( 9 ) . Conclusion V a r i o u s systems w i t h d i f f e r i n g c a p a b i l i t i e s h a v e b e e n
described.
U s i n g o n e or several of these has g r e a t l y i m p r o v e d t h e q u a l i t y of i n f o r m a t i o n a v a i l a b l e f r o m t h e mass spectrometer.
P r e c i s i o n is i n c r e a s e d b y
i n c r e a s e d s y s t e m a t i c i t y a n d b y r e d u c i n g h u m a n error. creased also b y i n - p l a c e t i m e a v e r a g i n g .
P r e c i s i o n is i n -
A l a r g e v o l u m e of significant
i n f o r m a t i o n i n v a r i o u s p o t e n t i a l l y i n f o r m a t i v e forms is m a d e a v a i l a b l e r a p i d l y , a n d i t b e c o m e s possible to m o r e effectively s t u d y gas c h r o m a t o g r a p h effluent, a n d corrosive, u n s t a b l e , o r o t h e r w i s e t r a n s i t o r y systems. Results b e c o m e a v a i l a b l e w h i l e t h e e x p e r i m e n t is i n progress, p e r m i t t i n g t h e u n e x p e c t e d t o b e i d e n t i f i e d r a p i d l y , a n d p e r t i n e n t modifications of t h e e x p e r i m e n t to b e m a d e . Acknowledgments M u c h of t h e c a p i t a l e q u i p m e n t f o r this project w a s a c q u i r e d f o r u s at m i n i m u m cost as "excess" o r as gifts b y J o s e p h D o w n e y of t h e N o r t h w e s t e r n U n i v e r s i t y P u r c h a s i n g D e p a r t m e n t . T h e extensive c o l l a b o r a t i o n of James B . B r u c e , J o h n E . F e d y s k i , G e o r g e A . Pressley, J r . , S a r a J . Steck, J o a n C . K a y e , a n d P a m e l a M . B r o w e r e of great v a l u e . V o g e l b a c k C o m p u t i n g C e n t e r ( N o r t h w e s t e r n U n i v e r s i t y ) a n d its staff, e s p e c i a l l y J . R i c h ard Walston, provided both a i d a n d computing time.
W e gratefully
appreciate support from the Northwestern University Materials Research Center, T h e University, a n d the A t o m i c E n e r g y Commission, Document COO-1147-12. Literature
Cited
(1) Biemann, K., Bommer, P., Desiderio, D. M., McMurray, W. J., Advan. Mass Spectrometry, Proc. Conf., 3rd, Paris, 1964, 639 (Pub. 1966).
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.
Downloaded by CORNELL UNIV on May 17, 2017 | http://pubs.acs.org Publication Date: June 1, 1968 | doi: 10.1021/ba-1968-0072.ch010
136
MASS
S P E C T R O M E T R Y
I N INORGANIC
C H E M I S T R Y
(2) Biemann, K., Bommer, P., Desiderio, D. M., McMurray, W. J., Tetra hedron Letters 1964, 1725. (3) Biemann, K., Bommer, P., Desiderio, D. M., McMurray, W. J., Tetra hedron Letters 1965, 647. (4) Brown, E. R., Smith, D. E., DeFord, D. D., Anal. Chem. 38, 1130 (1966). (5) Burlingame, A. L., Advan. Mass Spectrometry, Proc. Conf., 3rd, Paris, 1964, 701 (Pub. 1966). (6) Busing, W. R., Woody, J. W., Roseberry, R. T. (private communication). (7) Cook, H. D., Barker, F. B., Hudgens, J. E., 5th Natl. Meeting Soc. Appl. Spectr., Chicago, June 13-17, 1966, Abst. 202. (8) Cook, H . D., Barker, F. B., Hudgens, J. E., Conf. Mass Spectr. Allied Topics, 13th, St. Louis, 1965, p. 220. (9) Hogan, P. J., DeLaeter, R. J., J. Sci. Inst. 43, 662 (1966). (10) Howard, H. E., Anal. Chem. 38, 946 (1966). (11) Kohl, D. Α., Dissertation, Indiana Univ., Dec., 1966, pp. 62 ff. (12) Martignoni, P., Morgan, R. L., Cason, C., Rev. Sci. Inst. 36, 1783 (1965). (13) McLafferty, F. W., Science, 151, 641 (1966). (14) McMurray, W. J., Greene, Β. N., Lipsky, S. R., Anal. Chem. 38, 1194 (1966). (15) Merrit, Charles, Jr., Issenberg, I., Bazinet, M. L., Green, Β. N., Merron, T. O., Murray, J. G., Anal. Chem. 37, 1037 (1965). (16) Olsen, R. W., Conf. Mass Spectr. and Allied Topics, 13th, St. Louis, 1965, p. 191. (17) Stafford, F. E., Pressley, G. Α., Baylis, A. B., ADVAN. CHEM. SER. 72,
137 (1967). (18) Steinhaus, D. W., Engelman, R., Jr., Briscoe, W. L., U. S. At. Energy Comm. LA 3100 (1964). (19) Thomason, Ε. M., Anal. Chem. 35, 2155 (1963). (20) Venkataraghavan, R., McLafferty, F. W., Amy, J. W., Anal. Chem. 39, 178, 278 (1967). RECEIVED
October 5, 1966.
Margrave; Mass Spectrometry in Inorganic Chemistry Advances in Chemistry; American Chemical Society: Washington, DC, 1968.