Subscriber access provided by University of Colorado Boulder
Article
Automated Design Framework for Synthetic Biology exploiting Pareto Optimality Irene Otero-Muras, and Julio R. Banga ACS Synth. Biol., Just Accepted Manuscript • DOI: 10.1021/acssynbio.6b00306 • Publication Date (Web): 28 Mar 2017 Downloaded from http://pubs.acs.org on March 30, 2017
Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
ACS Synthetic Biology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.
Page 1 of 43
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Synthetic Biology
∗
ACS Paragon Plus Environment
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
Page 2 of 43
Page 3 of 43
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
Page 4 of 43
Page 5 of 43
B Constraint: Sustained Oscillation
A Library of Parts cIR
lasR
tetR
lasI
Ptet
araC
ccdB
Pbad
lacI
ccdA
luxI
Plac
Ter
level
RBS
Pλ
ccdA2
time
luxR
Objective 1: Tunability of the Period Maximum number of devices: 3
Objective 2: Stability of the Limit Cycle
C
Pareto front of trade-off solutions
P1
-1.5
× 10-3
-1.6 Ptet
lacI
Plac
Pbad
araC
tetR
NP (Repressilator)
Pλ
lacI
Plac
tetR
Ptet
-1.7
-Limit cycle stability
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Synthetic Biology
cIR
P3
P1 NP
-1.8 -1.9 -2
P2
-2.1 -2.2
Pλ
tetR
Ptet
araC
Pbad
cIR
-2.3
P2 -2.4 Plac
araC
Pbad
cIR
Pλ
lacI
P3 U -2.5 -0.98 0.96 -0.94 0.92
-0.9
-0.88 0.86 -0.84 0.82
-0.8
-Period tunability
nG
nR
ACS Paragon Plus Environment
nP
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 6 of 43
nT M = nG×nR×nP ×nT
i = 1, . . . , M
y ∈ ZM
yi
i
y
x
x, y
z(t) ˙ = N (y)v(x, y, k)
N (y)
v(x, y, k)
k
ACS Paragon Plus Environment
Page 7 of 43
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Synthetic Biology
cIR tetR araC lacI luxI luxR lasR lasI ccdB ccdA ccdA2
y
ACS Paragon Plus Environment
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Gi
yij ∈ {−1, 0, 1}
Gj (−1)
Page 8 of 43
(0)
xij ∈ R>0
(1)
N2
N N2
Gi
χi =
n !
ωji zj + αi I
j=1
ωji = yji xji
αi I
Gi αi = 0
zi
Gi
z˙i =
1 − δzi 1 + exp(a − b(χi ))
ACS Paragon Plus Environment
Page 9 of 43
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Synthetic Biology
a
b δ
A B
C
1 − δA 1 + exp(a − b(I + ωAA A + ωBA B + ωCA C))) 1 B˙ = − δB 1 + exp (a − b(ωAB A + ωBB B + ωCB C)) 1 C˙ = − δC. 1 + exp (a − b(ωAC A + ωBC B + ωCC C)) A˙ =
N
ACS Paragon Plus Environment
ACS Synthetic Biology
A Hypergraph
B Decision variables
yAB yBB yCB yAC yBC y CC xAB xBB xCB xAC xBC x CC
A
Protein C (steady state) Max
B
ωBB
ω BC
C
Protein levels (pl)
ωAB
ωAC ωCB
Additional constraints
Min
maximum number of active connections: 6 (unconstrained)
ωCC
Cell index (ci)
Objective 1: Stripe quality Objective 2: Protein production cost
C Pareto front of optimal trade-offs
0 0 5
8
pl 10 B
10
C
.1 15
0
7
10 15 20 25 30 ci
450
Protein Cost
5 10 15 20 25 30 ci
3.53
300
P4
20 A
NP1
0
0 0
200 20 A
NP4 P8
-0.95
-0.9
-0.85
-0.8
-0.75
-0.7
-0.65
-0.6
0.5
B 2.2
pl 10 0
pl 10
5 10 15 20 25 30 ci
A
1
3 B 0.0 .18 4 C
0 0
0.5
10 15 20 25 30 ci
5
10 15 20 25 30 ci
20
20 A
7
5
P8 (IFF1)
P7 (IFF1) 20
0
-0.5
-Stripe Quality Score
0.6
5 10 15 20 25 30 ci
NP4 (IFF1)
-1
2.75 5 10 15 20 25 30 ci
B pl 10
6.8
P5
1 B 0.1 4 8.3 C
0
.2
0
A pl 10
10
5.2
C
250
P6 (IFF1)
3
2 B 0.2 3 9.4 C
P3
C
20 1.1
350
5 10 15 20 25 30 ci
5 10 15 20 25 30 ci
NP3 (IFF1)
P7
P5 (IFF1)
0 0
NP3
50
0
5.5
NP2
100
pl 10
B pl 10
10 15 20 25 30 ci
P6
0
A
5
150
20 9
2 B 0.4 0 4.1 C
0
11.2
5.72
P4 (IFF1) 1.7
C
pl 10 0
9
4
0
P2
0
A
B
pl 10
400
2
7 C 0.5 6 8.4 C
0.4 4.2
20
A
1.8
5 10 15 20 25 30 ci
P1
20 2.4
C 0
P3 (IFF1) A
20 A
2.2
3
pl 10
1.4
1.63
6 B
7.5
NP2 (IFF1)
20 A
3.6
1.7
C
NP1 (IFF1)
P1 (IFF3) 20
3
2.14
5.8
50
9.37
A
10
P2 (IFF1)
3.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 10 of 43
0.4
2 B 0.0 .21 4 C
pl10 0
pl 10 0 0
0
5
10 15 20 25 30 ci
ACS Paragon Plus Environment
Page 11 of 43
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Synthetic Biology
yAB , yBB , yCB , yAC , yBC xAB , xBB , xCB , xAC , xBC
∈ {−1, 0, 1}
R>0
xCC
I = M dc
A
yCC
M
d c
c = 1, 2, . . . , N
A B
C c
P 1, . . . , P 8
ACS Paragon Plus Environment
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
B
Page 12 of 43
C B
C
N P 1, . . . , N P 4
A A B
C
C
ACS Paragon Plus Environment
y AA yBA yCA yAB yBB y CB yACy BC yCC
-4
ωAB
x AA xBA xCA xAB xBB x CB x AC xBC xCC
-6
ωBB
-Amplitude
B
ω BC
C ω CC
5 0 20 10 time
A
-12
time
10
0
-8
-10
Additional constraints
2 connections (C) 3 connections (D)
Stim.
-2
ωAA
ω BA ωAC ωCB
ωCA
0
C
Objective 1: Speed Objective 2: Amplitude
Stimulus
A
B
Decision variables
Hypergraph
B
-14
Amplitude
Response
A
-16
Speed -1
C
-18 -20
time
Max: 2 active connections 0
1
2
3
4
5
6
7
8
9
10
Speed -1
P7
-6
P8
20 P6 10
-Amplitude
Resp. Resp. Resp. Resp.
Resp.
P6
0
0 20 P7 10 0 20 P8
P10 P11
-10
P13 P14
-12
20 P9 10 0
-16
-20 200
300 time
∈ {−1, 0, 1}
P15
A
P16
0
0.05
P13
10 0 20
P14
10 0 20 P15 10
P19
IFF1 0.1
P20
0.15
0.2
0.25 Speed -1
20 P16 10 0 20 P17 10
20 P19 10 0 20 P20 10
0 P18
C
0 20
0 20 P18 10
P17
B
-18
100
Pareto Front
P12
-14
20 P12 10
0
P9
-8
10 0
20 P10 10 0 -100 0
Resp.
P5
P5
10
Resp.
P4
-4
Resp.
P3
Resp.
0 20
-2
time
Max: 3 active connections
P2 P4
0
time
Resp.
10
0
time
P1
20 P11 10
Resp.
10 0 20
0
0
P3
5
Resp.
0 20
10
20 P1 10
Resp.
10
Stim.
P2
Resp.
20
Resp.
Resp.
Resp.
Resp.
Resp.
D
Resp.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Synthetic Biology
Resp.
Page 13 of 43
0.3
0.35
0.4
0.5
0 -100
0
100
200
300 time
yAA , yBA , yCA , yAB , yBB , yCB , yAC , yBC
yCC
xAA , xBA , xCA , xAB , xBB , xCB , xAC , xBC
xCC
R>0
C C
ACS Paragon Plus Environment
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
Page 14 of 43
Page 15 of 43
yAA , yBA , yCA , yAB , yBB , yCB , yAC , yBC
yCC
xAA , xBA , xCA , xAB , xBB , xCB , xAC , xBC
xCC
xAA , xBA , xCA , xAB , xBB , xCB , xAC , xBC
A Stimulus
0 2-fold change
Amplitude speed
speed
-6 time
same response
-Amplitude
time
B
-2 -4
Amplitude
R>0
Pareto Front obtained for IFF1 and NLIF architectures P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
-8
P11 P12
-10
P13 P14 P15
-12
Architectures with FCD property
∈ {−1, 0, 1}
xCC
C
Fold Change Detection (FCD)
Response
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Synthetic Biology
-14
P16 P17
-16
A
A
P18 P19
B
B C
IFF1
C
NLIF
-18
-20 0
P20
0.05
0.1
0.15
0.2
0.25
Speed -1
ACS Paragon Plus Environment
0.3
0.35
0.4
0.5
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 16 of 43
z(t) ˙ = f (z, y, x, k), z(0) = z0 z ∈ RN x ∈ RR y ∈ ZM k ∈ RK
J(z, ˙ z, x, y, k) J J = (J1 , J2 , . . . , JS )
ACS Paragon Plus Environment
Page 17 of 43
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Synthetic Biology
x ∈ RR
y ∈ ZM
J = (J1 , J2 , . . . , JS )
min J1 (z, ˙ z, x, y, k), J2 (z, ˙ z, x, y, k), . . . , JS (z, ˙ z, x, y, k) x,y
z
k
ξ(z, ˙ z, x, y, k) = 0, z(t0 ) = z0 ,
h(z, x, y, k) = 0,
g(z, x, y, k) ≤ 0,
xL ≤ x ≤ x U , yL ≤ y ≤ yU .
(x∗ , y ∗ ) J(x∗ , y ∗ ) J(x∗ , y ∗ ) ≤ J(x∗∗ , y ∗∗ )
Ji i = 1, . . . , S
ACS Paragon Plus Environment
J(x∗∗ , y ∗∗ )
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 18 of 43
ε
ε
J1
J2
(x∗1 , y1∗ ), (x∗2 , y2∗ )
J1 = J1 (x∗1 , y1∗ ), J1 = J1 (x∗2 , y2∗ ), J2 = J2 (x∗2 , y2∗ ), J2 = J2 (x∗1 , y1∗ ).
[J1 J2 ]
[J1 J2 ]
ACS Paragon Plus Environment
Page 19 of 43
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Synthetic Biology
J1
m J2
J2
ε = [ε1 , . . . , εi , . . . , εm+1 ]
ε1 ≤ J 2 εm+1 ≥ J 2
ε1 < ε2 < . . . < εm+1
min J1 (z, ˙ z, x, y, k) w,y
εk ≤ J2 (z, ˙ z, x, y, k) < εk+1 k = 1, . . . , m m J2 (z, ˙ z, x, y, k) < εk+1 J2 (z, ˙ z, x, y, k) ≤ εk+1 − ϵ
ACS Paragon Plus Environment
ϵ>0
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 20 of 43
A) MO-MINLP
J2
ε-constraint strategy
P1
Interval 1
P2 P3 MINLP
MINLP
MINLP
MINLP
MINLP
ε m+1
Interval 2
Pareto Front (optimal trade-offs)
P4
hybrid MINLP solvers
... P1
P2
P3
ε2
Pm Interval m
Pm
P4
ε1 J1
B)
Inferring patterns and their evolution:
Additional criterion for forward design:
Continuous Pareto (example)
J2
E)
D)
C)
Discontinuous Pareto (example)
J2
J2
Extreme 1
J2
Clustering Pareto solutions
Dominated solution
Pareto Front (optimal trade-offs) interval with no feasible solution
Knee Point Extreme 2
Pareto Front (black squares)
Utopia point J1
J1
ε
ε ε
ACS Paragon Plus Environment
J1
J1
Page 21 of 43
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
R+M
Page 22 of 43
R
S
ACS Paragon Plus Environment
M
Page 23 of 43
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Synthetic Biology
Objective Space
Decision Space y2
J2 Nadir point
Pareto Front Utopia point y1
J1
yx yBB xBB yCB xCB yAC xAC yBC xBC yCC xCC k
ACS Paragon Plus Environment
yAB xAB
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
Page 24 of 43
Page 25 of 43
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Synthetic Biology
Ptet2 LacI
Pλ LacI
Ptet2 LacI
Pλ araC
Plac1 tetR Pλ LacI
ACS Paragon Plus Environment
Pλ araC
ACS Synthetic Biology
aTc
18000
Ptet 2
Plac1
LacI
tetR
LacI
aTc
Ptet 2
Plac1
LacI
tetR
LacI
16000 P
λ
IPTG
Plac1
LacI
14000
IPTG LacI
12000
Cost
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 26 of 43
10000 8000
aTc
Ptet 2
Plac1
LacI
tetR
LacI
LacI
tetR
LacI
aTc
6000
Ptet 2
Plac1
4000 P
λ
IPTG
Plac4 LacI
2000 0 -1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-Performance score
m
m
ACS Paragon Plus Environment
-0.2
-0.1
IPTG LacI
Page 27 of 43
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
ACS Synthetic Biology
Library 1 (16 decision variables) 25 eSS-MISQP
Average CPU time (s)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Page 28 of 43
MITS-MISQP
ACO-MISQP
20
15
10
5
0 3 devices
5 devices
ACS Paragon Plus Environment
9 devices
Page 29 of 43
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
ACS Synthetic Biology
• •
ACS Paragon Plus Environment
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
Page 30 of 43
Page 31 of 43
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
Page 32 of 43
Page 33 of 43
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
Page 34 of 43
Page 35 of 43
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
Page 36 of 43
Page 37 of 43
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
Page 38 of 43
Page 39 of 43
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
Page 40 of 43
Page 41 of 43
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
ACS Synthetic Biology
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment
Page 42 of 43
Page 43 of 43
ACS Synthetic Biology MULTIOBJECTIVE AUTOMATED DESIGN FRAMEWORK
Objective 1
Topologies that optimally trade-off objectives 1 and 2:
Topology search-space
Pareto Optimal Solutions
Global Multiobjective Mixed Integer Optimization Objective 2
(optimize topology and parameters simultaneously)
REVERSE DESIGN
FORWARD DESIGN Library of Parts Pλ
RBS
All possible N-gene networks cIR
lasR
tetR
lasI
Ptet
araC
ccdB
Pbad
lacI
ccdA
luxI
Plac
Ter
ccdA2
luxR
Best circuit for implementation
Patterns/motifs with given function A
A
B
B tetR
Ptet
araC
Pbad
C
cIR
IFF1
stimulus
Pλ
C
NLIF
2-fold change
response
level
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
time
Example: Synthetic oscillator with optimal stability and tunability of the period.
Example: Fold-Change detection architectures with optimal speed and amplitude
ACS Paragon Plus Environment