Automated Design Framework for Synthetic Biology Exploiting Pareto

Mar 28, 2017 - E-mail: [email protected]. This article is ... In this work we consider Pareto optimality for automated design in synthetic biolog...
2 downloads 0 Views 20MB Size
Subscriber access provided by University of Colorado Boulder

Article

Automated Design Framework for Synthetic Biology exploiting Pareto Optimality Irene Otero-Muras, and Julio R. Banga ACS Synth. Biol., Just Accepted Manuscript • DOI: 10.1021/acssynbio.6b00306 • Publication Date (Web): 28 Mar 2017 Downloaded from http://pubs.acs.org on March 30, 2017

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

ACS Synthetic Biology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Synthetic Biology



ACS Paragon Plus Environment

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 2 of 43

Page 3 of 43

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 4 of 43

Page 5 of 43

B Constraint: Sustained Oscillation

A Library of Parts cIR

lasR

tetR

lasI

Ptet

araC

ccdB

Pbad

lacI

ccdA

luxI

Plac

Ter

level

RBS



ccdA2

time

luxR

Objective 1: Tunability of the Period Maximum number of devices: 3

Objective 2: Stability of the Limit Cycle

C

Pareto front of trade-off solutions

P1

-1.5

× 10-3

-1.6 Ptet

lacI

Plac

Pbad

araC

tetR

NP (Repressilator)



lacI

Plac

tetR

Ptet

-1.7

-Limit cycle stability

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Synthetic Biology

cIR

P3

P1 NP

-1.8 -1.9 -2

P2

-2.1 -2.2



tetR

Ptet

araC

Pbad

cIR

-2.3

P2 -2.4 Plac

araC

Pbad

cIR



lacI

P3 U -2.5 -0.98 0.96 -0.94 0.92

-0.9

-0.88 0.86 -0.84 0.82

-0.8

-Period tunability

nG

nR

ACS Paragon Plus Environment

nP

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 6 of 43

nT M = nG×nR×nP ×nT

i = 1, . . . , M

y ∈ ZM

yi

i

y

x

x, y

z(t) ˙ = N (y)v(x, y, k)

N (y)

v(x, y, k)

k

ACS Paragon Plus Environment

Page 7 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Synthetic Biology

cIR tetR araC lacI luxI luxR lasR lasI ccdB ccdA ccdA2

y

ACS Paragon Plus Environment

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Gi

yij ∈ {−1, 0, 1}

Gj (−1)

Page 8 of 43

(0)

xij ∈ R>0

(1)

N2

N N2

Gi

χi =

n !

ωji zj + αi I

j=1

ωji = yji xji

αi I

Gi αi = 0

zi

Gi

z˙i =

1 − δzi 1 + exp(a − b(χi ))

ACS Paragon Plus Environment

Page 9 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Synthetic Biology

a

b δ

A B

C

1 − δA 1 + exp(a − b(I + ωAA A + ωBA B + ωCA C))) 1 B˙ = − δB 1 + exp (a − b(ωAB A + ωBB B + ωCB C)) 1 C˙ = − δC. 1 + exp (a − b(ωAC A + ωBC B + ωCC C)) A˙ =

N

ACS Paragon Plus Environment

ACS Synthetic Biology

A Hypergraph

B Decision variables

yAB yBB yCB yAC yBC y CC xAB xBB xCB xAC xBC x CC

A

Protein C (steady state) Max

B

ωBB

ω BC

C

Protein levels (pl)

ωAB

ωAC ωCB

Additional constraints

Min

maximum number of active connections: 6 (unconstrained)

ωCC

Cell index (ci)

Objective 1: Stripe quality Objective 2: Protein production cost

C Pareto front of optimal trade-offs

0 0 5

8

pl 10 B

10

C

.1 15

0

7

10 15 20 25 30 ci

450

Protein Cost

5 10 15 20 25 30 ci

3.53

300

P4

20 A

NP1

0

0 0

200 20 A

NP4 P8

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

0.5

B 2.2

pl 10 0

pl 10

5 10 15 20 25 30 ci

A

1

3 B 0.0 .18 4 C

0 0

0.5

10 15 20 25 30 ci

5

10 15 20 25 30 ci

20

20 A

7

5

P8 (IFF1)

P7 (IFF1) 20

0

-0.5

-Stripe Quality Score

0.6

5 10 15 20 25 30 ci

NP4 (IFF1)

-1

2.75 5 10 15 20 25 30 ci

B pl 10

6.8

P5

1 B 0.1 4 8.3 C

0

.2

0

A pl 10

10

5.2

C

250

P6 (IFF1)

3

2 B 0.2 3 9.4 C

P3

C

20 1.1

350

5 10 15 20 25 30 ci

5 10 15 20 25 30 ci

NP3 (IFF1)

P7

P5 (IFF1)

0 0

NP3

50

0

5.5

NP2

100

pl 10

B pl 10

10 15 20 25 30 ci

P6

0

A

5

150

20 9

2 B 0.4 0 4.1 C

0

11.2

5.72

P4 (IFF1) 1.7

C

pl 10 0

9

4

0

P2

0

A

B

pl 10

400

2

7 C 0.5 6 8.4 C

0.4 4.2

20

A

1.8

5 10 15 20 25 30 ci

P1

20 2.4

C 0

P3 (IFF1) A

20 A

2.2

3

pl 10

1.4

1.63

6 B

7.5

NP2 (IFF1)

20 A

3.6

1.7

C

NP1 (IFF1)

P1 (IFF3) 20

3

2.14

5.8

50

9.37

A

10

P2 (IFF1)

3.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 10 of 43

0.4

2 B 0.0 .21 4 C

pl10 0

pl 10 0 0

0

5

10 15 20 25 30 ci

ACS Paragon Plus Environment

Page 11 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Synthetic Biology

yAB , yBB , yCB , yAC , yBC xAB , xBB , xCB , xAC , xBC

∈ {−1, 0, 1}

R>0

xCC

I = M dc

A

yCC

M

d c

c = 1, 2, . . . , N

A B

C c

P 1, . . . , P 8

ACS Paragon Plus Environment

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

B

Page 12 of 43

C B

C

N P 1, . . . , N P 4

A A B

C

C

ACS Paragon Plus Environment

y AA yBA yCA yAB yBB y CB yACy BC yCC

-4

ωAB

x AA xBA xCA xAB xBB x CB x AC xBC xCC

-6

ωBB

-Amplitude

B

ω BC

C ω CC

5 0 20 10 time

A

-12

time

10

0

-8

-10

Additional constraints

2 connections (C) 3 connections (D)

Stim.

-2

ωAA

ω BA ωAC ωCB

ωCA

0

C

Objective 1: Speed Objective 2: Amplitude

Stimulus

A

B

Decision variables

Hypergraph

B

-14

Amplitude

Response

A

-16

Speed -1

C

-18 -20

time

Max: 2 active connections 0

1

2

3

4

5

6

7

8

9

10

Speed -1

P7

-6

P8

20 P6 10

-Amplitude

Resp. Resp. Resp. Resp.

Resp.

P6

0

0 20 P7 10 0 20 P8

P10 P11

-10

P13 P14

-12

20 P9 10 0

-16

-20 200

300 time

∈ {−1, 0, 1}

P15

A

P16

0

0.05

P13

10 0 20

P14

10 0 20 P15 10

P19

IFF1 0.1

P20

0.15

0.2

0.25 Speed -1

20 P16 10 0 20 P17 10

20 P19 10 0 20 P20 10

0 P18

C

0 20

0 20 P18 10

P17

B

-18

100

Pareto Front

P12

-14

20 P12 10

0

P9

-8

10 0

20 P10 10 0 -100 0

Resp.

P5

P5

10

Resp.

P4

-4

Resp.

P3

Resp.

0 20

-2

time

Max: 3 active connections

P2 P4

0

time

Resp.

10

0

time

P1

20 P11 10

Resp.

10 0 20

0

0

P3

5

Resp.

0 20

10

20 P1 10

Resp.

10

Stim.

P2

Resp.

20

Resp.

Resp.

Resp.

Resp.

Resp.

D

Resp.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Synthetic Biology

Resp.

Page 13 of 43

0.3

0.35

0.4

0.5

0 -100

0

100

200

300 time

yAA , yBA , yCA , yAB , yBB , yCB , yAC , yBC

yCC

xAA , xBA , xCA , xAB , xBB , xCB , xAC , xBC

xCC

R>0

C C

ACS Paragon Plus Environment

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 14 of 43

Page 15 of 43

yAA , yBA , yCA , yAB , yBB , yCB , yAC , yBC

yCC

xAA , xBA , xCA , xAB , xBB , xCB , xAC , xBC

xCC

xAA , xBA , xCA , xAB , xBB , xCB , xAC , xBC

A Stimulus

0 2-fold change

Amplitude speed

speed

-6 time

same response

-Amplitude

time

B

-2 -4

Amplitude

R>0

Pareto Front obtained for IFF1 and NLIF architectures P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

-8

P11 P12

-10

P13 P14 P15

-12

Architectures with FCD property

∈ {−1, 0, 1}

xCC

C

Fold Change Detection (FCD)

Response

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Synthetic Biology

-14

P16 P17

-16

A

A

P18 P19

B

B C

IFF1

C

NLIF

-18

-20 0

P20

0.05

0.1

0.15

0.2

0.25

Speed -1

ACS Paragon Plus Environment

0.3

0.35

0.4

0.5

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 16 of 43

z(t) ˙ = f (z, y, x, k), z(0) = z0 z ∈ RN x ∈ RR y ∈ ZM k ∈ RK

J(z, ˙ z, x, y, k) J J = (J1 , J2 , . . . , JS )

ACS Paragon Plus Environment

Page 17 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Synthetic Biology

x ∈ RR

y ∈ ZM

J = (J1 , J2 , . . . , JS )

min J1 (z, ˙ z, x, y, k), J2 (z, ˙ z, x, y, k), . . . , JS (z, ˙ z, x, y, k) x,y

z

k

ξ(z, ˙ z, x, y, k) = 0, z(t0 ) = z0 ,

h(z, x, y, k) = 0,

g(z, x, y, k) ≤ 0,

xL ≤ x ≤ x U , yL ≤ y ≤ yU .

(x∗ , y ∗ ) J(x∗ , y ∗ ) J(x∗ , y ∗ ) ≤ J(x∗∗ , y ∗∗ )

Ji i = 1, . . . , S

ACS Paragon Plus Environment

J(x∗∗ , y ∗∗ )

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 18 of 43

ε

ε

J1

J2

(x∗1 , y1∗ ), (x∗2 , y2∗ )

J1 = J1 (x∗1 , y1∗ ), J1 = J1 (x∗2 , y2∗ ), J2 = J2 (x∗2 , y2∗ ), J2 = J2 (x∗1 , y1∗ ).

[J1 J2 ]

[J1 J2 ]

ACS Paragon Plus Environment

Page 19 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Synthetic Biology

J1

m J2

J2

ε = [ε1 , . . . , εi , . . . , εm+1 ]

ε1 ≤ J 2 εm+1 ≥ J 2

ε1 < ε2 < . . . < εm+1

min J1 (z, ˙ z, x, y, k) w,y

εk ≤ J2 (z, ˙ z, x, y, k) < εk+1 k = 1, . . . , m m J2 (z, ˙ z, x, y, k) < εk+1 J2 (z, ˙ z, x, y, k) ≤ εk+1 − ϵ

ACS Paragon Plus Environment

ϵ>0

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 20 of 43

A) MO-MINLP

J2

ε-constraint strategy

P1

Interval 1

P2 P3 MINLP

MINLP

MINLP

MINLP

MINLP

ε m+1

Interval 2

Pareto Front (optimal trade-offs)

P4

hybrid MINLP solvers

... P1

P2

P3

ε2

Pm Interval m

Pm

P4

ε1 J1

B)

Inferring patterns and their evolution:

Additional criterion for forward design:

Continuous Pareto (example)

J2

E)

D)

C)

Discontinuous Pareto (example)

J2

J2

Extreme 1

J2

Clustering Pareto solutions

Dominated solution

Pareto Front (optimal trade-offs) interval with no feasible solution

Knee Point Extreme 2

Pareto Front (black squares)

Utopia point J1

J1

ε

ε ε

ACS Paragon Plus Environment

J1

J1

Page 21 of 43

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

R+M

Page 22 of 43

R

S

ACS Paragon Plus Environment

M

Page 23 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Synthetic Biology

Objective Space

Decision Space y2

J2 Nadir point

Pareto Front Utopia point y1

J1

yx yBB xBB yCB xCB yAC xAC yBC xBC yCC xCC k

ACS Paragon Plus Environment

yAB xAB

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 24 of 43

Page 25 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Synthetic Biology

Ptet2 LacI

Pλ LacI

Ptet2 LacI

Pλ araC

Plac1 tetR Pλ LacI

ACS Paragon Plus Environment

Pλ araC

ACS Synthetic Biology

aTc

18000

Ptet 2

Plac1

LacI

tetR

LacI

aTc

Ptet 2

Plac1

LacI

tetR

LacI

16000 P

λ

IPTG

Plac1

LacI

14000

IPTG LacI

12000

Cost

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 26 of 43

10000 8000

aTc

Ptet 2

Plac1

LacI

tetR

LacI

LacI

tetR

LacI

aTc

6000

Ptet 2

Plac1

4000 P

λ

IPTG

Plac4 LacI

2000 0 -1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-Performance score

m

m

ACS Paragon Plus Environment

-0.2

-0.1

IPTG LacI

Page 27 of 43

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

ACS Synthetic Biology

Library 1 (16 decision variables) 25 eSS-MISQP

Average CPU time (s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Page 28 of 43

MITS-MISQP

ACO-MISQP

20

15

10

5

0 3 devices

5 devices

ACS Paragon Plus Environment

9 devices

Page 29 of 43

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

ACS Synthetic Biology

• •

ACS Paragon Plus Environment

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 30 of 43

Page 31 of 43

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 32 of 43

Page 33 of 43

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 34 of 43

Page 35 of 43

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 36 of 43

Page 37 of 43

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 38 of 43

Page 39 of 43

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 40 of 43

Page 41 of 43

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

ACS Synthetic Biology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment

Page 42 of 43

Page 43 of 43

ACS Synthetic Biology MULTIOBJECTIVE AUTOMATED DESIGN FRAMEWORK

Objective 1

Topologies that optimally trade-off objectives 1 and 2:

Topology search-space

Pareto Optimal Solutions

Global Multiobjective Mixed Integer Optimization Objective 2

(optimize topology and parameters simultaneously)

REVERSE DESIGN

FORWARD DESIGN Library of Parts Pλ

RBS

All possible N-gene networks cIR

lasR

tetR

lasI

Ptet

araC

ccdB

Pbad

lacI

ccdA

luxI

Plac

Ter

ccdA2

luxR

Best circuit for implementation

Patterns/motifs with given function A

A

B

B tetR

Ptet

araC

Pbad

C

cIR

IFF1

stimulus



C

NLIF

2-fold change

response

level

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

time

Example: Synthetic oscillator with optimal stability and tunability of the period.

Example: Fold-Change detection architectures with optimal speed and amplitude

ACS Paragon Plus Environment