6 Available Energy Analysis of a Sulfuric Acid Plant K. R A V I N D R A N A T H and S. T H I Y A G A R A J A N
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch006
Larsen & Toubro Limited, Bombay, India
Available energy concept is applied to analyse a sulphuric acid plant. First law and second law analyses are compared. Second law analysis pin points available energy consumptions and losses. Possible improvements by reducing availability consumptions and losses are presented. S u l p h u r i c a c i d p l a n t i s w e l l known t o p r o d u c e a l o n g w i t h s u l p h u r i c a c i d a n e q u i v a l e n t amount o f steam. T h e p o t e n t i a l e n e r g y a v a i l a b l e w i t h t h e b a s i c raw m a t e r i a l sulphur c a l l s f o r a high degree e v a l u a t i o n o f energy recovery i n s u l p h u r i c acid plants. The e f f i c i e n c y o f e n e r g y c o n v e r s i o n a n d u t i l i s a t i o n i n t h i s p r o c e s s c a n n o t b e e v a l u a t e d b a s e d o n f i r s t law of thermodynamics a l o n e a n d t r u e energy d i s s i p a t i o n s can be brought out by u s i n g a v a i l a b l e energy a n a l y s i s . S e c o n d law a n a l y s i s i s a p p l i e d t o a 1 0 0 t o n n e s p e r day d o u b l e - c o n t a c t d o u b l e - a b s o r p t i o n (DC-DA) s u l p h u r i c acid plant i n order t o b r i n g out true energy conversion e f f i c i e n c i e s a n d c o n s u m p t i o n s b a s e d o n work a v a i l a b i l i t y o f v a r i o u s s t r e a m s . S e c o n d law e f f i c i e n c i e s a r e c o m p a r e d w i t h t h o s e o f f i r s t law t o p i n p o i n t true l o s s e s and i n e v i t a b l e consumptions i n energy conversion processes. B a s e d o n s e c o n d law a n a l y s i s a l t e r n a t i v e s a r e worked o u t f o r i m p r o v i n g o v e r a l l energy c o n v e r s i o n e f f i c i e n c y by recovering thermal energy i n a c i d coolers f o r power g e n e r a t i o n a n d f o r p r e h e a t i n g b o i l e r f e e d water · S u l p h u r i c Acid System A b l o c k d i a g r a m o f a t y p i c a l DC-DA s u l p h u r i c
acid
0097-6156/83/0235-0119S06.00/0 © 1983 American Chemical Society In Efficiency and Costing; Gaggioli, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
SECOND LAW ANALYSIS OF PROCESSES
120
p l a n t c o n s i s t i n g o f s e v e n s e c t i o n s i s shown i n F i g u r e 1* F o r c a r r y i n g o u t t o t a l e n e r g y a n a l y s i s o f t h i s p l a n t t h e s e seven s e c t i o n s a r e grouped i n t o f i v e major blocks* 1.
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch006
2.
3*
4*
5*
Sulphur preparation and combustion: M e l t i n g of s o l i d sulphur to l i q u i d , conversion of molten s u l p h u r t o SO2 g a s b y u s i n g d r y a i r a n d p a r t i a l recovery o f the combustion heat i n a waste heat boiler • C o n v e r s i o n I : F i r s t p a s s c o n v e r s i o n o f SO2 t o SO3 i n t h r e e b e d s o f V2O5 c a t a l y s t a n d i n t e r m e d i a t e heat removal i n waste heat b o i l e r , economiser and heat exchangers* Orying & A b s o r p t i o n I : Moisture removal from p r o c e s s a i r b y d r y i n g w i t h s u l p h u r i c a c i d a n d SO3 removal i n i n t e r m e d i a t e a b s o r p t i o n tower a f t e r f i r s t pass conversion* C o n v e r s i o n I I : S e c o n d p a s s c o n v e r s i o n o f SO2 t o SO3 a f t e r r e h e a t i n g t h e g a s e s f r o m i n t e r m e d i a t e absorber and subsequent heat removal i n a heat exchanger• A b s o r p t i o n I I : SO3 r e m o v a l i n f i n a l a b s o r p t i o n t o w e r b e f o r e v e n t i n g o u t i n e r t gas t h r o u g h s t a c k and a c i d c o o l i n g i n various cascade c o o l e r s *
F i r s t Law A n a l y s i s Input and o u t p u t e n t h a l p i e s o f v a r i o u s streams a c r o s s e a c h s e c t i o n f o r a 1 0 0 TPD DC-DA s u l p h u r i c a c i d p l a n t w i t h 10% s u l p h u r d i o x i d e f e e d t o c o n v e r t e r , 99.8% c o n v e r s i o n e f f i c i e n c y a n d 99.9% a b s o r p t i o n e f f i c i e n c y a r e shown i n T a b l e I * If the e f f i c i e n c y i s c a l c u l a t e d based on thermal energy e n t e r i n g and l e a v i n g each s y s t e m , i t works o u t t o b e 94 t o 98% f o r a l l s e c t i o n s , a c c o u n t i n g f o r 2-6/S h e a t l o s s e s * On t h e o t h e r h a n d , i f o n l y n e t u s e f u l energy from each system i s considered i t works out t o b e 8 9 t o 96% f o r s u l p h u r p r e p a r a t i o n , c o m b u s t i o n a n d c o n v e r s i o n s e c t i o n s ( 1 , 2 a n d 4 ) a n d 5*9 t o 0.1% f o r d r y i n g and a b s o r p t i o n s e c t i o n s (3 and 5 ) . T h i s d e n o t e s that the energy e f f i c i e n c i e s a r e a t a l a r m i n g l y low l e v e l s f o r s e c t i o n s 3 & 5* O v e r a l l e f f i c i e n c y b a s e d o n net u s e f u l o u t p u t i s o n l y 3 8 . 7 % . Out o f t o t a l t h e r m a l l o s s e s o f 6 1 . 3 % , l o s s e s i n warm w a t e r a r e a s h i g h a s 52% b a s e d o n f i r s t l a w a n a l y s i s * S e c o n d Law A n a l y s i s The d e g r a d a t i o n
i n t h e q u a l i t y o f e n e r g y a s i t moves
In Efficiency and Costing; Gaggioli, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
In Efficiency and Costing; Gaggioli, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
COO LI NO WATER PROCESS
MOLTEN SULPHUR
SULPHUR COMBUSTION % WASTE HEAT RECOVERY
3
INTERMEDIATE ABSORPTION
SO2 CAS
I PASS CONVERSION It WASTE HEAT RECOVERY
(S0 +S > > •z
1
X
H
0
>
X
z
>
5 a
73
122
SECOND LAW ANALYSIS OF PROCESSES
I . E n t h a l p y B a l a n c e o f A 1 0 0 TPD S u l p h u r i c Acid Plant E n t h a l p y v a l u e s i n K 3 / h r (' 0 0 0 ) D a t u m Temp.:25°C Enthalpy Output stream Enthalpy Input stream
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch006
Table
1 • Sulphur preparation & Combustion: 201 .0 DM w a t e r Steam e x p o r t Dry a i r 268.5 Hot S02 g a s B o i l e r I Uater 3728.8 Deaerated uater R e a c t i o n h e a t 12 6 2 4 . 0 Heat l o s s e s Total 1 6822.3 Net u s e f u l Efficiency % 2 • Conversion I 5234.0 SO3 g a s Hot SO2 g a s Dilution a i r 26.6 Boiler I uater Deaerated u a t e r 1742.0 Steam e x p o r t C o l d SO2 g a s 454.0 Hot SO2 g a s R e a c t i o n heat 4055.0 Heat l o s s e s Total 11 511 . 6 Net u s e f u l Efficiency % 3. D r y i n g & A b s o r p t i o n I SO3 g a s 2205.0 C o l d SO2 g a s Uet a i r 11 6.5 Dry a i r Cooling uater 51 8 2 . 5 Sulphuric acid R e a c t i o n heat 6 6 3 8 .0 Warm u a t e r Total 14142.0 Net u s e f u l Efficiency % 4. C o n v e r s i o n I I SG2 g a s SO3 g a s 1 632.6 R e a c t i o n heat 118.0 Heat l o s s e s Total 1750.6 Net u s e f u l Efficiency % 5. A b s o r p t i o n I I SO3 g a s Sulphuric acid 1688.0 Cooling uater 751 .6 Stack gas R e a c t i o n heat 155.0 LJarm u a t e r Total 2594.6 Net u s e f u l Efficiency % Net u s e f u l o u t p u t 11505.0 (38.7%) Uarm u a t e r l o s s 15447.4 (52.0^) Stack gas l o s s 4 5 1 . 3 ( 1 .SjS) Heat l o s s e s 2 3 2 1 .3 ( 7 . 8 $
7957.0 5234.0 1742.0 1889.3 1 6822.3 14933.0 88.8 2205.0 3728.8 3456.0 1 632.6 489.2 11511.6 11022.4 95.8 454.0 292.0 89.3 13306.7 14142.0 835.3 5.9 1 688.0 62.6 1750.6 1688.0 96.4 2.6 451 .3 2140.7 2594.6 2.6 0.1
In Efficiency and Costing; Gaggioli, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch006
6.
RAVINDRANATH AND
THIYAGARAJAN
Sulfuric Acid Plant
123
through v a r i o u s p r o c e s s u n i t s i s a s s e s s e d by c a l c u l a t ing t o t a l a v a i l a b l e energy o f input and output streams of each s y s t e m . T o t a l a v a i l a b i l i t y c o n s t i t u t e s b a s i c a l l y chemical, thermal, pressure a v a i l a b i l i t i e s and e l e c t r i c e n e r g y . The b a s i s f o r d e t a i l e d a v a i l a b l e energy c a l c u l a t i o n s o f a sulphuric acid plant i s given i n T a b l e 1 1 . ( 1 .2) . The a v a i l a b l e e n e r g y f l o w t h r o u g h f i v e m a j o r s e c t ions o f s u l p h u r i c a c i d p l a n t i s g i v e n i nF i g u r e 2. The major i n p u t s t o t h i s system a r e s u l p h u r and pouer, u i t h d e m i n e r a l i s e d (DM; u a t e r , u e t a i r , p r o c e s s u a t e r and c o o l i n g u a t e r from e n v i r o n m e n t . The u s e f u l o u t p u t s from the system a r e s u l p h u r i c a c i d and steam. Losses to environment i n c l u d e heat l o s s e s from various equipments,bloudoun u a t e r , steam from d e a e r a t o r v e n t , uarm u a t e r a n d s t a c k g a s . Process information o f various streams (streams 1 to 16) and t h e i r c h e m i c a l , thermal a n d p r e s s u r e a v a i l a b i l i t i e s a r e g i v e n i n Table I I I . Pouer i n p u t s t o t h e s y s t e m ( s t r e a m s 17 t o 2 0 ) a n d a v a i l a b i l i t y l o s s e s ( s t r e a m s 21 t o 2 9 ) a r e g i v e n i n T a b l e I V . T h e s t r e a m s marked a s i n p u t s from environment i n F i g u r e 2 a r e c o n s i d e r e d t o have z e r o a v a i l a b i l i t y * For e a c h i n p u t a n d o u t p u t s t r e a m o f a l l s e c t i o n s , a v a i l a b i l i t y i s c a l c u l a t e d . The d i f f e r e n c e b e t u e e n t h e output a v a i l a b i l i t y o f the t o t a l product ( i n c l u d i n g the l o s s e s ) a n d t h e i n p u t a v a i l a b i l i t y i s c o n s i d e r e d as a v a i l a b i l i t y consumed i n t h e p r o c e s s i n o r d e r t o e f f e c t the c o n v e r s i o n p r o c e s s . The r a t i o o f a v a i l a b i l i ty o f useful product t o t o t a l input a v a i l a b i l i t y i s c o n s i d e r e d a s e f f e c t i v e n e s s o f the system. F o reach o f the f i v e s e c t i o n s c o n s i d e r e d i n a v a i l a b l e energy f l o u diagram, the a v a i l a b i l i t y o f input and output streams, l o s s e s , consumption and e f f e c t i v e n e s s are c a l c u l a t e d . The f i v e m a j o r s e c t i o n s a r e b r o k e n d o u n f u r t h e r i n t o a number o f c o m p o n e n t s t o p i n p o i n t t h e a r e a s o f s i g n i f i cant a v a i l a b i l i t y consumptions. These r e s u l t s are g i v e n i n T a b l e V. R e s u l t s And D i s c u s s i o n From t h e a v a i l a b i l i t y a n a l y s i s , o v e r a l l e f f e c t i v e n e s s o f a s u l p h u r i c a c i d p l a n t u o r k s out t o be 4 9 % compared t o o v e r a l l e f f i c i e n c y o f 3 9 % based on f i r s t l a u . A l s o e f f e c t i v e n e s s i ns e c t i o n s 2 and 4 ( f i r s t and second pass conversion) i s a s h i g h as 86-92% thus l e a v i n g l e s s p r o s p e c t s f o r improvements i nthese s e c t i o n s . In section 1 (sulphur preparation and combustion), t h e e f f e c t i v e n e s s i s 75% and the a v a i l a b i l i t y consumption
In Efficiency and Costing; Gaggioli, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
124
SECOND LAW ANALYSIS OF PROCESSES
Table 11.Basis f o r A v a i l a b i l i t y
Calculations
1 • Chemical a v a i l a b i l i t y ( a ) r
Atmospheric E q u i l i b r i u m {Stable condensed phases c o n s t i t u e n t s mole f r a c t i o n ! a t standard c o n d i t i o n s of 298"K & 1 a t m . 0.7567 H 0 0.2035 CaSO, 2 H 0 H 0 0.0303 CaC0„ CCL 0.0003 2
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch006
2
2
fora
Formulas
Q
a_ ( s o l i d ) S so (g)
i n kcals/q.mole • 191 .09 1 2 2 . 0 4 + R To I n Xo u„ 1 0 5 . 6 0 5 + RTo I n Xi»U3 -
a
Q n
2
2
a
a
S0
( 3
9
)
n
H S0 (l) 2
74.40
4
'H20
(Q)
2 . 0 7 1 7 + RT I n X
(9)
0.1 6518 + RT_ I n X..
(o)
0 . 9 4 3 2 8 + R To I n X u
o
2. Thermal a
-
T
u n
Kg n
0
a v a i l a b i l i t y (a-j. k c a l / q . m o l e ) - B T ) ( T - T ) + ( e / 2 - ^ P ) ( T * - T * ) + c / 3 ( T3 - T3v ^)
(A
r
o
Q
- AT I n f -+ Q
'o
0-T - V)-D( - I ) 1
r
T^ A B C x10 SO, 7.70 0.0053 - 0 . 8 3 SO SO3 1 3 . 7 0 0.00642 0 02 8.27 0.00258 0 N 6.5 0.001 0 Pressure a v a i l a b i l i t y ( a )
1
T
2
3
2
2
' O 6
0 x 1 0 0 -0.312 -0.1877 0
p
a
p
= R T I n [^p^j Q
kcals/g.mole
In Efficiency and Costing; Gaggioli, R.; ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
J
T
6.
RAVINDRANATH AND THIYAGARAJAN
C o
•H D
CO
3
CD
XT
ID
NJ
ON
CO
• O N r* Lf) r-
co CO ra CO
G
co
Downloaded by TUFTS UNIV on November 27, 2015 | http://pubs.acs.org Publication Date: November 11, 1983 | doi: 10.1021/bk-1983-0235.ch006
CD U
4->
3 j ON co O O CM «- in t—
• 1
1 CM o-
•H T3 C
o o (0 Q) L> O (4
CL
CO wD GO
m
to
CM ON
CO VO ON • • CM 1 VO ON
r-