Averages from Turbidity Measurements - American Chemical Society

for a given form of the particle diameter distribution, where the form of the distribution i s ... as the "Inverse Scattering Problem" and although th...
0 downloads 0 Views 1MB Size
Downloaded by MICHIGAN STATE UNIV on September 3, 2013 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch011

Chapter 11

Averages from Turbidity Measurements L.

H.

Garcia-Rubio

Department of Chemical Engineering, College of Engineering, University of South Florida, Tampa,FL33620

The information content of turbidity measurements from polydisperse particulate systems has been analysed on the basis of Mie theory and reported approximations to Mie theory. The results from the analysis suggest two alternative interpretations of turbidity data for the small and intermediate p a r t i c l e size regimes: an interpretation in terms of moments of the particle size distribution and an equivalent interpretation in terms of the volume to surface average p a r t i c l e diameter. It is also shown that in the intermediate particle size regime, the effective average diameter that s a t i s f i e s the mean surface average extinction efficiency does not correspond to a particular average of the particle size d i s t r i b u t i o n . The value of the effective particle diameter depends on both the wavelength and the spread of the p a r t i c l e size d i s t r i b u t i o n . It is possible, however, to interpret turbidity data in terms of an effective average diameter and the volume to surface particle diameter. The results obtained explain some of the discrepancies existing in the literature regarding the interpretation of the average particle diameters obtained from scattering measurements. The theoretical and practical implications of the results are presented and discussed.

0097-6156/87/0332-0161$06.00/0 © 1987 American Chemical Society

In Particle Size Distribution; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

162

PARTICLE SIZE DISTRIBUTION

Downloaded by MICHIGAN STATE UNIV on September 3, 2013 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch011

The a n a l y s i s of p a r t i c u l a t e systems using l i g h t scattering measurements i s o f g r e a t s c i e n t i f i c and i n d u s t r i a l importance and as s u c h i t has been t r e a t e d e x t e n s i v e l y i n t h e l i t e r a t u r e ( 1 - 5 ) . F o r m o n o d i s p e r s e p a r t i c u l a t e s y s t e m s , t h e t h e o r y and t h e p r a c t i c e o f light scattering have been q u i t e s u c c e s s f u l and a r e w e l l e s t a b l i s h e d . However, t h i s i s n o t t h e case f o r p o l y d i s p e r s e s y s t e m s , where t h e t u r b i d i t y a t a g i v e n w a v e l e n g t h i s r e l a t e d t o t h e p a r t i c l e s i z e d i s t r i b u t i o n ( e q u a t i o n s 1-9). M i e Theory r e l a t e s the measured t u r b i d i t y (τ), t o t h e number, s i z e and o p t i c a l constants of suspended isotropic spherical p a r t i c l e s through the following e q u a t i o n s (1-5) :

- Ν A JO

τ(λ)

2

-

D Q ( a , m ) f ( D ))dD c

(1)



or

Γ

2

J D

Q(a,m)f(D)dD

0

τ(λ)

»

rC O 2

(2)

j

j D f ( D ) )dD c

P

0

a «



W h e r e , τ (λ) i s t h e t u r b i d i t y a t t h e w a v e l e n g t h λ, Ν t h e n u m b e r o f p a r t i c l e s / m l , C t h e c o n c e n t r a t i o n i n g/ml, D the p a r t i c l e d i a m e t e r , f(D) t h e frequency d i s t r i b u t i o n of p a r t i c l e sizes, ρ the density of t h e p a r t i c l e s , m i s t h e c o m p l e x r e f r a c t i v e i n d e x r a t i o a n d Q(a,m) i s t h e M i e o v e r a l l e x t i n c t i o n e f f i c i e n c y . The e x t i n c t i o n e f f i c i e n c y i s g i v e n by

2

Q(a,m) - ( 2 / a )

If

the p a r t i c l e s

(3)

Σ (2n+1) Re(a + b ) n= ι η η

a r e n o n - a b s o r b i n g , e q u a t i o n 3 becomes

2

Qscat - ( 2 / a )

\

y

(2n+1)[|a | n

2

+ |b | n

2

]

In Particle Size Distribution; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

(4)

11.

GARCIA-RUBIO

a

Averages from Turbidity Measurements

(5)

η ζ (α)

ψ^(αιη) - m ψ (am) ζ^(α)

η

b

m Ψ (α) η

i|^(am) - Ψ ( a m ) ψ^(α)

m Ψ (α)

ψ^(απι) - ψ (απι) ζ^(α)

n

(6)

η η

Downloaded by MICHIGAN STATE UNIV on September 3, 2013 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch011

ζ

η

163

(

α

)

ψ

" η

(

α

η

)

+

1

χ

(

η

α

(7)

)

1 / 2

Ψ (α)

~ (π α/2)

Χ (α)

- -(π α/2)

η

J£a}

(8)

1 / 2 η

Ν£α}

(9)

Where, m » (η + i k ) / n and η i s the r e f r a c t i v e index o f the s u s p e n d i n g medium. J ( a ) and N(a) a r e h a l f o r d e r i n t e g r a l B e s s e l a n d Neuman f u n c t i o n s . The s o l u t i o n t o t h e i n t e g r a l e q u a t i o n s 1 o r 2-9 i s r a t h e r d i f f i c u l t , the scattering c o e f f i c i e n t s ( a + b ) h a v e t o be η η c a l c u l a t e d a t e v e r y measured w a v e l e n g t h and e v e r y p a r t i c l e d i a m e t e r f o r a g i v e n f o r m o f t h e p a r t i c l e d i a m e t e r d i s t r i b u t i o n , where t h e f o r m o f t h e d i s t r i b u t i o n i s g e n e r a l l y unknown. T h e p r o b l e m o f s o l v i n g e q u a t i o n s 1 o r 2 f o r t h e p a r t i c l e s i z e d i s t r i b u t i o n i s known as t h e " I n v e r s e S c a t t e r i n g Problem" a n d a l t h o u g h t h i s p r o b l e m h a s b e e n t r e a t e d e x t e n s i v e l y , no g e n e r a l s o l u t i o n s have been r e p o r t e d (3> 6, 7,)* A l t e r n a t i v e approaches t o t h e s o l u t i o n o f t h e i n t e g r a l e q u a t i o n s i n c l u d e t h e assumption o f t h e shape o f t h e p a r t i c l e s i z e d i s t r i b u t i o n (3, 8-12) a n d t h e e s t i m a t i o n o f " E f f e c t i v e Particle D i a m e t e r s " (3, 13-15). I f t h e form o f t h e p a r t i c l e s i z e d i s t r i b u t i o n i s known o r i t can be assumed t h e n , the main problem i n t h e s o l u t i o n o f e q u a t i o n s 1 or 2 stems from t h e complex c a l c u l a t i o n s required t o evaluate the integral 0

0

(10)

A number o f d i s t r i b u t i o n f u n c t i o n s h a v e b e e n identified e x p e r i m e n t a l l y f o r a v a r i e t y o f systems (3) and, i n p a r t i c u l a r , t h e Log-Normal d i s t r i b u t i o n i s e x t e n s i v e l y used f o r t h e c a l c u l a t i o n o f t h e i n t e g r a l a n d f o r t h e e v a l u a t i o n o f t h e moments o f t h e p a r t i c l e s i z e d i s t r i b u t i o n ( 8 - 1 2 ) . The problem w i t h t h i s approach i s t h a t , i n g e n e r a l , t h e shape o f t h e p a r t i c l e s i z e d i s t r i b u t i o n i s unknown and t h u s , t h e average p a r t i c l e d i a m e t e r s o b t a i n e d a r e c o n d i t i o n a l upon

In Particle Size Distribution; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by MICHIGAN STATE UNIV on September 3, 2013 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch011

164

PARTICLE SIZE DISTRIBUTION

the v a l i d i t y of the assumption regarding the form of the distribution. D i r e c t a p p l i c a t i o n o f the s c a t t e r i n g equations f o r monodisperse systems t o p a r t i c u l a t e systems that a r e p o l y d i s p e r s e , w i l l clearly r e s u l t i n the e s t i m a t i o n o f average o r e f f e c t i v e p a r t i c l e diameters. The i n t e r p r e t a t i o n of these average diameters i s n o t s t r a i g h t f o r w a r d . Q u o t i n g K e r k e r ( 3 ) , " t h e r e i s no s i m p l e m e t h o d o f c o m p a r i n g t h e s i z e d e t e r m i n e d by t h e e l e c t r o n m i c r o s c o p e w i t h t h e a v e r a g e s i z e o b t a i n e d from l i g h t s c a t t e r i n g . Indeed, not only w i l l d i f f e r e n t l i g h t s c a t t e r i n g methods g i v e d i f f e r e n t a v e r a g e s , b u t each particular d i s t r i b u t i o n o f s i z e s w i l l h a v e i t s own c h a r a c t e r i s t i c average." Maron, P i e r c e and U l e v i t c h (V3) e x p e r i m e n t a l l y i n v e s t i g a t e d t h i s p r o b l e m a n d r e p o r t e d good agreement between t h e p a r t i c l e diameters obtained from s p e c i f i c t u r b i d i t y measurements t a k e n a t s e v e r a l w a v e l e n g t h s , and t h e t u r b i d i t y average p a r t i c l e diameters c a l c u l a t e d from e l e c t r o n m i c r o s c o p y m e a s u r e m e n t s o f t h e s i z e d i s t r i b u t i o n . D o b b i n s a n d J i z m a g i a n ( V4), on t h e o t h e r hand, noted t h a t f o r a wide v a r i e t y o f monomodal d i s t r i b u t i o n functions w i t h r a d i i comparable t o and l a r g e r t o t h e w a v e l e n g t h , t h e s p e c i f i c t u r b i d i t y c a n be a d e q u a t e l y represented i n terms of the volume s u r f a c e mean d i a m e t e r a n d t h e mean s u r f a c e s c a t t e r i n g efficiency.

2 ρ

D

w h e r e t h e mean s u r f a c e

3 2

scattering

0

i s given

by

»00

f CO Q(a,m) - J

efficiency

D

2

Q(a,m) f ( d ) dD/ J

D

2

f ( D ) dD

Since t h e r a t i o Q(a,m)/ D was s h o w n , n u m e r i c a l l y , t o be i n d e p e n d e n t o f t h e shape o f t h e d i s t r i b u t i o n , D o b i n s and J i z m a g i a n c o m p u t e d t a b l e s o f t h e mean s u r f a c e s c a t t e r i n g e f f i c i e n c y as a f u n c t i o n o f t h e v o l u m e s u r f a c e mean d i a m e t e r f o r t h e e v a l u a t i o n o f D d i r e c t l y from t r a n s m i s s i o n measurements. More r e c e n t l y , Bagchi and V o i d , a n a l y s e d l a t e x p a r t i c l e s c o n s i d e r a b l y l a r g e r than t h e wavelength of the incident radiation where t h e extinction c o e f f i c i e n t i s approximately independent of the p a r t i c l e s i z e . T h e i r r e s u l t s suggest that, i n t h e p a r t i c l e range i n v e s t i g a t e d , t h e s p e c i f i c t u r b i d i t y c a n be d i r e c t l y r e l a t e d to the f i r s t three moments o f t h e p a r t i c l e s i z e d i s t r i b u t i o n a n d t o t h e v o l u m e t o surface average p a r t i c l e diameter. U n f o r t u n a t e l y , the polydispersities of the l a t i c e s investigated were r e l a t i v e l y s m a l l p r e v e n t i n g any d e f i n i t i v e s t a t e m e n t as t o t h e average that best correlates the data. 3 2

3 2

Ideally, i t i s desirable t o solve equations 1 or 2 f o r the complete s i z e d i s t r i b u t i o n whenever p o l y d i s p e r s e s y s t e m s a r e b e i n g a n a l y s e d . However, from t h e c o m p u t a t i o n a l point of view, t h e d i r e c t application of the equations f o r monodisperse systems i s more

In Particle Size Distribution; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

11.

165

Averages from Turbidity Measurements

GARCIA-RUBIO

appealing. I t i s therefore necessary t o establish both, the physical meaning o f the " e f f e c t i v e " average diameters as well as t h e i n f o r m a t i o n c o n t e n t o f t h e t u r b i d i t y d a t a i n t e r m s o f t h e moments o f the p a r t i c l e s i z e d i s t r i b u t i o n . Problem

F o r m u l a t i o n And A n a l y s i s

Downloaded by MICHIGAN STATE UNIV on September 3, 2013 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch011

By f i r s t c o n s i d e r i n g t h e R a y l e i g h r e g i m e a n d e x p a n d i n g t h e c o m p l e x scattering c o e f f i c i e n t s i n power s e r i e s o f a , i t c a n be shown t h a t t h e e x t i n c t i o n c a n b e a p p r o x i m a t e d b y ( 1 , 3t 1 7 )

Q(a,m) = V

a + V a

3

1

1

+ I\ a* + V a

5

(12)

+

or Q(a,m) = r D + Γ x

D

3

3

u

+ I\ D

+ Γ

D

5

5

(13)

+

Where t h e c o e f f i c i e n t s Γ and r's are i m p l i c i t functions of the o p t i c a l constants and thus o f the wavelength ( s e e Appendix I ) . For monodisperse systems, replacement o f e q u a t i o n 13 i n t o e q u a t i o n 2, y i e l d s a n a p p r o x i m a t i o n t o t h e t u r b i d i t y i n t e r m s o f powers o f t h e p a r t i c l e d i a m e t e r

[ T

τ(λ) =

x

+ Γ

3

D

2

+ I\ D

3

+ Γ

1

5

D* +

]

(14)



F o r p o l y d i s p e r s e s y s t e m s , r e p l a c e m e n t o f e q u a t i o n 13 i n t o e q u a t i o n 2 for every p a r t i c l e diameter, y i e l d s an approximation t o the t u r b i d i t y i n t e r m s o f r a t i o s o f moments o f t h e p a r t i c l e size d i s t r i b u t i o n w i t h o u t h a v i n g t o make a s s u m p t i o n s r e g a r d i n g t h e s h a p e of t h e d i s t r i b u t i o n :

τ(λ) »

[ I\ D 2p D

3

+ Γ

3

D

5

+ I\ D

6

+ Γ

5

D

7

+

]

(15)

3

W h e r e Dn r e p r e s e n t s t h e n t h moment o f t h e p a r t i c l e For monodisperse systems i n t h e large p a r t i c l e t h e e x t i n c t i o n e f f i c i e n c y c a n be assumed c o n s t a n t e q u a l t o 2, e q u a t i o n 2 b e c o m e s

diameter. s i z e regime, where and a p p r o x i m a t e l y

τ(λ) - 3 C I / ( p D) (16)

In Particle Size Distribution; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

166

PARTICLE SIZE DISTRIBUTION

For p o l y d i s p e r s e s y s t e m s e q u a t i o n 2 becomes

- 3 C i

τ(λ)

Downloaded by MICHIGAN STATE UNIV on September 3, 2013 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch011

Where D

/(p

i n the

large particle

D )

regime

(17)

3 2

i s the volume t o s u r f a c e average p a r t i c l e

3 2

size

diameter.

E q u a t i o n s 15 a n d 17 p o i n t t o s o m e o f t h e d i f f i c u l t i e s i n the i n t e r p r e t a t i o n o f t h e t u r b i d i t y d a t a i n t e r m s o f a v e r a g e s o r moments o f t h e p a r t i c l e s i z e d i s t r i b u t i o n . F r o m e q u a t i o n 15 i t i s c l e a r t h a t the i n t e r p r e t a t i o n of the diameter d e p e n d s on t h e l e v e l of approximation used to evaluate the e x t i n c t i o n efficiency. F u r t h e r m o r e , i t s u g g e s t s t h a t , i n p r i n c i p l e , a s i g n i f i c a n t number o f moments a n d t h e r e f o r e t h e s h a p e o f t h e p a r t i c l e s i z e distribution c a n be e v a l u a t e d d i r e c t l y f r o m t u r b i d i t y e x p e r i m e n t s . The only l i m i t a t i o n being the s i g n a l to noise r a t i o of the measurements. On t h e o t h e r hand, i n t h e l a r g e p a r t i c l e s i z e regime (equation 17), o n l y one a v e r a g e , t h e v o l u m e t o s u r f a c e a v e r a g e i s a v a i l a b l e . I f t h e p a r t i c l e s i z e d i s t r i b u t i o n i s k n o w n , o n l y t w o moments ( t h e s e c o n d a n d t h e t h i r d ) c a n be o b t a i n e d d i r e c t l y f r o m t u r b i d i t y experiments. The p r o b l e m o f d e c i d i n g on a p a r t i c u l a r average diameter ( o r d i a m e t e r s ) t o be u s e d i n t h e c a l c u l a t i o n of the extinction e f f i c i e n c y c a n be f o r m u l a t e d a s f i n d i n g a v e r a g e p a r t i c l e d i a m e t e r s , Dav, s u c h t h a t

(18) ο where aav subject

= ïïDav/λ

t o the f o l l o w i n g

constraints:

1.

The a v e r a g e d i a m e t e r ( s ) , a s behavior, should s a t i s f y the equations ( i e : the r e s u l t i n functional f o r m as e q u a t i o n s

r e p r e s e n t a t i v e of the p o p u l a t i o n a n a l y t i c behavior of the scattering g e q u a t i o n s s h o u l d have t h e same 1*1 a n d 1 6 ) .

2.

The e q u a t i o n s o b t a i n e d f o r t h e a v e r a g e p a r t i c l e diameter(s) should reduce to the equations developed f o r monodisperse systems ( i e : the r e s u l t i n g equations s h o u l d reduce t o e q u a t i o n s 14 a n d 16 f o r m o n o d i s p e r s e s y s t e m s ) .

N o t e t h a t t h e f o r m u l a t i o n s t a t e d by e q u a t i o n 18 i s d i f f e r e n t from t h a t o f D o b b i n s e t a l ( E q u a t i o n 1 1 ) i n t h a t we a r e s e e k i n g a s o l u t i o n t o t h e i n t e g r a l e q u a t i o n 18 i n t e r m s o f o n e o r s e v e r a l o f the moments of the p a r t i c l e s i z e d i s t r i b u t i o n and i n t h a t , s i m u l t a n e o u s l y , we a r e i n q u i r i n g a s t o t h e i n f o r m a t i o n c o n t e n t o f the s c a t t e r i n g function with regards to the p a r t i c l e size distribution.

In Particle Size Distribution; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by MICHIGAN STATE UNIV on September 3, 2013 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch011

11. GARCIA-RUBIO

167

Averages from Turbidity Measurements

T h e r e a r e two r e g i o n s i n t h e diameter space where t h e b e h a v i o r of t h e a v e r a g e d i a m e t e r ( s ) c a n e a s i l y b e i n v e s t i g a t e d : t h e r e g i o n where t h e diameter i s s m a l l compared t o t h e wavelength o f t h e incident r a d i a t i o n ( i e : the Rayleigh regime) a n d t h e r e g i o n where t h e d i a m e t e r i s much l a r g e r t h a n t h e w a v e l e l e n g t h ( i e : t h e l a r g e particle size regime). I n the l a r g e p a r t i c l e s i z e regime, i t i s c l e a r f r o m e q u a t i o n 17 t h a t t h e o n l y a v e r a g e o b t a i n e d f r o m t u r b i d i t y measurements i s t h e volume t o s u r f a c e average d i a m e t e r . I t i s a l s o e v i d e n t t h a t e q u a t i o n 17 h a s t h e same f u n c t i o n a l f o r m a s e q u a t i o n 16 a n d t h a t i n f a c t r e d u c e s t o e q u a t i o n 16 f o r m o n o d i s p e r s e systems. Thus s a t i s f y i n g t h e c o n s t r a i n t s imposed f o r the s e l e c t i o n o f the average diameters. Note t h a t although r a t i o s o f s u c c e s s i v e moments w i l l s a t i s f y t h e c o n s t r a i n t s imposed, o n l y D r e s u l t s d i r e c t l y from e q u a t i o n 2. 3 2

For t h e a n a l y s i s i n t h e s m a l l p a r t i c l e s i z e regime, r a t h e r than approximating t h e s c a t t e r i n g e f f i c i e n c y w i t h a power s e r i e s a s i t w a s d o n e t o o b t a i n e q u a t i o n 1 5 , e q u a t i o n 18 w i l l b e r e p l a c e d f i r s t into equation 2 t o obtain

Q(aav,m) τ

( ) λ

±

β

±

(19)

Α

2 ρ

D

3 2

Then o n t h e b a s i s o f t h e f i r s t c o n s t r a i n t , t h e e x t i n c t i o n i s expanded i n power s e r i e s o f a a v t o y i e l d

τ(λ) =

3

C

1



ϊ

2 ρ D

Dav + Γ

3

Dav

3

+ I \ Dav* + Γ

5

Dav

5

efficiency

+ ..]

(20)

3 2

n o t e t h a t by f o l l o w i n g t h i s a p p r o a c h t h e e r r o r s i n t h e a p p r o x i m a t i o n o f Q(a,m) a r e n o t i n t e g r a t e d . T h e r e a r e many a v e r a g e s t h a t when s u b s t i t u t e d i n t o e q u a t i o n 20 w i l l r e d u c e i t t o e q u a t i o n 14 f o r m o n o d i s p e r s e distributions. However, o n l y t h e D a v e r a g e y i e l d s t h e same f u n c t i o n a l f o r m a s e q u a t i o n 14 f o r p o l y d i s p e r s e a n d m o n o d i s p e r s e p a r t i c l e size d i s t r i b u t i o n s . T h e r e f o r e , i t f o l l o w s t h a t t h e volume t o surface average diameter s a t i s f i e s t h e c o n s t r a i n t s imposed a t b o t h , t h e s m a l l a n d t h e l a r g e p a r t i c l e s i z e r e g i m e s . E q u a t i o n s 15 a n d 20 provide twoequivalent i n t e r p r e t a t i o n s f o r the t u r b i d i t y data i nt h e s m a l l p a r t i c l e s i z e r e g i m e . E q u a t i o n 20 i s p a r t i c u l a r l y a t t r a c t i v e because a s i n g l e average c o u l d be used f o r t h e i n t e r p r e t a t i o n o f t u r b i d i t y d a t a i n b o t h t h e s m a l l and l a r g e p a r t i c l e s i z e regimes. However, i t r e m a i n s t o d e m o n s t r a t e i f t h i s i s a l s o t r u e f o r t h e intermediate s i z e regime ( i e : D - λ ) . To s e a r c h f o r t h e a v e r a g e d i a m e t e r ( s ) t h a t w o u l d satisfy e q u a t i o n 18 i n t h e i n t e r m e d i a t e p a r t i c l e s i z e r e g i m e , a n u m e r i c a l a p p r o a c h was t a k e n . T h e o b v i o u s a p p r o a c h i s t o c a l c u l a t e t h e r i g h t h a n d s i d e o f e q u a t i o n 18 f o r a v a r i e t y o f d i s t r i b u t i o n s a n d a 3 2

In Particle Size Distribution; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by MICHIGAN STATE UNIV on September 3, 2013 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch011

168

PARTICLE SIZE DISTRIBUTION

s u f f i c i e n t l y broad range o f t h e i r parameter v a l u e s and t h e n , s e a r c h for a d i a m e t e r t h a t when s u b s t i t u t e d i n t o t h e e x p r e s s i o n f o r t h e e x t i n c t i o n e f f i c i e n c y ( i e : e q u a t i o n 3 ) , s a t i s f i e s e q u a t i o n 18. A c o m p a r i s o n b e t w e e n D a v a n d t h e moments o r r a t i o s o f moments o f t h e d i s t r i b u t i o n i n question w i l l indicate which average d i a m e t e r s a t i s f i e s e q u a t i o n 1 8 . A m a j o r d i f f i c u l t y w i t h t h e above approach stems from the diameter b e i n g a m u l t i v a l u e d f u n c t i o n o f t h e e x t i n c t i o n e f f i c i e n c y ( 1-3). I n o t h e r words, t h e r e i s not a unique v a l u e f o r t h e d i a m e t e r as a f u n c t i o n o f t h e e x t i n c t i o n efficiency. An a l t e r n a t i v e a p p r o a c h t h a t c i r c u m v e n t s t h e u n i q u e n e s s p r o b l e m i s to s u b s t i t u t e t h e moments a n d t h e r a t i o s o f moments o f t h e d i s t r i b u t i o n i n t o t h e e x t i n c t i o n e f f i c i e n c y and then s e l e c t those t h a t b e s t a p p r o x i m a t e t h e c o n d i t i o n s t a t e d by e q u a t i o n 18. T h e e f f e c t o f t h e s h a p e o f t h e d i s t r i b u t i o n c a n be t a k e n i n t o c o n s i d e r a t i o n , w i t h o u t l o s s o f g e n e r a l i t y , i f i t i s assumed t h a t t h e s h a p e o f t h e d i s t r i b u t i o n i n q u e s t i o n c a n be a p p r o x i m a t e d w i t h a w e i g h t e d sum o f g a u s s i a n d e n s i t y f u n c t i o n s ( 1 6 )

f(D)

subject

- ^

to

v ( j ) N(D, y ( j ) ,

j.

(21)

o(j))

v(j) » 1

and where p ( j ) and o ( j ) a r e t h e p a r a m e t e r s f o r t h e j t h a p p r o x i m a t i o n function.

Replacement

o f e q u a t i o n 21 i n t o

Q(aav,m) - ^

18

yields

v( j ) Q ( a a v ( j ) , m) / ^

v(j) D (j) 2

(22)

E q u a t i o n 22 i n d i c a t e s t h a t t h e s u r f a c e a v e r a g e s c a t t e r i n g e f f i c i e n c y c a n be e x p r e s s e d a s a a l i n e a r c o m b i n a t i o n o f t h e a v e r a g e e f f i c i e n c y for each of the a p p r o x i m a t i o n f u n c t i o n s . T h e r e f o r e , i t i s only necessary t o f i n d which averages s a t i s f y e q u a t i o n 8 f o r a g a u s s i a n d i s t r i b u t i o n . E x t e n s i v e c o m p u t a t i o n s w i t h a v a r i e t y o f parameter v a l u e s i n d i c a t e s t h a t Dav does n o t c o r r e s p o n d t o any p a r t i c u l a r a v e r a g e o r r a t i o o f moments o f t h e p a r t i c l e s i z e d i s t r i b u t i o n . T h i s c a n be s e e n i n f i g u r e s 1 - 4 . W h e r e t h e f r a c t i o n a l e r r o r s , b e t w e e n t h e s u r f a c e average e x t i n c t i o n e f f i c i e n c y and t h e e x t i n c t i o n c a l c u l a t e d with t r i a l averages of the p a r t i c l e s i z e d i s t r i b u t i o n ( ε « 1 Q ( a a v , m ) / Q ( a , m ) ) , a r e s h o w n a s f u n c t i o n o f t h e s i z e p a r a m e t e r a. C l e a r l y , i t appears t h a t d i f f e r e n t p a r t i c l e a v e r a g e s w i l l be m o r e e f f e c t i v e a t d i f f e r e n t s i z e parameter v a l u e s . I n g e n e r a l , averages i n c l u d i n g h i g h e r moments a p p e a r t o p e r f o r m b e t t e r o v e r a l l . The r e a s o n f o r t h e o b s e r v e d p e r f o r m a n c e c a n be b e t t e r u n d e r s t o o d w i t h

In Particle Size Distribution; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by MICHIGAN STATE UNIV on September 3, 2013 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch011

11.

GARCIA-RUBIO

AveragesfromTurbidity Measurements

169

F i g . 1. A p p r o x i m a t e b e h a v i o r o f t h e f r a c t i o n a l e r r o r a s a f u n c t i o n o f t h e m e a n s i z e p a r a m e t e r αχ » π Ό /\ and t h e f r a c t i o n a l standard d e v i a t i o n σ. W h e r e Ώ i s t h e mean p a r t i c l e d i a m e t e r . ι

1

In Particle Size Distribution; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by MICHIGAN STATE UNIV on September 3, 2013 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch011

170

PARTICLE SIZE DISTRIBUTION

F i g . 2 . A p p r o x i m a t e b e h a v i o r o f t h e f r a c t i o n a l e r r o r as a f u n c t i o n o f t h e mean s i z e p a r a m e t e r α * π D /X a n d t h e f r a c t i o n a l s t a n d a r d d e v i a t i o n σ. Where D i s the s u r f a c e average p a r t i c l e diameter. 2

2

2

In Particle Size Distribution; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

Downloaded by MICHIGAN STATE UNIV on September 3, 2013 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch011

11.

GARCIA-RUBIO

Averages from Turbidity Measurements

171

0.4 J

F i g . 3. A p p r o x i m a t e b e h a v i o r o f t h e f r a c t i o n a l e r r o r a s a f u n c t i o n o f t h e mean s i z e p a r a m e t e r α * π D /X and t h e f r a c t i o n a l s t a n d a r d d e v i a t i o n σ. Where D i s t h e mean v o l u m e t o s u r f a c e average p a r t i c l e diameter. 3 2

3 2

3 2

In Particle Size Distribution; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

172

PARTICLE SIZE DISTRIBUTION

r e f e r e n c e t o f i g u r e 5. A s s u m e t h a t f o r a m a t e r i a l h a v i n g a g a u s s i a n p a r t i c l e s i z e d i s t r i b u t i o n and t h e e x t i n c t i o n p r o p e r t i e s r e p r e s e n t e d i n t h e f i g u r e , m e a s u r e m e n t s a r e t o be t a k e n a t a w a v e l e n g t h λ c o r r e s p o n d i n g t o a s i z e p a r a m e t e r α - 4. N o t e t h a t , i n i t i a l l y , m o s t of the p a r t i c l e s i z e d i s t r i b u t i o n l i e s b e f o r e t h e f i r s t extinction maximum. T h i s i m p l i e s t h a t t h e w e i g h t i n g on D i n e q u a t i o n 18 w i l l increase together w i t h the diameter squared. Therefore, the a v e r a g e d i a m e t e r t h a t s a t i s f i e s e q u a t i o n 18 w i l l c o r r e l a t e b e t t e r w i t h a v e r a g e s c o n t a i n i n g h i g h e r moments o f t h e p a r t i c l e s i z e d i s t r i b u t i o n (ie: the t u r b i d i t y a v e r a g e DT). Now assume t h a t two more m e a s u r e m e n t s a r e t o be t a k e n a t w a v e l e n g t h s A / 2 a n d λ / 4 . For t h i s p u r p o s e t h e p a r t i c l e s i z e d i s t r i b u t i o n i s mapped a g a i n o n t o t h e α domain. Note t h a t the p a r t i c l e s i z e d i s t r i b u t i o n has changed r e l a t i v e t o the f i r s t measurement, the p a r t i c l e s i z e d i s t r i b u t i o n a p p e a r s t o have been s h i f t e d and b r o a d e n e d as t h e w a v e l e n g t h was reduced. C l e a r l y , the r e s u l t from changing the wavelength i s a c h a n g e i n t h e r a n g e o f v a l u e s o f Q(a,m) w e i g h t i n g t h e D i n equation 18 t h u s r e s u l t i n g n o t o n l y i n d i f f e r e n t v a l u e s o f t h e s u r f a c e average e x t i n c t i o n e f f i c i e n c y but a l s o , i n d i f f e r e n t v a l u e s of t h e a v e r a g e d i a m e t e r t h a t w i l l s a t i s f y e q u a t i o n 18. A s t h e w a v e l e n g t h i s reduced, the d i s t r i b u t i o n continues to s h i f t u n t i l the l a r g e p a r t i c l e s i z e r e g i m e i s r e a c h e d a n d t h e v a l u e o f Q(a,ra) b e c o m e s independent of the shape of the p a r t i c l e s i z e d i s t r i b u t i o n . I n c r e a s i n g t h e v a r i a n c e o f the p a r t i c l e s i z e d i s t r i b u t i o n w i l l have a s i m i l a r e f f e c t o n t h e a v e r a g e s s a t i s f y i n g e q u a t i o n 18 s i n c e t h e i n c l u s i o n o f l a r g e r and s m a l l e r s i z e s w i l l a s y m m e t r i c a l l y a f f e c t t h e w e i g h t i n g o n D . A n i n d i c a t i o n a s t o how d i f f e r e n t m o m e n t s o f t h e p a r t i c l e s i z e d i s t r i b u t i o n a f f e c t the c a l c u l a t i o n of the e x t i n c t i o n e f f i c i e n c y c a n be o b t a i n e d d i r e c t l y f r o m t h e i n t e r p r e t a t i o n of Q ( a , m ) f o r a n o m a l o u s d i f f r a c t i o n ( i e : [m - 1]

2

2

2

9 ( n + k ) + 24(n - k ) + 16

( 2nk + 4nk ( n - k - 3 ) ) 2

+ ^

2

Where: (n

2

2

2

2

2

+ k ) + n - k - 2

Pi

ρ

_ 6nk

ρ

=

2

R l

2

2

2

3

2

2

2

2

2

(η - k ) " + 22(η - k ) - -Ι60(η - k ) - 200(η - k )

2

400 - 4 n k

+

2

2

2

2

2

[24(η - k ) + 4 n k Ζ

2

3

2

2

3

2

+ 39]

2

2

2nk[2(n - k ) - 12(n - k ) + 205(n ~ k ) Ζ

2

2

+ 8n k (n

Ζ

-

2

2

2

2

- k Ζ

2

+ 9) - 198]

2

2

(η + k ) + 4 (η - k ) + 4

Replacement of the value α » πϋ/λ i n t o equation 17, y i e l d s equation 17a. Where the i t h c o e f f i c i e n t i s now given by

Γ

Α

- Γ·

(π/λ)

1

In Particle Size Distribution; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

178

PARTICLE SIZE DISTRIBUTION

APPENDIX I I

T h i s a p p e n d i x r e p o r t s t h e w e i g h t s f o r t h e moments o f t h e p a r t i c l e s i z e d i s t r i b u t i o n o b t a i n e d f r o m an e i g h t o r d e r T a y l o r S e r i e s a p p r o x i m a t i o n t o t h e s c a t t e r i n g e f f i c i e n c y f o r t h e anomalous d i f f r a c t i o n case

Downloaded by MICHIGAN STATE UNIV on September 3, 2013 | http://pubs.acs.org Publication Date: February 12, 1987 | doi: 10.1021/bk-1987-0332.ch011

K

l

A)

- -B ( A t -

x

0

2

K

2

= (B/2!)(A t

K

3

= (-B/3!)(A t

- 2A t

0

-

x

3

K„ * ( B A ! ) ( A e

5

= (-B/5!)(A t

K

6

« (B/6!)(A t

K

7

- (-B/7!)(A t

H

x

6

- 6Α^

0

2

*

3

- 10A t

3

2

5

A,)

+ 4A t

2

- 5k t

5

0

- 3A t - 6A t

x

K

2

2

3

- MA t

o

2

- 3Ait

0

A )

+

A J

+ 10A t

2

+ 20A t

3

3

- 15A f 2

3

+ 5A„t + 15A„t

A ) 5

2

- 6A t

-

- 21A t

2

-

- 56A t

3

-

5

A.)

A t

8

- 7A t

=* ( - B / 8 ! ) ( A t

5

- 28A t

6

+ 35A,t"

2

3

+ 35A t H

5

7

8

- 8A t

7

t

28A t

- 21A t

A )

0

2

+ 56A t

2

+ 8A t

6

where

6

x



6

K

7

0

7

-

3

5

+ 70A t H

H

A ) 8

t * 2-nk/\

0

Β » 4cos(6)/Y

2

Ύ = 2π(η - η ) / λ 0

The A c o e f f i c i e n t s

0

c a n be g e n e r a l i z e d f o r e v e n

for

η even

An = ( c o s ( 2 B ) - n ) ( c o s 6 ) y

for

η odd

An « (cosB s i n ( 2 8 ) - η s i n B )

R E C E I V E D November 12,

and odd i n d e c e s

n

Ύ

Π

1986

In Particle Size Distribution; Provder, T.; ACS Symposium Series; American Chemical Society: Washington, DC, 1987.

5