Preparation, Properties, and Uses of Borate Esters ROBERT M. WASHBURN, ERNEST LEVENS, CHARLES F. ALBRIGHT, and FRANKLIN A. BILLIG
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
Research Department, American Potash & Chemical Corp., Whittier, Calif.
The esters of orthoboric a c i d , although known for more than 100 years (58), have only recently become commercially a v a i l a b l e . This paper presents process development d a t a ; the synthesis a n d properties of a new series of hydrolytically stable borates; the v a r i a tion in boiling point, density, index of refraction, a n d viscosity with temperature; a summary of reactions and uses; a n d physical evidence that tetracoordinate boron is involved in the reactions of borate esters.
A n u m b e r o f m e t h o d s f o r p r e p a r i n g b o r a t e esters h a v e been d e s c r i b e d . They i n c l u d e : r e a c t i o n o f a n a l c o h o l ( o r p h e n o l ) w i t h b o r o n t r i c h l o r i d e (48, 134) ( E q u a t i o n 1 ) ; b o r o n a c e t a t e (8, 146) ( E q u a t i o n 2 ) ; b o r i c a c i d (47, lp) ( E q u a t i o n 3 ) ; b o r o n o x i d e (188) ( E q u a t i o n 4 ) ; o r s o d i u m b o r o h y d r i d e (36) ( E q u a t i o n 5 ) ; a n d t r a n s e s t e r i f i c a t i o n w i t h a l o w e r b o i l i n g b o r a t e ester (170, 204) ( E q u a t i o n 6 ) . W h e n w a t e r is a p r o d u c t o f t h e e s t e r i f i c a t i o n , i t h a s been r e m o v e d b y a z e o t r o p i c d i s t i l l a t i o n w i t h a n excess o f t h e a l c o h o l (14, 92, 164) t m e d i u m (149) ; o r b y d e h y d r a t i o n w i t h s u l f u r i c a c i d (45, 197), c o p p e r s u l f a t e (56, 93), o r b o r o n o x i d e (120, 126, 172, 197) ( E q u a t i o n 7 ) . o
r
a
n
m
e
r
3 R O H + B C 1 -> ( R O ) B + 3 H C 1 3
(1)
3
6 R O H + ( C H C O O ) B 0 -> 2 ( R O ) B + 4 C H C O O H + H 0 3
4
2
3
3
2
3 R O H + H B 0 -> ( R O ) B + 3 H 0 3
3
3
6 R O H + B 0 -> 2 ( R O ) B + 3 H 0 2
3ROH + NaBH
4
3
3
(4)
2
+ H + -> ( R O ) B + 4 H + N a 3
(2) (3)
2
2
(5)
+
3 R O H + ( R O ) B -> 3 ( R O ) B + 3 R O H
(6)
3 R O H + B 0 -> ( R O ) B + H B 0
(7)
3
2
3
3
3
3
3
S t a n l e y (180) h a s c l a i m e d t h e p r e p a r a t i o n of b o r a t e esters as a n i n t e r m e d i a t e s t e p i n t h e c o n v e r s i o n o f a l k y l e n e s i n t o alcohols. T h e alkylene is converted t o the a l k y l sulfate, a l k y l phosphate, o r a l k a r y l sulfonate b y absorption into acid o r acid ester; t h e b o r a t e ester f o r m e d o n s u b s e q u e n t r e a c t i o n w i t h b o r i c a c i d i s t h e n d i s t i l l e d a n d hydrolyzed to the alcohol: 3S0 (OEt) 2
2
+ H B 0 -> 3 S 0 ( O E t ) O H 4- ( E t O ) B 3
3
2
8
1
H 3 B
°
3
> 3H S0 + (EtO) B 2
4
8
129
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
(8)
130
ADVANCES IN CHEMISTRY SERIES
B a r n e s a n d c o w o r k e r s (15) r e c e n t l y c l a i m e d t h e p r o d u c t i o n o f m e t h y l , e t h y l , p r o p y l , a n d b u t y l borates b y reaction of b o r o n trifluoride etherate w i t h the alcohol and sodium alcoholate:
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
BF
3
: 0(C H ) 2
5
2
+ 3NaOCH
3
+ C H O H - • [B(OCH ) + CH OH] azeotrope 3
3
3
3
+ 3NaF + (C H ) 0 2
6
2
(9)
I n g e n e r a l , a t t e m p t s t o p r e p a r e m i x e d b o r a t e esters o f m o n o h y d r o x y c o m p o u n d s r e s u l t i n d i s p r o p o r t i o n a t i o n t o t h e c o r r e s p o n d i n g s y m m e t r i c a l esters (47, 48, 170, 188). M i x e d esters h a v e , h o w e v e r , b e e n s y n t h e s i z e d b y use o f a p o l y h y d r i c a l c o h o l ( e t h y l e n e glycol) or phenol (catechol) i n conjunction w i t h a monoalcohol t o give t h e cyclic p r o d u c t s , I a n d I I (118, 188): OCH
2
HOB
ROB< OCH,
χ
Ο
\
0
I
II T h e s i m p l e b o r a t e s o f p o l y h y d r i c a l c o h o l s h a v e b e e n d e s c r i b e d (3, 4$, 146> 151, 170). T h e effectiveness o f c e r t a i n p o l y h y d r i c a l c o h o l s ( m a n n i t o l , g l y c e r o l ) u s e d i n t h e s t a n d a r d a l k a l i n e t i t r a t i o n o f b o r i c a c i d h a s b e e n a t t r i b u t e d b y B ô e s e k e n (23, 26, 27) t o t h e f o r m a t i o n i n w a t e r o f s t r o n g a c i d s i n w h i c h t h e esterified b o r o n a t o m has become tetracoordinate ( I I I ) : OCH
HCO
H
+
OCH
HCO III
T h e t e t r a h e d r a l s t r u c t u r e o f b o r o n i n esters o f c i s - c l i h y d r o x y c o m p o u n d s w a s e s tablished b y resolution of b o r o n bis-(y-chlorocatechol) a n d of b o r o n b i s - ( 3 - n i t r o c a t e chol), each into two optically active forms. S i m i l a r l y , the borosalicylate ion a n d the α - h y d r o x y b u t y r a t e d e r i v a t i v e w e r e f o u n d t o b e o p t i c a l l y a c t i v e (23-25). O n the other h a n d , catechol borate, p r e p a r e d b y m e l t i n g together catechol a n d boron oxide, w a s assigned t h e s t r u c t u r e ( I V ) : -O
( ) - ^ \ ^>B--O—i*/
-ο
ο IV
A l t h o u g h t h e ester is h y d r o l y z e d b y w a t e r , t h e salts are s t a b l e (165-167). This suggests t h a t b o r a t e s h a v i n g t r i g o n a l c o p l a n a r b o r o n are f o r m e d u n d e r a n h y d r o u s c o n d i t i o n s , w h i l e b o r a t e s h a v i n g t e t r a h e d r a l b o r o n as t h e c e n t e r o f s y m m e t r y r e s u l t w h e n water is present. T h e u n u s u a l l y h i g h resistance t o h y d r o l y s i s of t h e a l k a n o l a m i n e b o r a t e s a n d a m i n o e t h y l diarylborinates has been a t t r i b u t e d t o t h e tetrahedral configuration of boron i n a t r y p t i c h structure resulting f r o m the transannular coordination of a p a i r of electrons o n t h e n i t r o g e n a t o m w i t h t h e o p e n sextet o n t h e b o r o n (85, 62, 119, 181). T h a t triisopropanolamine borate is considerably more hydrolysis-resistant t h a n t r i e t h a n o l a m i n e b o r a t e (181) m a y r e s u l t f r o m t h e a d d i t i o n a l s t e r i c effect i n t h e f o r m e r . T h e p o l y f u n c t i o n a l i t y of boric acid ( o r b o r o n oxide) a n d the p o l y h y d r o x y c o m pounds r e a d i l y leads t o t h e f o r m a t i o n of condensation p o l y m e r s a n d copolymers. S e v e r a l p a t e n t s d e s c r i b i n g s u c h m a t e r i a l s are l i s t e d i n T a b l e X I X .
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
131
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
WASHBURN, LEVENS, ALBRIGHT, AND BILLIG—BORATE ESTERS
Figure 1. of
Apparatus for laboratory study
azeotropic distillation
method
A. Miter flask B. Vigreux column C. Water-cooled azeotrope decanter T h e o n l y p a r t i a l l y esterified b o r i c a c i d [ R O B ( O H ) ] w h i c h has b e e n r e p o r t e d i s 1 - m e t h y l b o r i c a c i d (142). S c a t t e r g o o d , M i l l e r , a n d G a m m o n (164) a n d S t e i n b e r g a n d H u n t e r (181) h a v e suggested t h a t t h e p a r t i a l l y esterified b o r i c a c i d s o c c u r a s i n t e r m e d i a t e s i n t h e stepwise h y d r o l y s i s o f t h e f u l l y esterified c o m p o u n d s . G e r r a r d 2
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
132
ADVANCES IN CHEMISTRY SERIES
Figure 2.
Apparatus
for large-scale laboratory
azeotropic distillation
a n d L a p p e r t (73) p o s t u l a t e d a s i m i l a r m e c h a n i s m f o r t h e d e a l k y l a t i o n o f t h e t r i e s t e r s b y h y d r o g e n h a l i d e s , a l t h o u g h n o e v i d e n c e f o r the i n t e r m e d i a t e d e a l k y l a t e d f o r m s was f o u n d . T h e m a g n e s i u m , a l u m i n u m , c a l c i u m , b a r i u m , t i n , a n d c h r o m i u m salts o f m a n y m o n o - a n d disubstituted a l k o x y a n d a r y l o x y boric acids have been claimed i n patents (U,
W).
Process
Development
I n d e v e l o p i n g processes f o r t h e m a n u f a c t u r e o f v a r i o u s b o r a t e esters, t h e a u t h o r s have used azeotropic distillation ( M e t h o d I , E q u a t i o n s 3 a n d 4) ; transesterification
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
WASHBURN, LEVENS, ALBRIGHT, AND BILLIG—BORATE ESTERS
133
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
( M e t h o d I I , E q u a t i o n 6) ; o r d e h y d r a t i o n w i t h b o r o n oxide ( M e t h o d I I I , E q u a t i o n 7 ) . T h e r e l a t i v e efficiencies i n M e t h o d I of b o r i c a c i d vs. b o r o n oxide a n d o f a v a r i e t y of a z e o t r o p i c m e d i a w e r e i n v e s t i g a t e d i n a series o f s t a n d a r d e x p e r i m e n t s u s i n g t h e a p p a r a t u s s h o w n i n F i g u r e 1. T h e w a t e r - c o o l e d t r a p (designed b y t h e a u t h o r s ; c o n structed b y Stanford Glassblowing Laboratories, Palo A l t o , Calif.) was m u c h more s a t i s f a c t o r y f o r s e p a r a t i n g t h e azeotropes t h a n t h e c o m m o n l y u s e d D e a n - S t a r k t r a p . T h e a l c o h o l (used as r e c e i v e d ) a n d t h e s t o i c h i o m e t r i c a m o u n t of b o r o n c o m p o u n d ( b o r i c a c i d o r b o r o n o x i d e ) were h e a t e d a t a c o n s t a n t p o w e r i n p u t selected t o g i v e a m o d e r a t e b o i l - u p r a t e (219 w a t t s ) . A n e q u a l w e i g h t of r e a c t a n t s (500 g r a m s ) w a s u s e d i n e a c h case. T h e r e a c t i o n w a s f o l l o w e d b y m e a s u r i n g t h e a m o u n t o f w a t e r c o l l e c t e d i n t h e t r a p , a n d was t e r m i n a t e d w h e n a p p r o x i m a t e l y t h e t h e o r e t i c a l a m o u n t h a d been r e m o v e d . T h e ester was p u r i f i e d b y s t r i p p i n g t h e a z e o t r o p i c m e d i u m a t a t m o s p h e r i c p r e s s u r e , r e moving a n y unreacted alcohol under moderate v a c u u m (aspirator), then distilling through a short V i g r e u x o r packed c o l u m n a t about 5 m m . ( m e t h y l a n d ethyl borate f o r m a z e o t r o p e s ; i s o p r o p y l b o r a t e r e q u i r e s efficient f r a c t i o n a t i o n t o o b t a i n good s e p a r a t i o n f r o m t h e a l c o h o l ) . L a r g e r - s c a l e l a b o r a t o r y p r e p a r a t i o n s were c o n d u c t e d i n t h e apparatus shown i n F i g u r e 2. T y p i c a l c u r v e s o f t h e progress o f t h e s t a n d a r d r e a c t i o n s a r e g i v e n i n F i g u r e 3. T h e rate of f o r m a t i o n is t a k e n as t h e slope of t h e least squares l i n e c a l c u l a t e d f o r t h e i n i t i a l l i n e a r p o r t i o n of t h e p l o t o f ester f o r m e d (based o n w a t e r c o l l e c t e d ) vs. r e a c t i o n t i m e . M o n o - o l e f i n s ( T a b l e I ) g i v e f a s t e r rates o f ester f o r m a t i o n o f t h e a l i p h a t i c
Table I.
Comparison of Effect of Azeotropic Medium on Rate of Ester Formation ( S t a n d a r d reaction w i t h B 0 ) 2
Azeotropic Medium l-Butanol l-Dodecanol Benzene* Xylene* Diisobutylene' 1-Octene' Tripropylene* Tetrapropylene* b
c
^ Weight % H () in Binary Azeotrope" 42.5 — 8.83 35.8 13.0 34.7 28.6 66.0 2
3
Rate, Moles/Hour η-Butyl borate 1.12 — 2.21 — 2.56 2.78 2.58 2.48
n-Dodecyl borate — 1.56 1.45 1.47 2.16 2.01 1.74 1.74
Azeotrope data for butanol, benzene, and xylene from (87). Union Carbide Chemicals Corp. Aceto Chemical Co. Baker and Adamson. « Phillips Petroleum Co.; mixture of meta- and para-isomers. / Atlantic Refining Co.; approximately 4:1 mixture of 2,4,4-trimethyl-lpentene and 2,4,4-trimethyl-2-pentene. ο Matheson, Coleman and Bell. Enjay Co.; mixture of mono-olefins: 33 vol. % Ce, 50 vol. % Cg, 17 vol. % Cio. * Enjay Co.; mixture of mono-olefins. α
b c
d
A
b o r a t e s t h a n does a n excess o f t h e a l c o h o l o r t h e c o m m o n a r o m a t i c a z e o t r o p i c m e d i a ; b o r o n oxide ( T a b l e I I ) reacts f a s t e r t h a n b o r i c a c i d . F o r a r o m a t i c b o r a t e s , t h e m o n o olefins a r e also m o r e effective, a l t h o u g h here b o r i c a c i d seems t o b e a b e t t e r b o r o n source t h a n b o r o n oxide. T a b l e I shows t h a t t h e h i g h e r efficiency o f t h e olefins r e l a t i v e t o t h e o t h e r m e d i a is n o t r e l a t e d t o t h e a m o u n t of w a t e r i n t h e c o r r e s p o n d i n g b i n a r y a z e o t r o p e . A l though the m a t t e r was n o t studied i n detail, a brief investigation of the m i n i m u m boiling t e r n a r y azeotrope, diisobutylene-butanol-water (Table I I I ) , demonstrated t h a t a s u b s t a n t i a l a m o u n t of t h e a l c o h o l i s c a r r i e d o v e r ; t h e olefin a n d a l c o h o l a r e , o f course, r e t u r n e d t o t h e s y s t e m w h e n t h e c o o l e d d i s t i l l a t e i s d e c a n t e d . T h e c o m p o s i t i o n of the t e r n a r y azeotrope was obtained b y distillation of a m i x t u r e of t h e c o m ponents, removal of water f r o m the total distillate w i t h potassium carbonate, a n d i n f r a red analysis of the organic layer. T h e a m o u n t of water r e m a i n i n g i n the organic layer was f o u n d b y K a r l F i s c h e r t i t r a t i o n .
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
134
ADVANCES IN CHEMISTRY SERIES
0
1
2
3
0
1
2
3
REACTION TIME, HOURS
Figure 3 . Comparison of rates of η - b u t y l borate formation with boron oxide a n d boric acid by azeotropic distillation A c o m p a r i s o n w a s also m a d e , o n a 1-liter scale, o f t h e a z e o t r o p i c d i s t i l l a t i o n ( M e t h o d I ) a n d t r a n s e s t e r i f i c a t i o n ( M e t h o d I I ) processes f o r t h e p r e p a r a t i o n o f a technical grade of the aliphatic borates. T h e compounds included i n the comparison were t h e η - b u t y l , c y c l o h e x y l , 2 - e t h y l h e x y l , 2 , 6 , 8 - t r i m e t h y l - 4 - n o n y l , a n d 2 - m e t h y l - 7 Table II. and
Comparison of Effect of Boron
Boric A c i d on Rate of Ester
Oxide
Formation
( S t a n d a r d reaction w i t h d i i s o b u t y l e n e )
Alcohol 1-Butanol 5
2-Ethylhexanol
b
2-Metbyl-2 pentanol
6
2-Methyl-7-ethyl-4-undecanol l-Dodecanol
b
c
Rate, Moles/Hour
Alcohol, Moles 5.83 5.27
Boron Compound, Moles 0.971 1.76
3.52 3.31
0.586 1.10
2.57
4.39 4.07
0.731 1.36
2.03
2.20 2.12
0.367 0.708
1.88
2.52 2.41
0.420 0.804
2.16
B 0 2.56 2
3
HaBCV
e
1.45 1.75 1.50 1.18 1.30
° American Potash & Chemical Corp. Union Carbide Chemicals Corp. Aceto Chemical Co. b
c
ethyl-4-undecyl borates. I n the azeotropic distillation study, diisobutylene was used as t h e i n e r t m e d i u m ; i n t h e t r a n s e s t e r i f i c a t i o n e x p e r i m e n t , i s o p r o p y l b o r a t e w a s u s e d as t h e exchange ester. F o r b o t h sets o f e x p e r i m e n t s , t h e a p p a r a t u s w a s s i m i l a r t o t h a t s h o w n i n F i g u r e 1, e x c e p t t h a t t h e flask h a d a n e x t r a n e c k f o r t h e w i t h d r a w a l of Table III.
Composition of Diisobutylene-
Butanol-Water
Azeotrope Weight %
Phase Organic Water Azeotrope
Water 0.3 12.3 12.6
1-Butanol 9.2 0.3 9.5
Diisobutylene 77.9 — 77.9
Total 87.4 12.6 100.0
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
135
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
WASHBURN, LEVENS, ALBRIGHT, AND BILLIG—BORATE ESTERS
s a m p l e s a n d a c o l u m n (45 X 2.54 c m . ) p a c k e d w i t h 0 . 2 4 - i n c h p r o t r u d e d stainless steel p a c k i n g (Scientific D e v e l o p m e n t C o r p . , State College, P a . ) was used. I n the t r a n s esterification experiments the azeotrope t r a p was replaced b y a W h i t m o r e - L u x c o l u m n h e a d {202) m a n u a l l y set a t a reflux r a t i o of a p p r o x i m a t e l y 4 t o 1. W h e n t h e r e a c t i o n s w e r e c o m p l e t e d , as i n d i c a t e d b y c o l l e c t i o n o f a p p r o x i m a t e l y the theoretical amount of water o r 2-propanol, the c o l u m n was replaced b y a Claisen h e a d a n d ice-cooled r e c e i v e r , a n d t h e r e a c t i o n m i x t u r e w a s s t r i p p e d a t a t m o s p h e r i c pressure to a m a x i m u m of 250°C. S a m p l e s were w i t h d r a w n f r o m t h e p o t a t i n t e r v a l s w i t h o u t i n t e r r u p t i n g t h e d i s t i l l a t i o n . T h e same p r o c e d u r e w a s t h e n r e p e a t e d o n e a c h reaction mixture a t 20 a n d 5 m m . T y p i c a l data relating t o the boron a n d alcohol content t o the s t r i p p i n g operation are shown for b u t y l borate i n T a b l e I V . Table
IV.
Relation of Boron a n d Alcohol Content
of Tri(n-butyl) Borate to Stripping Temperature at Atmospheric Pressure Pot Temp., °C. 125 130 150 175 200 225 235
Boron, Alcohol, % % Azeotropic Distillation Method 3.11 21.8 3.51 20.4 4.28 7.7 4.48 3.5 4.55 2.5 4.63 0.9 4.66 0.3
175 200 225 250
Transesterification Method 4.55 5.2 4.57 2.4 4.66 1.4 4.68 0.1
Ester, % (on Boron) 66.2 74.7 91.1 95.3 96.8 98.5 99.2 96.8 97.2 99.2 99.6
O n t h e basis o f t h e i n f o r m a t i o n t h u s o b t a i n e d , a n e w r u n w a s m a d e f o r e a c h ester u n d e r process c o n d i t i o n s selected t o p r o v i d e p r o d u c t s o f h i g h p u r i t y i n g o o d y i e l d . W i t h b u t y l b o r a t e as a n e x a m p l e , t h e s t o i c h i o m e t r y a n d r e a c t i o n c o n d i t i o n s a n d m a t e r i a l balances f o r t h e t w o m e t h o d s b e i n g c o m p a r e d a r e s h o w n i n T a b l e s V , V I , a n d V I I . A s u m m a r y o f t h e results o b t a i n e d w i t h t h e v a r i o u s esters b y b o t h preparative methods is given i n Table V I I I . Table V.
Stoichiometry a n d Reaction Conditions
for Preparation of Tri(n-butyl) Borate by Azeotropic Distillation under Selected Conditions Reactants Alcohol, grams Boron oxide, grams
185.30 (2.5 moles) 29.25 (0.42 mole)
Water removed Pot temp., °C. Head temp., °C. Heating time to remove water, hr. Water removed, ml. (theory 22.7)
99-114 81-98 0.33 22.2
Azeotropic medium recovered (diisobutylene) Pot temp., °C. Head temp., ° C . Pressure, mm. Hg Heating time, hr. DIB recovered, ml. Boron, %
113-122 100-107 760 0.2 176 0.06
Products Pot temp., °C. (sampled) Pressure, mm. Hg Boron, % (theory 4.70) Alcohol, % Total heating time for reaction, hr. Yield grams (theory 191.7)
%
Purity (% ester) Based on boron content Based on alcohol content
227 760 4.67 2.8 1.33 190 99.1 99.4 97.2
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
136
ADVANCES IN CHEMISTRY SERIES Table VI. Stoichiometry a n d Reaction Conditions for Preparation of Tri(n-butyl) Borate by Transesterification under Selected Conditions
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
Reactants Alcohol, grams Isopropyl borate, grams
185.30 (2.5 moles) 156.66 (0.83 mole)
Alcohol removed Pot temp., °C. Head temp., °C. Heating time to remove alcohol, hr. Alcohol removed M l . (theory 191.4) Grams Boron, %
103-126 81-106 0.75 193 150.1 0.02
Products Pot temp., °C. (sampled) Pressure, mm. Hg Boron, % (theory 4.70) Alcohol, % Total heating time for reaction, hr. Yield Grams (theory 191.7)
232 760 4.69 0.55 3.27 189.2 98.7
%
Purity (% ester) Based on boron content Based on alcohol content
Table VII.
99.8 99.4
Materials Balance for Preparation of Tri(n-butyl) Borate Azeotropic Distillation
Materials in, grams Alcohol Boron oxide Diisobutylene Isopropyl borate
0
Transesteri fication
Total
Materials out, grams Water Diisobutylene Isopropyl alcohol Ester
156.66
243.55
341.96
22.20 126.82
Total
Loss, grams Loss, %
6
185.30
185.30 29.25 128.00
190.00
150.10 189.21
339.02 3.53 1.03
339.31 2.65 0.78
° Operating conditions shown in Table V . Operating conditions shown in Table V I .
b
Table VIII.
Comparison of Azeotropic Distillation a n d Transesterification for the Preparation of Aliphatic Borate Esters
Methods
( T e c h n i c a l grade) Ester Purity, %
Yield, % « Borate Ester Butyl
Azeotropic distillation 99.1
Transesterification 98.7
Basis of calculation Boron Alcohol
Azeotropic distillation 99.4 97.2
Transesterification 99.8 99.4
Cyclohexyl
102.0
98.0
Boron Alcohol
99.7 97.6
98.6 97.8
2-Ethylhexyl
101.7
99.4
Boron Alcohol
99.3 97.3
101.1 100.0
99.8
100.1
Boron Alcohol
99.0 92.3
98.4 97.3
101.3
101.2
Boron Alcohol
99.4 93.1
101.2 98.8
2,6,8-Trimethyl-4-nonyl 7-Ethyl-2-methyl-4-undecyl
• Not adjusted for alcohol content.
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
137
WASHBURN, LEVENS, ALBRIGHT, AND BILLIG—BORATE ESTERS
I t m a y b e c o n c l u d e d t h a t t e c h n i c a l grades o f b o r a t e esters h a v i n g b e t t e r t h a n 9 0 % p u r i t y (based o n a l c o h o l c o n t e n t ) c a n b e p r e p a r e d i n g o o d y i e l d ( > 9 0 % ) b y e i t h e r a z e o t r o p i c d i s t i l l a t i o n o r t r a n s e s t e r i f i c a t i o n . P r o c e s s flow d i a g r a m s i l l u s t r a t i n g b o t h methods are shown f o r technical grade η-butyl borate (Figures 4 a n d 5 ) .
FRACTIONATION COLUMN
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
DECANTER
DIB-HgO
Figure 4.
ALCOHOL
FLASH STILL
REACTOR
U
ALCOHOL
2
AZEOTROPE
481.9 lb. (75.82 gel.) B 20 3 9
H 0 118.391b. H4.20gal.)
Î
PRODUCT 100 lb. (I4.06qal.)
97.49 lb. (14.34 gal.)
Flow diagram for batch preparation of η - b u t y l
borate
by azeotropic
distillation DIB. Diisobutylene ISOPROPYL ALCOHOL 79.361b. (12.02gal.)
FRACTIONATION COLUMN UNREACTED ISOPROPYL BORATE -i 1-BUTANOL ISOPROPYL BORATE 82.79 lb. (11.99gal.)
FLASH STILL
ALCOHOL 97.88 lb. (I4.39gal.) Figure 5.
PRODUCT I00 lb.
Flow diagram for batch preparation of η - b u t y l borate by transesterification
A s i m i l a r process flow d i a g r a m f o r t h e p r e v i o u s l y r e p o r t e d c o n t i n u o u s p r e p a r a t i o n of i s o p r o p y l b o r a t e (120) b y M e t h o d I I I ( d e h y d r a t i o n w i t h b o r o n o x i d e ) i s g i v e n i n F i g u r e 6. Borates of Polyhydric Compounds A l t h o u g h catechol borate ( I V ) , when prepared i n a n anhydrous m e d i u m , is h y d r o l y z e d b y w a t e r , i t s salts a r e s t a b l e (65, 165-167). T h e authors have synthesized s o d i u m c a t e c h o l b o r a t e m o n o h y d r a t e ( f o r m u l a t e d m o s t s i m p l y as s h o w n i n E q u a t i o n 10) b y d i r e c t r e a c t i o n o f c a t e c h o l (1.33 m o l e s ) , b o r a x (0.333 m o l e ) , a n d aqueous s o d i u m h y d r o x i d e (0.665 m o l e ) : -OH
i—Ο B O N a - H 0 + 1 4 H 0 (10)
+ N a B 0 · 1 0 H O + 2 N a O H -> 4 2
V
—OH
4
7
2
2
V
-o
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
2
138
ADVANCES IN CHEMISTRY SERIES 2°3
i-C H 0H
455.6
927.8
B
3
i-C H 0H
?
3
7
(WASH)
_ i
250.0 «
i
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
REACTOR
I
« ALCOHOL
ALCOHOL DISTILLATE ESTER26.9 ALCOHOL - 2 5 9 . 8
137.4
CRYSTALLIZER 1
SLURRY 2020.0 *
FILTER
BOROXINE 210.5
FILTRATE E S T E R - 1565.0
H3BO3 - 5 0 . 5
WET WASHED C A K E A L C O H O L - 137.4 H3BO3 404.3
ALCOHOL-112.6 t
ALCOHOL COLUMN
DRYER Γ ALCOHOL 137.4
1 E S T E R COLUMN F E E D ESTER 1228.9 BOROXINE - 210.5 L
ALCOHOL CONDENSER
ESTER COLUMN
ISOPROPYL
BORATE
1228.9 Figure 6.
H B0 (TO 3
3
B 0 PLANT) 2
3
404.3
Flow diagram for continuous preparation of isopropyl borate by boric acid precipitation
A f t e r t h e r e a c t a n t s h a d been h e a t e d t o 8 4 ° C , t h e n cooled, t h e solids w e r e r e m o v e d by filtration a n d washed w i t h e t h y l alcohol t o y i e l d 217 grams (92.3%) of gray, shiny plates. A n a l y s i s of t h e v a c u u m - d r i e d product gave: Calculated
for C H 0 B N a . Found. 6
6
4
N a , 13.08; N a , 12.97;
B , 6.14 B , 6.13
A n u m b e r o f v i s c o u s t o g l a s s y p o l y m e r i c b o r a t e s were b r i e f l y i n v e s t i g a t e d t o d e t e r m i n e q u a l i t a t i v e l y t h e effect o f cross l i n k i n g o n resistance t o h y d r o l y s i s . A s e x a m p l e s , b o r i c a c i d , e t h y l e n e g l y c o l , a n d p h e n o l i n a m o l e r a t i o o f 1 t o 2 t o 0.3 g a v e a
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
139
WASHBURN, LEVENS, ALBRIGHT, AND BILLIG—BORATE ESTERS
p r o d u c t w h i c h was viscous w h e n h o t a n d h a r d w h e n cooled; a mole ratio of 1 t o 2 t o 1 yielded a material which was tacky at room temperature: H3BO3 + H O C H C H O H + C H O H 2
2
6
5
->> ΓΓ— —CCHH CCHH 0 0——ΒΒ——ΟΟ——" IΊ 2
-H 0 2
2
2
2
R e a c t i o n o f b o r i c a c i d a n d e t h y l e n e g l y c o l alone r e s u l t e d i n a t a c k y p r o d u c t . ethylene glycol borates copolymers
obtained
were
from
readily hydrolyzed b y water.
t h e reaction
( H )
!
0
of boric
These
I n c o n t r a s t , t h e glassy
acid a n d maleic
anhydride
with
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
glycerol a n d w i t h p e n t a e r y t h r i t o l were o n l y slowly a t t a c k e d b y water.
2,6-Di-ferf-butylphenyl
Borates
T h e a u t h o r s h a v e p r e p a r e d a series o f n e w , h y d r o l y s i s - r e s i s t a n t , m i x e d esters
o f 2,6-di-ieré-butylphenols
b y t h e transesterification reaction
Ç H (terO 4
borate II):
CJÎ (tert) 9
9
\—OJJ
Il—/
(Method
OB(OR')
+
Y
2
+ R O H
(12)
- f
C H (ferO C H (ferO T h e s e c o m p o u n d s , some p h y s i c a l c o n s t a n t s f o r w h i c h a r e g i v e n i n T a b l e I X , a r e of c o n s i d e r a b l e i n t e r e s t because o f t h e h i g h s t e r i c h i n d r a n c e i n v o l v e d . T h e s t a r t i n g 4
9
4
Table IX.
9
2,6-Di-ferf-butylphenyl-dialkyl Borates CiB. (tert) 9
.—O—B(OR')2 CiHtitert)
Compound R H— CH — CH — CH —°
R' IS0-C3H7— Iso-CsHr— 71-C4H9— CH =CH—CH —
CH —
CH3CII—CH2CH ^
8
3
3
3
2
b
(tert)d¥i — 9
2
B.P., °C./Mm. 80/0.5 — 140/0.6 130-131/0.4
CHo
Iso-C H — 3
7
M.P., °C. ~ 88-89 — —
153/0.5
—
—
209-215
" d4° = 0.9727 - 0.0007727 t. ηζ°· = 1.5004 - 0.0003794 t. Viscosity (cs.)i°C. = 169 ·β; 4ϋ.0 · ; 21.237.s. b d^° - = 0.9121 - 0.0001700 t. ηζ°· = 1.4826 - 0.0003657 t. Viscosity (cs.)i°C. = 521»·*; 20835-2; 85.5 . a
6
23
2
c
460
phenols do n o t undergo the usual phenolic reaction—to f o r m the s o d i u m phenate, f o r e x a m p l e , i t i s necessary t o use m e t a l l i c s o d i u m i n l i q u i d a m m o n i a (183). A s a n e x a m p l e o f t h e h y d r o l y s i s resistance o f t h e h i n d e r e d esters, t h e 2 , 6 - d i - i e r i b u t y l - 4 - m e t h y l p h e n y l diisopropyl borate was recovered q u a n t i t a t i v e l y after 8 hours' reflux i n 3 7 . 5 % aqueous a c e t o n e f o l l o w e d b y storage i n t h e m o t h e r l i q u o r f o r 13 w e e k s ; no boron was f o u n d i n t h e filtrate. D e t a i l s o f t h e p r e p a r a t i v e m e t h o d s f o r these c o m p o u n d s sequent p u b l i c a t i o n .
will be given i n a sub
Physical Properties T h e p h y s i c a l p r o p e r t i e s o f a n u m b e r o f b o r a t e esters h a v e been s u m m a r i z e d b y L a p p e r t (116) a n d b y S t e i n b e r g a n d H u n t e r (181). A d d i t i o n a l d a t a have been obtained f o r several borates o n t h e v a r i a t i o n w i t h t e m p e r a t u r e of v a p o r pressure (Tables Χ , X I ) , density (Table X I I ) , refractive index (Table X I I I ) , a n d viscosity
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
140
ADVANCES IN CHEMISTRY SERIES Table X.
V a p o r Pressures of Borate Esters Log Pm
A - B/T
B.P., °C. (Calcd.), 10 M m .
Borate Ester Primary aliphatic Methyl Ethyl* n-Butyl 2-Ethylhexyl n-Octyl n-Decyl n-Dodecyl
8.1073 8.4156 8.3986 9.4290 8.4776 9.4317 8.2793
1785 2167 2804 4080 3682 4478" 4126
68.3™> H8760 106 211 219 258 294
(181, 197) (181, 197) (73, 181) (181) (181) (116) (80, 181)
Secondary aliphatic Isopropyl sec-Butyl Methylisobutylcarbinyl 2,6,8-Trimethyl-4-nonyl 2-Methyl-7-ethyl-4-undecyl
8.1877 7.8840 8.2400 8.4144 8.1154
2190 2350 2833 3585 3791
140760 197760
118 210 260
(111, 181) (73, 181) (164, 181) (181) New compound
Aromatic o-Cresyl
9.0080
3883
212
(149, 181)
7.6396 10.834 9.0910 12.576
2614 4457 3664 5466
121 180 180 199
(164) New compound (123, 181) (76)
Β
References
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
0
Miscellaneous 2-Methoxyethyl 2-2'-Methoxyethoxyethyl Tri (hexyleneglycol) biborate Tetrahydrofurfuryl borate β
Values from (197).
b
Reference reported log ρ = 8.8553 —
e
This value may be too low.
Table XI.
2298.
Melting Points of Solid Borate Esters
Borate Ester Diisopropylcarbinyl Diisobutylcarbinyl Neopentyl glycol Cyclohexyl Phenyl p-Cresyl 2,5-Dimethylphenyl 3.4- Dimethylphenyl 3.5- Dimethylphenyl 2.6- Dimethylphenyl 2,6-Diisopropylphenyl
M.P., 0 60.4-61.4 97-98 123-124 54-55 89-91 137-140 147-148 72-73 145-148 156-157 286-290 0
b
a 6
References (164) (181) (164) (198, (181, (116) New New New New New
204) 204) compound compound compound compound compound
Uncorrected. Sample probably impure.
Table XII.
Densities of Borate Esters A — Bt
Borate Ester Primary aliphatic Methyl Ethyl n-Propyl n-Butyl 2-Ethylhexyl n-Octyl n-Decyl n-Dodecyl
Β X 10*
d*> (Calcd.)
0.9578 0.8853 0.8808 0.8735 0.8743 0.8661 0.8641 0.8704
13.62 11.48 12.89 8.229 7.553 6.658 6.077 7.654
0.9306 0.8623 0.8550 0.8570 0.8592 0.8528 0.8519 0.8551
(181, 197) (181, 197) (45, 181) (73, 181) (181) (181) (116) (80, 181)
Secondary aliphatic Isopropyl sec- Butyl Methylisobutylcarbinyl 2,6,8-Trimethyl-4-nonyl 2-Methyl-7-ethyl-4-undecyl
0.8404 0.8495 0.8368 0.8544 0.8591
10.69 9.043 7.242 7.393 6.436
0.8190 0.8314 0.8223 0.8396 0.8462
(111, 181) (73, 181) (164, 181) (181) New compound
Aromatic o-Cresyl w-Cresyl 2,4-Dimethylphenyl
1.1037 1.0949 1.0711
7.515 8.203 7.063
1.0887 1.0784 1.0570
(149, 181) (49) New compound
0.9400 1.0508 1.0789 0.9992 0.9249 1.1214
10.62 10.29 9.150 8.330 7.184 7.360
0.9188 1.0302 1.0606 0.9825 0.9105 1.1067
(13, 98) (164) New compound (198, 204) New compound (76)
Miscellaneous Allyl 2-Methoxyethyl 2-2 -Methoxyethoxyethyl Cyclohexyl 3,3,5-Trimethylcyclohexyl Tetrahydrofurfuryl ,
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
References
141
WASHBURN, LEVENS, ALBRIGHT, AND BILLIG—BORATE ESTERS Refractive Indices of Borate Esters
Table XIII.
A - Bt Β Χ 10
n (Calcd.)
1.3668 1.3825 1.4029 1.4129 1.4441 1.4430 1.4492 1.4546
4.360 4.359 4.000 2.949 3.615 3.496 3.487 3.484
1.3581 1.3738 1.3948 1.4070 1.4369 1.4360 1.4422 1.4476
(181, 197) (181, 197) (45, 181) (73, 181) (181) (181) (116) (80, 181)
Secondary aliphatic Isopropyl sec-Butyl Methylisobutylcarbinyl 2,6,8-Trimethyl-4-nonyl 2-Methyl-7-ethyl-4-undecyl
1.3850 1.4038 1.4182 1.4453 1.4543
4.380 4.026 3.895 3.513 3.333
1.3762 1.3957 1.4104 1.4383 1.4476
(111, 181) (73, 181) (164, 181) (181) New compound
Aromatic o-Cresyl m-Cresyl 2,4-Dimethylphenyl
1.5637 1.5637 1.5535
3.718 4.077 3.282
1.5563 1.5555 1.5469
(149, 181) (49) New compound
Miscellaneous Allyl 2-Methoxyethyl 2-2 -Methoxyethoxyethyl 3,3,5-Trimethylcyclohexyl Tri(hexyleneglycol) biborate Tetrahydrofurfuryl
1.4359 1.4235 1.4418 1.4658 1.4457 1.4674
4.471 3.743 3.385 3.487 3.362 3.308
1.4270 1.4160 1.4350 1.4588 1.4390 1.4608
(13, 93) (164) New compound New compound (123, 181) (76)
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
Borate Ester Primary aliphatic Methyl Ethyl n-Propyl n-Butyl 2-Ethylhexyl n-Octyl n-Decyl n-Dodecyl
4
,
Table XIV.
References
? 0
Viscosities of Borate Esters Viscosity, Centistokes
Temp., °C.
Viscosity, Centistokes
Temp., °C.
Viscosity, Centistokes
Temp., °C.
Primary aliphatic Methyl Ethyl n-Propyl n-Butyl 2-Ethylhexyl* n-Octyl n-Decyl n-Dodecyl
21.2 21.4 7.0 21.4 20.8 20.6 21.4 21.0
0.416 0.615 1.59 1.99 11.0 11.1 19.3 30.5
39.8 40.0 23.8 39.8 39.6 40.0 40.0 39.6
0.347 0.503 1.09 1.47 6.18 6.38 10.3 15.1
60.0 60.0 43.4 63.6 60.0 60.0 60.0 60.0
0.295 0.424 0.845 1.08 3.80 3.93 6.66 8.89
Secondary aliphatic Isopropyl sec-Butyl Methylisobutylcarbinyl 2,6,8-Trimethyl-4-nonyl 2-Methyl-7-ethyl-4-undecyl
21.4 20.8 21.4 21.4 20.6
1.03 1.90 4.30 121. 139.
39.6 39.6 40.0 39.6 39.6
0.797 1.37 2.77 33.7 46.5
59.8 60.0 63.6 60.0 63.6
0.631 1.04 1.70 15.4 16.9
Aromatic o-Cresyl ra-Cresyl 2,4-Dimethylphenyl
21.4 20.6 60.0
175. 192. 35.1
39.8 39.6 70.0
35.9 37.0 17.3
60.0 60.0 76.6
11.9 10.8 12.8
Miscellaneous Allyl 2-Methoxyethyl 2-2'-Methoxyethoxyethyl 3,3,5-Trimethylcyclohexyl Tri(hexyleneglycol) biborate Tetrahydrofurfuryl
7.0 21.2 20.8 60.0 23.4 21.4
1.25 2.90 8.57 87.9 433. 22.6
23.2 39.8 39.6 70.0 37.8 40.0
0.902 1.99 5.05 43.3 97.8 6.93
37.8 59.8 60.2 79.0 48.2 60.0
0.747 1.39 3.23 25.5 44.5 4.35
Borate Ester
a
(100) report 1.94 (210°F.); 6.28 (100°F.); 433 ( - 4 0 ° F . ) .
(Table X I V ) .
These d a t a were
fitted
b y t h e m e t h o d of least squares.
T h e melting
p o i n t s of s o m e s o l i d esters a r e g i v e n i n T a b l e X L The
v a p o r pressure d a t a were o b t a i n e d w i t h
shown i n Figure
7 (designed b y H . S. M y e r s ,
the modified Cottrell
C. F . Braun
ebullioscope
Co.,Alhambra,
Calif.;
constructed b y Stanford Glassblowing Laboratories, Palo A l t o , Calif.) using a Cartesian manostat Densities
(Emil were
Greiner
Co., N e w York,
determined i n 5- a n d 10-ml.
Ν. Y . ) to maintain volumetric
flasks
reduced pressures.
with
extended necks,
calibrated w i t h distilled water, a n d suspended i n a constant temperature bath. refractive
indices were
determined with
a n Abbé
refractometer
(Bausch
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
The
& Lomb
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
142
ADVANCES IN CHEMISTRY SERIES
Figure 7.
Modified Cottrell ebullioscope of H. S. Myers A. Ebullioscope B. Cartesian manostat
Optical C o . , T y p e 3 3 - 4 5 - 5 6 ) , calibrated w i t h distilled water, having water at t h e r e q u i r e d t e m p e r a t u r e c i r c u l a t i n g t h r o u g h t h e p r i s m . V i s c o s i t i e s were d e t e r m i n e d i n C a n n o n - F e n s k e - O s t w a l d viscometers ( C a n n o n I n s t r u m e n t C o . , State College, P a . ) sus pended i n a constant temperature bath. A v e r a g e densities of p r i m a r y a l i p h a t i c , s e c o n d a r y a l i p h a t i c , a n d a r o m a t i c b o r a t e s a r e g i v e n i n F i g u r e 8. T h e r e l a t i v e l y h i g h d e n s i t y of m e t h y l b o r a t e m a y b e a t t r i b u t e d t o s h o r t e n i n g o f t h e Β — Ο b o n d l e n g t h , as s h o w n b y a s h i f t o f t h e i n f r a r e d Β — Ο s t r e t c h i n g v i b r a t i o n f r o m t h e a v e r a g e o f 1335 c m . f o r a l k y l borates t o 1352 c m . T h e refractive indices of p r i m a r y a n d secondary a l i p h a t i c borates are shown i n F i g u r e 9 as a f u n c t i o n o f t h e n u m b e r o f c a r b o n a t o m s i n t h e a l c o h o l m o i e t y . -
1
1
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
WASHBURN, LEVENS, ALBRIGHT, AND BILUG—BORATE ESTERS 1
t c. e
d
143
1
= A - Bt
1.100 ROMATIC
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
1.050
1.000
0.950 THYL BOR ATE
>CO Ζ Id
Q
0.900
e
I
i
ALIPHATIC THYL BOR/\ΊΕ) (EXC LUDING ME
2 ° ALIPHA1
0.800
0.750 -20
0
20
40
60
TEMPERATURE,
Figure 8.
e
80
100
120
C.
Densities of borate esters
I n v e s t i g a t i o n o f t h e specific v i s c o s i t y o f d i l u t e s o l u t i o n s of l o n g - c h a i n b o r a t e esters ( n - o e t y l t o n - d e c y l ) i n benzene a n d c a r b o n t e t r a c h l o r i d e i n d i c a t e d t h a t t h e esters a r e i n e x t e n d e d f o r m as e x p e c t e d f r o m t h e p a r a c h o r v a l u e s (7). T h e p l a n a r configuration of the B 0 group was demonstrated b y a n electron dif f r a c t i o n s t u d y o f m e t h y l b o r a t e (16). T h e b o n d angles were f o u n d t o b e 120° f o r B — 0 , a n d 113° ± 3 ° f o r B — 0 — C . T h e b o n d d i s t a n c e s w e r e : B — 0 , 1.38 ± 0.02 Α . ; C — 0 , 1.43 ± 0 . 0 3 A . T h e d a t a suggested c o n s i d e r a b l e r o t a t i o n of t h e C H g r o u p s a b o u t t h e l i n e o f t h e Β — Ο b o n d ; t h i s i n t e r n a l r o t a t i o n w a s i n t e r p r e t e d as b e i n g s y n c h r o n i z e d so t h a t t h e C — C d i s t a n c e is a l w a y s g r e a t e r t h a n 3.5 Α . , as t h e r e a p p e a r e d to be insufficient r o o m f o r independent m o v e m e n t . T o this s y n c h r o n i z a t i o n of t h e m e t h y l groups was attributed a small dipole moment. 3
3
T h e p a r a c h o r constants f o r b o r o n i n simple a l k y l borates were f o u n d t o range f r o m 15.9 t o 17.8 (185). Subsequently, Jones a n d others (93) f o u n d t h a t tri-2-chloroethyl borate, B ( 0 C H § C H C 1 ) , a n d tri-2,2-dichloroisopropyl borate, §
3
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
144
ADVANCES IN CHEMISTRY SERIES 1.45 n
D
- Bt
= A
1.43 Ο CVJ
x"
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
UJ Ο
1.41
s
Δ
bJ >
Ο
a m y l > h e x y l , e t c . , a n d p r i m a r y > secondary > tertiary. T h e r a p i d hydrolysis of highly hindered aromatic a n d c h l o r i n e - s u b s t i t u t e d a l i p h a t i c esters w a s a t t r i b u t e d t o a s h i f t f r o m steric t o elec tronic controlling factors. B r a d l e y a n d C h r i s o p h e r (29) i n v e s t i g a t e d t h e h y d r o l y s i s o f a l k y l b o r a t e s i n a n h y d r o u s acetone. T h e y reported t h e e q u i l i b r i u m constants a t 0 ° C . t o be m e t h y l b o r a t e , 1 6 . 0 ; η - p r o p y l b o r a t e , 2 . 7 ; η - b u t y l b o r a t e , 2 . 1 ; a n d n - a m y l b o r a t e , 1.8. B o r a t e esters react w i t h c a r b o x y l i c acids t o f o r m t h e c o r r e s p o n d i n g esters (85, 86, 170) : ( R O ) B + 3 R ' C O O H -> 3 R ' C O O R + H B 0 3
3
T h e r e a c t i o n w i t h acetic a n h y d r i d e t o f o r m b o r o n acetate (120): 2(RO) B + 5(CH CO) 0 3
3
2
(CH COO) BOB(OOCOH ) 3
2
3
(13)
3
h a s also b e e n
2
+ 6CH COOR 3
described (14)
F r i e d e l - C r a f t s a l k y l a t i o n s h a v e been c a r r i e d o u t w i t h b o r a t e esters i n p l a c e o f t h e a l k y l o r a l k a r y l h a l i d e . F o r e x a m p l e , w i t h a l u m i n u m c h l o r i d e as c a t a l y s t , i s o b u t y l b o r a t e r e a c t e d w i t h m - x y l e n e t o f o r m £er£-butylxylene, w i t h anisole t o f o r m p-tertbutylanisole, w i t h phenol t o f o r m p-ieré-butylphenol, a n d w i t h bromobenzene t o f o r m p - b r o m o - i e r i - b u t y l b e n z e n e ; b e n z y l b o r a t e a n d benzene gave d i p h e n y l m e t h a n e (96). Benzene a n d b u t y l borate, w i t h a l u m i n u m chloride, gave a n unidentified organoboron c o m p o u n d , l e a d i n g t o t h e c o n c l u s i o n t h a t t h e b o r a t e esters m a y e i t h e r d o n a t e t h e a l k y l g r o u p o r a d d b o r o n t o t h e benzene r i n g (191). A l u m i n u m i s o p r o p o x i d e h a s b e e n u s e d t o reduce a l d e h y d e s a n d ketones i n t h e M e e r w e i n - P o n d o r f f - V e r l e y r e a c t i o n (203). Somewhat lower yields a t higher t e m p e r a -
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
ADVANCES IN CHEMISTRY SERIES
146
t u r e s ( 1 5 0 ° t o 1 7 5 ° C . ) were o b t a i n e d b y K u i v i l a , S l a c k , a n d S i i t e r i (111), w h o i n v e s t i g a t e d t h e use o f a l k y l b o r a t e s f o r t h e same p u r p o s e :
(
\)ΗΟ
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
R ^
J Β + 3 R ' C O R " -> 3 R C O R + (
Κ
\ ) H O JΒ
V R " ^
Κ
(15)
A r o m a t i c a l d e h y d e s were r e d u c e d i n g o o d y i e l d b y i s o p r o p y l b o r a t e ; a l i p h a t i c a l d e h y d e s g a v e p o o r y i e l d s . K e t o n e s were n o t r e d u c e d b y i s o p r o p y l b o r a t e a n d o n l y i n low y i e l d b y allyl borate. T h e b o r a t e esters r e a c t w i t h G r i g n a r d reagents t o g i v e , successively, b o r o n i c a c i d s , R B ( O H ) ; b o r i n i c a c i d s , R B O H ; a n d b o r i n e s , R B (98). T h e m e c h a n i s m of t h i s r e a c t i o n has b e e n discussed i n some d e t a i l (196). O f the a l k y l borates, only m e t h y l borate appears t o react w i t h a m m o n i a a n d p r i m a r y a n d secondary amines t o f o r m stable, solid coordination compounds (77-79, 168, 198) : 2
2
3
( C H 0 ) B + RxNH _x -> ( C H 0 ) B · N H _ R 3
3
3
3
3
3
X
X
(16)
T h e a r y l b o r a t e s , w h i c h are s t r o n g e r L e w i s a c i d s t h a n t h e a l k y l esters, g e n e r a l l y f o r m s i m i l a r c o m p o u n d s , w i t h some s t e r i c l i m i t a t i o n s (47, 48). A n u m b e r o f b o r a t e esters were i n v e s t i g a t e d as c a t a l y s t s f o r t h e p o l y m e r i z a t i o n o f d i a z o m e t h a n e t o p o l y m e t h y l e n e (181). T h e o r d e r of effectiveness w a s a p p r o x i m a t e l y i n the order of increasing a c i d i t y of the esters: i s o p r o p y l < e t h y l < m e t h y l < a l l y l < b e n z y l < β-methoxyethyl < β-chloroethyl < β-trichloroethyl. B o r a t e esters r e a c t w i t h m e t a l a l k o x i d e s t o f o r m t h e c o r r e s p o n d i n g m e t a l t e t r a a l k o x y b o r o h y d r i d e (171): (RO) B + N a O R - » NaB(OR) 3
(17)
4
H o w e v e r , steric l i m i t a t i o n s a p p e a r t o decrease t h e r a t e o f f o r m a t i o n a n d s t a b i l i t y o f t h e tetraisopropoxy compound. R e a c t i o n w i t h metal hydrides yields t h e corresponding metal trialkoxyborohydrides : ( R ( ) ) B + N a H -> N a B H ( O R ) :i
3
(18)
Tetracoordinate Boron in Borates T h e a b i l i t y o f b o r o n c o m p o u n d s t o a c t a s L e w i s a c i d s has l o n g b e e n k n o w n a n d t h e effect has b e e n u s e d t o c o r r e l a t e v a r i o u s aspects o f b o r o n c h e m i s t r y . F o r e x a m p l e , S c h l e s i n g e r a n d B r o w n (171) u s e d t h e L e w i s g e n e r a l i z e d a c i d - b a s e c o n c e p t t o c o r r e l a t e t h e r e a c t i o n s of d i b o r a n e a n d r e l a t e d c o m p o u n d s . B r o w n (84) has g i v e n a n excellent s u m m a r y o f h i s w o r k ( c o n c e r n e d t o a g r e a t e x t e n t w i t h t h e c o o r d i n a t i o n of v a r i o u s bases w i t h b o r o n c o m p o u n d s ) o n t h e c h e m i c a l effects o f s t e r i c s t r a i n s . K u i v i l a a n d c o w o r k e r s (105-114) have determined kinetically that a tetracoordi nate boronate a n i o n i s the i m p o r t a n t intermediate i n the electrophilic displacement of the boronate m o i e t y f r o m areneboronic acids b y halogen o r peroxide. Bôeseken a n d c o w o r k e r s (24) c o n f i r m e d t h e t e t r a c o o r d i n a t e s t r u c t u r e o f t h e b o r o n a t o m i n eis-diol compounds b y separating the o p t i c a l isomers of b o r o n b i s - ( y - c h l o r o catechol) a n d b o r o n b i s - ( 3 - n i t r o c a t e c h o l ) . T h e i m p o r t a n c e of tetracoordinate b o r o n d u r i n g the p r e p a r a t i o n of benzeneboronic a c i d f r o m m e t h y l b o r a t e a n d p h e n y l m a g n e s i u m b r o m i d e has been d e m o n s t r a t e d (196). A l t h o u g h t h e r e are m a n y e x a m p l e s of t e t r a c o o r d i n a t e b o r o n c o m p o u n d s , c o m p a r a t i v e l y l i t t l e i s k n o w n a b o u t t h e f a c t o r s a f f e c t i n g t h e L e w i s a c i d i t y o f b o r a t e esters. E v i d e n c e is available t o support the hypothesis t h a t boron compounds undergo reac t i o n b y c o o r d i n a t i o n w i t h a base. F o r e x a m p l e , w h e n a n o p t i c a l l y a c t i v e b o r a t e i s h y d r o l y z e d , t h e a l c o h o l f o r m e d r e t a i n s i t s c o n f i g u r a t i o n (72, 164), i n d i c a t i n g cleavage
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
147
WASHBURN, LEVENS, ALBRIGHT, AND BILLIG—BORATE ESTERS
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
of a b o r o n - o x y g e n b o n d . T h i s c o u l d o c c u r as s h o w n i n F i g u r e 10. T h e second a n d t h i r d steps of t h e h y d r o l y s i s a r e i d e n t i c a l t o t h e first. T h e f o u r t h step p r o b a b l y leads t o t h e t e t r a h y d r o x y b o r a t e a n i o n (61). W h e t h e r t h e h y d r o l y s i s i s c o n c e r t e d o r
Figure 10.
Hydrolysis a n d reaction mechanism involving tetracoordinate boron
stepwise i s n o t d e f i n i t e l y k n o w n , b u t a stepwise m e c h a n i s m is suggested, o r p e r h a p s a " s t e p w i s e - c o n c e r t e d " m e c h a n i s m , i n w h i c h s o l v e n t i s first d i s p l a c e d b y a n o t h e r base ( w a t e r f o r h y d r o l y s i s ) as s h o w n i n F i g u r e 1 1 , f o l l o w e d b y t h e m e c h a n i s m d e p i c t e d i n F i g u r e 10.
Ο
Figure 11.
Generalized displacement mechanism applied to borate esters
S u c h a m e c h a n i s m w o u l d e x p l a i n w h y t h e rates of h y d r o l y s i s of b o r a t e esters a r e m u c h s l o w e r i n aqueous acetone, t e t r a h y d r o f u r a n , a n d d i o x a n e o r o t h e r L e w i s bases w i t h a n u n h i n d e r e d e l e c t r o n p a i r t h a n i n aqueous m e t h a n o l . F u r t h e r e v i d e n c e s u p p o r t i n g this m e c h a n i s m f o r h y d r o l y s i s ( a n d reaction) is afforded b y c o m p a r i n g t h e r e l a t i v e i n e r t n e s s of t e r t i a r y a m i n e - b o r o n t r i c h l o r i d e c o o r d i n a t i o n c o m p o u n d s t o c o l d w a t e r w i t h t h e a l m o s t v i o l e n t h y d r o l y s i s of b o r o n t r i c h l o r i d e itself. T h i s i s also t r u e for sodium tetramethoxyborohydride a n d t r i m e t h y l b o r a t e ; t h e borohydride is only s l o w l y h y d r o l y z e d , w h e r e a s t h e b o r a t e ester h y d r o l y z e s v e r y r a p i d l y . T h e a u t h o r s h a v e i n v e s t i g a t e d t h e i n f r a r e d s p e c t r a of b o r a t e esters. B e t h e l l a n d S h e p p a r d (21) r e p o r t e d a v e r y s t r o n g a b s o r p t i o n a t 1450 c m . f o r crystalline boric a c i d . T h i s w a s assigned t o a s y m m e t r i c a l Β — Ο s t r e t c h i n g , as i t d i d n o t change a p p r e c i a b l y f o r d e u t e r a t e d b o r i c a c i d . W e r n e r a n d O ' B r i e n (198) d e t e r m i n e d t h e i n f r a r e d s p e c t r a o f s e v e r a l b o r a t e esters. T h e y assigned t h e s t r o n g b a n d a t 1340 ± 10 c m . — t o t h e Β — Ο s t r e t c h i n g v i b r a t i o n . T h e a u t h o r s find a n a v e r a g e o f 1335 c m . for Β — Ο s t r e t c h i n g i n a l k y l b o r a t e esters ( T a b l e X V I ) a n d a n average of 1354 c m . - f o r a r y l b o r a t e esters. A b s o r p t i o n b a n d s f o r t h e s t a b l e , m i x e d a l k y l - a r y l b o r a t e s a r e s h o w n in Table X V I I . - 1
1
- 1
1
American Chemical Society Library
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
ADVANCES IN CHEMISTRY SERIES Table XVI. Infrared Data for A l i phatic Borate Esters
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
Borate Ester
Cm.-i
Methyl
1352 VS 683 W 662 M
Ethyl
1335 VS 693 W 665 M
n-Propyl
1334 VS 692 W 667 M
n-Butyl
1335 VS 690 W 663 M
n-Octyl
1336 VS 690 W 664 M
2-Ethylhexyl
1334 VS 688 W 663 M
n-Decyl
1337 VS 690 W 664 M
n-Dodecyl
1337 VS 688 W 663 M
Isopropyl
1327 VS 692 W 663 M
sec-Butyl
1332 VS 688 VW 663 M
Cyclohexyl
1325 VS 688 W 662 M
Methylisobutylcarbinyl
1330 VS 687 W 663 M
Diisopropylcarbinyl
1334 VS 678 W 657 M
Diisobutylcarbinyl
1340 VS 681 W 661 M
3,3,5-Trimethylcyclohexy 1
1338 VS 690 VW 664 M
3,6,8-Trimethylnony 1
1335 VS 681 W 657 M
Tetradecyl
1330 VS 680 W 657 M
2-Methoxyethyl
1333 VS 686 W 662 M
2-2'-Methoxyethoxyethyl
1333 VS 684 W 661 M
Tetrahydrofurfuryl
1334 VS 686 W 662 M
Tri(hexyleneglycol)
biborate
1309 VS 690 W 664 M
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
WASHBURN, LEVENT ALBRIGHT, AND BILLIG—BORATE ESTERS Table XVII.
Β — Ο Absorption
for Aromatic a n d M i x e d
Aliphatic-Aromatic Borate Ester
Esters
Aromatic Esters
Phenyl o-Cresyl n-Cresyl p-Cresyl 3,5-Dimethylphenyl
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
149
Cm.-i
Phase
1354 1357 1352 1354
ecu Film Film ecu Film ecu CeHu ecu Film CHCh CHCh ecu ecu
1356 1356 1352 1352 1358 1353 1353 1353
3,4-Dimethylphenyl 2,4-Dimethylphenyl 2,6-Dimethylphenyl 2,6-Diallylphenyl 2,6-Diisopropylphenj l 6-Chloro-l-cresyl r
Mixed Aliphatic-Aromatic Esteri Film KBr
1329 1319 1328 1333 1335 1325
2,6-Di-B
/ \
RO
OR
ο
R T h i s i s also o b s e r v e d f o r m e t h a n o l - m e t h y l b o r a t e ( F i g u r e 1 4 ) , c o n f i r m i n g t h e f o r m u l a t i o n o f S y r k i n a n d D y a t k i n a (186). I t is significant t h a t w i t h increasing steric i n t e r ference o f t h e L e w i s a c i d ( b o r a t e ) a n d base ( e t h e r ) , t h e a b s o r p t i o n s a t 1250 a n d
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
152
ADVANCES IN CHEMISTRY SERIES
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
FREQUENCY IN CM.-!
8
9
WAVE LENGTH IN MICRONS
Figure 14. Infrared absorption of tetracoordinate boron compounds in the region from 1110 to 1300 c m . 1
1190 c m . d i s a p p e a r , t h e a b s o r p t i o n a t 1250 c m . " d i s a p p e a r i n g f i r s t . sities o f t h e a b s o r p t i o n s f o r t h e esters a r e i n t h e o r d e r ( T a b l e X V I I I ) : - 1
T h e inten
1
(CH 0) B > (C H 0) B > ( C H = C H C H O ) B > (n-C H 0) B > (n-C H 0) B 3
3
2
5
3
2
3
3
7
3
4
9
3
T h i s ester a b s o r p t i o n w a s n o t seen f o r o t h e r a l i p h a t i c b o r a t e esters unless t h e y also c o n t a i n e d e t h e r o x y g e n ; t h e esters 2 - m e t h o x y e t h y l , 2 - [ 2 - m e t h o x y e t h o x y ] e t h y l , t e t r a h y d r o f u r f u r y l borate, a n d tri(hexyleneglycol) biborate a l l show m e d i u m t o strong a b s o r p t i o n s , f u r t h e r suggesting o x y g e n - b o r o n i n t r a m o l e c u l a r i n t e r a c t i o n . T h e spectra of the a r y l borates are more complex a n d no correlations have y e t been m a d e . I t a p p e a r s t h a t t h e r e is a n a b s o r p t i o n m a x i m u m j u s t o u t s i d e t h e r a n g e of r o c k salt o p t i c s ( 6 5 0 c m . ) f o r a l l o f t h e a r y l b o r a t e s . F u r t h e r d e t a i l s w i l l b e presented i n a subsequent paper. /
- 1
Toxicity L i t t l e i n f o r m a t i o n appears t o have been p u b l i s h e d about t h e t o x i c i t y of borate esters. I n s c r e e n i n g tests w i t h e t h y l a n d b u t y l b o r a t e s t h e f o l l o w i n g were f o u n d (41 ) :
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
153
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
WASHBURN, LEVENS, ALBRIGHT, AND BILLIG—BORATE ESTERS Test Snail control
Triethyl Borate Mortality 1/10 at 10 p.p.m.
Tributyl Borate Mortality 0/10 at 10 p.p.m.
Toxicity
Mouse mortality 0/3 at 15.6 cu. mm./kg.; ataxia at 125 to 500 cu. mm./kg. No response in brown trout, bluegill, goldfish
Mouse mortality 1/5 at 500 cu. mm./kg. ; ataxia, depres sion; recovery in 20 min.
Antibacterial
Slight activity against S. au reus; negative against B. globigii
Negative against S. aureus, E. coli, B. globigii
Plant growth regulator
No apparent effect on red kid ney bean seeds Negative results at 225 cu. mm./kg.
Cancer
S a x (163) cites e x p e r i m e n t a l l y i n d u c e d eye d a m a g e f r o m m e t h y l a n d e t h y l b o r a t e s . I n g e n e r a l , f o r esters w h i c h h y d r o l y z e r a p i d l y , i t seems reasonable t o a s c r i b e t h e p r i n c i p a l effects t o t h e r e s u l t i n g a l c o h o l o r ( p h e n o l ) a n d b o r i c a c i d . B o r i c a c i d i s s a i d t o Table XIX.
Uses of Borate Esters
Use Antidiscolorant (aromatic amines) Antioxidant Alcohol Rubber Azeotropic separation Catalyst Cracking Oxidation acetylenic 7-glycols Polymerization diazomethane Polymerization drying oils Sulfurization fatty oils Synthesis /3-lactones Coating Flame-resistant Water-repellant Colorimetric reagent (hydroxyquinones) Cosmetic preparations Curing agent (epoxy resins) Dehydrating agent Hydrogen peroxide Polymerization silicones Road aggregates Deterrent (smokeless powder) Electrolytic condensers Flux (brazing, welding) Fungicide Gelling agent (castor oil) Germicide Inhibitor (SO3 polymerization) Insecticide Lubricant (textile) Petroleum additive Antioxidant Corrosion inhibitor Dehydrating agent Demulsifier Improve gasoline performance Prevent wax precipitation Pharmaceutical preparations Plasticizer Polymer Adhesive Binder Coating Resin Purification Alcohols, phenols Cottonseed oil Recovery boron values (saltpeter) Refractories (bonding, impregnation) Resin modifier (pine wood resin) Rubber accelerator Stabilizer (PVA films) Surface active agent (detergent, dispersant, emulsifier, foaming, wetting) Wax or resin substitute
References (176) (88) (38, 144) (184) (199) (33) (131)
(201)
(63) (81)
(12) (143) (δ) (10, 19, 76) (121) (153) (132, 177, 178) (162) (10, 19,31, 60, 68-71, 148, 160) (6, 126, 168, 195) (149, 187) (66, 135) (90, 149) (127) (1,55) (200) (44, 54, 49,117, 154) (44, 54, 174, 190) (64) (99) (52, 67, 88,117) (122) (10, 11, 19, 31, 4^, 43, 50, 51, 125, 152, 189 (18, 31, 80, 103, 138, 162, 178) (10, 19, 31, 138, 150) (46, 138) (10, 19, 31) (10, 13, 19, 22, 28, 31, 82, 46, 57, 82, 89, 104, 128, 189, 156, 157, 175) (87, 40, 84, 97, 101, 123, 138, 141, 158, 205) (169) (39) (194) (161) (65) (22, 115) (20, 31, 74, 80, 91, 94, 95, 124, 129, 130, 140, 14?, 159, 162, (182)
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
ADVANCES IN CHEMISTRY SERIES
154
affect t h e c e n t r a l n e r v o u s s y s t e m a n d t o a c c u m u l a t e i n t h e b r a i n , l i v e r , a n d b o d y f a t . S a x states t h a t t h e f a t a l dose of o r a l l y i n g e s t e d b o r i c a c i d is 15 t o 2 0 g r a m s f o r a d u l t s a n d 5 t o 6 g r a m s f o r i n f a n t s . S p e c t o r (179) gives t h e b o r i c a c i d r a n g e of LD for l a b o r a t o r y a n i m a l s as 4740 t o 5580 m g . p e r k g . F o r 2,6-di-£er£-butyl-4-methylphenyl d i i s o p r o p y l b o r a t e , o n e o f t h e n e w s t a b l e esters s h o w n i n T a b l e I X , t h e o r a l LD i n r a t s w a s f o u n d t o b e 5.2 g r a m s p e r k g . ( t o x i c i t y test c o n d u c t e d b y S c i e n t i f i c A s s o c i a t e s , S t . L o u i s , M o . ) , w h i c h is i n g o o d a g r e e ment w i t h the value just cited for boric acid. 50
m
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
Uses of Borate Esters I n a d d i t i o n t o t h e s y n t h e t i c p o s s i b i l i t i e s f o r b o r a t e esters, a l a r g e n u m b e r o f m i s c e l l a n e o u s uses h a v e b e e n d e s c r i b e d , p r i n c i p a l l y i n t h e p a t e n t l i t e r a t u r e . S o m e of these a r e s u m m a r i z e d i n T a b l e X I X .
Bibliography (1) (2) (3) (4) (5) (6)
Abbey, Α., Brit. Patent 668,763 (1952). Ahmad, T., Haider, S. Z., Khundkar, M . H., J. Appl. Chem. 4, 543 (1954). Ahmad, T., Khundkar, M. H., Chem. & Ind. (London) 1954, 248. Almy, E. G., Griffiin, W. C. Wilcox, C. S., Ind. Eng. Chem.,Anal.Ed. 12, 392 (1940). Anderson, J. R. Α., O'Brien, K . G., Reuter, F. H., Anal. Chim. Acta 7, 226 (1952). Appel, F. J., U. S. Patent 2,217,354 (1940) ; Ε. I. du Pont de Nemours & Co., Brit. Patent 542,528 (1942). (7) Arbuzov, Β. Α., Vinogradova, V. S., Bull. Acad. Sci. (U.S.S.R.), Div. Chem. Sci. 1952, 773. (8) Arbuzov, Β. Α., Vinogradova, V. S., J. Phys. Chem. (U.S.S.R.) 22, 303 (1948). (9) Asahara, T., Kanabu, K., J. Chem. Soc. Japan, Ind. Chem. Sect. 55, 589 (1952). (10) Atlas Powder Co., Brit. Patent 511,641 (1939). (11) Austin, J. Α., U . S. Patent 2,007,786 (1935). (12) Balassa, L., Spencer, N. C., Ibid., 2,550,134 (1951). (13) Ballard, S. Α., Ibid., 2,431,224 (1947) ; Brit. Patent 595,502 (1947). (14) Bannister, W. J., U. S. Patent 1,668,797 (1928). (15) Barnes, R. F., Diamond, H., Fields, P. R., Ibid., 2,739,979 (1956). (16) Bauer, S. H., Beach, J. Y., J. Am. Chem. Soc. 63, 1394 (1941). (17) Bauer, S. H., Finlay, G. R., Laubengayer, A. W., Ibid., 67, 339 (1945). (18) Beears, W. L., U . S. Patent 2,650,908 (1953). (19) Bennett, H., Ibid., 1,953,741 (1934). (20) Bent, F. Α., Ibid., 2,197,462 (1940). (21) Bethell, D. E., Sheppard, N., Trans. Faraday Soc. 51, 9 (1955). (22) Binda, F. J., U . S. Patent 2,554,850 (1951). (23) Böeseken, J., Meulenhoff, J., Proc. Acad. Sci. Amsterdam 27, 174 (1924). (24) Böeseken, J., Mijs, J. Α., Rec. trav. chim. 44, 758 (1925). (25) Böeseken, J., Muller, H . D., Japhongjouw, R. T., Ibid., 45, 919 (1926). (26) Böeseken, J., Vermaas, N., J. Phys. Chem. 35, 1477 (1931). (27) Böeseken, J., Vermaas, N., Küchlin, A. T., Rec. trav. chim. 49, 711 (1930). (28) Boughton, W. Α., Mansfield, W. R., U . S. Patent 2,084,261-2 (1937). (29) Bradley, J. Α., Christopher, P. M., Division of Organic Chemistry, 129th Meeting, ACS, April 1956. (30) Brandenberg, W., Galat, Α., J. Am. Chem. Soc. 72, 3275 (1950). (31) Bremer, C., U . S. Patents 2,223,349, 2,223,948, 2,223,949, 2,224,011 (1940). (32) Britton, E. C., Davis, C. W., Taylor, F. L., Ibid., 2,160,942 (1939). (33) Brothman, Α., Ibid., 2,663,715 (1953). (34) Brown, H . C., J. Chem. Soc. 1956, 1248. (35) Brown, H . C., Fletcher, Ε. Α., J. Am. Chem. Soc. 73, 2808 (1951). (36) Brown, H . C., Mead, E . J., Shoaf, C. J., Ibid., 78, 3613 (1956). (37) Bruson, Η. Α., U. S. Patent 2,305,236 (1942). (38) Bunbury, H . M . , Davies, J . S. H., Naunton, W. J . S., Ibid., 1,923,911 (1933) ; Brit. Patent 363,483 (1930). (39) Calvert, R. P., Thomas, O. L., U . S. Patents 1,308,576-7 (1919). (40) Chang, Η. M . , Ibid., 2,760,993 (1956). (41) Chemical-Biological Coordination Center, "Summary Tables of Biological Tests," 1949-55. (42) Chemische Fabrik H . Weitz, German Patent 291,935 (1916).
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
WASHBURN, LEVENS, ALBRIGHT, AND BILLIG—BORATE ESTERS (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) (60) (61)
155
Clark, M . M., U . S. Patent 2,613,219 (1952). Clayton, J. O., Farrington, Β. B., Ibid., 2,312,208 (1943). Cohn, G., Pharm. Zentralhalle 52, 479 (1911). Colbeth, I. M., U. S. Patents 2,125,544 (1938) ; 2,278,425-7 (1942) ; 2,469,370 (1949). Colclough, T., Gerrard, W., Lappert, M. F., J. Chem. Soc. 1955, 907. Ibid., 1956, 3006. Councler, C., Ber. 9, 485 (1876) ; 10, 1655 (1877) ; 11, 1106 (1878). Craver, A. E., U . S. Patent 1,859,653 (1932). Curtis, D., Ibid., 2,582,191 (1952). Darling, S. M., Fay, P. S., Szabo, L. S., Ibid., 2,741,548 (1956). Dean, J. Α., Thompson, C., Anal. Chem. 27, 42 (1955). Denison, G. H., Jr., Condit, P. C., U. S. Patent 2,346,155 (1944). Dreisbach, R. R., Martin, R. Α., Erbel, A. J., Ibid., 2,507,506 (1950). Dupire, Α., Compt. rend. 202, 2086 (1936). Du Pont, Ε. I. de Nemours & Co., Brit. Patent 577,456 (1946). Ebelmen, J. J., Bouquet, M., Ann. chim. phys. 3, 17, 54 (1846) ; Ann. 60, 251 (1846). Eby, L. T., Mikeska, L. Α., U. S. Patent 2,462,616 (1949). Edenburg, L., Ibid., 1,924,711 (1933) ; Reissued 19,604 (1935). Edwards, J. O., Morrison, G. C., Ross, V. F., Schultz, J. W., J. Am. Chem. Soc. 77, 266 (1955). (62) Elbling, I. N., Langer, S. H., U . S. Patent 2,785,192 (1957). (63) Fawcett, J. S., Ibid., 2,492,562 (1949). (64) Fay, P. S., Szabo, L . S., Ibid., 2,767,069 (1956). (65) Forman, D. B., Radcliff, R. R., Mayo, L. R., Ind. Eng. Chem. 42, 686 (1950). (66) French Thomson-Houston Co., French Patent 955,359 (1950). (67) Garner, P. J., Brit. Patents 722,537-8 (1955). (68) Gaut, G. C., Phillips, D. J. P., Huggins, B. F., U . S. Patent 2,190,285 (1940). (69) Ibid., 2,190,286 (1940). (70) Georgiev, Α., Ibid., 1,815,768 (1931). (71) Georgiev, A. M., Campbell, J. J., Ibid., 2,505,180 (1950). (72) Gerrard, W., Lappert, M . F., J. Chem. Soc. 1951, 1020. (73) Ibid., p. 2545. (74) Gilmann, H . H., U. S. Patent 2,441,063 (1948). (75) Gore, R. C., Waight, E . S., p. 195, in Braude and Nachod, "Determination of Organic Structures by Physical Methods," Academic Press, New York, 1955. (76) Gottfried, S., U. S. Patent 2,506,921 (1950). (77) Goubeau, J., Böhm, U., Z. anorg. u. allgem. Chem. 266, 161 (1951). (78) Goubeau, J., Ekhoff, E., Ibid., 268, 145 (1952). (79) Goubeau, J., Link, R., Ibid., 267, 27 (1951). (80) Graves, G. D., Werntz, J. H., U . S. Patent 2,053,474 (1936). (81) Hagemeyer, H . J., Jr., Ibid., 2,469,110 (1949). (82) Harmon, J., Ibid., 2,423,497 (1947). (83) Hellthaler, T., Peter, E., Ibid., 1,947,989 (1934). (84) Hertkorn, J., Ibid., 901,293 (1908). (85) Hirao, N., Yabuuchi, T., J. Pharm. Soc. Japan 74, 1073 (1954). (86) Hirao, N., Yagi, S., J. Chem. Soc. Japan, Ind. Chem. Sect. 56, 371 (1953). (87) Horsley, L. H., Advances in Chem. Series, No. 6 (1952). (88) Hughes, E. C., Darling, S. M., Bartleson, J. D., Klingel, A. R., Jr., Ind. Eng. Chem. 43, 2841 (1951). (89) Irany, E . P., U. S. Patent 2,523,433 (1950). (90) Jablonski, Ε. M., Brit. Patent 511,473 (1939) ; French Patent 848,459 (1939). (91) Johnson, F. W., U . S. Patent 2,040,997 (1936). (92) Johnson, J. R., Tompkins, S. W., Org. Syntheses 13, 16 (1933). (93) Jones, W. J., Thomas, L . H., Pritchard, E. H., Bowden, S. T., J. Chem. Soc. 1946, 824. (94) Katz, J., U . S. Patent 2,216,618 (1940). (95) Katzman, M. B., Epstein, A. K., Ibid., 2,178,173-4 (1939). (96) Kaufmann, Α., French Patent 720,034 (1931), German Patent 555,403 (1930). (97) Kaufmann, Α. Α., U. S. Patent 1,886,885 (1932) ; Brit. Patent 359,953 (1929) ; Swiss Patent 150,611 (1932). (98) Kharasch, M . S., Reinmuth, O., "Grignard Reactions of Nonmetallic Substances," p. 1335, Prentice-Hall, New York, 1954. (99) Kirkpatrick, W. H., U. S. Patents 2,654,714 (1953) ; 2,755,296 (1956). (100) Klaus, Ε. E., Fenske, M . R., ASTM Bull. No. 215, 87-94 (1956). (101) Klipstein, K . H., U . S. Patent 2,068,415 (1937). (102) Kolthoff, I. M., Sandell, Ε. B., 3rd ed., p. 534, "Textbook of Quantitative Inorganic Analysis," Macmillan, New York, 1952.
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
156
ADVANCES IN CHEMISTRY SERIES
(103) Krieble, R. H., U . S. Patent 2,440,101 (1948) ; British Thomson-Houston Co., Brit. Patent 643,298 (1950). (104) Kropa, E. L., U. S. Patent 2,249,768 (1941). (105) Kuivila, H . G., J. Am. Chem. Soc. 76, 870 (1954). (106) Ibid., 77, 4014 (1955). (107) Kuivila, H . G., Benjamin, L. E., Ibid., 77, 4834 (1955). (108) Kuivila, H . G., Esterbrook, Ε. K., Ibid., 73, 4629 (1951). (109) Kuivila, H . G., Hendrickson, A. R., Ibid., 74, 5068 (1952). (110) Kuivila, H . G., Keough, A. H., Soboczenski, E. J., J. Org. Chem. 19, 780 (1954). (111) Kuivila, H . G., Slack, S. C., Siiteri, P. K., J. Am. Chem. Soc. 73, 123 (1951). (112) Kuivila, H . G., Soboczenski, E. J., Ibid., 76, 2675 (1954). (113) Kuivila, H . G., Wiles, R. Α., Ibid., 77, 4830 (1955). (114) Kuivila, H . G., Williams, R. M., Ibid., 76, 2679 (1954). (115) Land, E. H., U. S. Patent 2,445,581 (1948). (116) Lappert, M . F., Chem. Revs. 56, 959 (1956). (117) Lawrence, F. I. L., Smith, R. K., Pohorilla, M . J., U . S. Patents 2,721,180-1 (1955). (118) Letsinger, R. L., Skoog, I., J. Am. Chem. Soc. 76, 4174 (1954). (119) Ibid., 77, 2491 (1955). (120) Levasheff, V. V., Levens, E., May, F. H., Washburn, R. M., Division of Industrial and Engineering Chemistry, 128th Meeting, ACS, September 1955. (121) Levitan, N . I., Kuoch, R., U . S. Patent 2,386,484 (1945). (122) Lieber, E., Hodges, C. E., Ibid., 2,383,605 (1945). (123) Lippincott, S. B., Ibid., 2,642,453 (1953). (124) Lonza Electrizitätswerke & Chemische Fabriken A. G., Swiss Patent 239,746 (1916). (125) Lüdecke, K., U. S. Patent 1,788,680 (1931). (126) Lytle, A. R., Vaughn, T. H., Ibid., 2,262,023, 2,262,187 (1941). (127) McCann, H . G., Townsend, R. V., Ibid., 2,492,706 (1949). (128) McLeod, E. D., Ibid., 2,352,796 (1944). (129) Mauersberger, Ε. Α., Ibid., 2,036,593 (1936). (130) Ibid., 2,042,952 (1936). (131) Meerwein, H., Angew. Chem. A60, 78 (1948). (132) Mertens, E. W., Stevens, D. E., U . S. Patent 2,408,924 (1950). (133) Michael, V. F., Ibid., 2,606,936 (1952). (134) Michaelis, Α., Hillringhaus, F., Ann. 315, 41 (1901). (135) Miller, H . F., Flowers, R. G., U. S. Patent 2,544,342 (1951). (136) Mitchell, J., Jr., Smith, D. M., Bryant, W. M. D., J. Am. Chem. Soc. 62, 4 (1940). (137) Ibid., 63, 2927 (1941). (138) Morgan, W. L., U. S. Patent 2,408,332 (1946). (139) Ibid., 2,501,783 (1950). (140) Muncie, F. W., Ibid., 2,209,634 (1940). (141) O'Connor, B., Pearce, F. G., Ibid., 2,587,753 (1952). (142) O'Connor, G. L., Nace, H . R., J. Am. Chem. Soc. 77, 1578 (1955). (143) Patnode, W. I., U. S. Patent 2,434,953 (1948). (144) Paul, P. T., Ibid., 2,259,175 (1941). (145) Pauling, L., "Nature of the Chemical Bond," 2nd ed., pp. 210, 235, Cornell University Press, Ithaca, Ν. Y., 1948. (146) Pictet, Α., Geleznoff, Α., Ber. 36, 2219 (1903). (147) Piggott, Η. Α., U . S. Patent 2,052,192 (1936). (148) Pitt, A. T., Ibid., 2,078,772 (1937). (149) Prescott, R. F., Dosser, R. C., Sculati, J. J., Ibid., 2,260,336-9 (1941) ; 2,300,006 (1942). (150) Raczynski, W. Α., Ibid., 2,510,904 (1950). (151) Rippere, R. E., La Mer, V. Κ., J. Phys. Chem. 47, 204 (1943). (152) Roblin, R. O., Jr., U . S. Patent 2,266,993 (1941). (153) Rochow, E . G., Ibid., 2,371,068 (1945). (154) Rogers, D. T., McNab, J. G., Ibid., 2,526,506 (1950). (155) Rosenblum, I., Ibid., 2,189,833 (1940). (156) Roth, H., Angew. Chem. 50, 593 (1937). (157) Rothrock, H . S., U. S. Patent 2,276,094 (1942). (158) Rottig, W., Ibid., 2,746,984 (1956). (159) Rozenbroek,M.D., Ibid., 2,224,360 (1940) ; Dutch Patent 49,219 (1940). (160) Ruben, S., U . S. Patents 1,891,206-7 (1932). (161) Rummelsburg, A. L., Ibid., 2,354,774 (1944). (162) Ibid., 2,417,180 (1947). (163) Sax, Ν. I., "Handbook of Dangerous Materials," Reinhold, New York, 1951. (164) Scattergood, Α., Miller, W. H., Gammon, J., Jr., J. Am. Chem. Soc. 67, 2150 (1945). (165) Schäfer, H., Angew. Chem. A60, 73 (1948). (166) Schäfer, H., Z. anorg. Chem, 259, 86, 255 (1949). In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.
WASHBURN, LEVENS, ALBRIGHT, AND BILLIG—BORATE ESTERS
Downloaded by UNIV OF CALIFORNIA SAN FRANCISCO on December 8, 2014 | http://pubs.acs.org Publication Date: January 1, 1959 | doi: 10.1021/ba-1959-0023.ch012
(167) (168) (169) (170) (171) (172) (173) (174) (175) (176) (177) (178) (179) (180) (181) (182) (183) (184) (185) (186) (187) (188) (189) (190) (191) (192) (193) (194) (195) (196) (197) (198) (199) (200) (201) (202) (203) (204) (205)
157
Schäfer, H., Braun, O., Naturwissenschaften, 39, 280 (1952). Schechter, W. H., U. S. Patent 2,629,732 (1953). Schellmann, M., Ibid., 1,981,605 (1934). Schiff, H., Ann. Suppl. 5, 158 (1867). Schlesinger, Η. I., Brown, H . C., J. Am. Chem. Soc. 75, 186 (1953). Schlesinger, Η. I., Brown, H . C., Mayfield, D. L., Gilbreath, J. R., Ibid., 75, 213 (1953). Schuler, E . B., U . S. Patent 2,114,985 (1938). Shoemaker, B. H., Loane, C. M., Ibid., 2,160,917 (1939). Signaigo, F. K., Ibid., 2,444,712 (1948). Smith, R. K., Ibid., 2,422,503 (1947). Smith, V. R., Stevens, D. E., Ibid., 2,508,428 (1950). Smith, V. R., Stevens, D. E., Mertens, E . W., Ibid., 2,508,430 (1950). Spector, W. S., "Handbook of Toxicology," vol. I, W. B. Saunders, Philadelphia, 1956. Stanley, J., U. S. Patent 2,077,967 (1937). Steinberg, H., Hunter, D. L., Ind. Eng. Chem. 49, 174 (1957). Stickdorn, K., U . S. Patent 2,187,334 (1940) ; German Patent 692,487 (1940). Stillson, G. H., Sawyer, D. W., Hunt, C. K., J. Am. Chem. Soc. 67, 303 (1945). Stribley, J. M., Lake, G. R., U. S. Patent 2,463,919 (1949). Sugden, S., "The Parachor and Valency," Routledge, London, 1930. Syrkin, Y . K., Dyatkina, M . E., "Structure of Molecules and the Chemical Bond," p. 109, Interscience, New York, 1950. ter Horst, W. P., U . S. Patent 2,220,981 (1940). Thomas, L . H., J. Chem. Soc. 1946, 823. Thron, H., U. S. Patent 841,738 (1907), Vereinigte Chininfabrieken Zimmer, German Patent 188,703 (1907). Trautman, C. E., U . S. Patents 2,497,521 (1950) ; 2,468,472 (1951). Tronov, Β. V., Petrova, A. M., Zhur. Obshchei Khim. 23, 1019 (1953). Ulrich, H., Kuespert, K., U. S. Patent 2,185,480 (1940). Urs, S. V., Gould, E . S., J. Am. Chem. Soc. 74, 2948 (1952). Vaughn, T. H., U . S. Patent 2,058,844 (1936). Ibid., 2,088,935 (1937) ; 2,114,866 (1938). Washburn, R. M., Levens, E., Albright, C. F., Billig, F. Α., Cernak, E . S., Division of Industrial and Engineering Chemistry, 131st Meeting, ACS, Miami, Fla., April 1957. Webster, S. H., Dennis, L . Μ., J. Am. Chem. Soc. 55, 3233 (1933). Werner, R. L., O'Brien, K . G., Australian J. Chem. 8, 355 (1955). West, J. P., U. S. Patent 2,584,405 (1952). Whitehead, W., Ibid., 2,188,167 (1940). Whiting, L . R., Ibid., 2,480,206 (1949). Whitmore, F. C., Lux, A. R., J. Am. Chem. Soc. 54, 3451 (1932). Wilds, A. L., "Organic Reactions," vol. II, p. 178, Wiley, New York, 1944. Wuyts, M. H., Duquesne, Α., Bull. soc. chim. Belg. 48, 77 (1939). Zeitschel, F. O., U . S. Patent 1,733,440 (1929); German Patents 444,640, 448,419 (1927). RECEIVED for review May 10, 1957. Accepted June 1, 1958.
In METAL-ORGANIC COMPOUNDS; Advances in Chemistry; American Chemical Society: Washington, DC, 1959.