Basic Electron-Transfer Theory - Advances in Chemistry (ACS

May 5, 1991 - 1 Photochemistry Unit, Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7, Canada ... Abstract: The factors...
0 downloads 0 Views 2MB Size
2 Basic Electron-Transfer Theory James R. Bolton and Mary D. Archer Downloaded by PENNSYLVANIA STATE UNIV on July 31, 2012 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch002

1

2

Photochemistry Unit, Department of Chemistry, University of Western Ontario, London, Ontario Ν6Α 5B7, Canada Newnham College, Cambridge, England CB3 9DF

1

2

This chapter provides an introduction to basic electron-transfer the­ ory. The classical Marcus theory is developed, and the reorganization energy is defined. The difference between adiabatic and nonadiabatic electron-transfer reactions is explained. Quantum mechanical theo­ ries of electron transfer are outlined for nonadiabatic reactions with particular application to the Marcus inverted region. Finally, the effect of solvent dynamics is examined.

THE

B A S I C S O F E L E C T R O N - T R A N S F E R T H E O R Y are p r e s e n t e d i n this c h a p t e r

so that the authors of subsequent chapters can refer to it for the f u n d a m e n t a l equations a n d n o m e n c l a t u r e . It s h o u l d also serve as a t u t o r i a l for those w h o are not familiar w i t h the basic theory, a l t h o u g h this is a o n l y a b r i e f o u t l i n e . B y far the most successful theory of e l e c t r o n transfer ( E T ) is that i n t r o ­ d u c e d a n d d e v e l o p e d b y M a r c u s (1-5); thus, this o u t l i n e w i l l d e a l almost exclusively w i t h a s u m m a r y of that t h e o r y a n d the i m p o r t a n t equations d e r i v e d t h e r e f r o m . H u s h (6) d e v e l o p e d a theory s i m i l a r to that of M a r c u s , based o n concepts i n v o l v e d i n E T at electrode surfaces; h o w e v e r , H u s h ' s t h e o r y does not p r e d i c t the i n v e r t e d r e g i o n (vide infra). C o m p r e h e n s i v e r e v i e w s b y N e w t o n a n d S u t i n (7) a n d M a r c u s a n d S u t i n (8, 9) offer a t h o r o u g h d e v e l o p m e n t o f the M a r c u s t h e o r y of e l e c t r o n transfer. U s u a l l y M a r c u s t h e o r y is u s e d for outer-sphere E T reactions b e t w e e n a d o n o r D a n d a n acceptor A . ( F o r c o n v e n i e n c e , w e assume that D a n d A are n e u t r a l m o l e c u l e s . T h e case of c h a r g e d reactants introduces o n l y the possibility of electrostatic effects that can be i n c o r p o r a t e d w i t h little difficulty into the theory.) E i t h e r D o r A m a y b e i n an e x c i t e d state ( D * or A * ) , i n w h i c h case the process is c a l l e d p h o t o i n d u c e d e l e c t r o n transfer ( P E T ) . H o w 0065-2393/91 /0228-0007$06.00/0 © 1991 American Chemical Society

In Electron Transfer in Inorganic, Organic, and Biological Systems; Bolton, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1991.

8

E T IN INORGANIC, ORGANIC, A N D BIOLOGICAL SYSTEMS

ever, o t h e r t h a n a change i n the starting-state energies, the p r i n c i p l e s o f electron-transfer t h e o r y a p p l y e q u a l l y w e l l to p h o t o i n d u c e d a n d to g r o u n d state electron-transfer reactions. F o r second-order reactions the E T reaction can b e d i v i d e d into t h r e e steps. I n the first step D a n d A diffuse together to f o r m an o u t e r - s p h e r e precursor complex D|A (rate constant k i n e q l a u s u a l l y approaches the diffusion-controlled limit). a

Downloaded by PENNSYLVANIA STATE UNIV on July 31, 2012 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch002

D

+ A f

-

(8)

e

where r and r are the e q u i l i b r i u m b o n d lengths i n the reactant a n d p r o d u c t states, respectively; f is a r e d u c e d force constant for the i t h v i b r a ­ t i o n , a n d the s u m is taken o v e r a l l significant i n t r a m o l e c u l a r v i b r a t i o n s . I n the few cases w h e r e \ values have b e e n calculated, t h e y have b e e n f o u n d to b e fairly s m a l l [ 0 . 1 - 0 . 3 e V ; see B r u n s c h w i g et a l . (12)]; h o w e v e r , i n some inorganic complexes [e.g., C o ( N H ) ] \ can be q u i t e large. R

e q

P

e q

{

i n

3

6

2 + / 3 +

in

T h e outer t e r m X is c a l l e d the solvent reorganization energy because it arises f r o m differences b e t w e e n the orientation a n d p o l a r i z a t i o n of solvent m o l e c u l e s a r o u n d D|A a n d D |A~. I f the s u r r o u n d i n g solvent is t r e a t e d as a d i e l e c t r i c c o n t i n u u m , t h e n it can be s h o w n (1, 13) that o u t

+

j

(E

R

-

Ef p

(9)

dV

w h e r e E a n d E are the electric fields exerted i n vacuo at a distance r f r o m the centers of the reactant a n d p r o d u c t states, r e s p e c t i v e l y ; e a n d e are the o p t i c a l a n d static d i e l e c t r i c constants, r e s p e c t i v e l y , of the s u r r o u n d i n g solvent m e d i u m ( e = n , w h e r e η is the refractive i n d e x of the m e d i u m ) ; R

p

op

op

s

2

e is the p e r m i t t i v i t y of v a c u u m ; a n d the c y c l i c i n t e g r a t i o n is c a r r i e d out over the v o l u m e V. T h e t e r m ( l / e - l/e ) arises because X is the e n e r g y of r e o r g a n i z i n g the solvent molecules a r o u n d the e q u i l i b r i u m D|A c o m p l e x u n t i l t h e y are i n the orientation of the solvent molecules a r o u n d the e q u i ­ l i b r i u m D |A~ c o m p l e x b u t w i t h o u t transfer of the e l e c t r o n . T h i s c o r r e ­ sponds to c h a n g i n g the o r i e n t a t i o n polarization b u t not the n u c l e a r a n d electronic polarization. 0

o p

s

o u t

+

In Electron Transfer in Inorganic, Organic, and Biological Systems; Bolton, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1991.

14

E T IN INORGANIC, ORGANIC, A N D BIOLOGICAL SYSTEMS

T h e c o m p u t a t i o n o f the i n t e g r a l of e q 9 r e q u i r e s a specific m o d e l so that a p p r o p r i a t e b o u n d a r y conditions can b e set. M o s t authors have c h o s e n a s p h e r i c a l reagent m o d e l , w h i c h gives o n integration (14)

α

^ _Μ

_!_ _ ±1

+

4ττ€ [_2α



Ό

0

r

Α

D A

μ

.

J |^

ορ

il «U

w h e r e ae is the charge transferred i n the reaction (almost always one e l e c ­

Downloaded by PENNSYLVANIA STATE UNIV on July 31, 2012 | http://pubs.acs.org Publication Date: May 5, 1991 | doi: 10.1021/ba-1991-0228.ch002

t r o n i c charge); a and r

D A

D

a n d a are the r a d i i of the d o n o r a n d acceptor, r e s p e c t i v e l y ; A

is the center-to-center distance b e t w e e n the d o n o r a n d acceptor.

C a n n o n (13) a n d M a r c u s (15) have also c o n s i d e r e d a m o r e realistic e l ­ l i p s o i d a l m o d e l , b u t it generates rather c o m p l e x equations for X

o u t

. Never­

theless, i r r e s p e c t i v e o f the m o d e l chosen, i t is usually possible to approximate ^out

by

Xout »

Β

Γ—

-

(11)

-1

L op

ej



w h e r e Β is a s o l v e n t - i n d e p e n d e n t p a r a m e t e r whose value d e p e n d s o n the m o d e l a n d the m o l e c u l a r d i m e n s i o n s . T h e value of X varies f r o m n e a r zero for v e r y n o n p o l a r solvents (for w h i c h € — e ) to 1 . 0 - 1 . 5 e V for polar solvents; thus X is u s u a l l y the d o m i n a n t t e r m i n e q 7. o u t

s

o p

o u t

X is a f u n c t i o n of distance because Β i n e q 11 is a f u n c t i o n o f r [see e q 10]. A l s o , X is slightly t e m p e r a t u r e - d e p e n d e n t , as b o t h e a n d e v a r y w i t h t e m p e r a t u r e . F o r most solvents it is possible to express X = λ TK , w h e r e λ a n d X are e n t h a l p i c a n d entropie c o m p o n e n t s of X , r e ­ s p e c t i v e l y ; this emphasizes that X is a G i b b s energy t e r m . F o r most l i q u i d solvents X does not v a r y b y m o r e t h a n 5 % o v e r a 100 Κ t e m p e r a t u r e range. o u t

D

o u t

op

A

s

o u t

S

Η

s

Η

o u t

o u t

Adiabatic vs. Nonadiabatic Electron-Transfer Reactions.

Two

types o f E T reactions can b e d i s t i n g u i s h e d a c c o r d i n g to the m a g n i t u d e o f the electronic coupling energy Η b e t w e e n the reactant a n d p r o d u c t states (some authors use the s y m b o l V for this term), d e f i n e d b y φ

Η

φ

=