Biochemical Adaptations in Skeletal Muscle Induced by Exercise

muscles of active and less active species (1). Muscles of wild animals ... 0097-6156/ 86/ 0294-0008$06.00/ 0 ... of the enhanced aerobic capacity is p...
0 downloads 0 Views 2MB Size
2 Biochemical Adaptations in Skeletal Muscle Induced by Exercise Training Ronald L. Terjung and David A. Hood

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

Department of Physiology, Upstate Medical Center, State University of New York, Syracuse, NY 13210

Exercise performance seems to be greatly affected by the chronic level of physical activity experienced by the animal or individual. For example, differences in the capacity for prolonged exercise seem obvious between wild and domesticated animals. This is probably due, in part, to inherent biochemical differences between the muscles of active and less active species (1). Muscles of wild animals appear darker than those of their domesticated counterparts (2). Further, variations in activity patterns due to seasonal change (3) or hibernation (4), are associated with differences in the enzymes related to oxidative metabolism. Thus, in a general sense physical activity seems to be associated with biochemical changes that enhance the muscle's capacity for aerobic metabolism. Muscle Adaptations The specific biochemical changes induced by increased physical activity are well characterized from laboratory studies and have been the subject of a number of excellent reviews (5-9). The fundamental change found in skeletal muscle after exercise training is an enhanced capacity for energy provision via aerobic metabolism. There i s an i n c r e a s e i n m i t o c h o n d r i a l p r o t e i n content and c r i s t a e component enzymes a s s o c i a t e d w i t h t h e e l e c t r o n t r a n s p o r t . In a thorough s t u d y , H o l l o s z y (10) found t h a t an e x e r c i s e program o f p r o l o n g e d t r e a d m i l l r u n n i n g i n c r e a s e d the m i t o c h o n d r i a l content o f l a b o r a t o r y r a t s by a p p r o x i m a t e l y 100%. S i m i l a r t r a i n i n g responses are found i n a wide v a r i e t y o f o t h e r animals i n c l u d i n g man (9,11). Subsequent m o r p h o l o g i c a l s t u d i e s have shown t h a t the m i t o c h o n d r i a o f t r a i n e d muscles appear t o be more abundant (12) and l a r g e r (13). Thus, t h e c r o s s - s e c t i o n o f the t r a i n e d muscle appears more d e n s e l y packed w i t h m i t o c h o n d r i a . M i t o c h o n d r i a i s o l a t e d from muscles o f t r a i n e d animals e x h i b i t the same dependence on ADP t o s t i m u l a t e and i n c r e a s e r e s p i r a t i o n , and a r e as e f f i c i e n t i n t h e c o u p l i n g o f ATP p r o d u c t i o n t o oxygen consumption as muscle o b t a i n e d from s e d e n t a r y animals (10). Thus, the i n c r e a s e d m i t o c h o n d r i a l content r e p r e s e n t s a t r u e i n c r e a s e i n the p o t e n t i a l f o r a e r o b i c ATP g e n e r a t i o n w i t h i n the muscle. I n a d d i t i o n t o the g r e a t e r e l e c t r o n t r a n s p o r t c a p a c i t y , t h e r e i s a l s o a c o o r d i n a t e d i n c r e a s e i n t h e enzymes o f support 0097-6156/ 86/ 0294-0008$06.00/ 0 © 1986 American Chemical Society

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

2.

TERJUNG AND HOOD

Biochemical

Adaptations

in Skeletal

Muscle

9

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

systems necessary t o s u p p l y the r e d u c i n g e q u i v a l e n t s f o r the e l e c t r o n t r a n s p o r t and ATP s y n t h e s i s . Thus, the c a p a c i t i e s f o r carboh y d r a t e o x i d a t i o n ( 1 4 ) , f a t t y a c i d o x i d a t i o n (15,16), k e t o n e body o x i d a t i o n ( 1 7 ) , t r i c a r b o x y l i c a c i d c y c l e enzymes ( 1 8 ) , and m i t o c h o n d r i a l s h u t t l e pathways (19) are i n c r e a s e d by endurance t r a i n i n g . I n a d d i t i o n , the content of m y o g l o b i n , w h i c h i s thought t o f a c i l i t a t e oxygen t r a n s f e r w i t h i n the c e l l (20,21), i n c r e a s e s i n the t r a i n e d muscle ( 2 , 2 2 ) . Thus, t h e r e i s a c o o r d i n a t e d i n c r e a s e i n the c a p a c i t y of the t r a i n e d muscle f o r ATP p r o v i s i o n v i a o x i d a t i v e metabolism. These changes c o n t r i b u t e to the d a r k e r appearing muscles of the t r a i n e d a n i m a l s . The p r i m a r y m e t a b o l i c s i g n i f i c a n c e of the enhanced a e r o b i c c a p a c i t y i s p r o b a b l y r e l a t e d t o the c o n t r o l of energy metabolism and a s h i f t i n s u b s t r a t e source from carboh y d r a t e to f a t i n the muscles d u r i n g submaximal e x e r c i s e (6,8,23). S p e c i f i c i t y of

Adaptations

The b i o c h e m i c a l a d a p t a t i o n s t o e x e r c i s e t r a i n i n g are v e r y s p e c i f i c to the w o r k i n g m u s c l e s . F o r example, an i n c r e a s e i s found i n the h i n d l i m b muscle of t r e a d m i l l run r a t s , but not i n l i v e r (24) o r the l e s s a c t i v e abdominal muscles of the same animals ( 2 2 ) . Further, when a unique t r a i n i n g program t h a t e x e r c i s e s o n l y one l i m b on a c y c l e ergometer i s employed, the a d a p t a t i o n i s induced i n the e x e r c i s e d l e g , but not the u n t r a i n e d c o n t r a l a t e r a l l e g ( 1 3 , 2 5 ) . Thus, the t r a i n i n g a d a p t a t i o n i s not a g e n e r a l i z e d response w i t h i n the i n d i v i d u a l . T h i s i n d i c a t e s t h a t the s t i m u l u s r e s p o n s i b l e f o r b r i n g i n g about the b i o c h e m i c a l change i s s p e c i f i c t o the w o r k i n g muscle and r e l a t e d t o the demands p l a c e d upon the muscle by the exercise effort. F a c t o r s t h a t determine the magnitude of the t r a i n i n g e f f e c t are f a i r l y complex, due i n p a r t t o the o r d e r e d p a t t e r n of motor u n i t r e c r u i t m e n t found d u r i n g normal l o c o m o t i o n and/or a s p e c i f i c work t a s k . The type and i n t e n s i t y of the e x e r c i s e e f f o r t l a r g e l y d e t e r mine w h i c h motor u n i t s w i l l be u t i l i z e d t o p e r f o r m the work ( 2 6 ) . Each motor u n i t w i t h i n a muscle i s composed of a s i n g l e nerve axon and the muscle f i b e r s t h a t i t i n n e r v a t e s . W h i l e a l l f i b e r s w i t h i n a g i v e n motor u n i t have the same p r o p e r t i e s , i t i s now r e c o g n i z e d t h a t at l e a s t t h r e e d i f f e r e n t s k e l e t a l muscle f i b e r types (and thus motor u n i t s ) e x i s t i n mammals. They d i f f e r c o n s i d e r a b l y i n t h e i r c o n t r a c t i l e c h a r a c t e r i s t i c s , i n t h e i r inherent biochemical c a p a b i l i t i e s , and p r o b a b l y i n t h e i r response to t r a i n i n g . Thus, i t i s i m p o r t a n t to c o n s i d e r the impact of the d i f f e r e n t types of s k e l e t a l muscle motor u n i t s . M u s c l e F i b e r Types Mammalian s k e l e t a l muscle can be s e p a r a t e d i n t o two d i s t i n c t f i b e r p o p u l a t i o n s , based on r e l a t i v e c o n t r a c t i o n c h a r a c t e r i s t i c s , and are r e f e r r e d t o as s l o w - t w i t c h (Type I ) o r f a s t - t w i t c h (Type I I ) f i b e r s . The s l o w - t w i t c h f i b e r type e x h i b i t s a r e l a t i v e l y low s h o r t e n i n g v e l o c i t y ( 2 7 ) , a low r a t e of t e n s i o n development ( 2 7 ) , a low myosin ATPase a c t i v i t y (28) and a low r a t e of c a l c i u m s e q u e s t r a t i o n by the sarcoplasmic reticulum (29). The c o n v e r s e i s t r u e f o r the f a s t twitch fibers. Since c o n t r a c t i o n v e l o c i t y h i g h l y c o r r e l a t e s w i t h myosin ATPase a c t i v i t y ( 3 0 ) , i t i s p o s s i b l e t o e a s i l y i d e n t i f y ,

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

10

NUTRITION A N D

AEROBIC EXERCISE

w i t h i n a muscle c r o s s - s e c t i o n , f a s t and s l o w - t w i t c h f i b e r s by the i n t e n s i t y of s t a i n i n g of the myosin ATPase u s i n g h i s t o c h e m i c a l p r o c e d u r e s ( 3 1 ) . The s l o w - t w i t c h f i b e r s are c h a r a c t e r i s t i c a l l y r e d i n appearance, i n d i c a t i v e of a r e l a t i v e l y h i g h m i t o c h o n d r i a l content (14), e x h i b i t a h i g h b l o o d f l o w (32,33), and have a low g l y c o g e n o l y t i c c a p a c i t y (e.g., phosphorylase a c t i v i t y ) (7,34). The fastt w i t c h f i b e r s u n i f o r m l y possess a r e l a t i v e l y h i g h g l y c o g e n o l y t i c c a p a c i t y ( 7 , 3 4 ) , but can be s u b d i v i d e d by t h e i r c o n t r a s t i n g c a p a c i t i e s f o r o x i d a t i v e m e t a b o l i s m . I n f a c t , the g r e a t e s t d i f f e r e n c e i n m i t o c h o n d r i a l content f o r most non-primate mammalian muscle i s found between the f a s t - t w i t c h red and the f a s t - t w i t c h w h i t e f i b e r types (14,35). I n humans, the m i t o c h o n d r i a l content of s l o w - t w i t c h r e d f i b e r s i s t y p i c a l l y g r e a t e r than t h a t of the f a s t - t w i t c h r e d f i b e r s (7,35). S i m i l a r l y , measurements of b l o o d f l o w s t o s e c t i o n s of m u s c l e , which are p r i m a r i l y composed of a s i n g l e f i b e r t y p e , e x h i b i t l a r g e d i f f e r e n c e s c o n s i s t e n t w i t h the expected demands of oxygen s u p p l y based on m i t o c h o n d r i a l content (32,33). Thus, mammalian s k e l e t a l muscle i s t y p i c a l l y comprised of t h r e e b i o c h e m i c a l l y and f u n c t i o n a l l y d i s t i n c t f i b e r types: s l o w - t w i t c h r e d , f a s t - t w i t c h r e d and f a s t - t w i t c h w h i t e . These f i b e r types are a l s o commonly r e f e r r e d to as Type I , Type l i a , and Type l i b , r e s p e c t i v e l y (7). C o n t r a c t i o n p e r f o r m a n c e of t h e s e d i f f e r e n t f i b e r t y p e s i s p r e d i c t a b l e from a knowledge of t h e i r b i o c h e m i c a l and b l o o d f l o w differences. F o r example, the s l o w - t w i t c h r e d f i b e r type can cont r a c t f o r l o n g p e r i o d s of time w i t h o u t a l o s s i n t e n s i o n development (36). A l t h o u g h the r e l a t i v e l y h i g h f u n c t i o n a l a e r o b i c c a p a c i t y must be important f o r s u s t a i n e d performance ( 3 7 ) , i t i s a l s o known t h a t the s l o w - t w i t c h f i b e r type r e q u i r e s l e s s energy t o m a i n t a i n t e n s i o n (38). T h e r e f o r e , t h i s f i b e r type seems w e l l - s u i t e d f o r p r o l o n g e d s u s t a i n e d a c t i v i t y such as t h a t r e q u i r e d f o r p o s t u r a l s u p p o r t . The f a s t - t w i t c h red muscle f i b e r i s f a i r l y f a t i g u e r e s i s t a n t and capable of repeated powerful contractions before tension development declines s i g n i f i c a n t l y (36). A l t h o u g h t h i s f i b e r type has a h i g h c a p a c i t y f o r l a c t a t e p r o d u c t i o n ( 3 9 , 4 0 ) , i t s performance d u r i n g p r o l o n g e d c o n t r a c t i o n p e r i o d s i s made p o s s i b l e by i t s r e l a t i v e l y h i g h f u n c t i o n a l a e r o b i c c a p a c i t y ( 4 0 ) . I n c o n t r a s t , the f a s t - t w i t c h w h i t e muscle f i b e r e x h i b i t s a r a p i d l o s s of t e n s i o n development and i s capable of p o w e r f u l c o n t r a c t i o n s f o r o n l y a b r i e f p e r i o d of time (36). A h i g h r a t e of g l y c o g e n o l y s i s , r e s u l t i n g i n a h i g h l a c t a t e content and c e l l u l a r a c i d o s i s , would be found d u r i n g i n t e n s e cont r a c t i o n c o n d i t i o n s i n t h i s f i b e r type ( 4 1 ) . The s l o w - t w i t c h muscle f i b e r s are r e l a t i v e l y s m a l l i n d i a m e t e r and belong to motor u n i t s t h a t are t y p i c a l l y the f i r s t t o be r e c r u i t e d d u r i n g any motor t a s k . Thus, d u r i n g s i m p l e muscle a c t i v i t y r e q u i r e d f o r p o s t u r a l support of s t a n d i n g , the s l o w - t w i t c h motor u n i t s are v e r y a c t i v e and, i n some c a s e s , f u n c t i o n near t h e i r maxi m a l f o r c e output ( 4 2 ) . The f a s t - t w i t c h red f i b e r s belong t o l a r g e r motor u n i t s (26) and are r e c r u i t e d f o r muscle a c t i o n s t h a t are more f o r c e f u l (42). T h e i r r e c r u i t m e n t i n c r e a s e s , f o r example, when r u n n i n g at i n c r e a s i n g speeds on a t r e a d m i l l ( 4 2 ) . F i n a l l y , the f a s t - t w i t c h w h i t e f i b e r s belong t o l a r g e p o w e r f u l motor u n i t s and a r e r e c r u i t e d d u r i n g v e r y i n t e n s e e x e r c i s e (43,44) o r d u r i n g ext r e m e l y f o r c e f u l movements such as jumping ( 4 2 ) . The r e l a t i v e l y i n f r e q u e n t and s p e c i a l i z e d u t i l i z a t i o n of the f a s t - t w i t c h w h i t e motor u n i t s i s e s p e c i a l l y p u r p o s e f u l , s i n c e these i n t e n s e e x e r c i s e

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

2.

TERJUNG AND HOOD

Biochemical

Adaptations

in Skeletal

Muscle

11

e f f o r t s and e x p l o s i v e body movements are u s u a l l y s h o r t l i v e d . Thus, the r a p i d f a t i g u e and r e l a t i v e l y poor endurance performance of t h i s f i b e r type (36) do not g e n e r a l l y i n f l u e n c e muscle f u n c t i o n d u r i n g moderate e x e r c i s e of submaximal i n t e n s i t y (43,44)« Athough t h e r e can be a s i g n i f i c a n t o v e r l a p i n the p r o g r e s s i v e r e c r u i t m e n t of motor u n i t p o p u l a t i o n s as the i n t e n s i t y of e x e r c i s e becomes g r e a t e r , the g e n e r a l p a t t e r n of o r d e r e d r e c r u i t m e n t from s l o w - t w i t c h red t o f a s t - t w i t c h red and then to f a s t - t w i t c h w h i t e motor u n i t s o c c u r s d u r i n g most p h y s i c a l a c t i v i t y ( 4 5 ) . The s k e l e t a l musculature of those non-primate mammals t h a t have been examined i s comprised p r i m a r i l y of ( i . e . , 80-95%) f a s t - t w i t c h f i b e r s (46,47). The f a s t t w i t c h f i b e r s a r e , i n t u r n , comprised of a p p r o x i m a t e l y equal p o r t i o n s of f a s t - t w i t c h red and f a s t - t w i t c h w h i t e f i b e r s . In contrast the s k e l e t a l muscle of man i s comprised of a p p r o x i m a t e l y 50% f a s t t w i t c h and 50% s l o w - t w i t c h muscle ( 7 , 4 8 ) . A l t h o u g h the l o w - o x i d a t i v e f a s t - t w i t c h w h i t e muscle f i b e r s are found i n humans ( 7 , 4 9 ) , they t y p i c a l l y r e p r e s e n t a s m a l l e r f r a c t i o n of the l i m b m u s c u l a t u r e as compared t o most lower mammals. I n summary, a l l mammals possess a l a r g e f r a c t i o n of h i g h - o x i d a t i v e muscle. The ordered p a t t e r n of motor u n i t r e c r u i t m e n t i n v o l v e s these h i g h o x i d a t i v e muscle f i b e r s b e f o r e the l o w - o x i d a t i v e f i b e r s , as e x e r c i s e i n t e n s i t y p r o g r e s s e s from m i l d , t o moderate, t o s e v e r e . T h i s p r o g r e s s i o n f a v o r s an enhanced e x e r c i s e performance a t submaximal e x e r c i s e i n t e n s i t i e s , s i n c e the slow and f a s t - t w i t c h r e d f i b e r s are capable of repeated c o n t r a c t i o n s f o r l o n g p e r i o d s of time. Important

T r a i n i n g Parameters

S e v e r a l i m p o r t a n t t r a i n i n g v a r i a b l e s are known t o i n f l u e n c e the magnitude of the b i o c h e m i c a l response. These i n c l u d e the d u r a t i o n of the t r a i n i n g program, the i n t e n s i t y of the e x e r c i s e e f f o r t , the d u r a t i o n of each e x e r c i s e bout ( m i n u t e s / d a y ) , and the f r e q u e n c y of e x e r c i s e ( i . e . , days/week). Training Duration. I t i s i n t u i t i v e l y obvious t h a t the d u r a t i o n of t r a i n i n g must be s u f f i c i e n t l y l o n g f o r the maximal response t o be developed. T h i s i s due, i n p a r t , to the n a t u r e of most t r a i n i n g programs t h a t t y p i c a l l y p r o g r e s s from r e l a t i v e l y m i l d or moderate e x e r c i s e e f f o r t s t o the more i n t e n s e e x e r c i s e bouts t h a t w i l l be m a i n t a i n e d t h e r e a f t e r . Thus, the c e l l u l a r s t i m u l u s f o r a d a p t a t i o n i s p r o b a b l y c o n t i n u a l l y changing u n t i l the peak e x e r c i s e e f f o r t , t h a t w i l l be r o u t i n e l y s u s t a i n e d f o r the steady s t a t e t r a i n i n g program, i s a c h i e v e d . A f t e r t h i s time the f u l l t r a i n i n g response might be e x p e c t e d . However, t h e r e i s an a d d i t i o n a l time d e l a y b e f o r e r e a l i z i n g the f u l l a d a p t i v e change. T h i s a d d i t i o n a l time i s due t o the c e l l u l a r events a s s o c i a t e d w i t h the a d a p t i v e response w i t h i n the c e l l . I n the case of a b i o c h e m i c a l change of an i n c r e a s e i n m i t o c h o n d r i a l p r o t e i n , the f u l l y developed response, r e p r e s e n t i n g the steady s t a t e change w i t h i n the muscle f i b e r , i s dependent upon the c e l l u l a r dynamics of p r o t e i n t u r n o v e r . S p e c i f i c a l l y , the r a t e at w h i c h a new steady s t a t e c o n c e n t r a t i o n of m i t o c h o n d r i a o c c u r s w i t h i n the muscle i s dependent upon the d e g r a d a t i o n r a t e c o n s t a n t of the m i t o c h o n d r i a l components ( 5 0 ) . Since p r o t e i n degradation i s a f i r s t - o r d e r p r o c e s s , the time course of m i t o c h o n d r i a l c o n t e n t change

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

12

NUTRITION AND AEROBIC EXERCISE

i s n o n - l i n e a r and i s c o n v e n i e n t l y c o n s i d e r e d i n terms of h a l f - l i f e . I n t h i s c o n t e x t , the h a l f - l i f e can be c o n s i d e r e d as the time r e q u i r e d f o r the m i t o c h o n d r i a l content t o proceed through o n e - h a l f the change, from the e x i s t i n g v a l u e , toward the new steady s t a t e v a l u e determined by the t r a i n i n g s t i m u l u s . A l t h o u g h i t i s p r o b a b l e t h a t the t u r n o v e r of m i t o c h o n d r i a does not o c c u r at the same r a t e i n a l l muscle f i b e r types ( 5 1 ) , an average h a l f - l i f e of a p p r o x i m a t e l y 1 week i s a r e a s o n a b l e v a l u e f o r mixed muscle of animals (52,53) and man ( 5 4 ^ . Thus, even i f the c e l l u l a r s t i m u l u s , s u f f i c i e n t to i n c r e a s e cytochrome c t o double t h a t n o r m a l l y found, were t o o c c u r i n s t a n t a n e o u s l y and remain c o n s t a n t t h e r e a f t e r , o n l y o n e - h a l f of the response would be measured when t r a i n i n g proceeded f o r the next week. T r a i n i n g the subsequent week would then produce a n o t h e r o n e - h a l f of the e f f e c t , t o b r i n g the response t o 75% c o m p l e t i o n . Each subsequent h a l f - l i f e d u r a t i o n would b r i n g about o n e - h a l f of the remaining e f f e c t . I t would then take a p p r o x i m a t e l y 5 h a l f - l i v e ( a p p r o x i m a t e l y 5 weeks) t o r e a l i z e n e a r l y 95% of the new steady s t a t e response. Thus, a s s e s s i n g the t r a i n i n g response b e f o r e at l e a s t 5-6 weeks, a f t e r a c h i e v i n g a f u l l t r a i n i n g program, w i l l always tend t o u n d e r e s t i m a t e the t r u e magnitude of the b i o c h e m i c a l change w i t h i n the w o r k i n g muscles. T h i s i l l u s t r a t e s the need f o r the t r a i n i n g d u r a t i o n to be s u f f i c i e n t l y p r o l o n g e d f o r the a d a p t i v e change t o f u l l y d e v e l o p . The f i r s t - o r d e r n a t u r e of t h i s p r o c e s s r a i s e s an i m p o r t a n t a s p e c t w i t h r e g a r d t o d e t r a i n i n g . I f t r a i n i n g i s stopped, f o r even a b r i e f p e r i o d of t i m e , a s i g n i f i c a n t r e g r e s s i o n of the i n c r e a s e i n m i t o c h o n d r i a l c o n t e n t can o c c u r ( 5 1 - 5 4 ) . A g a i n , the change i n m i t o c h o n d r i a l c o n t e n t w i l l be n o n - l i n e a r over time. F o r example, i n the f i r s t week ( i . e . , f i r s t h a l f - l i f e ) of d e t r a i n i n g , the e l e v a t e d m i t o c h o n d r i a l c o n t e n t w i l l d e c l i n e a p p r o x i m a t e l y 50% of the way toward the lower n o n - t r a i n e d v a l u e ( F i g u r e 1 ) . F u r t h e r , the second and subsequent weeks of d e t r a i n i n g w i l l p e r m i t a d d i t i o n a l d e c l i n e s i n m i t o c h o n d r i a l c o n t e n t , each r e p r e s e n t i n g o n e - h a l f of the remaini n g f a l l toward the normal p r e t r a i n i n g v a l u e . Thus, because of the f i r s t - o r d e r n a t u r e of p r o t e i n t u r n o v e r , the g r e a t e s t a b s o l u t e change i n the d e t r a i n i n g p r o c e s s o c c u r s i n i t i a l l y . T h i s i n d i c a t e s t h a t the e x e r c i s e program s h o u l d be r o u t i n e l y performed, i f the peak a d a p t i v e response i s t o be m a i n t a i n e d . H i c k s o n (55) has shown t h a t t r a i n i n g induced b i o c h e m i c a l changes i n muscle can be o p t i m i z e d by r u n n i n g almost d a i l y ( i . e . , 6 days/week). T h i s i s c o n s i s t e n t w i t h the need to m a i n t a i n the t r a i n i n g s t i m u l u s operant w i t h i n the muscle cont i n u o u s l y over t i m e . As d i s c u s s e d by Booth ( 5 6 ) , i f a one week p e r i o d of d e t r a i n i n g has o c c u r r e d , a d i s p r o p o r t i o n a l d u r a t i o n of t r a i n i n g would be n e c e s s a r y f o r the m i t o c h o n d r i a l content t o r e c o v e r f u l l y , even i f the f u l l t r a i n i n g s c h e d u l e i s q u i c k l y r e e s t a b l i s h e d (Figure 1). R e c a l l t h a t d u r i n g the a d a p t i v e p r o c e s s each week of t r a i n i n g p e r m i t s o n l y o n e - h a l f of the change p o s s i b l e . Thus, app r o x i m a t e l y 4 weeks would be r e q u i r e d t o permit f u l l r e c o v e r y of the m i t o c h o n d r i a l c o n t e n t . A l t h o u g h t h i s extended p e r i o d of time would be needed t o r e c o v e r from the i n i t i a l d e c l i n e i n m i t o c h o n d r i a l c o n t e n t , the r e c o v e r y of o t h e r t r a i n i n g responses, such as a l t e r e d b l o o d t r i g l y c e r i d e content ( 5 7 ) , may f o l l o w a v e r y d i f f e r e n t time course. T h e r e f o r e , as d i s c u s s e d below, the e x i s t e n c e of r e l a t i v e l y s m a l l d i f f e r e n c e s i n m i t o c h o n d r i a l c o n t e n t may have l i t t l e impact on the r e c o v e r y of e x e r c i s e performance f o l l o w i n g a b r i e f p e r i o d of inactivity.

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

2.

TERJUNG AND HOOD

Biochemical

Adaptations

in Skeletal

Muscle

13

E x e r c i s e I n t e n s i t y . The importance of e x e r c i s e i n t e n s i t y was f i r s t apparent when comparing the response induced by swimming v e r s u s t r e a d m i l l r u n n i n g t r a i n i n g programs. Swim t r a i n i n g does not produce as g r e a t an i n c r e a s e i n m i t o c h o n d r i a l c o n t e n t i n animals as found w i t h r u n n i n g ( 1 0 , 5 8 ) . I n f a c t , e a r l y s t u d i e s e v a l u a t i n g an e x e r c i s e response w i t h swim t r a i n i n g f a i l e d t o f i n d a s i g n i f i c a n t b i o c h e m i c a l change i n the h i n d l i r a b muscles ( 5 9 ) . I t i s l i k e l y t h a t the w e i g h t b e a r i n g a c t i v i t y a s s o c i a t e d w i t h t r e a d m i l l r u n n i n g exaggerates the c e l l u a r s t i m u l u s r e q u i r e d t o induce a l a r g e b i o c h e m i c a l response. I n g e n e r a l , the g r e a t e r the e x e r c i s e i n t e n s i t y the g r e a t e r w i l l be the induced response w i t h i n the w o r k i n g muscles (44,60,61). This g e n e r a l i z a t i o n , however, must be tempered by the known o r d e r e d p a t t e r n of muscle f i b e r type r e c r u i t m e n t mentioned above ( 4 4 ) . T h i s becomes e v i d e n t from the d a t a p r e s e n t e d i n F i g u r e 2, showing the i n c r e a s e i n cytochrome c content (an i n d e x of m i t o c h o n d r i a l c o n t e n t ) i n the t h r e e f i b e r types as a f u n c t i o n of i n t e n s i t y of t r e a d m i l l running. T h i s f i g u r e was generated a f t e r f i r s t d e t e r m i n i n g the i n f l u e n c e of i n c r e a s i n g d a i l y d u r a t i o n of e x e r c i s e , f o r t r a i n i n g programs at each r u n n i n g i n t e n s i t y (10, 20, 30, 40, 50, and 60 meters/minute) ( 4 4 ) . The peak response o b t a i n e d f o r each r u n n i n g i n t e n s i t y , w h i c h u s u a l l y corresponded t o an a s y m p t o t i c v a l u e , was then p l o t t e d a g a i n s t e x e r c i s e i n t e n s i t y . This provides a charact e r i z a t i o n of the i n t e n s i t y i n f l u e n c e t h a t i s e s s e n t i a l l y independent of the d u r a t i o n of d a i l y e x e r c i s e ( 4 4 ) . I t i s apparent t h a t the f a s t - t w i t c h red f i b e r s e c t i o n of the v a s t u s l a t e r a l i s and the s l o w - t w i t c h r e d s o l e u s muscles adapt w i t h a n e a r l y l i n e a r i n c r e a s e i n m i t o c h o n d r i a l c o n t e n t over the e a s y - t o moderate range of e x e r c i s e c o n d i t i o n s (10, 20, and 30 m/min). T h i s response emphasizes the importance of e x e r c i s e i n t e n s i t y i n i n d u c i n g the b i o c h e m i c a l change. Indeed, t h e r e i s a r e l a t i v e l y l a r g e adapt i v e change w i t h o n l y s m a l l changes i n e x e r c i s e i n t e n s i t y as r e f l e c t e d i n t r e a d m i l l speed. However, i t i s o b v i o u s t h a t the increase i n m i t o c h o n d r i a l content, that occurs w i t h i n c r e a s i n g t r e a d m i l l speed, i s not l i n e a r . I n the case of the f a s t - t w i t c h r e d muscle s e c t i o n , a maximal response was found w i t h t r a i n i n g a f t e r speeds of a p p r o x i m a t e l y 30 m/min ( F i g u r e 2 ) . T h i s corresponds t o an e s t i m a t e d e x e r c i s e i n t e n s i t y f o r the r a t of a p p r o x i m a t e l y 80 - 85% of i t s maximal oxygen consumption ( 6 2 ) . The b r i e f p r o p o r t i o n a l response phase up t o 30 m/min, t o g e t h e r w i t h the p l a t e a u , c o u l d account f o r the apparent l a c k of an i n t e n s i t y e f f e c t observed i n some s t u d i e s (61 ). A l t h o u g h t h i s p l a t e a u suggests t h a t e x e r c i s e i n t e n s i t y i s no l o n g e r i m p o r t a n t , a more p h y s i o l o g i c a l i n t e r p r e t a t i o n seems a p p r o p r i a t e . I t may be t h a t t h i s f i b e r t y p e was r e c r u i t e d i n an i n c r e a s i n g manner over the lower speeds, but t h a t a s a t u r a t i o n of t h i s motor u n i t p o o l o c c u r r e d at a p p r o x i m a t e l y 30 - 40 m/min. I f t h i s were the case, then t r e a d m i l l r u n n i n g at speeds of 50 and 60 m/min c o u l d not be accomplished w i t h o u t the involvement of a d d i t i o n a l motor u n i t s . These a d d i t i o n a l motor u n i t s may be the f a s t - t w i t c h white f i b e r s . There was no change i n cytochrome c c o n t e n t i n the f a s t - t w i t c h w h i t e s e c t i o n throughout the m i l d t o moderate e x e r c i s e i n t e n s i t y . However, an a d a p t i v e change became apparent i n the f a s t - t w i t c h w h i t e s e c t i o n w i t h i n c r e a s i n g e x e r c i s e i n t e n s i t y above 30 - 40 m/min ( F i g u r e 2 ) . T h i s corresponds t o the

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

14

NUTRITION A N D AEROBIC EXERCISE

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

Φ

3 £

Training 2hr/day

T r a | n

2 h r / ( J a

F i g u r e 1, The p r e d i c t e d consequences o f one week o f d e t r a i n i n g and t h e time o f r e t r a i n i n g r e q u i r e d t o r e c o v e r the f u l l i n c r e a s e i n cytochrome c content ( a n i n d e x o f m i t o c h o n d r i a l c o n t e n t ) i n the w o r k i n g muscle. Note t h a t i n one week of i n a c t i v i t y (approx. 1 h a l f - l i f e ) , n e a r l y 50% o f t h e t r a i n i n g e f f e c t i s l o s t . Simi­ l a r l y , each week o f r e t r a i n i n g r e c o v e r s approx, 50% o f t h e way toward t h e f u l l t r a i n i n g e f f e c t . Since the process e x h i b i t s f i r s t - o r d e r k i n e t i c s , i t takes longer t o recover f u l l y . "Repro­ duced w i t h p e r m i s s i o n from R e f . 56. C o p y r i g h t 1977, New Y o r k Academy of S c i e n c e s . " f

1

30 f 28 26 24 22 20 18 16 14 12 10 8 6 4 2

red vastus

5 — 7

soleus

Q

\

/

white vastus

62% 73% 83% 94% 105% H6%maxV0 —I 1 1 1 1 1— 10 20 30 40 50 60 meter/min EXERCISE

2

INTENSITY

F i g u r e 2. The i n f l u e n c e o f e x e r c i s e i n t e n s i t y ( t r e a d m i l l r u n ­ n i n g ) on muscle cytochrome c content i n the r a t . Red v a s t u s = f a s t - t w i t c h r e d f i b e r s e c t i o n ; Soleus - s l o w - t w i t c h r e d f i b e r s e c t i o n ; White v a s t u s = f a s t - t w i t c h w h i t e f i b e r s e c t i o n . "Re­ produced w i t h p e r m i s s i o n from R e f . 44. C o p y r i g h t 1982, A m e r i c a n Physiological Society ." 1

1

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

2.

TERJUNG AND HOOD

Biochemical

Adaptations

in Skeletal

Muscle

15

t r e a d m i l l speeds where the response i n the f a s t - t w i t c h red s e c t i o n reached a p l a t e a u . Thus, the g e n e r a l response t o t r a i n i n g i n t e n s i t y , i l l u s t r a t e d i n F i g u r e 2, i s c o n s i s t e n t w i t h the e x p e c t e d o r d e r e d p a t t e r n of motor u n i t r e c r u i t m e n t . These d a t a a l s o i l l u s t r a t e t h a t care must be e x e r c i s e d when i n t e r p r e t i n g the t r a i n i n g response o b t a i n e d from mixed muscle s e c t i o n s , where each component f i b e r type may be a d a p t i n g i n a q u a n t i t a t i v e l y d i f f e r e n t manner. N o n e t h e l e s s , i t i s c l e a r t h a t the i n t e n s i t y of e x e r c i s e e x e r t s a p r o f o u n d i n f l u e n c e on the magnitude of the b i o c h e m i c a l change. F u r t h e r , t h i s response need not be s i m i l a r f o r a l l f i b e r t y p e s . For example, at the most i n t e n s e t r a i n i n g program of 60 m/min, the cytochrome c content i n the f a s t - t w i t c h w h i t e f i b e r s e c t i o n was 3 . 0 - f o l d normal, but o n l y 1 . 5 - f o l d normal i n the f a s t - t w i t c h r e d muscle s e c t i o n . T h i s q u a n t i t a t i v e d i f f e r e n c e may be e x p e c t e d , i f the s t i m u l u s i n d u c i n g the i n c r e a s e i n o x i d a t i v e c a p a c i t y i s at a l l i n f l u e n c e d by the p r e e x i s t i n g m i t o c h o n d r i a l content w i t h i n the muscle f i b e r . Note t h a t the cytochrome c content i n the f a s t - t w i t c h r e d s e c t i o n i s a p p r o x i m a t e l y 4-times t h a t of the f a s t - t w i t c h w h i t e s e c t i o n (see y - a x i s of F i g u r e 2 ) . Thus, i t i s p r o b a b l e t h a t a g r e a t e r t r a i n i n g s t i m u l u s i s needed to b r i n g about an a d a p t a t i o n i n the well-endowed h i g h - o x i d a t i v e f i b e r s as compared w i t h the lowoxidative fibers. T h i s i s c o n s i s t e n t w i t h the g e n e r a l i m p r e s s i o n concerning t r a i n i n g adaptations. I n d i v i d u a l s who p o s s e s s a r e l a t i v e l y h i g h a e r o b i c work c a p a c i t y must t r a i n " h a r d e r " i n o r d e r t o a c h i e v e a s i g n i f i c a n t a d a p t i v e change ( 6 3 ) . E x e r c i s e Bout D u r a t i o n . The g e n e r a l e x p e c t a t i o n t h a t t r a i n i n g programs which r e q u i r e l o n g e r d a i l y e x e r c i s e bouts produce g r e a t e r a d a p t a t i o n s has been found f o r the b i o c h e m i c a l changes i n muscle (44,60,64). A l t h o u g h l e n g t h e n i n g e x e r c i s e bout d u r a t i o n appears to induce a f a i r l y l i n e a r i n c r e a s e i n m i t o c h o n d r i a l content (44,60,64), t h e r e i s p r o b a b l y a f i n i t e range f o r t h i s r e l a t i o n s h i p . When e x e r c i s e d u r a t i o n was v e r y p r o l o n g e d ( i . e . , 4 h r / d a y ) , the a d a p t i v e change was not d i f f e r e n t from t h a t found when d a i l y e x e r c i s e i n v o l v e d r u n n i n g 2 hr/day ( 6 0 ) . Thus, t h e r e i s an e x e r c i s e bout d u r a t i o n w h i c h , when exceeded, does not produce any added i n c r e a s e i n mitochondrial content. F u r t h e r , i t i s p r o b a b l e t h a t the r e l a t i o n s h i p between the b i o c h e m i c a l a d a p t a t i o n i n muscle and e x e r c i s e bout d u r a t i o n can be d e s c r i b e d as a f i r s t o r d e r p r o c e s s where the i n f l u e n c e of time i s not c o n s t a n t ( 4 4 ) . This i s i l l u s t r a t e d i n F i g u r e 3 f o r the i n c r e a s e i n cytochrome c content i n the f a s t - t w i t c h w h i t e muscle s e c t i o n of t r a i n e d r a t s . This r e l a t i o n s h i p indicates t h a t , d u r i n g steady s t a t e t r a i n i n g , the i n i t i a l minutes of the e x e r c i s e bout are the most important i n c r e a t i n g the c e l l u l a r s t i m u l u s t h a t induces the b i o c h e m i c a l change. The f u r t h e r i n c r e a s e i n t h i s c e l l u l a r s t i m u l u s d i m i n i s h e s as the d u r a t i o n of each e x e r c i s e bout i n c r e a s e s , u n t i l an e x e r c i s e bout d u r a t i o n i s reached where added time has l i t t l e i f any impact. A l t h o u g h l i t t l e i s known about the exact s i g n a l w i t h i n the c e l l t h a t produces the i n c r e a s e i n m i t o c h o n d r i a l c o n t e n t , i t may be i n some way i n f l u e n c e d by the e x i s t i n g o x i d a t i v e c a p a c i t y of the muscle f i b e r . F o r example, the d e c r e a s i n g importance of e x e r c i s e bout d u r a t i o n c o u l d be e x p l a i n e d i f the magnitude of the c e l l u l a r s t i m u l u s were m o d i f i e d by the a d a p t i v e response i t s e l f . Thus, the t h i r d 15 minute p e r i o d of e x e r c i s e would be e x p e c t e d t o induce a s m a l l e r e f f e c t than the f i r s t

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

16

NUTRITION AND AEROBIC EXERCISE

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

15 minute p e r i o d of e x e r c i s e , s i n c e t h e r e a l r e a d y e x i s t s a s i g n i f i cant a d a p t i v e response caused by the i n i t i a l e x e r c i s e time p e r i o d . A n o t h e r example may be the exaggerated i n c r e a s e i n m i t o c h o n d r i a l content i n the low o x i d a t i v e f a s t - t w i t c h w h i t e s e c t i o n , as compared to the h i g h o x i d a t i v e f a s t - t w i t c h r e d s e c t i o n , d u r i n g i n t e n s e e x e r c i s e t r a i n i n g . However, u n l i k e a s i m p l e change i n e x e r c i s e bout d u r a t i o n , i t i s not known whether the u t i l i z a t i o n of each muscle type was the same d u r i n g the i n t e n s e e x e r c i s e bouts. I n t e r a c t i o n Between E x e r c i s e D u r a t i o n and I n t e n s i t y . Although e x e r c i s e bout d u r a t i o n and i n t e n s i t y a r e d i s t i n c t t r a i n i n g p a r a m e t e r s , they a l s o i n t e r a c t t o f u r t h e r a l t e r the a d a p t i v e r e s p o n s e . T h i s becomes apparent when n o t i n g the time n e c e s s a r y t o a c h i e v e the maximal a d a p t i v e change f o r each of the r u n n i n g i n t e n s i t i e s . This i s b e s t i l l u s t r a t e d by the response i n the f a s t - t w i t c h w h i t e muscle ( F i g u r e 3 ) . The g r e a t e r the i n t e n s i t y of e x e r c i s e , the more r a p i d y the change i n cytochrome c content approaches i t s peak a s y m p t o t i c r e s p o n s e . Thus, i t i s p o s s i b l e to a c h i e v e the same a d a p t i v e change w i t h i n muscle r u n n i n g f o r a s h o r t e r time/day, i f the i n t e n s i t y of exercise i s increased accordingly. The f a c t o r ( s ) t h a t change(s) w i t h i n the muscle c e l l e n a b l i n g the i n i t i a l minutes of e x e r c i s e t o produce a g r e a t e r t r a i n i n g s t i m u l u s i s not known. However, the e x a g g e r a t e d m e t a b o l i c response t h a t o c c u r s w i t h i n muscle as e x e r c i s e i n t e n s i t y i s i n c r e a s e d may be i m p l i c a t e d . Thus, e x e r c i s e i n t e n s i t y a f f e c t s b o t h the magnitude of the a d a p t i v e response, as w e l l as the e x e r c i s e bout time n e c e s s a r y t o a c h i e v e the peak response. F u n c t i o n a l S i g n i f i c a n c e of T r a i n i n g A d a p t a t i o n s

i n Muscle

The i n c r e a s e i n m i t o c h o n d r i a l content w i t h i n t r a i n e d muscle c o u l d have s e v e r a l s i g n i f i c a n t f u n c t i o n a l i n f l u e n c e s d u r i n g e x e r c i s e . F i r s t , t h e g r e a t e r b i o c h e m i c a l c a p a c i t y f o r ATP p r o v i s i o n v i a a e r o b i c metabolism c o u l d g r e a t l y i n c r e a s e the maximal oxygen consumption of muscle. T h i s would be t r u e i f a) muscle c o u l d u t i l i z e a g r e a t e r ATP t u r n o v e r than e v i d e n t at maximal a e r o b i c work c a p a c i t y p r i o r t o t r a i n i n g , and b) the g r e a t e r m i t o c h o n d r i a l content was s u p p l i e d w i t h s u f f i c i e n t oxygen to support the g r e a t e r ATP t u r n o v e r . S i n c e muscle e x h i b i t s a d e p l e t i o n of p h o s p h o c r e a t i n e (PCr) and, a t t i m e s , a r e d u c t i o n i n ATP content d u r i n g severe c o n t r a c t i o n c o n d i t i o n s (37,39,65,66), i t i s p r o b a b l e t h a t a h i g h e r energy u t i l i z a t i o n c o u l d h a v e o c c u r r e d i f more e n e r g y were a v a i l a b l e t o meet t h e demand. Thus, the p o t e n t i a l t h a t an i n c r e a s e d m i t o c h o n d r i a l c o n t e n t might i n c r e a s e the maximal oxygen consumption of muscle p r o b a b l y r e s t s on the a v a i l a b i l i t y of oxygen. An i n c r e a s e d s u p p l y of oxygen to m i t o c h o n d r i a of c o n t r a c t i n g muscle would occur i f a) t h e r e was an i n c r e a s e d e x t r a c t i o n of oxygen from the a r t e r i a l b l o o d f l o w i n g t h r o u g h the muscle, and/or b) t h e r e was a g r e a t e r b l o o d f l o w t h r o u g h the muscle ( a r t e r i a l b l o o d oxygen content remains remarkably cons t a n t d u r i n g a l l i n t e n s i t i e s of e x e r c i s e ( 6 7 ) . Oxygen e x t r a c t i o n a c r o s s w o r k i n g muscle d u r i n g maximal e x e r c i s e i s g e n e r a l l y v e r y l a r g e ( a p p r o x i m a t e l y 80% or more), even i n u n t r a i n e d i n d i v i d u a l s (67 ). A s m a l l i n c r e a s e i n oxygen e x t r a c t i o n ( a p p r o x i m a t e l y 10-15%) a c r o s s w o r k i n g muscle a f t e r t r a i n i n g has been observed (63,68), but not c o n s i s t e n t l y ( 2 5 , 6 9 ) . Thus, an i n c r e a s e i n oxygen s u p p l y due t o a g r e a t e r e x t r a c t i o n c o u l d not p o s s i b l y support a l l of the l a r g e

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

TERJUNG AND HOOD

Biochemical

30 RUN

TIME

Adaptations

60

in Skeletal

Muscle

90

(MINUTES/DAY)

F i g u r e 3· The i n f l u e n c e o f e x e r c i s e d u r a t i o n , d u r i n g d i f f e r e n t i n t e n s i t i e s of t r e a d m i l l r u n n i n g , on cytochrome c content i n t h e w h i t e s e c t i o n of t h e v a s t u s l a t e r a l i s muscle ( f a s t - t w i t c h w h i t e f i b e r s ) of r a t s . Running speed: ( Ο ) 10 m/min, ( • ) 20 m/min, ( Δ ) 30 m/min, ( · ) 40 m/min, ( • ) 50 m/min, ( • ) 60 m/min. "Reproduced w i t h p e r m i s s i o n from R e f . 44. C o p y r i g h t 1982, American Physiological Society'."

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

18

NUTRITION A N D

AEROBIC EXERCISE

i n c r e a s e i n m i t o c h o n d r i a l content ( e . g . , 100%) t y p i c a l l y found w i t h endurance t r a i n i n g . T h i s i n d i c a t e s t h a t b l o o d f l o w must be i n c r e a s e d i f the g r e a t e r c a p a c i t y f o r o x i d a t i v e metabolism w i t h i n the t r a i n e d muscle i s to be u t i l i z e d m a x i m a l l y . Measurements e v a l u a t i n g the p o t e n t i a l f o r changes i n peak b l o o d f l o w d u r i n g maximal e x e r c i s e h a v e p r o v i d e d e q u i v o c a l r e s u l t s ( 7_0 ) . Thus, t h e r e i s l i t t l e a s s u r a n c e t h a t t r a i n i n g g r e a t l y a l t e r s maximal b l o o d f l o w . Recent evidence, obtained i n t r a i n e d r a t s using r a d i o l a b e l e d microspheres, has demonstrated a s i g n i f i c a n t i n c r e a s e i n peak muscle b l o o d f l o w i n muscle of t r a i n e d r a t s (71 ). However, the i n c r e a s e of a p p r o x i m a t e l y 40 - 50% was found o n l y i n the low o x i d a t i v e f a s t - t w i t c h w h i t e muscle f i b e r s e c t i o n . A l t h o u g h t h i s appears t o be a s i g n i f i c a n t change, i t s o v e r a l l c o n t r i b u t i o n to an i n c r e a s e i n t o t a l body oxygen consumption of the animal would be r a t h e r s m a l l . T h i s low mitochond r i a l f i b e r s e c t i o n r e c e i v e s o n l y a p p r o x i m a t e l y 20 - 25% of the b l o o d f l o w d e l i v e r e d t o the h i g h o x i d a t i v e f a s t - t w i t c h r e d s e c t i o n (32,33). T h e r e f o r e , the r e d muscle f i b e r types p r o b a b l y account f o r at l e a s t 80% of the maximal oxygen consumption of the r a t ( 3 3 ) . T h i s r e l i g a t e s any change i n peak b l o o d f l o w t o the f a s t - t w i t c h w h i t e s e c t i o n due t o t r a i n i n g as e x e r t i n g a r e l a t i v e l y m i n o r i n f l u e n c e on t o t a l body maximal oxygen consumption. Similarly, in humans, t r a i n i n g induces a change i n maximal oxygen consumption t h a t i s r e l a t i v e l y s m a l l ( e . g . , t y p i c a l l y 15 - 2 5 % ) , compared t o the i n c r e a s e i n m i t o c h o n d r i a l content induced i n the w o r k i n g muscle (e.g., 54). Thus, i t i s g e n e r a l l y r e c o g n i z e d t h a t the f u l l potent i a l of the enhanced o x i d a t i v e c a p a c i t y i s not f u l l y r e a l i z e d . D a v i e s , et a l (72) r e c e n t l y r e p o r t e d i n t e r e s t i n g d a t a w h i c h i l l u s t r a t e the r e l a t i o n s h i p between oxygen t r a n s p o r t c a p a c i t y and maximal oxygen consumption d u r i n g e x e r c i s e . They found, as exp e c t e d , t h a t r e d u c i n g the oxygen t r a n s p o r t c a p a c i t y by d e c r e a s i n g hemoglobin c o n c e n t r a t i o n w i t h an i r o n d e f i c i e n t d i e t , g r e a t l y d e c r e a s e d the maximal oxygen consumption d u r i n g e x e r c i s e i n r a t s . D u r i n g the subsequent i r o n r e f e e d i n g p e r i o d , the time course of the r e t u r n of maximal oxygen consumption n i c e l y corresponded t o the time course of the r e c o v e r y of oxygen t r a n s p o r t c a p a c i t y ( i . e . , hemoglobin content). F u r t h e r , when the oxygen t r a n s p o r t c a p a c i t y of i r o n d e f i c i e n t r a t s was r e t u r n e d t o normal by i n f u s i o n of packed red b l o o d c e l l s , the maximal oxygen consumption d u r i n g e x e r c i s e essent i a l l y recovered to normal ( 7 3 ) . These r e s u l t s i l l u s t r a t e the g e n e r a l f i n d i n g t h a t maximal a e r o b i c work c a p a c i t y i s c l o s e l y r e l a t e d t o maximal c a r d i o v a s c u l a r t r a n s p o r t of o x y g e n . ( 7 4 ) . Theref o r e , the f u n c t i o n a l s i g n i f i c a n c e of the a d a p t i v e i n c r e a s e i n m i t o c h o n d r i a l content may be r e l a t e d to c e l l u l a r responses w i t h i n the w o r k i n g muscle d u r i n g submaximal e x e r c i s e . Oxygen t r a n s p o r t i s d i s c u s s e d i n more d e t a i l i n the T r a c e Element c h a p t e r by McDonald and Saltman. C e l l u l a r Responses i n T r a i n e d M u s c l e . Recent e v i d e n c e , obtained from a p p r o p r i a t e measurements of m e t a b o l i t e s w i t h i n the c e l l d u r i n g c o n t r a c t i o n s , suggests t h a t s k e l e t a l muscle of t r a i n e d i n d i v i d u a l s i s b e t t e r a b l e t o a d j u s t , as compared t o s k e l e t a l muscle of unt r a i n e d i n d i v i d u a l s , t o the energy demands of a submaximal c o n t r a c t i o n e f f o r t . T h i s i s apparent s i n c e m e t a b o l i c c o n d i t i o n s a l t e r e d by c o n t r a c t i o n s w i t h i n t r a i n e d muscle change l e s s than i n u n t r a i n e d muscle from t h a t found at r e s t . F o r example, the PCr content of

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

2.

TERJUNG AND HOOD

Biochemical

Adaptations

in Skeletal

Muscle

19

muscle decreases I n p r o p o r t i o n t o e x e r c i s e i n t e n s i t y throughout the submaximal range of e x e r c i s e (66,75). D u r i n g moderately i n t e n s e c o n t r a c t i o n c o n d i t i o n s , the decrease i n PCr content t o t r a i n e d muscle of r a t s i s l e s s than t h a t of u n t r a i n e d muscle ( 4 0 ) . Simil a r l y , the decrease i n PCr content d u r i n g submaximal c y c l e e x e r c i s e (150 w a t t s ) i n humans was l e s s a f t e r p h y s i c a l t r a i n i n g ( 7 6 ) . Thus, a g r e a t e r work output ( i . e . , energy t u r n o v e r ) can be a c h i e v e d a f t e r t r a i n i n g f o r the same decrease i n PCr c o n c e n t r a t i o n . The decrease i n PCr, t h r o u g h the c e l l ' s c o r r e s p o n d i n g i n c r e a s e i n i n o r g a n i c phosphate c o n c e n t r a t i o n ( 7 7 ) , i s thought t o c o n t r i b u t e to the c e l l u l a r s i g n a l t h a t s t i m u l a t e s the m i t o c h o n d r i a t o i n c r e a s e r e s p i r a t i o n (78,79). T h i s c o u l d be p a r t o f t h e r e s p o n s e t h a t accounts f o r the t i g h t c o u p l i n g between m i t o c h o n d r i a l ATP p r o d u c t i o n (and, t h e r e f o r e , oxygen consumption) and the g r e a t e r energy demands as e x e r c i s e i n t e n s i t y i n c r e a s e s . I f the decrease i n PCr c o n t r i b u t e s to the c e l l u l a r s i g n a l t o a c c e l e r a t e m i t o c h o n d r i a l respiration (78,79), then a h i g h e r r a t e of oxygen consumption seems t o o c c u r a t a r e l a t i v e l y smaller i n t r a c e l l u l a r signal driving mitochondrial respiration. T h i s i s r e a s o n a b l e s i n c e t h e r e are more m i t o c h o n d r i a w i t h i n the t r a i n e d muscle f i b e r t o respond and r e p h o s p h o r y l a t e ADP to ATP ( 5 , 2 3 ) . Thus, t r a i n e d muscle seems t o be a b l e t o f u n c t i o n a t a g i v e n oxygen consumption (work r a t e ) w i t h a s m a l l e r m e t a b o l i c signal driving mitochondrial respiration; alternatively, trained muscle can f u n c t i o n at a h i g h e r oxygen consumption ( i . e . , work r a t e ) a t the same apparent c e l l u l a r s t i m u l u s as found i n u n t r a i n e d muscle w o r k i n g at a lower oxygen consumption. Thus, i t i s p r o b a b l e t h a t the t r a i n i n g induced change i n m i t o c h o n d r i a l content a l t e r s metab o l i c c o n t r o l parameters. Another i n f l u e n c e of the t r a i n i n g a d a p t a t i o n may be d u r i n g the t r a n s i t i o n from r e s t i n g metabolism t o the a c c e l e r a t e d r a t e of r e s p i r a t i o n r e q u i r e d by c o n t r a c t i o n s . F o r example, a h i g h e r mitochond r i a l d e n s i t y w i t h i n t r a i n e d muscle might e f f e c t a more r a p i d t r a n s i t i o n toward a steady s t a t e a e r o b i c energy p r o v i s i o n at the onset of c o n t r a c t i o n s . I f the energy demands were being b e t t e r met by m i t o c h o n d r i a l r e s p i r a t i o n , then the r a t e of a n a e r o b i c energy p r o d u c t i o n c o u l d be l e s s . That t h i s o c c u r s i s suggested by the c e l l u l a r content of l a c t i c a c i d t h a t d e v e l o p s at the onset of cont r a c t i o n s (40). L a c t a t e content i n c r e a s e d t o 13.2+1.31 pmole/g i n f a s t - t w i t c h red muscle of s e d e n t a r y animals compared t o o n l y 7.1+0.84 i n t r a i n e d muscle d u r i n g the f i r s t minute of c o n t r a c t i o n s (40). These r e s u l t s are t y p i c a l (25,76,80) and c o u l d r e p r e s e n t the f a v o r e d m e t a b o l i c s i t u a t i o n i n t r a i n e d muscle t h a t c o n t r i b u t e s t o a more r a p i d achievement of steady s t a t e oxygen consumption (81,82,83) and a reduced c i r c u l a t i n g l a c t a t e content (76,80) observed a f t e r exercise training. A l t e r e d S u b s t r a t e U t i l i z a t i o n by T r a i n e d M u s c l e . I t i s l i k e l y t h a t the g r e a t e r m i t o c h o n d r i a l content a l s o s e r v e s t o a l t e r the energy s u b s t r a t e u t i l i z e d d u r i n g prolonged submaximal e x e r c i s e . This probably c o n t r i b u t e s to the much enhanced endurance performance t y p i c a l of the endurance t r a i n e d i n d i v i d u a l . I t has l o n g been r e c o g n i z e d t h a t t r a i n e d i n d i v i d u a l s o b t a i n a g r e a t e r f r a c t i o n of t h e i r energy needs from the o x i d a t i o n of f a t t y a c i d s than u n t r a i n e d i n d i v i d u a l s e x e r c i s i n g at the same work i n t e n s i t y ( c f . 6 ) . The g r e a t e r e x t e n t of l i p i d o x i d a t i o n , e v i d e n t by a lower r e s p i r a t o r y

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

20

NUTRITION AND AEROBIC EXERCISE

q u o t i e n t o f t r a i n e d i n d i v i d u a l s , h a s b e e n c o n f i r m e d by d i r e c t measurements of enhanced C02 p r o d u c t i o n from i n f u s e d l a b e l e d p a l m i t a t e (84)« A l t h o u g h an enhanced c o n c e n t r a t i o n o f c i r c u l a t i n g f a t t y a c i d s can i n c r e a s e f a t o x i d a t i o n and extend e x e r c i s e time ( 8 5 , 8 6 ) , the i n c r e a s e d l i p i d o x i d a t i o n i n t r a i n e d i n d i v i d u a l s i s apparent even when c i r c u l a t i n g f a t t y a c i d l e v e l s a r e not d i f f e r e n t from t h a t o f the n o n - t r a i n e d ( 8 7 ) . Thus, t h e r e i s p r o b a b l y some fundamental a l t e r a t i o n w i t h i n t h e w o r k i n g muscle t o p e r m i t t h e g r e a t e r r a t e of b e t a o x i d a t i o n . R e c a l l t h a t an i n c r e a s e i n t h e capacity f o r f a t t y acid oxidation i s included i n the adaptive response of a g r e a t e r m i t o c h o n d r i a l c o n t e n t ( 1 5 ) . A g r e a t e r enzyme c o n t e n t w i t h i n t h e muscle c o u l d r e s u l t i n a g r e a t e r r a t e o f f a t t y a c i d o x i d a t i o n , even when t h e same f a t t y a c i d c o n c e n t r a t i o n i s a v a i l a b l e f o r b e t a o x i d a t i o n (15). One d i r e c t c o n s e q u e n c e o f o b t a i n i n g a g r e a t e r f r a c t i o n of the energy from f a t t y a c i d d e r i v e d a c e t y l C o A i s t o l e s s e n the demand f o r o t h e r carbon s o u r c e s f o r o x i d a t i o n . T h i s would be expected t o reduce t h e r a t e of g l y c o l y s i s and p o t e n t i a l l y t h e r a t e of g l y c o g e n u t i l i z a t i o n i n the w o r k i n g muscle. Recent e v i d e n c e i n d i c a t e s t h a t enhancing f a t t y acid o x i d a t i o n does, i n d e e d , spare muscle g l y c o g e n (85,86,88). These metabolic changes a r e d i s c u s s e d i n more d e t a i l i n t h e f o l l o w i n g c h a p t e r by Goodman. S i n c e t h e d e p l e t i o n of muscle g l y c o g e n s t o r e s d u r i n g p r o l o n g e d submaximal e x e r c i s e c o r r e s p o n d s w i t h exhaustion, t h e r e i s now r e a s o n t o c o u p l e t h e t r a i n i n g a d a p t a t i o n o f an i n c r e a s e d m i t o c h o n d r i a l c o n t e n t w i t h i n t h e w o r k i n g muscle t o t h e marked i n c r e a s e i n endurance performance. S p e c i f i c a l l y , t h e g r e a t e r m i t o c h o n d r i a l content p e r m i t s an enhanced energy s u p p l y from l i p i d o x i d a t i o n ; t h i s , i n t u r n , r e t a r d s t h e r a t e o f u t i l i z a t i o n o f muscle g l y c o g e n , thereby p e r m i t t i n g muscle g l y c o g e n t o be used over an extended exercise time. A l t h o u g h many o t h e r p h y s i o l o g i c a l , m e t a b o l i c and e n d o c r i n e changes must be i m p o r t a n t i n the t r a i n i n g p r o c e s s , b i o c h e m i c a l a d a p t a t i o n s w i t h i n t h e w o r k i n g muscles appear t o e x e r t a s i g n i f i c a n t i n f l u e n c e on energy metabolism and muscle performance.

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

1I+

Summary R o u t i n e l y performed p h y s i c a l a c t i v i t y , such as c y c l i n g o r r u n n i n g , i n c r e a s e s one's endurance c a p a c i t y f o r p r o l o n g e d submaximal work. A s s o c i a t e d w i t h t h i s response a r e b i o c h e m i c a l changes w i t h i n t h e w o r k i n g m u s c l e s . T h i s i n c l u d e s an i n c r e a s e i n the c o n t e n t of m i t o c h o n d r i a , the c e l l u l a r o r g a n e l l e where energy (ATP) i s produced by the o x i d a t i o n of f u e l s ( g l u c o s e and f a t ) i n the presence o f oxygen. The magnitude o f t h i s i n c r e a s e i n m i t o c h o n d r i a l c o n t e n t i s i n f l u enced, i n a complex manner, by t h e i n t e n s i t y and d u r a t i o n of e x e r c i s e , s i n c e not a l l s k e l e t a l muscle f i b e r s may be r e c r u i t e d and t h e r e a r e marked d i f f e r e n c e s between muscle f i b e r t y p e s . Most mammalian muscle i s composed of t h r e e d i f f e r e n t f i b e r t y p e s : 1) s l o w - t w i t c h r e d (Type I ) w h i c h i s r e l a t i v e l y slow c o n t r a c t i n g and has a h i g h m i t o c h o n d r i a l c o n t e n t and endurance c a p a c i t y , 2) f a s t t w i t c h r e d (Type l i a ) w h i c h i s r e l a t i v e l y f a s t c o n t r a c t i n g and has a high mitochondrial c o n t e n t and endurance c a p a c i t y , and 3) f a s t t w i t c h w h i t e (Type l i b ) which i s r e l a t i v e l y f a s t c o n t r a c t i n g and has a low m i t o c h o n d r i a l content and endurance c a p a c i t y . These f i b e r types a r e r e c r u i t e d p r o g r e s s i v e l y b e g i n n i n g w i t h Type I , then Type

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

2.

TERJUNG AND HOOD

Biochemical

Adaptations

in Skeletal

Muscle

21

l i a and f i n a l l y Type l i b as t h e I n t e n s i t y o f e x e r c i s e i n c r e a s e s . Thus, r e g u l a r p h y s i c a l a c t i v i t y o f moderate i n t e n s i t y w i l l i n c r e a s e the m i t o c h o n d r i a l content o f p r i m a r i l y Type I and Type l i a f i b e r s , w h i l e p r o p o r t i o n a l l y l a r g e r i n c r e a s e s are induced i n Type l i b f i b e r s d u r i n g more i n t e n s e p h y s i c a l t r a i n i n g when these f i b e r s a r e r e cruited. One major b e n e f i t o f enhancing the m i t o c h o n d r i a l content i n the w o r k i n g muscles i s r e l a t e d t o the much g r e a t e r c a p a c i t y o f the muscle t o o x i d i z e f a t f o r energy. A g r e a t e r s u p p l y o f energy from f a t s e r v e s t o preserve the intramuscular glucose store ( g l y c o g e n ) w h i c h i s i n l i m i t e d s u p p l y . D e p l e t i o n o f muscle g l y c o g e n has been i m p l i c a t e d as a f a c t o r c a u s i n g f a t i g u e d u r i n g p r o l o n g e d m o d e r a t e l y i n t e n s e e x e r c i s e ( e . g . , r u n n i n g f o r more than 1 h r ) . Thus, the enhanced m i t o c h o n d r i a l content and i t s r e l a t e d i n c r e a s e i n f a t o x i d a t i o n p r o b a b l y c o n t r i b u t e t o the g r e a t l y improved endurance performance f o l l o w i n g e x e r c i s e t r a i n i n g . Acknowledgments C i t e d work by t h e a u t h o r s was supported by N a t i o n a l I n s t i t u t e s o f H e a l t h Grant AM-21617 and R e s e a r c h C a r e e r Development Award AM-00681 ( t o R.L.T.).

Literature Cited 1. Lawrie, R. A. (1953) The activity of the cytochrome system in muscle and its relation to myoglobin. Biochem. J. 55: 298-305. 2. Lawrie, R. A. (1953) Effect of enforced exercise on myoglobin concentration in muscle. Nature London. 171: 1069-71. 3. John-Alder, H. (1984) Seasonal variations in activity, aerobic energetic capacities, and plasma thyroid hormones (T3 and T4) in an iguanid lizard. J. Comp. Physiol. B. 154: 409-419. 4. Armstrong, R. B., Ianuzzo, C. D., Kunz, T. H. (1977) Histochemical and biochemical properties of flight muscle fibers in the little brown, bat, Myotis lucifugus. J. Comp. Physiol. 119: 141-54. 5. Holloszy, J. O. (1973) Biochemical adaptations to exercise: aerobic metabolism. Ex. Sport. Sci. Rev. 1: 45-71. 6. Holloszy, J. O. and Booth, F. W. (1976) Biochemical adaptations to endurance exercise in muscle. Ann. Rev. Physiol. 38: 273-291, 1976. 7. Saltin, B. and Gollnick, P.D. (1983) Skeletal muscle adaptability: significance for metabolism and performance. In Handbook of Physiology, Section 10: Skeletal Muscle (Peachey, L. D., ed.), pp. 555-631, Am. Physiol. Soc., Bethesda, MD. 8. Holloszy, J. O. and Coyle, E. F. (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 56: 831-8. 9. Salmons, S. and Henriksson, J. (1981) The adaptive response of skeletal muscle to increased use. Muscle Nerve 4: 94-105. 10. Holloszy, J. O. (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. Biol. Chem. 242: 2278-82.

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

22

NUTRITION AND AEROBIC EXERCISE

11. Saltin, B., Henriksson, J., Nygaard, E., Andersen, P. and Jansson, E. (1977) Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. In The Marathon: Physiological, Medical, Epidemiological and Psychological Studies (Milvy, P., ed), pp. 3-29, Annals of the New York Academy of Sciences, Vol. 301, New York, NY. 12. Gollnick, P.D., Ianuzzo, C. D. and King, D.W. (1971) Ultrastructural and enzyme changes in muscles with exercise. In Muscle Metabolism During Exercise (Pernow, B. and Saltin, B., eds), pp. 69-85, Advances in Experimental Medicine and Biology, Vol. 11, Plenum Press, New York, NY. 13. Morgan, T. E., Cobb, L. Α., Short, F. Α., Ross, R. and Gunn, D. R. (1971) Effects of long term exercise on human muscle mitochndria. In Muscle Metabolism During Exercise (Pernow, B. and Saltin, B., eds), pp. 87-95, Advances in Experimental Medicine and Biology, Vol. 11, Plenum Press, New York, NY. 14. Baldwin, Κ. M., Klinkerfuss, G. H., Terjung, R. L., Molé, P. A. and Holloszy, J. O. (1972) Respiratory capacity of white, red, and intermediate muscle: adaptive response to exercise. Am. J. Physiol. 222: 373-8. 15. Molé, P. Α., Oscai, L. B. and Holloszy, J. O. (1971) Adaptation of muscle to exercise. Increase in levels of palmityl CoA synthetase, carnitine palmityl-transferase and palmityl CoA dehydrogenase and in the capacity to oxidize fatty acids. J . Clin. Invest. 50: 2323-30. 16. Costill, D. L., Fink, W. J., Getchell, L. H., Ivy, J. L. and Witzmann, F. A. (1979) Lipid metabolism in skeletal muscle of endurance trained males and females. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 787-91. 17. Winder, W. W., Baldwin, Κ. M. and Holloszy, J. O. (1975) Exercise-induced increase in the capacity of rat skeletal muscle to oxidize ketones. Can. J. Physiol. Pharmacol. 53: 86-91. 18. Holloszy, J. O., Oscai, L. B., Don, I. J. and Molé, P.A. (1970) Mitochondrial citric acid cycle and related enzymes: adaptive response to exercise. Biochem. Biophys. Res. Commun. 40: 1368-73. 19. Holloszy, J. O., Booth, F. W., Winder, W. W. and Fitts, R. H. (1975) Biochemical adaptation of skeletal muscle to prolonged physical exercise. In Metabolic Adaptation to Prolonged Physical Exercise (Howald, H. and Poortmans, J. R., eds.), pp. 438-47, Birkhauser Verlag, Basel. 20. Wittenberg, Β. Α., Wittenberg, J. B. and Caldwell, P.R.B. (1975) Role of myoglobin in the oxygen supply to red skeletal muscle. J. Biol. Chem. 250: 9038-43. 21. Cole, R. P. (1982) Myoglobin function in exercising skeletal muscle. Science 216: 523-525. 22. Pattengale, P. K. and Holloszy, J. O. (1967) Augmentation of skeletal muscle myoglobin by a program of treadmill running. Am. J. Physiol. 213: 783-5. 23. Gollnick, P. D. and Saltin, B. (1982) Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin. Physiol. 2: 1-12.

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

2.

TERJUNG AND HOOD

24. 25.

26.

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

27. 28. 29.

30. 31. 32. 33. 34. 35. 36.

37. 38. 39.

40.

Biochemical Adaptations in Skeletal Muscle

Winder, W. W., Baldwin, Κ. M. and Holloszy, J. O. (1974) Enzymes involved in ketone utilization in different types of muscle: adaptation to exercise. Eur. J. Biochem. 47: 461-7. Saltin, B., Nazar, K., Costill, D. L . , Stein, E . , Jansson, E . , Essen, B. and Gollnick, P.D. (1976) The nature of the training response; peripheral and central adaptations to one-legged exercise. Acta Physiol. Scand. 96: 289-305. Burke, R. E. (1981) Motor units: anatomy, physiology, and functional organization. In Handbook of Physiology: The Nervous System 2 (Brookhart, J . M. and Mountcastle, V. B., eds.), pp. 345-422, Am. Physiol. Soc., Bethesda, MD. Close, R. I. (1972) Dynamic properties of mammalian skeletal muscles. Physiol. Rev. 52: 129-197. Baldwin, Κ. Μ., Winder, W. W. and Holloszy, J . O. (1975) Adaptation of actomyosin ATPase in different types of muscle to endurance exercise. Am. J. Physiol. 229: 422-6. Martonosi, A. N. and Beeler, T. J . (1983) Mechanism of Ca transport by sarcoplasmic reticulum. In Handbook of Physiology: Skeletal Muscle (Peachey, L. D., ed.), pp. 417-485, Am. Physiol. Soc., Bethesda, MD. Barany, M. (1967) ATPase activity of myosin correlated with speed of muscle shortening. J . Gen. Physiol. 50, Suppl. pt. 2: 197-218. Brooke, M. H. and Kaiser, Κ. K. (1970) Three myosin adenosine triphosphatase systems: the nature of their pH lability and sulfhydryl dependence. J . Histochem. Cytochem. 18: 670-2. Laughlin, M. H. and Armstrong, R. B. (1982) Muscular blood flow distribution patterns as a function of running speed in rats. Am. J . Physiol. 243: H296-H306. Mackie, B. G. and Terjung, R. L. (1983) Blood flow to different skeletal muscle fiber types during contraction. Am. J . Physiol. 245: H265-H275. Baldwin, Κ. Μ., Winder, W. W., Terjung, R. L. and Holloszy, J . O. (1973) Glycolytic enzymes in different types of skeletal muscles: adaptation to exercise. Am. J. Physiol. 225: 962-6. Hintz, C. S., Lowry, C. V., Kaiser, K. K., McKee, D. and Lowry, O. H. (1980) Enzyme levels in individual rat muscle fibers. Am. J . Physiol. 239: C58-C65. Burke, R. E . , Levine, D. Ν., Zajac, F. E . , Tsairis, P. and Engel, W. K. (1971) Mammalian motor units: physiological-histochemical correlation in three types of cat gastrocnemius. Science 174: 709-12. Meyer, R. A. and Terjung, R. L. (1979) Differences in ammonia and adenylate metabolism in contracting fast and slow muscle. Am. J . Physiol. 237: C111-C118. Rall, J . (1985) Energetic aspects of skeletal muscle contraction: implications of fiber types. Ex. Sport. Sci. Rev. Vol. 13. Meyer, R. Α., Dudley, G. A. and Terjung, R. L. (1980) Ammonia and IMP in different skeletal muscle fibers after exercise in rats. J . Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 1037-41. Dudley, G. A. and Terjung, R. L. (1985) Influence of aerobic metabolism on IMP accumulation in fast-twitch muscle. Am. J . Physiol. 248: C37-C42. 2+

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

23

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

24

NUTRITION AND AEROBIC EXERCISE

58. Baldwin, K. M., Fitts, R. H., Booth, F. W., Winder, W. W. and Holloszy, J. O. (1975) Depletion of muscle and liver glycogen during exercise. Pflugers Arch. 354: 203-12. 59. Hearn, G. R. and Wainio, W. W. (1956) Succinic dehydrogenase activity of the heart and skeletal muscle of exercise rats. Am. J. Physiol. 185: 348-50. 60. Terjung, R. L. (1976) Muscle fiber involvement during training of different intensities and durations. Am. J. Physiol. 230: 946-50. 61. Harms, S. J. and Hickson, R. C. (1983) Skeletal muscle mitochondria and myoglobin, endurance, and intensity of training. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 798-802. 62. Shepherd, R. E. and Gollnick, P. D. (1976) Oxygen uptake of rats at different work intensities. Pflugers Arch. 362: 219-22. 63. Saltin, B., Blomqvist, G., Mitchell, J. H., Johnson, R. L . , Wildenthal, K. and Chapman, C. B. (1968) Response to exercise after bed rest and after training. Circulation 38, Suppl. 7: 1-78. 64. Fitts, R. H., Booth, F. W., Winder, W. W. and Holloszy, J. O. (1975) Skeletal muscle respiratory capacity, endurance, and glycogen utilization. Am. J. Physiol. 228: 1029-33. 65. Sahlin, K., Palmskog, G. and Hultman, E. (1978) Adenine nucleotide and IMP contents of the quadriceps muscle in man after exercise. Pflugers Arch. 374: 193-8. 66. Karlsson, J. (1971) Lactate and phosphagen concentrations in working muscle of man. Acta Physiol. Scand. Suppl. 358: 1-72. 67. Astrand, P.-O. and Rodahl, K. (1977) Textbook of Work Physiology, pp. 182-4, McGraw-Hill, Inc., New York, NY. 68. Ekblom, B., Astrand, P.-O., Saltin, B., Stenberg, J. and Wallstrom, B. (1968) Effect of training on the circulatory response to exercise. J . Appl. Physiol. 24: 518-28. 69. Kilborn, A. and Astrand, I. (1971) Physical training with submaximal intensities in women. II. Effect on cardiac output. Scand. J. Clin. Lab. Invest. 28: 163-75. 70. Hudlicka, O. (1977) Effect of training on macro- and microcirculatory changes in exercise. Ex. Sport. Sci. Rev. 5: 181-230. 71. Mackie, B. G. and Terjung, R. L. (1983) Influence of training on blood flow to different skeletal muscle fiber types. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 55: 1072-8. 72. Davies, K. J. Α., Maguire, J. J., Brooks, G. Α., Dallman, P. R. and Packer, L. (1982) Muscle mitochondrial bioenergetics, oxygen supply, and work capacity during dietary iron deficiency and repletion. Am. J. Physiol. 242: E418-E427. 73. Davies, K. J. Α., Donovan, C. M., Refino, C. J., Brooks, G. Α., Packer, L. and Dallman, P. R. (1984) Distinguishing effects of anemia and muscle iron deficiency on exercise bioenergetics in the rat. Am. J. Physiol. 246: E535-E543. 74. Gledhill, N. (1985) The influence of altered blood volume and oxygen transport capacity on aerobic performance. Ex. Sport. Sci. Rev. Vol. 13.

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

2.

TERJUNG AND HOOD

Biochemical Adaptations in Skeletal Muscle

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

41.

Dudley, G. A. and Terjung, R. L. (1985) Influence of acidosis on AMP deaminase activity in contracting fast-twitch muscle. Am. J . Physiol. 248: C43-C50. 42. Walmsley, B., Hodgson, J . A. and Burke, R. E. (1978) Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. J . Neurophysiol. 41: 1203-15. 43. Sullivan, T. E. and Armstrong, R. B. (1978) Rat locomotory muscle fiber activity during trotting and galloping. J . Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 358-63. 44. Dudley, G. Α., Abraham, W. M. and Terjung, R. L. (1982) Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle. J . Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 844-50. 45. Burke, R. E. and Edgerton, V. R. (1975) Motor unit properties and selective involvement in movement. Ex. Sport. Sci. Rev. 3: 31-81. 46. Ariano, Μ. Α., Armstrong, R. B. and Edgerton, V. R. (1973) Hindlimb muscle fiber populations of five mammals. J . Histochem. Cytochem. 21: 51-55. 47. Armstrong, R. B. and Phelps, R. O. (1984) Muscle fiber type composition of the rat hindlimb. Am. J. Anatomy 171: 259-72. 48. Costill, D. L., Daniels, J., Evans, W., Fink, W., Krahenbuhl, G. and Saltin, Β. (1976) Skeletal muscle enzymes and fiber composition in male and female track athletes. J . Appl. Physiol. 40: 149-54. 49. Lowry, C. V., Kimmey, J. S., Felder, S., Chi, M.-Y., Kaiser, K. K., Passonneau, P. Ν., Kirk, K. A. and Lowry, O. H. (1978) Enzyme patterns in single human muscle fibers. J . Biol. Chem. 253: 8269-77. 50. Schimke, R. T. and Doyle, D. (1970) Control of enzyme levels in animals tissues. Ann. Rev. Biochem. 39: 929-76. 51. Terjung, R. L. (1979) The turnover of cytochrome c in different skeletal muscle fiber types of the rat. Biochem. J . 178: 569-74. 52. Terjung, R. L. (1975) Cytochrome c turnover in skeletal muscle. Biochem. Biophys. Res. Commun. 66: 173-8. 53. Booth, F. W. and Holloszy, J . O. (1977) Cytochrome c turnover in rat skeletal muscles. J . Biol. Chem. 252: 416-19. 54. Henriksson, J . and Reitman, J . S. (1977) Time course of changes in human skeletal muscle succinate dehydrogenase and cytochrome oxidase activities and maximal oxygen uptake with physical activity and inactivity. Acta Physiol. Scand. 99: 91-7. 55. Hickson, R. C. (1981) Skeletal muscle cytochrome c and myoglobin, endurance, and frequency of training. J . Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 746-9, 1981. 56. Booth, F. W. (1977) Effects of endurance exercise on cytochrome c turnover in skeletal muscle. In The Marathon: Physiological, Medical, Epidemiological, and Psychological Studies (Milvy, P., ed.), pp. 431-439, Annals of the New York Academy of Sciences, Vol. 301, New York, NY. 57. Oscai, L. B., Patterson, J . Α., Bogard, E. L., Beck, R. J. and Rothermel, B. L. (1972) Normalization of serum triglycerides and lipoprotein electrophoretic patterns by exercise. Am. J . Cardiol. 30: 775-80.

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.

25

Downloaded by FUDAN UNIV on December 29, 2016 | http://pubs.acs.org Publication Date: December 3, 1986 | doi: 10.1021/bk-1986-0294.ch002

26

NUTRITION AND AEROBIC EXERCISE

75. Bergstrom, J., Harris, R. C., Hultman, E. and Nordesjö, L. O. (1971) Energy rich phosphagens in dynamic and static work. In Muscle Metabolism During Exercise (Pernow, B. and Saltin, B., eds.), pp. 341-55, Advances in Experimental Medicine and Biology, Vol. 11, Plenum Press, New York, NY. 76. Karlsson, J., Nordesjö, L.-O., Jorfeldt; L. and Saltin, B. (1972) Muscle lactate, ATP, and CP levels during exercise after physical training in man. J. Appl. Physiol. 33: 199-203. 77. Meyer, R. Α., Sweeney, H. L. and Kushmerick, M. J. (1984) A simple analysis of the "phosphocreatine shuttle". Am. J. Physiol. 246: C365-77, 1984. 78. Erecinska, Μ., Wilson, D. F. and Nishiki, K. (1978) Homeostatic regulation of cellular energy metabolism: experimental characterization in vivo and fit to a model. Am. J . Physiol. 234: C82-C89, 1978. 79. Erecinska, M. and Wilson, D. F. (1982) Regulation of cellular energy metabolism. J. Memb. Biol. 70: 1-14. 80. Henriksson, J. (1977) Training induced adaptations of skeletal muscle and metabolism during submaximal exercise. J. Physiol. 270: 661-75. 81. Hickson, R. C., Bomze, H. A. and Holloszy, J. O. (1978) Faster adjustment of O uptake to the energy requirement of exercise in the trained state. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 877-81. 82. Cerretelli, P., Pendergast, D., Paganelli, W. C. and Rennie, O. W. (1979) Effects of specific muscle training on VO on-response and early blood lactate. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 761-9. 83. Hagberg, J. M., Hickson, R. C., Ehsani, A. A. and Holloszy, J. O. (1980) Faster adjustment to and recovery from submaximal exercise in the trained state. J . Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 218-24. 84. Paul, P. (1971) Uptake and oxidation of substrates in the intact animal during exercise. In Muscle Metabolism During Exercise (Pernow, B. and Saltin, B., eds.), pp. 225-248, Advances in Experimental Medicine and Biology, Vol. 11, Plenum Press, New York, NY. 85. Hickson, R. C., Rennie, M. J., Conlee, R. K., Winder, W. W. and Holloszy, J. O. (1977) Effects of increased plasma free fatty acids on glycogen utilization and endurance. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 829-33. 86. Costill, D. L., Coyle, E., Dalsky, G., Evans, W., Fink, W. and Hooper, D. (1977) Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 695-9. 87. Holloszy, J. O., Winder, W. W., Fitts, R. H., Rennie, M. J., Hickson, R. C. and Conlee, R. K. (1978) Energy production during exercise. In: 3rd International Symposium on Biochemistry of Exercise (Landry, F. and Orban, W. A. R., eds.), pp. 61-74, Symposia Specialists, Inc., Miami, FL. 88. Rennie, M. J., Winder, W. W. and Holloszy, J. O. (1976) A sparing effect of increased plasma free fatty acids on muscle and liver glycogen content in the exercising rat. Biochem. J. 156: 647-55. 2

2

RECEIVED May 14, 1985

Layman; Nutrition and Aerobic Exercise ACS Symposium Series; American Chemical Society: Washington, DC, 1986.