2 Biochemical Mode of Action of Fungicides Ergosterol Biosynthesis Inhibitors Dieter Berg
Downloaded by UNIV OF PITTSBURGH on October 7, 2015 | http://pubs.acs.org Publication Date: April 22, 1986 | doi: 10.1021/bk-1986-0304.ch002
Bayer AG, Agrochemical Division, Research Biochemistry, Plant Protection Center Monheim, D5090 Leverkusen, Federal Republic of Germany
One or two decades ago the biochemical mode of action of a fungicide normally was not known. A great part of this was due to the fact that most of the fungicides were "multi-site effectors" and thus not accessible to relevant biochemical studies. The situation changed drastically with the finding of the so-called "single-site effectors" which could be studied mechanistically. Biochemistry then became an important assistance for the chemist during optimization of efficacy within a defined chemical group. By now a tremendous number of dif ferent mechanisms have been described. A crude classification of the modes of action leads to three groups of fungicides: 1) those which inhibit energy production by blocking SH-groups, the glycolysis/ci trate cycle, or the respiratory chain, 2) those that inhibit biosyntheses of proteins, nucleic acids, cells walls, and membrane lipids, or interfere with mitosis, and 3) those which induce indirect effects which change host/pathogen interactions. An example of this last group is the induction of phytoalexin production by dichlorodimethylcyclopropane-carboxylic acid (1). There are numerous examples of the inhibition of biosynthesis by fungicides. Some fungicidal secondary metabolites, like cycloheximide and blasticidine, interfere with synthesis of peptide bonds at the ribosomal site (2). Another, kasugamycine, influences aminoacylt-RNA/ribosome interactions (3). Finally, another mechanism inhibit ing protein biosynthesis is realized on the DNA/RNA- level by the 0097-6156/86/0304-0025$08.00/0 © 1986 American Chemical Society
In Fungicide Chemistry; Green, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
FUNGICIDE CHEMISTRY
26
acylanilides.
F o r example, m e t a l a x y l
i n t e r f e r e s w i t h RNA- polymerase
(4) . The f i r s t group o f s y s t e m i c inhibitors (5) .
of mitosis
f u n g i c i d e s , the benzimidazoles, are
by i n t e r f e r e n c e w i t h
Thus, they p r e v e n t
an arrangement
The t u b u l i n e - b e n z i m i d a z o l e - i n t e r a c t i o n s (6) .
polymerization
of the spindle
apparatus.
have been s t u d i e d
i n detail
I t i s known t h a t carbendazim, f o r example, a f t e r e n t e r i n g t h e
nucleus, Downloaded by UNIV OF PITTSBURGH on October 7, 2015 | http://pubs.acs.org Publication Date: April 22, 1986 | doi: 10.1021/bk-1986-0304.ch002
tubuline
specifically
binds
t o the
3 -subunit
t h i s i n h i b i t s the d i m e r i z a t i o n of the α t i o n a l tubuline u n i t .
and
3 -subunits
f o r benzimidazoles
tion
of mitosis, l i k e
inhibitors
hydrocarbons, or dithiocarbamates,
(7) ·
and by
to a func
R e s i s t a n t s t r a i n s possess a l t e r e d
w i t h a decreased a f f i n i t y of other
of tubuline
β -subunits
The modes o f a c
dicarboximides,
aromatic
have n o t y e t been p r e c i s e l y de
s c r i b e d on a m o l e c u l a r b a s i s . Another group o f f u n g i c i d e s i n t e r f e r e s w i t h c e l l w a l l Two examples o f t h i s group i n c l u d e : chitin
formation
by c o m p e t i t i v e l y
formation.
1) t h e p o l y o x i n e s , w h i c h p r e v e n t inhibiting
c h i t i n - s y n t h a s e , the
f i n a l enzyme i n v o l v e d i n c h i t i n b i o s y n t h e s i s , and 2) mélanine thesis this
inhibitors,
especially i n Pyricularia
type o f f u n g i c i d e
oryzae.
Examples o f
a r e T r i c y c l o a z o l e and L i l o l i d o n e ,
that i n t e r f e r e with pentaketide
tors w i l l
biosynthesis
The modes o f a c t i o n o f s t e r o l s y n t h e s i s
be d i s c u s s e d
Kitazin,
Isoprothiolane
sively.
I t could
methylation
compounds
synthesis ( 8 ) .
The n e x t l a r g e group i n c l u d e s compounds i n h i b i t i n g of membrane l i p i d s .
biosyn
i n detail
later,
inhibi
b u t t h e mode o f a c t i o n o f
and E d i f e n p h o s has a l s o been s t u d i e d
be shown t h a t
t h e S-adenosylmethionine
inten
dependent
of phosphatidyl-ethanolamines t o the corresponding
leci
t h i n s i s a f f e c t e d by these compounds ( 9 ) . Membranes cannot o n l y be disturbed well.
by r a t h e r
specific
F o r example,
effect.
dodine
mechanisms b u t by g e n e r a l damages membranes
by a
a c t i o n s as
detergent-like
An example o f a d i f f e r e n t mechanism i s t h e i n h i b i t i o n o f
adenosine-deaminase by t h e p y r i m i d i n e d e r i v a t i v e s e t h i r i m o l and dimethyrimol (10). I n t h e d i s c u s s i o n o f t h e mode o f a c t i o n o f e r g o s t e r o l thesis
inhibitors,
the question
biosyn
o f t h e f u n c t i o n o f s t e r o l s i n mem-
In Fungicide Chemistry; Green, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
2.
branes has t o be asked. et
27
Ergosterol Biosynthesis Inhibitors
BERG
a l . (11),
stabilized
A model e x p e r i m e n t , conducted by Ladbrooke
demonstrates
that
phospholipid
by a d d i t i o n o f a s t e r o l ,
fungi, c h o l e s t e r o l i s replaced "quasiplanar"
phases a r e p h y s i c a l l y
i nthis
case c h o l e s t e r o l . I n
by e r g o s t e r o l , b u t b o t h s t e r o l s a r e
and thus a r e a b l e
t o f u n c t i o n as membrane components.
I f one s i m u l a t e s a d e f i c i e n c y o f a p l a n a r s t e r o l , i t can be shown by differential sions
c a l o r i m e t r y measurements
(Figure
of phosphatidylcholine/cholesterol
1) t h a t w i t h
mixtures
disper
i n water,
Downloaded by UNIV OF PITTSBURGH on October 7, 2015 | http://pubs.acs.org Publication Date: April 22, 1986 | doi: 10.1021/bk-1986-0304.ch002
t r a n s i t i o n s between d i f f e r e n t l i p i d phases a r e i n d u c e d ( 1 1 ) . the
case o f s t e r o l
d e f i c i e n c y , t h e phase t r a n s i t i o n
phase If, i n
temperature i s
passed between t h e " q u a s i - c r y s t a l l i n e " and l i q u i d phase o f phospha t i d y l c h o l i n e s , an energy consuming r e a c t i o n i s o b s e r v e d .
This
isa
q u a n t i f i a b l e i n d i c a t i o n o f d r a s t i c changes i n l i p i d s t r u c t u r e . Such changes i n membrane s t r u c t u r e do n o t o n l y
induce d r a s t i c
changes i n the p h y s i c a l s t a b i l i t y o f membranes, b u t a l s o a f f e c t the specific
activities
strated with mycoides
This
can be demon
the example o f membrane ATP-ase a c t i v i t y o f Mycoplasma
(Figure
temperature,
o f membrane-bound enzymes.
2).
When t h e enzyme a c t i v i t y
the wild-type
Arrhenius-diagram.
shows
no
phase
i s plotted transition
However, i n t h e case o f a s t e r o l
against in
the
d e f i c i e n t mu
t a n t , the s p e c i f i c a c t i v i t y o f the membrane ATP-ase changes a t 18°C (12).
T h i s c l e a r l y i n d i c a t e s t h a t a temperature-dependent change o f
the membrane c o n f o r m a t i o n
causes a t e m p e r a t u r e - i n d u c e d change i n t h e
s p e c i f i c a c t i v i t y o f membrane-bound enzymes. I f s t e r o l content s t a b i l i t y , we s h o u l d The
and c o n f o r m a t i o n study
a r e so important
the b i o s y n t h e s i s
f o r membrane
of s t e r o l s (Figure 3 ) .
f i r s t enzyme i n t e r p e n o i d b i o s y n t h e s i s i s t h e 3-Hydroxy-3-Methyl-
Glutaryl-Coenzyme Α-reductase (HMG-CoA-reductase) t h a t c a t a l y z e s t h e s y n t h e s i s o f mevalonate. mevalonate sterol
lead
synthesis.
Two p h o s p h o r y l a t i o n s
t o isopentenylpyrophosphate,
thebasic
C^-unit i n
Isopentenylpyrophosphate reacts w i t h
i t s isomer,
the d i m e t h y l a l l y l - p y r o p h o s p h a t e ,
i n a head/tail-reaction to geranyl-
pyrophosphate; r e a c t i o n w i t h a n o t h e r C ^ - u n i t phosphate, t h a t d i m e r i z e s expoxidation
and d e c a r b o x y l a t i o n o f
of i t s Δ
leads t o farnesyl-pyro-
i n a t a i l / t a i l - r e a c t i o n to squalene. -double
bond,
squalene
After
c y c l i z e s t o lano-
In Fungicide Chemistry; Green, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
FUNGICIDE CHEMISTRY
28
endothermic
Downloaded by UNIV OF PITTSBURGH on October 7, 2015 | http://pubs.acs.org Publication Date: April 22, 1986 | doi: 10.1021/bk-1986-0304.ch002
Rate heat flow
exothermic
290
π—ι—ι—ι—I 320 350
Average temperature (°K)
F i g u r e 1. D i f f e r e n t i a l scanning c a l o r i m e t r y curves f o r 50 wt% dispersions of 1,2-dipalmitoylphosphatidyl-choline-cholesterol m i x t u r e s i n water c o n t a i n i n g ( a ) 0; ( b ) 5.0; ( c ) 12.5; (a) 20.0; (e) 32.0; and ( f ) 50.0 m o l % c h o l e s t e r o l . (Reproduced w i t h p e r m i s s i o n from Ref. 11. C o p y r i g h t 1968 E l s e v i e r S c i e n c e P u b l i s h i n g Company, I n c . ) Adenosine triphosphatase activity (pmol Pi released/mg protein/5 min) 5.0 π
1
1
1
33 34 1 0 χ 1 / Τ ( · Κ" ) 3
35
1
F i g u r e 2. A r r h e n i u s p l o t s o f membrane ATP-ase a c t i v i t y of n a t i v e (-·-) and s t e r o l d e f i c i e n t (-o-) Mycoplasma mycoides v a r . mycoides. (Reproduced w i t h p e r m i s s i o n from Ref. 12. C o p y r i g h t 1973 E l s e v i e r S c i e n c e P u b l i s h i n g Company, I n c . )
In Fungicide Chemistry; Green, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
2.
BERG
29
Ergosterol Biosynthesis Inhibitors
sterol,
the f i r s t
sterol
b u t the l a s t
common i n t e r m e d i a t e
o f both
c h o l e s t e r o l and e r g o s t e r o l s y n t h e s i s . In ergosterol biosynthesis, side chain a l k y l a t i o n of l a n o s t e r o l normally itself C^.
takes
place
to build
i s then t h e s u b s t r a t e
The C ^ - d e m e t h y l a t i o n
first
step
involved
f o r demethylation has been s t u d i e d
1
o x i d a t i v e demethylation
24-methylenedihydrolanosterol, reactions at i ndetail.
c a t a l y z e d by a cytochrome P ^ ^ - s y s t e m . The
i nthis
reaction
i s the hydroxylation
Downloaded by UNIV OF PITTSBURGH on October 7, 2015 | http://pubs.acs.org Publication Date: April 22, 1986 | doi: 10.1021/bk-1986-0304.ch002
h y d r o x y l a t i o n and l o s s o f water l e a d t o t h e C ^ - f o r m y l
Decarboxylation
sequently, demethylation
carboxy-
from C ^ , f o l l o w e d by e l i m i n a t i o n
o f a Δ ^ - d o u b l e bond.
The NADPH-dependent r e d u c t i o n
Δ ^ - d o u b l e bond f i n i s h e s t h e d e m e t h y l a t i o n
of t h e
the
does n o t d i r e c t l y take p l a c e , b u t proceeds
i n s t e a d by a b s t r a c t i o n o f a p r o t o n formation
of
A second
intermediate,
w h i c h i s h y d r o x y l i z e d a t h i r d time t o form t h e c o r r e s p o n d i n g
and
and
I t i s an
C ^ - m e t h y l - g r o u p t o form the C ^ - h y d r o x y m e t h y l d e r i v a t i v e .
l i c acid.
which
at
reaction.
Sub
has t o take p l a c e t w i c e , f o l l o w e d by a
d e h y d r o g e n a t i o n r e a c t i o n i n Δ ^ - p o s i t i o n and i s o m e r i z a t i o n from
Δ
Δ
to
and £24(28)
Δ
2 ί
respectively. I n r e s e a r c h f o r new f u n g i c i d e s and a n t i m y c o t i c s , one has t o l o o k for
a concept
f o r pathogen-specific
i n h i b i t i o n o f s t e r o l synthesis
should
inhibitors. n o t take
place
s t e p ; t h e aim i s t o o n l y i n h i b i t p a t h o g e n - s p e c i f i c thesis. city.
This
means
that
a t any common
steps
i n biosyn
The r e a s o n f o r t h i s i s t o m i n i m i z e the r i s k o f human t o x i I f one compares t h e b i o s y n t h e s i s o f mammalian c h o l e s t e r o l t o
t h a t o f e r g o s t e r o l , the main s t e r o l o f p a t h o g e n i c f u n g i , i t becomes obvious that there
are a t l e a s t four pathogen-specific
steps
t o be
inhibited. The
first
pathogen-specific
r e a c t i o n i s t h e S-adenosylmethio-
nine-dependent s i d e c h a i n a k l y l a t i o n o f l a n o s t e r o l . T h i s i s pathogen s p e c i f i c s i n c e i n c h o l e s t e r o l s y n t h e s i s , a s i d e c h a i n a l k y l a t i o n does not
take
place.
C^-positions as
well.
substrate
Secondly, the demethylation
o f 24-methylene-dihydrolanosterol
I n mammals d e m e t h y l a t i o n i s not side chain
reactions
r e a c t i o n s a t C ^ - and are pathogen-specific take
place,
a l k y l a t e d , so t h e c o r r e s p o n d i n g
but
the
enzyme
should possess d i f f e r e n t b i n d i n g s i t e s f o r the d i f f e r e n t s u b s t r a t e s .
In Fungicide Chemistry; Green, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
30
FUNGICIDE CHEMISTRY
A t h i r d pathogen-specific Λ 22 drogenation
in
Δ
step
i n ergosterol synthesis
- p o s i t i o n of the s i d e c h a i n .
e s t i n g t a r g e t i s the
Δ
Δ^-dehydrogenation.
8
7
Δ-
to
The
i s the
dehy-
fourth
i s o m e r i z a t i o n r e a c t i o n or
These f o u r r e a c t i o n s e i t h e r do not
inter
the
take
place
i n mammals, or u t i l i z e d i f f e r e n t s u b s t r a t e s . Another t a r g e t , t h a t a t f i r s t seems t o be u n f a v o r a b l e
since i t
i s p r i n c i p a l l y common f o r a l l o r g a n i s m s , i s the enzyme HMG-CoA-reducDownloaded by UNIV OF PITTSBURGH on October 7, 2015 | http://pubs.acs.org Publication Date: April 22, 1986 | doi: 10.1021/bk-1986-0304.ch002
t a s e w h i c h i s the r e g u l a t o r y enzyme i n t e r p e n o i d b i o s y n t h e s i s .
Re
s u l t s from t r i a l s w i t h n a t u r a l l y produced i n h i b i t o r s f o r t h a t enzyme, such as Compactine and M e v i n o l i n e , able
t o lower the
c h o l e s t e r o l content
depress s t e r o l s y n t h e s i s i n f u n g i There are biosynthesis
i n d i c a t e t h a t these compounds are i n mammals, but
at l e a s t four d i s t i n c t chemical
inhibitors
(EBI's).
The
4).
The
first
commercial
seed d r e s s i n g agent.
The
group,
triadimefon,
the
of
bitertanol.
the
benzyl
ketals,
compound
that
are
Analogous t o these
d i c l o b u t r a z o l e has
propicanozole
activities
and
etaconazole,
slightly
been
those
Topas does not might c o n s i d e r
analogue.
Fluotrimazole
compounds, but has tic
The s u b s t i t u t i o n
still
active
show s p e c t r a
d i f f e r e n t from
is significantly
of of
to
against
distinct
two
biological
contain it a
The
triadimefon, the
ketal
propiconazole
from
the
remarkable homology t o c l o t r i m a z o l e , an
other
antimyco
azole. A p a r t from the t r i a z o l e d e r i v a t i v e s , a s m a l l group o f
is
a
systemic
developed.
t r i a d i m e n o l , or d i c h l o b u t r a z o l e . one
be
phenoxy-derivatives,
partial
s t r u c t u r e , but
can
a phenyl substituent l e d
B i t e r t a n o l i s mainly
r u s t and scab i n t r e e f r u i t .
of
(Figure
used as
main i n d i c a t i o n of b o t h of these
c h l o r i n e atom i n t r i a d i m e n o l by
synthesis
terms
that
t r i a d i m e n o l , which i s m a i n l y
compounds i s f o r powdery mildew c o n t r o l i n c e r e a l s . of the
in
triazole derivatives
compound was
reduced to y i e l d
markedly
groups of e r g o s t e r o l
largest
number of commercial compounds, i s the
chemically
not
(13).
active against
plant
pathogens
(Figure
5).
The
compounds i n t h i s group are
i m a z a l i l and
of the important
EBI's o r i g i n a t e from the
ries.
Two
of
antimycotic these
antimycotics
w h i c h resemble f l u o t r i m a z o l e .
are
prochloraz.
bifonazole
These two
and
antimycotics
imidazoles
most
important
However, most imidazole
se
clotrimazole, will
In Fungicide Chemistry; Green, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
be
dis-
BERG
Ergosterol Biosynthesis Inhibitors
ÇH HO-CO-CH -Ç-CH -CO-S-CoA 3
2
HMG - COA
2
OH HMG-CoA-reductase
I
ÇH HO-CO-CH -Ç-CH2-CH -OH OH 3
2
mevalonic acid
2
i 4 lanosterol
I
HO ^
Downloaded by UNIV OF PITTSBURGH on October 7, 2015 | http://pubs.acs.org Publication Date: April 22, 1986 | doi: 10.1021/bk-1986-0304.ch002
4.4 -dimethyl-δ
8 5 4
cholestadien )lestadien - ol (3)
-
V
X 4,4-dimethyl -
/
f~*i\* (^\\)—*
- o l (3)
01(3)
HO
*
(3)
HO
HO ergosterol (yeasts, derenatophytes, bacteria)
cholesterol (mammals)
F i g u r e 3. sis.
Strategies
forinhibition
•CH-CO-C(CH ) 3
of ergosterol
OH I 3
|-CH-CH-C(CH ) 3
Ν —
biosynthe
3
u
Triadimenol Ν CI U
0-ÇH-CH-C (CH ) 3
JÎ
3
C I - ^ ~ ^ - G H - C H - C H - C (CH3) 2
3
II
II
II U
Ν Oiclobutrazol -CI V=/
ο
Ο
\=N
\ = / Ο
Ο
CHn 3
^=N C H
7
2
5
Propiconazol
Q
-
r
O
\ = /
I CHn 3
\=N
7
Ν U Fluotrimazol
F i g u r e 4.
Triazolyl ergosterol biosynthesis
inhibitors.
In Fungicide Chemistry; Green, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
FUNGICIDE CHEMISTRY
32 cussed l a t e r w i t h r e s p e c t
t o t h e i r a b i l i t y t o i n h i b i t HMG-CoA-reduc-
t a s e i n dermatophytes. The mol,
third
group o f EBI's a r e t h e p y r i m i d i n e
f e n a r i m o l , and t r i a r i m o l ( F i g u r e 6 ) .
closely related chemically. zoles
and i m i d a z o l e s
the morpholines
The commonality they have w i t h t h e t r i a
i s the nitrogen
heteroatom
i n the 3 - p o s i t i o n f
from t h e c e n t r a l c a r b o n . are
derivatives nuari-
A l l o f t h e s e compounds a r e
The f o u r t h most i n t e r e s t i n g group o f E B I s
which
are represented
by j u s t
two compounds,
Downloaded by UNIV OF PITTSBURGH on October 7, 2015 | http://pubs.acs.org Publication Date: April 22, 1986 | doi: 10.1021/bk-1986-0304.ch002
t r i d e m o r p h and fenpropimorph ( F i g u r e 7 ) . When we s t a r t e d t o l o o k E B I ' s , we d e c i d e d
f o r t h e mode o f a c t i o n o f d i f f e r e n t
t o use s e v e r a l pathogens as t e s t organisms.
These
were P y r i c u l a r i a o r y z a e , B o t r y t i s c i n e r e a , C e r c o s p o r a musae, F u s a r i u m nivale,
and D r e c h s l e r a
possible
antimycotic
teres.
To g e t r a p i d
information
about t h e
e f f i c a c y o f a t e s t compound, we a l s o
used
a
non-pathogenic y e a s t , Saccharomycopsis l i p o l y t i c a . I n t h e n e x t p a r t o f o u r r e s e a r c h on E B I - f u n g i c i d e s , we r e s t r i c t ed o u r s e l v e s
t o P y r i c u l a r i a o r y z a e s i n c e from o u r p o i n t o f v i e w t h e
i n v i t r o r e s u l t s w i t h t h a t organism a r e r e p r e s e n t a t i v e and t h e t e s t procedure i s r a t h e r simple.
The t e s t c h e m i c a l
i s applied i n a s u i t
able
concentration
t o t h e c u l t u r e medium w h i c h
from
an u n t r e a t e d
pre-culture.
cells
are separated
from
After
a 24-hour
the c u l t u r e
filtrate
i s then
inoculated
fermentation, the by c e n t r i f u g a t i o n ,
resuspended i n a c h l o r o f o r m / m e t h a n o l - m i x t u r e and homogenized u s i n g an u l t r a t u r r a x treatment.
A f t e r t h i s e x t r a c t i o n procedure, the s t e r o l -
c o n j u g a t e s a r e s p l i t t o f r e e s t e r o l s by a p o t a s s i u m - h y d r o x i d e ment.
Adsorption
desorption
treat
o f t h e s t e r o l s t o a Sep-pak column and
step-wise
l e a d s t o a s t e r o l f r a c t i o n w h i c h c a n be a n a l y z e d
directly
by gas chromatography on a SE-30 c a p i l l a r y column. An example f o r a G C - a n a l y s i s i s shown i n F i g u r e 8.
o f i s o l a t e d s t e r o l s from P. o r y z a e
An e l u t i o n diagram o f an u n t r e a t e d
control i s
compared t o t h e s t e r o l a n a l y s i s a f t e r a p p l i c a t i o n o f 10 ppm t r i a d i menol.
I t c a n e a s i l y be seen t h a t i n t h e r e g i o n where t h e s t e r o l s
a r e e l u t e d (framed a r e a ) , t h e p a t t e r n becomes t o t a l l y d i f f e r e n t . elution
index
accumulating
i s the f i r s t sterol.
criterion
f o r the c h e m i c a l
nature
The o f an
However, s t r u c t u r e e l u c i d a t i o n has been p e r -
In Fungicide Chemistry; Green, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
BERG
Ergosterol Biosynthesis Inhibitors
κ5-
y— C H - O - C H 2 - C H - C H 3
C\—(/
CH
2
0-CH2-CH -N-C3H n 2
7
CO I
CI
Ο U
Ν
Downloaded by UNIV OF PITTSBURGH on October 7, 2015 | http://pubs.acs.org Publication Date: April 22, 1986 | doi: 10.1021/bk-1986-0304.ch002
antimycotic imidazoles (2 examples)
Ô
NΜ Bifonazole ϋ
F i g u r e 5. I m i d a z o l y l e r g o s t e r o l b i o s y n t h e s i s
F i g u r e 6.
inhibitors.
Pyrimidine ergosterol biosynthesis
/CH
/ Ci H 3
2 7
CH
3
\
-N
tridemorph
/
CH
3
/Γ"λ
Ο ^CH
3
inhibitors.
tC H -^ 4
9
I / ~ \ y-CH -CH-CH -N Ο 2
2
N 3
^CH
3
fenpropimoφh
F i g u r e 7. M o r p h o l i n e e r g o s t e r o l b i o s y n t h e s i s
inhibitors.
In Fungicide Chemistry; Green, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
Downloaded by UNIV OF PITTSBURGH on October 7, 2015 | http://pubs.acs.org Publication Date: April 22, 1986 | doi: 10.1021/bk-1986-0304.ch002
34
FUNGICIDE CHEMISTRY
control
10ppm triadimenol
F i g u r e 8. Gas chromatography o f s t e r o l s oryzae t r e a t e d w i t h t r i a d i m e n o l .
from P y r i c u l a r i a
In Fungicide Chemistry; Green, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
2.
35
Ergosterol Biosynthesis Inhibitors
BERG
formed by GC/MS-coupling e x p e r i m e n t s ; t h e m a s s - s p e c t r a b e i n g compared t o those o f a u t h e n t i c m a t e r i a l s . was
Q u a n t i f i c a t i o n o f the accumulation
performed by t h e 100% method w i t h
t h e assumption t h a t
the FID-
response i s t h e same f o r a l l s t e r o l s . The
quantity
and d i s t r i b u t i o n o f t h e s t e r o l s t r u c t u r e s
o r y z a e a f t e r t h e fungus had been t r e a t e d w i t h listed
i n Figure
9.
The u n t r e a t e d
10 ppm t r i a d i m e n o l a r e
control contains,
as e x p e c t e d , a
Downloaded by UNIV OF PITTSBURGH on October 7, 2015 | http://pubs.acs.org Publication Date: April 22, 1986 | doi: 10.1021/bk-1986-0304.ch002
l a r g e amount o f e r g o s t e r o l a s t h e main membrane component. minor c o n c e n t r a t i o n s
o f Δ ^ - e r g o s t e n o l and Δ
P y r i c u l a r i a contains
about 15% Δ ^ - s t i g m a s t e n o l ,
the
latter
compound i s n o t a f f e c t e d
As a consequence o f t r e a t m e n t w i t h 4- f o l d
decrease
i n ergosterol
i n P.
Besides
^'^-ergostadiene-ol, but the content o f
by a p p l i c a t i o n o f t r i a d i m e n o l .
10 ppm t r i a d i m e n o l , we observed a
c o n t e n t and an a c c u m u l a t i o n o f i t s
precursor
2 4 - m e t h y l e n e d i h y d r o l a n o s t e r o l , a n o n p l a n a r compound due t o
the
m e t h y l groups a t
three
bond.
Therefore,
and
the accumulating
and l a c k o f t h e
-double
s t e r o l i s not able
to function
inhibits
biosynthesis
p r o p e r l y as a membrane component. The is
s i t e a t which t r i a d i m e n o l
illustrated
This
i n Figure
ergosterol
10 and t h e a c c u m u l a t i n g s t e r o l i s framed.
result clearly indicates
that
chrome P^Q-dependent o x i d a t i v e
triadimenol
inhibits
the cyto
removal o f t h e C ^ - m e t h y l group o f
24-methylenedihydrolanosterol, which i s a pathogen-specific
precursor
of e r g o s t e r o l . I n t h e same t e s t system, s e v e r a l o t h e r t r i a z o l e s were examined, i n c l u d i n g t r i a r i m o l a s an example o f t h e p y r i m i d i n e i m a z a l i l as a r e p r e s e n t a t i v e is
of the imidazole
common t o a l l these compounds t h a t
d e r i v a t i v e s , and
s e r i e s ( F i g u r e 11). I t
24-methylenedihydrolanosterol
accumulates i n d i c a t i n g an i d e n t i c a l p r i m a r y mode o f a c t i o n . I n the 5 22 , __ ' -ergosta-
Δ
d i e n e - o l c a n be o b s e r v e d , i n d i c a t i n g t h a t i n P y r i c u l a r i a o r y z a e Δ
-dehydrogenation i s a l s o
not
necessarily
affected
correspond with
by t r i a r i m o l .
These d a t a do
b i o l o g i c a l e f f i c a c y since
most o f
these compounds a r e used t o c o n t r o l powdery mildews, w h i c h a r e o b l i gate p a r a s i t e s Another
and a r e n o t e a s i l y a c c e s s i b l e
important
condition
cannot
to i n vitro
be f u l f i l l e d
i n such
studies. i n vitro
In Fungicide Chemistry; Green, M., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
36
FUNGICIDE CHEMISTRY
sterol [%]
Downloaded by UNIV OF PITTSBURGH on October 7, 2015 | http://pubs.acs.org Publication Date: April 22, 1986 | doi: 10.1021/bk-1986-0304.ch002
ergosterol
D 5
A -ergostene-ol (3)
5
22
Δ · -ergostadiene-ol (3)
5
A -stigmastene-ol (3)
— 24-methylenedihydrolanosterol
control
triadimenol [10ppm]
74.7
18.0
5.5
4.2
4.4
7.9
15.4
15.7
-ergostadiene-ol (3)
8
Δ ·
2 4
< >-efB08tadiene-ol (3) 28
5.8.24 — - e r g o s t a d i e n o l (3)