Biocompatibility of Magnetic Resonance ... - American Chemical Society

Biocompatibility of Magnetic Resonance Imaging Nanoprobes. Improved by Transformable Gadolinium Oxide Nanocoil. Dan Luo†,‡, Shengjie Cui∏,‡, Y...
1 downloads 0 Views 3MB Size
Subscriber access provided by UNIV OF NEW ENGLAND ARMIDALE

Article

Biocompatibility of Magnetic Resonance Imaging Nanoprobes Improved by Transformable Gadolinium Oxide Nanocoil Dan Luo, Shengjie Cui, Yan Liu, Chunyan Shi, Qian Song, Xiaoyun Qin, Ting Zhang, Zhenjie Xue, and Tie Wang J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.8b08118 • Publication Date (Web): 02 Oct 2018 Downloaded from http://pubs.acs.org on October 3, 2018

Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Page 1 of 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Journal of the American Chemical Society

Biocompatibility of Magnetic Resonance Imaging Nanoprobes Improved by Transformable Gadolinium Oxide Nanocoil Dan Luo†,‡, Shengjie Cui∏,‡, Yan Liu∏,*,Chunyan Shi⊥, Qian Song§, Xiaoyun Qin§, Ting Zhang∏,  Zhenjie Xue§ and Tie Wang§,*  †

 State Key Laboratory of Heavy Oil Processing, Institute of New Energy, Beijing Key Laboratory of Biogas  Upgrading Utilization, China University of Petroleum (Beijing), Beijing 102249, China;  

§

 Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems,  Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China;  ∏

 Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering  Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology,  Beijing 100081, China.  ⊥ 

Department of Radiology, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung  and Blood Vessel Disease, Beijing 100029, China.  Supporting Information Placeholder  KEYWORDS:  Ultrathin nanocoil, transformable morphology, steric hindrance, biocompatibility, MR bioimaging  ABSTRACT: To design functional nanomaterials for biomedical applications, the challenge for scientists is to gain further  understanding of their unique toxicological properties. Non‐specific adhesion of proteins and endocytosis are considered  to be the major biotoxic sources of imaging nanoprobes. Here we fabricated ultrathin gadolinium oxide (Gd2O3) nanocoils  with a low Young's modulus, which endows transformable properties in solution.  The spatial configurational freedom of  ultrathin nanocoils induces the steric repulsion to the non‐specific adsorption of proteins that in turn, suppresses cellular  uptake and thus improves their biocompatibility. The larger number of exposed surface gadolinium atoms of the ultrathin  nanocoils  provided  enhanced  T1  magnetic  resonance  (MR)  imaging  contrast  with  high  signal  activation.  Such  nano‐ contrast  agents  were  applied  in  in  vivo  MR  bioimaging  to  achieve  prolonged  circulation  lifetime.  The  improved  biocompatibility by transformable Gd2O3 nanocoils could open up a new perspective towards the design and construction  of various nano‐biomedicines in the future.  

INTRODUCTION Magnetic  resonance  (MR)  imaging,  as  a  noninvasive  technique,  is  being  increasingly  used  in  clinical  diagnostics  to  obtain  information  on  the  anatomy,  function  and  metabolism  of  tissues  in  vivo.1  To  improve  imaging  sensitivity,  contrast  agents  have  been  employed  to  accelerate  the  relaxation  rate  of  water  molecules  and  thus  increase  the  required  contrast  between  specific  tissues  or  organs  of  interest.2,3  Compared  with  clinically‐ approved  conventional  gadolinium  chelates,  gadolinium  oxide  (Gd2O3)  nanoparticles  exhibit  higher  enhancement  efficiency  for  T1‐weighted  MR  images,  as  highly  exposed  gadolinium  surface  atoms  synergistically  shorten  the  longitudinal  relaxation  (T1)  time  of  nearby  water  protons.4,  5  However,  their  biosafety  risk  representing   great  commercial  value  has  been  considered  as  a  necessary issue of widespread concern.6, 7 The interaction  of nanoparticles with proteins fundamentally affect the in 

vivo biocompatibility and toxicity of imaging nanoprobes,  where  the  biological  interface  created  by  adsorption  of  serum proteins induces their entry into cells by receptor‐ mediated  endocytosis.  Non‐specific  adsorption  of  proteins by nanomaterials leads to the clearance from the  reticular‐endothelial  system,  promoting  endocytosis  via  interaction  with  the  cell  membrane,  thereby  leading  to  cytotoxity.8‐10  Additionally,  non‐specific  interactions  in  some  cases  have  resulted  in the  binding  of  nanoparticles  to cell membranes, the extracellular matrix and cell nuclei,  resulting  in  inefficient  tagging,  inaccurate  detection,  and  genotoxicity.9‐11    Nanoparticle  size,  shape,  surface  charge,  and  solubility  contribute  significantly  to  the  interaction  with  proteins,  which  have  been  well  explored  as  factors  contributing to toxicity.   The  common  characteristic  of  these  existing  imaging  nanoprobes  is  that  they  possess  a  fixed  morphology.  Polymer  coating  as  a  surface  modification  strategy,  has  been adopted primarily to reduce cytotoxity and prolong 

ACS Paragon Plus Environment

Journal of the American Chemical Society 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

the  circulation  time  of  nanomaterials,  due  to  the  spatial  configurational  freedom  of  the  polymer  chains;  12  this  approach  inhibits  protein  absorption  via  steric  repulsion  driven by the loss of conformational entropy.13, 14 Inspired  by  the  mechanism  that  the  flexibility  of  polymer  ligands  resists  protein  adsorption,  here  we  fabricated  ultrathin  Gd2O3  nanocoils  with  low  Young's  modulus  that  exhibit  transformable  feature  in  solution.  Compared  with  other  kinds  of  fixed‐morphology  Gd2O3  nanomaterials,  including  ultrasmall  nanoparticles  and  tripod‐,  triangle‐,  and  disk‐shaped  nanoplates,  the  transformable  ultrathin  nanocoils  significantly  suppressed  non‐specific  adsorption  of  proteins  to  hinder  cellular  uptake.  The  highest  T1  contrast  enhancement  among  various  Gd2O3  nanomaterials  by  the  nanocoils  is  attributable  to  surface  spin  disorder,  in  turn  due  to  the  enhanced  exposure  of  surface gadolinium atoms in the ultrathin nanocoils.  Via  tail  vein  injection,  the  ultrathin  nanocoils  exhibited  a  shedding  nature  to  avoid  rapid  clearance  and  prolong  circulation time in in vivo experiments, which provided a  new  perspective  to  fabricate  next‐generation  contrast  agents  for  patients  requiring  long  circulation  times  for  multiple  MR  scans,  such  as  MR  angiography  or  brain  tumor surgery.  

RESULTS AND DISCUSSIONS  Synthesis  and  characterizations  of  transformable  ultrathin  nanocoils. The transformable ultrathin Gd2O3  nanocoils were synthesized via thermal decomposition of  gadolinium  acetate  precursors  in  a  mixture  solvent  of  oleic  acid  (OA),  oleylamine  (OM)  and  octadecene.  Transmission  electron  microscopy  (TEM)  showed  that  nanocoils  with  high  aspect  ratio  (1.2  ±  0.2  nm  thickness)   were  obtained  at  an  OA/OM  ratio  of  0.22,  and  heated at  290  °C  for  60  min  (Figure  1a).  High‐resolution  TEM  (HRTEM)  showed  that  the  ultrathin  nanocoils  were  amorphous and lacked structural rigidity (Figure S1); their  unique  geometry  and  non‐crystalline  structure  allowed  for  a  softer  configuration,  in  which  the  ultrathin  nanocoils could twist in solution, like a flag swings in the  wind,  as  verified    by  liquid  cell  TEM  (Figure  1b).  A  few  microliters  of  nanocoil  solution  were  fully  sealed  in  electron  transparent  membranes  to  observe  the  movement  of  the  “transformers”  over  time  in  situ.15  The  electron  beam  could  provide  thermal  energy  to  induce  the  mobility  of  solution  in  the  sealed  membranes.  A  single  ultrathin  nanocoil  clearly  exhibited  transformable  characteristics  within  a  few  seconds.  The  formation  of  ultrathin  nanocoils  was  followed  by  an  “oriented  attachment”  mechanism  occurring  via  anisotropic  assembling  of  active  ultrasmall  nanoparticles  (Figure  1c),  16, 17  as monitored by in‐situ HRTEM operated at 200 kV.18  Electron charging and transfer momentum created by the  electron  beam  initiated  the  approachment  between  neighboring  ultrasmall  nanoparticles.19  The  ultrasmall  nanoparticles  undergone  the  fusing,  and  formed  arc‐ shaped nanoribbons after 15 min (Figure 1c).  

Page 2 of 7

Figure 1. (a) TEM image of ultrathin nanocoils. (b) Liquid  TEM  images  showed  the  transformable  property  of  nanocoils  (marked  with  arrow):  nanocoils  gradually  opened from scarf shape (1s, 4s) to wormlike shape (19 s).  (c)  Schematic  representation  of  formation  process  of  nanocoils  via  “oriented  attachment”  mechanism  (upper).  Anisotropic  assembling  of  active  ultrasmall  Gd2O3  nanoparticles under the irradiation of the electron beam.  The  HRTEM  images  of  ultrasmall  Gd2O3  nanoparticles  after irradiation with 0 min, 5 min and 15 min (lower). (d)  TEM  image  of  four  fixed‐morphology  nanomaterials,  followed  by  ultrasmall  nanoparticle,  tripod‐shaped,  triangle‐shaped  and  disk‐shaped  nanoplates.  (e)  The  average  Young’s  modulus  of  five  different  Gd2O3  nanomaterials.  #:  α