13 The Effect of a Penetrant Aid on Pre -Emergence Herbicidal Activity of Trifluoromethanesulfonanilides
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
WADE VAN VALKENBURG and ANTHONY F. YAPEL, JR. 3M Company, St. Paul Minnesota 55133
Meta and para monosubstituted trifluoromethanesulfonani lides were tested for pre-emergence herbicidal activity against Foxtail and Wild Mustard. Activity was determined in the presence and absence of 0.1% by weight of a sur factant penetrant aid (Tween 80). The surfactant enhanced biological activity in some series members and reduced it in others. The change in biological activity caused by the surfactantwasrelated primarily to the change in octanol/ water partition coefficient induced by the surfactant. For para-substituted series members this change in partition coefficient was strongly correlated with variations in the Hammett sigma constant.
O u r f ace-active agents ^
(also k n o w n as surfactants, w e t t i n g agents, a d -
juvants, a n d spreader-stickers ) are c a p a b l e o f m o d i f y i n g t h e o b s e r v e d
biological activity of a herbicide.
Jansen et al. ( I ) tested t h e f o l i a r
a c t i v i t y o f three h e r b i c i d e s i n c o m b i n a t i o n w i t h 6 3 different surfactants. S o m e o f these
surfactants
enhanced
biological activity while
others
decreased i t . B e c h e r a n d B e c h e r (2) m e a s u r e d t h e s p r e a d i n g pressure, π, o f a series o f surfactants o n p l a n t a n d s y n t h e t i c surfaces.
T h e surfactants
were characterized b y H L B (hydrophile-lipophile balance) s i m i l a r to those o f Jansen's adjuvants.
values ( 3 )
T h e relationship between the
s p r e a d i n g pressure a n d t h e contact a n g l e c a n b e expressed as π = JL cos 0, w h e r e y
L
is t h e surface tension o f t h e l i q u i d a n d θ is t h e contact angle
b e t w e e n t h e l i q u i d a n d a s o l i d surface. B e c h e r a n d B e c h e r d e m o n s t r a t e d that surfactants i n t h e i r series w h i c h e x h i b i t e d m a x i m u m s p r e a d i n g pres252
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
13.
VAN VALKENBURG
AND YAPEL, J R
Herbicidal
253
Activity
sure c o r r e s p o n d e d q u i t e closely to those of J a n s e n s adjuvants of s i m i l a r H L B w h i c h o p t i m i z e d h e r b i c i d a l a c t i v i t y . I n d e e d , plots of either s p r e a d i n g pressure or Jansen's a c t i v i t y i n d e x vs. H L B y i e l d e d curves of s i m i l a r shape. F o y a n d S m i t h ( 4 ) r e c e n t l y r e v i e w e d the role of surfactants i n m o d i f y i n g the a c t i v i t y of h e r b i c i d a l sprays (66 references).
These
authors
s t u d i e d the a d j u v a n t effects of a surfactant b a s e d o n n o n y l p h e n o l w i t h v a r y i n g amounts of ethylene oxide a p p e n d e d .
A c t i v i t y was
enhanced
at a n o p t i m u m ethylene oxide c h a i n l e n g t h . T h i s is another w a y of s t a t i n g that there is a n o p t i m u m surfactant H L B for e n h a n c i n g h e r b i c i d a l ac t i v i t y o n a g i v e n species of w e e d . Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
T h e h y d r o p h i l e - l i p o p h i l e b a l a n c e is r e l a t e d to the s o l u b i l i t y of a surfactant.
A t h i g h H L B the surfactant is v e r y w a t e r s o l u b l e w h i l e at
l o w H L B the surfactant is v e r y l i p i d soluble. Because H L B is s o l u b i l i t y r e l a t e d , it is i n t u r n r e l a t e d to the p a r t i t i o n coefficient
( o r ratio of the
s o l u b i l i t y of the surfactant i n a l i p i d phase to its s o l u b i l i t y i n a n aqueous phase ). A h i g h H L B v a l u e suggests a l o w o i l / w a t e r p a r t i t i o n coefficient, and
conversely a l o w H L B shows a h i g h p a r t i t i o n coefficient.
Hence,
an o p t i m u m surfactant H L B for e n h a n c i n g b i o l o g i c a l a c t i v i t y also i m p l i e s a n o p t i m u m p a r t i t i o n coefficient for a c t i v i t y enhancement. H a n s c h a n d F u j i t a ( 5 ) h a v e p r o p o s e d a m o d e l for b i o l o g i c a l a c t i v i t y w h i c h m a y be expressed b y the f o l l o w i n g e q u a t i o n :
log ^ = ar} + where
br, +
pj +
rf
(1)
~ = log P - l o g P° Ρ = o c t a n o l / w a t e r p a r t i t i o n coefficient of a biologically active c o m p o u n d P° = p a r t i t i o n coefficient of a reference
compound
j = H a m m e t t sigma constant C = a c o n c e n t r a t i o n to y i e l d a g i v e n biological effect, often expressed as L D or L D 5 0
9 0
a, b, p, a n d rf are fitting parameters. The
H a n s c h e q u a t i o n m a t h e m a t i c a l l y describes
t r o l l i n g the b i o l o g i c a l a c t i v i t y of a c o m p o u n d .
two
events
con
T h e first i n v o l v e s c e l l or
m e m b r a n e p e n e t r a t i o n ( i n f l u e n c e d b y the p a r t i t i o n coefficient), a n d the second
i n v o l v e s i n t e r a c t i o n of the active m o l e c u l e
at a receptor
site
( m o d i f i e d b y variations i n the H a m m e t t s i g m a c o n s t a n t ) . C o n c e r n i n g E q u a t i o n 1, t h e p r i n c i p a l effect of a d d i n g a w e t t i n g agent to a h e r b i c i d a l s o l u t i o n is to change the p a r t i t i o n coefficient of the
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
254
BIOLOGICAL CORRELATIONS
T H E HANSCH
APPROACH
h e r b i c i d e f r o m F to Ρ'. T h u s the b i o l o g i c a l a c t i v i t y of a h e r b i c i d a l s o l u t i o n c o n t a i n i n g a surfactant m a y b e r e p r e s e n t e d as
lo
s (ΤΎΓ) \
L
D
='^ Α
p,
- g °) + ' lQ
9 0 /
p
+
2
p'
h
+
Œ
p,
- s °) lo
p
(2)
d!
F o r this system the p a r t i t i o n coefficient of the p a r e n t c o m p o u n d i n the absence of surfactant is chosen as the reference state. a c t i v i t y is expressed as L D
9 0
Herbicidal
( or t h e c o n c e n t r a t i o n i n m o l e s / a c r e neces-
sary to c o n t r o l 9 0 % of t h e s p e c i e s ) . If E q u a t i o n 2 is s u b t r a c t e d f r o m E q u a t i o n 1, a c o m p l e x
equation
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
w i t h m a n y n o n f a c t o r a b l e terms results. F o r s i m p l i f i c a t i o n , let us assume t h a t the p h e n o m e n o l o g i c a l f o r m of E q u a t i o n s 1 a n d 2 c a n b e u s e d e m p i r i c a l l y to c h a r a c t e r i z e the c h a n g e i n L D of a surfactant to a h e r b i c i d a l system.
9 0
resulting from the addition
This empirical relationship can
be expressed as log ( ^ )
= A (log Ρ -
If we let χ = (log Ρ—log log
log Ργ
+ Β (log Ρ -
log Ρ') + C., +
D
Ρ') the a b o v e e q u a t i o n becomes = A\
+ B
X
+ Ca + D
(3)
E q u a t i o n 3 thus represents the c h a n g e i n b i o l o g i c a l a c t i v i t y of a g i v e n c o m p o u n d c a u s e d b y the presence of a surface-active agent. t h e r i g h t side of t h e e q u a t i o n is negative, a c t i v i t y is e n h a n c e d .
If
I f i t is
p o s i t i v e , a c t i v i t y is r e d u c e d . Materials and Methods T h e details of t h e e x p e r i m e n t a l p r o c e d u r e h a v e b e e n g i v e n i n the p r e c e d i n g c h a p t e r ( 6 ) a n d are o n l y s u m m a r i z e d here. Test Plants. Seeds of the grass G i a n t F o x t a i l (Setaria sp.) a n d the b r o a d l e a f W i l d M u s t a r d (Brassica kaber) w e r e p l a n t e d i n a m i x e d soil (7) a n d bottom-watered until emergence occurred. T o p watering was t h e n u s e d for the rest of the test. Pre-Emergence Studies. P r e - e m e r g e n c e h e r b i c i d a l e v a l u a t i o n s of the 15 t r i f l u o r o m e t h a n e s u l f o n a n i l i d e ( T F M S ) d e r i v a t i v e s l i s t e d i n T a b l e I w e r e c o n d u c t e d i n a n a r t i f i c i a l l y i l l u m i n a t e d greenhouse. E a c h of the c a n d i d a t e c o m p o u n d s was a p p l i e d to a p p r o p r i a t e l y s e e d e d s o i l samples as a n aqueous d r e n c h at three or f o u r dosage levels r a n g i n g f r o m 1.25 to 20 l b / a c r e . A l l drenches c o n t a i n e d 1 % acetone ( w / v ) to a i d d i s p e r s i o n of the h e r b i c i d e i n w a t e r . E m e r g e n c e a n d p l a n t v i g o r w e r e m e a s u r e d after a 21-day g r o w i n g p e r i o d . H e r b i c i d a l dosages w e r e c o n v e r t e d to a m o l e / a c r e c o n c e n t r a t i o n d e s i g n a t i o n for purposes of H a n s c h c o r r e l a t i o n .
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
13.
V A N VALKENBURG A N D YAPEL,
JR.
HerblCtdal
255
Activity
L D o a n d LD90 values w e r e o b t a i n e d for e a c h h e r b i c i d e f r o m l o g p r o b i t plots c o n s t r u c t e d f r o m a p p r o p r i a t e d o s e - r e s p o n s e d a t a . A s d i s cussed i n the p r e v i o u s c h a p t e r ( 6 ) , b o t h L D a n d LD90 values for m e m b e r s of the T F M S h e r b i c i d a l series w e r e separately c o r r e l a t e d w i t h ττ a n d σ u s i n g t h e H a n s c h e q u a t i o n a n d its v a r i o u s m o d i f i c a t i o n s p r e s e n t e d i n this w o r k . E x c e p t for o b v i o u s v a r i a t i o n s i n the π a n d σ p a r a m e t e r coefficients necessary to a c c o u n t for the fact that the L D values for a l l d e r i v a t i v e s are less t h a n t h e i r c o r r e s p o n d i n g L D values, the same o v e r - a l l conclusions w e r e p r e d i c t e d w h e t h e r L D or L D values were u s e d i n c a r r y i n g out the v a r i o u s structure—activity correlations. B e c a u s e the L D v a l u e is a m o r e m e a n i n g f u l d e s i g n a t i o n of a c t i v i t y t h a n the L D v a l u e i n h e r b i c i d a l studies, w e r e p o r t a l l c o r r e l a t i o n results a n d c o n c l u sions i n terms of L D . Surfactant. P o l y o x y e t h y l e n e ( 2 0 ) s o r b i t a n monooleate (also k n o w n as T w e e n 80, A t - P l u s 109, or P o l y s o r b a t e 80) w a s o b t a i n e d f r o m A t l a s C h e m i c a l I n d u s t r i e s a n d u s e d as r e c e i v e d . It w a s u s e d at the 0 . 1 % ( w / v ) c o n c e n t r a t i o n l e v e l i n a l l h e r b i c i d a l a c t i v i t y evaluations a n d p a r t i t i o n i n g studies r e q u i r i n g the use of surfactant. Partition Coefficient. P a r t i t i o n coefficients of the T F M S h e r b i c i d e s i n b o t h the presence a n d absence of surfactant w e r e d e t e r m i n e d b e t w e e n 1-octanol a n d p H 1.0 w a t e r ( m a d e a c i d b y a d d i t i o n of H C I O 4 ) b y u l t r a v i o l e t spectroscopy. T h e a b s o r p t i o n s p e c t r u m of T w e e n 80 d i d not interfere w i t h the spectra of the s u l f o n a n i l i d e s ( 6 ) . Hammett Sigma Constant. H a m m e t t s i g m a constants, w h i c h are a measure of the e l e c t r o n - d o n a t i n g a n d w i t h d r a w i n g c a p a b i l i t y of a r o m a t i c substituents, w e r e t a k e n f r o m t a b u l a t i o n s of Jaffe (8). 5
5 0
5 0
9 0
5 0
9 0
9 0
5 0
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
9 0
Results S t r u c t u r e - a c t i v i t y correlations w e r e c a r r i e d out u s i n g least-squares regression analysis t e c h n i q u e s
o n a n I B M 360 c o m p u t e r .
As i n the
a c c o m p a n y i n g p u b l i c a t i o n ( 6 ) , the d a t a i n T a b l e s I a n d I I w e r e
fitted
to E q u a t i o n 3 i n stepwise f a s h i o n . S t a n d a r d statistical tests w e r e c a r r i e d out at e a c h stage of
fitting
to d e t e r m i n e the o v e r - a l l goodness of fit of
the χ a n d σ d a t a to the various e q u a t i o n a l forms e x a m i n e d .
A s i n our
p r e v i o u s s t u d y ( β ) , the most s t a t i s t i c a l l y significant correlations w e r e a l w a y s o b t a i n e d w h e n a c t i v i t y d a t a for m e t a - s u b s t i t u t e d a n d p a r a - s u b s t i t u t e d T F M S h e r b i c i d e s w e r e d i v i d e d i n t o t w o discrete series a n d fitted separately. Correlation between σ and χ. P r e l i m i n a r y plots of the h e r b i c i d a l p a r t i t i o n i n g d a t a o b t a i n e d i n the presence a n d absence of T w e e n 80 i n d i c a t e d t h a t the s u r f a c t a n t - i n d u c e d c h a n g e i n p a r t i t i o n coefficient ( χ ) a n d the H a m m e t t s i g m a constant (σ—see T a b l e I )
w e r e not
independent
variables. A p a r t i c u l a r l y strong r e l a t i o n s h i p existed, for e x a m p l e , b e t w e e n the apara values c h a r a c t e r i z i n g the 4 - s u b s t i t u t e d T F M S c o m p o u n d s
and
χ. E m p i r i c a l l y c o r r e l a t i n g σ w i t h b o t h first- a n d second-order terms i n χ u s i n g stepwise regression m e t h o d s y i e l d e d the f o l l o w i n g equations the m e t a - a n d p a r a - s u b s t i t u t e d series m e m b e r s .
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
for
256
BIOLOGICAL
Only para-substituted
TFMS
CORRELATIONS
T H E HANSCH
series members
(n =
APPROACH
7):
* ara = 0.062 χ + 0.087 (±0.196) =
0.140
2
=
0.020
SE
=
±0.402
F
=
0.10
r r
1.661 χ - 3.024 χ + (±0.273) (±0.500)
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
spam =
2
1.228
(4b)
= 0.950
r r
Only meta-substituted
(4a)
2
P
2
= 0.903 ±0.141
SE
=
F
= 18.68
TFMS
series members
(η =
6):
vmeta = 0.063 χ + 0.282 (±0.172)
(5a)
2
=
0.179
=
0.032
SE
=
±0.246
F
=
r r
2
0.13
vmeta = 1.175 χ - 1.753 χ + 0.734 (±0.775) (±1.197)
(5b)
2
r r
F
2
=
0.660
=
0.436
=
±0.217
=
1.16
I n E q u a t i o n s 4 a n d 5, r is the m u l t i p l e c o r r e l a t i o n coefficient, r is 2
the " p e r c e n t c o r r e l a t i o n , " SE is the s t a n d a r d error of t h e e q u a t i o n (i.e., the error i n t h e c a l c u l a t e d σ values ), a n d F is the ratio of the m e a n s u m of error squares r e m o v e d b y regression to the m e a n s u m of squares of the error residuals not r e m o v e d b y regression. T h e F - v a l u e s w e r e r o u t i n e l y u s e d i n statistical tests to d e t e r m i n e the goodness of fit of the a b o v e a n d f o l l o w i n g e q u a t i o n s . T h e n u m b e r s i n parentheses b e n e a t h the fit p a r a m eters i n e a c h e q u a t i o n denote the s t a n d a r d error i n t h e r e s p e c t i v e p a -
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
13.
V A N VALKENBURG A N D YAPEL, J R .
257
Herbicidal Activity
rameters. T h e y c a n also be u s e d to j u d g e the goodness of fit of a p a r t i c u l a r e q u a t i o n to the e x p e r i m e n t a l d a t a . R e f e r r i n g to E q u a t i o n 4 b , i t is evident that there is a statistically significant p a r a b o l i c r e l a t i o n s h i p b e t w e e n σ α ραΤ
T F M S derivatives.
a n d χ for t h e 4-substituted
B o t h χ a n d χ terms are necessary i n the o p t i m u m 2
c o r r e l a t i o n e q u a t i o n , as e v i d e n c e d b y t h e fact that the percent
correla
t i o n ( r ) j u m p s f r o m 2 % i n E q u a t i o n 4 a to 9 0 % i n E q u a t i o n 4 b u p o n 2
stepwise a d d i t i o n of t h e l i n e a r t e r m i n χ. N o s i m p l e l i n e a r c o r r e l a t i o n == ο,χ +
b, f o r ex
a m p l e , w e r e even less statistically significant t h a n t h e p o o r l y
between a a
correlated
par
a n d χ was found.
F i t s of t h e f o r m σ
ρ α Γ α
s i n g l e - t e r m q u a d r a t i c r e l a t i o n s h i p of E q u a t i o n 4a. Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
A s w a s true f o r σ b e t w e e n a ta me
ρ α Γ α
, n o statistically significant l i n e a r r e l a t i o n s h i p
a n d χ was found.
Q u a d r a t i c relationships f o r a ta
similar
me
i n f o r m to t h e relationships of E q u a t i o n s 4 a a n d 4 b are presented i n E q u a t i o n s 5 a a n d 5 b for the m e t a - s u b s t i t u t e d T F M S derivatives.
Both
χ a n d χ terms are a g a i n necessary for o p t i m u m c o r r e l a t i o n a l t h o u g h t h e 2
final
correlation relationship i n E q u a t i o n 5b for
statistically significant ( r Equation 4b ( r =
2
=
a ta me
is n o t n e a r l y as
0.44) as the final r e l a t i o n s h i p for
0.90).
2
A l t h o u g h E q u a t i o n s 4 b a n d 5 b are difficult to interpret i n a m e c h a nistic sense, they d o suggest that the c h a n g e i n p a r t i t i o n coefficient (χ
=
l o g ? — l o g P ' ) to b e e x p e c t e d u p o n a d d i t i o n of 0 . 1 % T w e e n 80 to a h e r b i c i d a l T F M S f o r m u l a t i o n w i l l b e influenced at least to some extent b y three factors: ( 1 ) T h e nature of the substituent ( X ) i n t h e T F M S a r o m a t i c r i n g ( 2 ) T h e p o s i t i o n of s u b s t i t u t i o n ( m e t a or p a r a ) i n the a r o m a t i c r i n g ( 3 ) T h e electronegativity v a l u e of its H a m m e t t s i g m a
of t h e substituent
(as reflected
b y the
constant).
W i t h respect to t h e a b o v e , i t is n o t u n l i k e l y that the o c t a n o l / w a t e r p a r t i t i o n i n g b e h a v i o r of a l l T F M S series m e m b e r s is influenced b y t h e effects that t h e m e t a a n d p a r a r i n g substituents exert o n t h e a c i d i c ( pK
a
=
4.45) p a r e n t - N H S 0 C F 2
3
side c h a i n . B e c a u s e of t h e d i r e c t resonance
effects that they exert o n the - N H S 0 C F 2
ing
(positive
σ ) or e l e c t r o n - d o n a t i n g
3
side c h a i n , e l e c t r o n - w i t h d r a w
( n e g a t i v e σ ) groups s u b s t i t u t e d
i n t h e p a r a r i n g p o s i t i o n of t h e T F M S p a r e n t c o m p o u n d , f o r e x a m p l e , m i g h t b e e x p e c t e d to influence m u c h m o r e strongly t h e a c i d i t y ( a n d h e n c e the p a r t i t i o n i n g b e h a v i o r )
of t h e r e s u l t i n g T F M S d e r i v a t i v e t h a n
w o u l d b e t h e case f o r s i m i l a r l y s u b s t i t u t e d m e t a derivatives ( w h e r e o n l y i n d u c t i v e or field effects are p o s s i b l e ) . r e l a t i o n b e t w e e n σ α> ραΤ
F u r t h e r m o r e , the significant cor
χ , a n d χ i n E q u a t i o n 4 b strongly suggests that 2
these resonance effects present i n p a r a - s u b s t i t u t e d derivatives
probably
influence t h e n a t u r e o f t h e i n t e r a c t i o n ( m i c e l l e f o r m a t i o n , etc. ) b e t w e e n h e r b i c i d e a n d surfactant to a m u c h greater degree t h a n i n t h e case of
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
258
BIOLOGICAL CORRELATIONS
T H E HANSCH
APPROACH
m e t a - s u b s t i t u t e d T F M S d e r i v a t i v e s ( w h e r e the c o r r e l a t i o n b e t w e e n
a ta, me
χ , a n d χ is p o o r e r ) . 2
A s s h o w n b e l o w , T w e e n 80 a d d i t i o n to b o t h m e t a - a n d p a r a - s u b s t i tuted T F M S
c o m p o u n d s often
affects their h e r b i c i d a l a c t i v i t y .
surfactant-induced change i n activity (whether
This
l e a d i n g to u l t i m a t e e n
h a n c e m e n t or i n h i b i t i o n ) i n a l l cases d e p e n d s s i g n i f i c a n t l y o n the c h a n g e i n p a r t i t i o n coefficient tion.
( χ ) of the h e r b i c i d e p r o d u c e d b y surfactant a d d i
O b v i o u s l y , the a b i l i t y to p r e d i c t χ f r o m a s i m p l e k n o w l e d g e
the H a m m e t t σ constant
characterizing a particular T F M S
( w i t h o u t r e s o r t i n g to t i m e - c o n s u m i n g p a r t i t i o n i n g m e a s u r e m e n t s ) i n m a n y cases p r o v e advantageous.
of
derivative would
I n this c o n n e c t i o n , t h e statistically
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
significant E q u a t i o n 4 b c a n be r e a r r a n g e d a n d s o l v e d for χ u s i n g the q u a d r a t i c e q u a t i o n to o b t a i n the f o l l o w i n g χ ανα = 3.024 ±
Λ/9.145 -
Ρ
expression.
6.644 ( 1 . 2 2 8 — σ
ραΓα
)
3.322 (6) = 3.024 ±
Vb.986 +
6.644
σ
ρατα
3.322 E q u a t i o n 6 is v e r y u s e f u l for e s t i m a t i n g changes i n the p a r t i t i o n coeffi c i e n t as w e l l as changes i n the h e r b i c i d a l a c t i v i t y of T F M S c o m p o u n d s (see
para-substituted
p r o d u c e d w h e n 0 . 1 % T w e e n 80 is a d d e d
below)
to the h e r b i c i d a l f o r m u l a t i o n s .
A n expression analogous
to E q u a t i o n 6
c a n b e d e r i v e d f r o m E q u a t i o n 5 b for m e t a - s u b s t i t u t e d T F M S series m e m bers a l t h o u g h the p r e d i c t i v e u t i l i t y of this latter e q u a t i o n w i l l
obviously
b e l i m i t e d b y the lesser degree of c o r r e l a t i o n b e t w e e n a ta> χ , a n d χ. 2
me
Herbicidal A c t i v i t y Correlations.
Tables I a n d II give
ence h e r b i c i d a l a c t i v i t y a n d p a r t i t i o n coefficient presence of 0 . 1 % this study.
T w e e n 80 for the 15 T F M S c o m p o u n d
F o r reasons
discussed
previously
pre-emerg
d a t a g a t h e r e d i n the
(6),
evaluated i n
i n the
correlations
w h i c h f o l l o w , the H a m m e t t s i g m a constant was a s s u m e d to be r e l a t i v e l y unaffected b y the presence of the surfactant, so that the σ-values l i s t e d i n T a b l e s I a n d I I c o u l d b e u s e d to correlate d a t a o b t a i n e d b o t h i n the presence a n d absence of surfactant.
Pertinent herbicidal activity data
for the T F M S c o m p o u n d s a c t i n g o n F o x t a i l grass are presented i n T a b l e I. S i m i l a r d a t a for
the same c o m p o u n d s a c t i n g o n the b r o a d l e a f
Wild
M u s t a r d are t a b u l a t e d i n T a b l e I I . F o r reasons o u t l i n e d i n the p r e v i o u s c h a p t e r (6), w e r e separated
T F M S compounds
i n t o m e t a - a n d p a r a - s u b s t i t u t e d series m e m b e r s ,
s t r u c t u r e - a c t i v i t y d a t a for
each
S i n c e our p r e v i o u s analysis (6)
grouping
were correlated
i n d i c a t e d that t h e 3 - S C H - T F M S
4 - S C H - T F M S d e r i v a t i v e s w e r e p r o b a b l y o x i d i z e d in vivo to 3
i n g sulfoxide
and/or
sulfone
and
separately.
3
and
correspond
d e r i v a t i v e s , d a t a points for these
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
series
13.
V A N VALKENBURG
ANDYAPEL,
JR.
Herbicidal
259
Activity
Table I . Pre-Emergence Control of Foxtail by Trifluoromethanesulfonanilides NHS0 CF 2
3
X = LogVLog P ' a
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
Substituent, Χ 4 4 4 4 4 4 4 3 3 3 3 3 3 3 H
No Surfactant
CF Cl SCH C H F OCH S0 CH CF CI F SCH » COCH OH S0 CH 6
3
3
2
3
3
3
2
a b
10.6 8.15 5.10 40.0 10.1 23.0 2.64 21.5 14.4 18.2 2.06 12.4 204.0 1.17 12.7
—
3
6
Tween 80
9.70 6.40 5.10 82.0 8.0 58.5 2.42 15.0 7.8 8.35
3
3
0.1%
3
14.6 128.0 1.5 8.0
σ +0.551 +0.227 -0.047 -0.170 +0.062 -0.268 +0.728 +0.415 +0.373 +0.337 +0.144 +0.306 -0.002 +0.647 0.000
1.57 1.36 1.04 1.10 0.75 0.70 0.19 1.30
—
0.62 0.35 0.28 0.41 0.15 0.45
-
m +0.039 +0.105 0.000 -0.312 +0.101 -0.405 +0.038 +0.156 +0.266 +0.338
—
-0.071 +0.202 -0.108 +0.201
See Ref. 6 for absolute values of log Ρ and log P'. Omitted from correlations; see text and Ref. 6 for details.
m e m b e r s w e r e a g a i n o m i t t e d f r o m t h e i r respective g r o u p i n g s i n d e r i v i n g the final c o r r e l a t i o n equations.
C o m p u t e r i z e d regression analysis t e c h
niques w e r e u s e d i n the u s u a l m a n n e r to fit t h e T F M S s t r u c t u r e - a c t i v i t y d a t a i n the separate m e t a a n d p a r a groupings to E q u a t i o n 3.
During
the fitting p r o c e d u r e , χ , χ, a n d σ terms w e r e a d d e d i n stepwise f a s h i o n , 2
w i t h the o r d e r of i n c l u s i o n of these terms d e t e r m i n e d o n t h e basis of statistical F-tests. T h e stepwise equations r e s u l t i n g f r o m the regression analysis are l i s t e d b e l o w for b o t h F o x t a i l a n d W i l d M u s t a r d . Correlation
of Foxtail Activity
4-Substituted
TFMS
Data
derivatives
(n =
6):
l o g ( ^ 2 _ ) = 0.415σ - 0.151 \LD9o/ (±0.197) r r
2
=
0.726
SE =
=
0.527
F
=
±0.173 4.46
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
260
BIOLOGICAL CORRELATIONS
Table II.
T H E HANSCH APPROACH
Pre-Emergence Control of W i l d Mustard by Trifluoromethanesulfonanilides NHS0 CF 2
3
7. = Log PLog P' a
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
Substituent, X 4 4 4 4 4 4 4 3 3 3 3 3 3 3 H
CF CI SCH CH F OCH S0 CH CF CI F COCH OH SG CH SCH 3
3
6
3
3
2
3
3
2
3
3
3
6
b
a b
No Surfactant
0.1% Tween 80
3.35 1.36 42.0 18.9 1.85 35.6 31.6 6.15 5.20 5.55 24.3 46.2 17.4 9.5 4.6
2.64 1.35 25.2 10.5 2.31 80.5 79.0 1.95 5.20 4.67 33.0 32.9 26.8 17.2 6.4
1.57 1.36 1.04 1.10 0.75 0.70 0.19 1.30
—
0.62 0.28 0.41 0.15 0.35 0.45
log
(LD '\ W
\LD J m
+0.551 +0.227 -0.047 -0.170 +0.062 -0.268 +0.728 +0.415 +0.373 +0.337 +0.306 -0.002 +0.647 +0.144 0.000
-0.103 -0.003 -0.222 -0.255 +0.096 +0.354 +0.398 -0.499 0.000 -0.075 +0.133 -0.147 +0.188 +0.258 +0.143
See Ref. 6 for absolute values of log Ρ and log Ρ'. Omitted from correlations; see text and Ref. 6 for details.
( »A
log
LO
\LD o/
=
9
=
0.750
2
=
0.562
SE
=
±0.193
F
=
1.92
r r
log
/LD
9 0
\LD
'\
9 0
/
=
0.085 χ + 0.424 σ - 0.232 (±0.173) (( ± 0 . 2 1 9 )
- 2 . 1 2 2 χ + 3.944 χ + 1.542 σ (±0.506) (±0.922) (±0.280) 2
=
0.977
2
=
0.955
SE
=
±0.075
F
=
14.26
r r
χ««χ =
(7b)
- 1.751
+0.929
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(7e)
13.
V A N VALKENBURG
3-Substituted
TFMS
derivatives
log ( ^ ) \LD o/ r
0.508
=
0.258
SE =
±0.188
2
F
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
LO
\LD o/ 9
=
0.413
(8b)
-
- 1 . 0 9 8 χ + 1.868 χ (±0.289) (±0.444) 2
=
0.954
=
0.910
SE =
±0.080
r
2
F
10.11
=
Xmax =
9
261
1.04
=
r
log Λ;^ Λ = \LDeo/
Activity
5):
=
r
( »A
(n =
= 0.212 χ (±0.207)
9
log
Herbicidal
AND YAPEL, JR.
+0.851
- 1 . 1 5 8 χ + 1.958 χ + 0 . 0 5 4 σ (±0.536) (±0.820) (±0.319) 2
=
0.955
=
0.912
SE =
±0.112
r r
2
F
=
0.453
(8c)
3.47
Xm« =
+0.845
C o m p a r i s o n of E q u a t i o n s 7a to 7c for the 4-substituted T F M S r i v a t i v e s a c t i n g o n F o x t a i l grass c l e a r l y demonstrates
de
that χ , χ, a n d σ 2
terms are a l l statistically significant i n the final c o r r e l a t i o n r e l a t i o n s h i p of E q u a t i o n 7c.
T h e " c h a n g e - i n - a c t i v i t y " surface represented b y E q u a
t i o n 7c exhibits a m a x i m u m at x
m(UD
=
+ 0 . 9 3 . T h i s m a x i m u m corresponds
to a r i d g e a l o n g the p a r a b o l i c l o g ( L D o ' / L D o ) e n v e l o p e a n d represents 9
9
the locus of 4-substituted T F M S c o m p o u n d s for w h i c h the a d d i t i o n of 0.1%
T w e e n 80 causes the greatest i n h i b i t o r y effects o n h e r b i c i d a l ac
t i v i t y a r i s i n g o n l y f r o m s u r f a c t a n t - i n d u c e d changes i n the p a r t i t i o n co efficient
(i.e., χ ) .
Substituting χ
Μαχ
=
+ 0 . 9 3 i n t o E q u a t i o n 4b one is
a b l e to estimate that a T F M S d e r i v a t i v e c o n t a i n i n g a p a r a - s u b s t i t u t e d side c h a i n c h a r a c t e r i z e d b y a H a m m e t t s i g m a constant of « lie o n or near the i n h i b i t o r y χ
ηιαχ
ridge.
—0.15 w o u l d
R e f e r r i n g b a c k to E q u a t i o n 7c,
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
262
BIOLOGICAL CORRELATIONS
however,
T H E HANSCH
w e note that a l t h o u g h s u r f a c t a n t - i n d u c e d changes
APPROACH
in log
Ρ
s h o u l d b e h i g h l y u n f a v o r a b l e f r o m a n a c t i v i t y s t a n d p o i n t for a T F M S d e r i v a t i v e c o n t a i n i n g a p a r a substituent w i t h σ
ρατα
=
—0.15, the fact that
the coefficient of σ i n E q u a t i o n 7c is p o s i t i v e also i m p l i e s that the o v e r - a l l a c t i v i t y of the h e r b i c i d e m i g h t s t i l l r e m a i n a c c e p t a b l e
because of
the
f a v o r a b l e negative c o n t r i b u t i o n of the σ t e r m to l o g ( L D 9 0 V L D 9 0 ) . S i m i l a r c o m p a r i s o n of E q u a t i o n s 8a to 8c for 3-substituted d e r i v a t i v e s a c t i n g o n F o x t a i l grass reveals that o n l y χ statistically significant as s h o w n i n E q u a t i o n 8b.
2
TFMS
a n d χ terms are
T h i s i m p l i e s t h a t for
m e t a - s u b s t i t u t e d d e r i v a t i v e s s u r f a c t a n t - i n d u c e d changes i n the p a r t i t i o n coefficient are p r i m a r i l y responsible for changes i n the h e r b i c i d a l a c t i v i t y
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
of the various series m e m b e r s .
T h e fact that the H a m m e t t s i g m a c o n
stant is p o o r l y c o r r e l a t e d w i t h s u r f a c t a n t - i n d u c e d changes i n h e r b i c i d a l a c t i v i t y for m e t a - s u b s t i t u t e d T F M S d e r i v a t i v e s b u t strongly c o r r e l a t e d w i t h s u r f a c t a n t - i n d u c e d a c t i v i t y v a r i a t i o n s for p a r a - s u b s t i t u t e d d e r i v a tives w o u l d a p p e a r to be p r e d i c t a b l e f r o m the relationships of E q u a t i o n s 4 b a n d 5b.
I n E q u a t i o n 5 b , for e x a m p l e , it was s h o w n that surfactant-
i n d u c e d changes i n l o g Ρ for m e t a series m e m b e r s are not s t r o n g l y de p e n d e n t o n the v a l u e of the H a m m e t t s i g m a constant.
Since h e r b i c i d a l
a c t i v i t y v a r i a t i o n s p r o d u c e d b y the a d d i t i o n of T w e e n 80 d e p e n d
pri
m a r i l y o n c o r r e s p o n d i n g p a r t i t i o n coefficient changes i n the 3-substituted T F M S series m e m b e r s , it f o l l o w s f r o m E q u a t i o n 5 b that one w o u l d h a v e expected little or no c o n t r i b u t i o n of the σ t e r m i n E q u a t i o n 3 to the regression r e l a t i o n s h i p for m e t a - T F M S c o m p o u n d s .
final
T h e essential absence
of surfactant effects o n σ for 3-substituted T F M S series m e m b e r s a c t i n g o n F o x t a i l c a n be r e a d i l y v i s u a l i z e d b y c o m p a r i n g F i g u r e s 2b a n d 2d i n the p r e v i o u s c h a p t e r Correlation
(6).
of Wild Mustard Activity
Data
P r o c e e d i n g i n a m a n n e r i d e n t i c a l to that o u t l i n e d a b o v e for F o x t a i l grass, the f o l l o w i n g stepwise regression r e l a t i o n s h i p s w e r e d e r i v e d for the b r o a d l e a f W i l d M u s t a r d . 4-Substituted
TFMS
derivatives
(n =
6): (9a)
(±0.155) r
0.795 0.633
SE F
±0.174 6.89
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
13.
V A N VALKENBURG A N D YAPEL, JR.
log 0^-) \LD
Herbicidal
Activity
= 0.207 χ - 0 . 7 7 6 χ + 0 . 5 8 7 / ( o.396) * (±0.726) 2
9 0
=
0.814
2
=
0.663
SE
=
±0.192
F
=
2.95
r
log Ι^ζ^Λ = 0.754 χ - 1.773 χ - 0.318 σ + 0.986 \ L D 9 o / (±1.526) (±2.784) (±0.845) 2
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
r
=
0.828
2
=
0.685
SE
=
±0.228
F
=
r
TFMS
derivatives
log ( ^ ) = \LD9o/
9 0
/
=
(n =
5):
- 0 . 5 7 2 χ + 0.236 (±0.108) 0.951
2
=
0.903
SE
=
±0.098
F
=
28.05
r
(9c)
1.45
=
r
log (^ζ^Λ \LD
(9b)
±
r
3-Substituted
263
- 0 . 5 6 9 χ + 0.280 σ + 0.137 (±0.084) (±0.164) r
=
0.980
r
2
=
0.961
SE
=
±0.076
F
==
24.48
log ( i i ^ S L ) = - 0 . 2 5 9 χ - 0.177 χ + 0.382 σ + 0.009 \LD / f±0.449) (±0.686) (±0.267) 2
9 0
r
=
0.985
r
2
=
0.971
SE
=
±0.094
F
=
10.99
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(10a)
(10b)
(10c)
264
BIOLOGICAL CORRELATIONS
T H E HANSCH
W h e n E q u a t i o n s 9a to 9c for t h e 4-substituted T F M S
APPROACH
derivatives
a c t i n g o n W i l d M u s t a r d are c o m p a r e d , it is e v i d e n t o n the basis of the F - v a l u e s for each e q u a t i o n that o n l y a single t e r m i n χ is statistically significant a n d that E q u a t i o n 9a p r o v i d e s the best m a t h e m a t i c a l d e s c r i p t i o n of surfactant effects o n h e r b i c i d a l a c t i v i t y .
E s s e n t i a l l y the
same
c o n c l u s i o n holds true for the regression relationships i n E q u a t i o n s 10a to 10c for t h e 3-substituted T F M S c o m p o u n d s .
A g a i n , a single t e r m i n
χ (see
E q u a t i o n 10a) p r o v i d e s a 9 0 % c o r r e l a t i o n of the s t r u c t u r e - a c t i v i t y
data.
A t least to a first a p p r o x i m a t i o n , therefore, it w o u l d a p p e a r that
for b o t h m e t a - a n d p a r a - s u b s t i t u t e d T F M S c o m p o u n d s a c t i n g o n broadleaf
Wild
M u s t a r d , the o b s e r v e d
the
changes i n h e r b i c i d a l a c t i v i t y
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
c a u s e d b y T w e e n 80 a d d i t i o n to h e r b i c i d a l f o r m u l a t i o n s c a n be e x p l a i n e d i n terms of the c o r r e s p o n d i n g p a r t i t i o n coefficients
changes the surfactant induces
of the various derivatives.
i n the
E q u a t i o n s 9a a n d 10a
b o t h suggest that those T F M S derivatives e x p e r i e n c i n g the greatest crease i n o c t a n o l / w a t e r T w e e n 80 (χ =
p a r t i t i o n coefficient
i n the presence of
de
0.1%
[ l o g Ρ — l o g P ' ] large a n d p o s i t i v e ) w i l l also e x h i b i t
the greatest e n h a n c e m e n t i n h e r b i c i d a l a c t i v i t y w h e n surfactant is a d d e d . Discussion Surface-active
agents
various ways (β, 9 ) .
c a n alter the effectiveness
of
herbicides
in
B y l i m i t i n g a c t i v i t y evaluations to pre-emergence
studies, one c a n e l i m i n a t e s u c h difficult-to-control variables as b o u n c i n g , coverage, e v a p o r a t i o n , a n d w e t t i n g .
T h e h e r b i c i d a l system
examined
here consisted of a series of m e t a - a n d p a r a - s u b s t i t u t e d trifluoromethane sulfonanilide
(TFMS)
pre-emergence herbicides
whose
activity
e v a l u a t e d i n the presence a n d absence of a constant c o n c e n t r a t i o n w/v)
was
(0.1%
of the n o n i o n i c surfactant T w e e n 80. A d m i x t u r e of this penetrant
a i d w i t h the various m e m b e r s
of the T F M S
h e r b i c i d a l series l e d
to
e n h a n c e m e n t of a c t i v i t y i n some cases a n d i n h i b i t i o n of a c t i v i t y i n others (6).
S t i l l other series m e m b e r s w e r e r e l a t i v e l y unaffected b y surfactant
i n t h e i r a c t i v i t y t o w a r d s F o x t a i l grass a n d the b r o a d l e a f W i l d M u s t a r d (cf.
L D o a n d LD90' values i n T a b l e s I a n d I I ) . 9
A s j u d g e d f r o m o c t a n o l / w a t e r p a r t i t i o n i n g experiments i n the pres ence a n d absence of T w e e n 80, the p r i n c i p a l effect of a d d i n g surfactant to the T F M S h e r b i c i d e s at the 0 . 1 %
(w/v)
l e v e l w a s to alter t h e i r r e l a
t i v e solubilities i n the aqueous a n d l i p i d phases.
S i n c e the trifluoro
m e t h a n e s u l f o n a n i l i d e s are a l l q u i t e h y d r o p h o b i c , the a d d i t i o n of
Tween
80 i n every case i n c r e a s e d the w a t e r s o l u b i l i t y of the c o m p o u n d i n ques t i o n a n d h e n c e decreased its o c t a n o l / w a t e r p a r t i t i o n coefficient
(6).
W h e n the most statistically significant relationships d e r i v e d for the meta- and p a r a - T F M S herbicides acting on Foxtail and W i l d M u s t a r d
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
13.
VAN VALKENBURG AND YAPEL,
JR.
Herbicidal
265
Activity
are c o m p a r e d (i.e., E q u a t i o n s 7c, 8b, 9a, a n d 1 0 a ) , it is evident that h e r b i c i d a l a c t i v i t y variations ( w h e t h e r enhancement or i n h i b i t i o n ) caused b y T w e e n 80 a d d i t i o n c a n be t r a c e d almost entirely to c o r r e s p o n d i n g s u r f a c t a n t - i n d u c e d changes i n the l i p i d - w a t e r p a r t i t i o n i n g b e h a v i o r of the active c o m p o u n d s (i.e., variations i n χ = l o g Ρ — l o g P ' ) . T h i s is c e r t a i n l y true for m e t a a n d p a r a T F M S derivatives a c t i n g o n W i l d M u s t a r d (see E q u a t i o n s 9a a n d 10a) a n d for the m e t a T F M S h e r b i c i d e s a c t i n g o n F o x t a i l ( E q u a t i o n 8 b ) . I n fact, o n l y for the p a r a - s u b s t i t u t e d T F M S derivatives a c t i n g o n F o x t a i l ( E q u a t i o n 7c) does the H a m m e t t σ constant m a k e a significant a d d i t i o n a l c o n t r i b u t i o n to the o v e r - a l l corre l a t i o n r e l a t i o n s h i p . T h e fact that σ α a n d χ are also strongly correlated (see E q u a t i o n 4 b ) further illustrates the extreme i m p o r t a n c e of surfac t a n t - i n d u c e d effects o n the p a r t i t i o n coefficient of each T F M S c o m p o u n d i n d e t e r m i n i n g its u l t i m a t e h e r b i c i d a l a c t i v i t y . T h i s strong c o r r e l a t i o n between σ ( a n d to a lesser extent a ta) a n d χ u n f o r t u n a t e l y i m p l i e s , h o w e v e r , that these variables cannot be altered totally i n d e p e n d e n t l y of each other if attempts are m a d e to change T F M S h e r b i c i d a l a c t i v i t y b y surfactant a d d i t i o n a n d / o r substituent variations i n the parent m o l e c u l e . O n the other h a n d , the large positive v a l u e of the σ parameter coefficient i n E q u a t i o n 7c suggests that T F M S c o m p o u n d s substituted w i t h strongly e l e c t r o n - d o n a t i n g substituents (negative σ v a l u e s ) i n t h e p a r a a r o m a t i c r i n g p o s i t i o n w i l l e x h i b i t e n h a n c e d a c t i v i t y against F o x t a i l w h e n T w e e n 80 is a d d e d to the h e r b i c i d a l formulations at a constant concentration l e v e l (cf. i n T a b l e I, for example, 4 C H - T F M S (a = - 0 . 1 7 0 ) and 4 O C H 3 - T F M S (σ α — - 0 . 2 6 8 ) a c t i v i t y against F o x t a i l i n the presence a n d absence of surfactant.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
ραΤ
me
ρ α Γ α
3
para
ραΤ
A l t h o u g h experiments i n this s t u d y w e r e c a r r i e d out at a single c o n c e n t r a t i o n l e v e l of a specific surfactant a n d as s u c h are l i m i t e d i n scope, it is interesting to speculate o n the i m p l i c a t i o n s of our results, p a r t i c u l a r l y i f w e extrapolate t h e m to situations w h e r e the c o n c e n t r a t i o n a n d t y p e of surfactant are v a r i e d . These speculations must, of course, be verified b y f u r t h e r e x p e r i m e n t a t i o n . I n this r e g a r d , Jansen (1) has suggested that t h r o u g h p r o p e r use of surfactants h e r b i c i d a l spray solutions c a n be t a i l o r e d to meet specific situations. Steffens a n d C a t h e y (10) have l i k e w i s e p o i n t e d out that for enhancement of h e r b i c i d a l a c t i v i t y b o t h the relative concentrations of the h e r b i c i d e a n d a n a d d e d surfactant are c r i t i c a l . O u r results t e n d to substantiate these earlier conclusions. T h e fact that l o g ( L D o ' / L D o ) i n E q u a t i o n 3 exhibits χ-dependencies w h i c h are different for F o x t a i l a n d W i l d M u s t a r d suggests the p o s s i b i l i t y of a l t e r i n g grass a n d b r o a d l e a f selectivity of the T F M S h e r b i c i d e s b y p r o p e r use a n d a p p l i c a t i o n of sur factants. C o n s i d e r i n g first the meta-substituted T F M S c o m p o u n d s , w e 9
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
9
266
BIOLOGICAL CORRELATIONS
T H E HANSCH
APPROACH
n o t e that i f one w i s h e d to increase b r o a d l e a f ( W i l d M u s t a r d ) selectivity o v e r grasses ( F o x t a i l ) , E q u a t i o n s 8 b a n d 10a suggest that this m i g h t b e a c h i e v e d b y a d d i n g a p a r t i c u l a r t y p e o r a m o u n t of surfactant u n t i l ( l o g Ρ — l o g Ρ') equals + 0 . 8 5 w h e r e m e t a - T F M S a c t i v i t y vs. F o x t a i l is m i n i m i z e d . I f one w i s h e d to increase grass c o n t r o l w h i l e decreasing a c t i v i t y against broadleafs,
E q u a t i o n s 8 b a n d 10a suggest that this m i g h t b e
a c h i e v e d b y a d d i n g a surfactant that increases t h e p a r t i t i o n of t h e m e t a - T F M S h e r b i c i d e s ( l o g F — l o g P' p o s i t i v e ) .
coefficient
E x t e n d i n g this
l i n e o f r e a s o n i n g t o t h e p a r a - T F M S h e r b i c i d e s , w e note that a n increase i n grass c o n t r o l over b r o a d l e a f w e e d c o n t r o l m i g h t b e o b t a i n e d b y i n creasing l o g Ρ t h r o u g h a p p r o p r i a t e surfactant a d d i t i o n s u c h that ( l o g Ρ Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
— l o g Ρ') is a p p r o x i m a t e l y e q u a l to —2.0 (cf. signs o f χ d e p e n d e n c i e s i n E q u a t i o n s 7 c a n d 9 a ) . I n c r e a s i n g l y selective c o n t r o l o f b r o a d l e a f w e e d s o v e r grasses
might i n turn b e achieved
b y m i n i m i z i n g grass
control
t h r o u g h a d d i t i o n of a surfactant that w o u l d adjust ( l o g Ρ — l o g Ρ') to +0.93.
A t this v a l u e o f χ, grass c o n t r o l is m i n i m i z e d , a n d b r o a d l e a f
c o n t r o l is about t h e same as i f n o surfactant w e r e a d d e d (cf. E q u a t i o n s 7c a n d 9 a ) . A s p o i n t e d o u t i n the previous c h a p t e r (6), o u r analysis has d e m o n strated that surfactant a d d i t i o n to h e r b i c i d a l f o r m u l a t i o n s c a n p r o d u c e a v a r i e t y o f a c t i v i t y - e n h a n c i n g a n d i n h i b i t o r y effects. T h e s e effects a p p e a r to b e caused p r i m a r i l y b y alterations i n t h e l i p i d - w a t e r p a r t i t i o n i n g b e h a v i o r o f t h e h e r b i c i d e s c a u s e d b y surfactant a d d i t i o n .
Indiscriminate
use o f surfactants as penetrant aids a n d f o r m u l a t i n g agents i n h e r b i c i d a l screening a n d field tests s h o u l d thus b e a v o i d e d .
H e r b i c i d a l evaluations
i n t h e presence a n d absence o f surfactant c o u p l e d w i t h regression a n a l yses o f t h e t y p e discussed i n this a n d t h e p r e v i o u s c h a p t e r (6) s h o u l d p r o v i d e v a l u a b l e clues r e g a r d i n g the most advantageous use o f surfactants i n e n h a n c i n g o v e r - a l l h e r b i c i d a l a c t i v i t y a n d selectivity.
Acknowledgments T h e authors a r e i n d e b t e d t o J . B e l i s l e f o r t h e p a r t i t i o n
coefficient
measurements a n d t o J . W a d d i n g t o n a n d D . P a u l y f o r t h e p r e - e m e r g e n c e h e r b i c i d a l a c t i v i t y evaluations.
Literature Cited 1. Jansen, L. L., Gentner, W. Α., Shaw, W. C., Weeds (1961) 9, 381. 2. Becher, P., Becher, D., ADVAN. CHEM. SER. (1969) 86, 15.
3. Becher, P., "Emulsions: Theory and Practice," 2nd ed., pp. 232, Reinhold, New York, 1965. 4. Foy, C. L., Smith, L. W., ADVAN. CHEM. SER. (1969) 86, 55.
5. Hansch, C., Fujita, T., J. Amer. Chem. Soc. (1964) 85, 1616.
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
13.
V A N VALKENBURG
AND YAPEL,
JR.
Herbicidal
Activity
267
6. Yapel, A. F., ADVAN. CHEM. SER. (1972) 114, 183.
7. Trepka, R., Harrington, J. K., Robertson, J. E., Waddington, J. T., J. Agr. Food Chem. (1970) 18, 1176. 8. Jaffe, H. H., Chem. Rev. (1953) 53, 191. 9. Holly, K., "The Physiology and Biochemistry of Herbicides," L. J. Audus, Ed., Academic, New York, 1964. 10. Steffens, G. L., Cathey, H. M., J. Agr. Food Chem. (1969) 17, 312. February 10, 1972.
Downloaded by UNIV LAVAL on July 11, 2016 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch013
RECEIVED
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.