6 Substituent-Effect Analyses of the Rates of Metabolism and Excretion of Sulfonamide Drugs
Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
TOSHIO FUJITA Department of Agricultural Chemistry, Kyoto University, Kyoto, Japan
Analyses of the rates of metabolism and renal excretion of sulfonamide drugs were attempted in terms of their physicochemical properties. Using simple models for acetylation in the liver and excretion from the kidney, expressions for rate constants of both processes were proposed on the basis of free energy related substituent constants. Taking into account the effect of dissociation, logarithmic values of the rate constants correlated with a linear combination of the hydrophobicity constant, π, and the electronegativity pa rameter, ΔpΚ , of the N-1 substituent of sulfanilamide. The information obtained from the correlations should be useful in designing long-acting sulfonamide drugs. Α
T J r e v i o u s l y , w e c o r r e l a t e d bacteriostatic a c t i v i t y a n d structure of v a r i o u s series of N - l substituted s u l f o n a m i d e
drugs w i t h the free
energy
r e l a t e d substituent constants of the N - l substituent ( 1 ). F o r a series o f N - l heterocyclic derivatives, activity data obtained b y K r u g e r - T h i e m e r a n d B i i n g e r ( 3 ) w e r e w e l l c o r r e l a t e d b y E q u a t i o n 1. I n E q u a t i o n 1, C
(1) - 0 . 2 9 6 x + 0.985x + 0 . 6 0 5 Δ ρ ^ 2
η = 17
r = 0.975
2.090
s = 0.223
is t h e m i n i m u m i n h i b i t o r y c o n c e n t r a t i o n i n ^ m o l e / l i t e r , π is the h y d r o p h o b i c i t y constant of t h e N - l substituent d e r i v e d f r o m t h e p a r t i t i o n coefficient, P, w i t h a n i s o b u t y l a l c o h o l - w a t e r system as ττ =
log Ρ (sub-
80
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6.
Metabolism
FUJITA
and Excretion
stituted sulfanilamide) — l o g P
0
of
81
Sulfonamides
(sulfanilamide), and Δ ρ Κ
Α
t r o n e g a t i v i t y p a r a m e t e r o f t h e substituent defined as Δ ρ Κ ( s u l f a n i l a m i d e ) — pK
A
is the elec Α
=
pK ° A
( s u b s t i t u t e d s u l f a n i l a m i d e ). T h e η is the n u m b e r
of points u s e d i n the regression, r is the c o r r e l a t i o n coefficient, a n d s is the s t a n d a r d d e v i a t i o n . A l t h o u g h t h e s e c o n d t e r m o n t h e left is i n t r o d u c e d to correct bacteriostatic a c t i v i t y a c c o r d i n g to t h e extent o f d i s s o c i a t i o n at the e x p e r i m e n t a l p H , E q u a t i o n 1 does n o t necessarily m e a n t h a t t h e m o l e c u l a r species responsible f o r t h e a c t i v i t y is t h e n e u t r a l f o r m . T h e correlation was quite good, a n d information o n the o p t i m u m p K
A
and π
values r e q u i r e d f o r the m a x i m u m a c t i v i t y w a s o b t a i n e d b y t a k i n g p a r t i a l Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
differentials o f this e q u a t i o n .
Free state Cp(l-a) Neutral form jr
Cpa
Ionized form
+ LH ] +
Figure 1.
Model for protein
binding
W e also a n a l y z e d t h e b i n d i n g constant o f s u l f o n a m i d e s to h u m a n p l a s m a p r o t e i n ( I ) . I n t h e free, n o n - b o u n d state t h e d r u g s exist as a n e q u i l i b r i u m m i x t u r e of n e u t r a l a n d i o n i z e d forms, o f w h i c h the c o n c e n t r a tions are C (1 F
— a) a n d Cpa, r e s p e c t i v e l y (see F i g u r e 1 ) . I n the b o u n d
state t h e y exist as o n l y o n e m o l e c u l a r species, C .
T h e effective b i n d i n g
B
constant, K, c a n b e expressed b y t h e respective b i n d i n g constants of n e u t r a l a n d i o n i z e d f o r m s : K i a n d K< , as s h o w n i n E q u a t i o n 2. T a k i n g 2
Κ = — = CF
KiK K\ -f- K2 2
into account the d i s s o c i a t i o n e q u i l i b r i u m o f free d r u g s a n d a s s u m i n g t h a t the l o g a r i t h m i c values o f the f u n d a m e n t a l b i n d i n g constants, Ki a n d K , 2
c a n b e d e s c r i b e d b y free energy r e l a t e d parameters, w e d e r i v e d E q u a t i o n 3 for p r o t e i n b i n d i n g ; w h e r e a, p, a n d c are constants w h i c h are d e t e r m i n e d
log Κ + l o g
g i t
rH+]
b y t h e m e t h o d o f least squares.
H + 1
=
+
Ρ Ρ*^ + Δ
F o r 20 N - l heterocyclic
the b i n d i n g d a t a o b t a i n e d b y R i e d e r
(4)
were
&
c
sulfonamides,
best r e p r e s e n t e d b y
E q u a t i o n 4, w h i c h shows that o n l y t h e h y d r o p h o b i c i t y of t h e N - l s u b -
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
82
BIOLOGICAL CORRELATIONS
log Κ +
log
r
η = 20
^ [H+J
J
= 1.651* -
r = 0.938
T H E HANSCH A P P R O A C H
2.896
(4)
s = 0.365
stituent p l a y s a significant r o l e i n g o v e r n i n g the m o d i f i e d b i n d i n g c o n stant.
E q u a t i o n 3 was also u s e f u l i n e l u c i d a t i n g the s e r u m b i n d i n g of
N - 4 - a c e t y l s u l f a n i l a m i d e s , t h e major metabolites of s u l f o n a m i d e
drugs,
as s h o w n i n E q u a t i o n 5 ( 2 ) .
log Κ +
log
K
a
r
t J
Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
[ t i
η = 5
H + ] J
= 2.029x - 2.860 (±0.651) (±1.126)
r = 0.985
(5)
s = 0.264
I n E q u a t i o n s 4 a n d 5, Κ is the mass-action e q u i l i b r i u m constant of b i n d i n g expressed i n l i t e r s / ^ m o l e (4).
T h e figures i n parentheses are the 9 5 %
confidence intervals. T h e s e r u m p r o t e i n b i n d i n g of s u l f o n a m i d e d r u g s has b e e n c o n s i d e r e d a n i m p o r t a n t factor i n m a i n t a i n i n g a h i g h l e v e l of the d r u g i n the b l o o d since e l i m i n a t i o n of drugs f r o m b l o o d occurs via the n o n - b o u n d molecule.
free
T h e t i m e of d u r a t i o n i n b l o o d or the rate of d r u g e l i m i n a t i o n
( a n t i b a c t e r i a l a c t i v i t y n o t w i t h s t a n d i n g ) is one of the most i m p o r t a n t properties to b e c o n s i d e r e d i n d e s i g n i n g n e w drugs. E n c o u r a g e d b y the correlations o b t a i n e d for bacteriostatic a c t i v i t y a n d p r o t e i n b i n d i n g s h o w n a b o v e , w e a t t e m p t e d to a n a l y z e the rate of e l i m i n a t i o n for s u l f o n a m i d e drugs i n terms of free energy r e l a t e d substituent constants. Methods A c c o r d i n g to N e l s o n ( 5 )
the rate of e l i m i n a t i o n of drugs i n b l o o d
f o l l o w s the first-order k i n e t i c s ; the rate constant of w h i c h is k i,
as s h o w n
E
i n E q u a t i o n 6, w h e r e C is the t o t a l d r u g c o n c e n t r a t i o n i n b l o o d .
Sulfona-
m i d e drugs are e l i m i n a t e d m a i n l y b y t w o routes, one of w h i c h is m e t a b o l i s m i n the l i v e r , a n d the other is r e n a l excretion. T h e rate of h e p a t i c m e t a b o l i s m a n d that of r e n a l excretion also o b e y that the rate constant of e l i m i n a t i o n , k i, E
o r d e r rate constants, k
Me
and k .
m e a s u r i n g the t i m e course
Ex
first-order
kinetics so
comprises the respective
first-
T h e s e constants are e s t i m a t e d
o f d r u g c o n c e n t r a t i o n i n the b l o o d
by
after
a d m i n i s t r a t i o n a n d the r a t i o of i n t e g r a t e d amounts of m e t a b o l i z e d a n d free d r u g i n the u r i n e . F o r most s u l f o n a m i d e d r u g s , the major m e t a b o l i t e
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6.
FUJITA
Metabolism
and Excretion
of
83
Sulfonamides
is the N - 4 - a c e t y l d e r i v a t i v e ; thus, w e c a n set the r a t e constant o f h e p a t i c m e t a b o l i s m , k , e q u a l to that o f a c e t y l a t i o n , k Me
fëiôôdl
Free state
C
-,. u l! 2
LB-
Figure 2.
— > Acetylated Product
Liver bound state
K
Serum bound state Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
as s h o w n i n E q u a t i o n 6.
Ac>
Model of hepatic acetylation
process
T o correlate the rate constant o f h e p a t i c a c e t y l a t i o n w i t h free e n e r g y r e l a t e d parameters, w e u s e d t h e s i m p l e m o d e l s h o w n i n F i g u r e 2. I n b l o o d , t h e free u n d i s s o c i a t e d a n d t h e free dissociated species a r e i n a d y n a m i c q u i l i b r i u m w i t h each other a n d also w i t h t h e s e r u m p r o t e i n b o u n d state. B o t h the n e u t r a l a n d i o n i z e d forms of free d r u g are also i n a n e q u i l i b r i u m w i t h a l i v e r tissue b o u n d state. W e assume that these b i n d i n g e q u i l i b r i a a r e e s t a b l i s h e d r a t h e r q u i c k l y , that there is a c r i t i c a l r a t e - d e t e r m i n i n g step, fc after the d r u g is b o u n d to l i v e r tissue, a n d t h a t 3
a steady state i n t h e c o n c e n t r a t i o n of t h e l i v e r b o u n d c o m p l e x , C ,
is
LJI
m a i n t a i n e d . I f w e a p p l y E q u a t i o n 2 to this m o d e l , the concentrations o f s e r u m - b o u n d , l i v e r - b o u n d , a n d free d r u g , C ,
C B, a n d C , are r e l a t e d to
PB
L
e a c h other b y E q u a t i o n s 7 a n d 8, w h e r e K
F
K , K / , a n d K ' are t h e
u
2
2
b i n d i n g constants f o r t h e u n i t processes as s h o w n i n F i g u r e 2. F r o m
^PB — π t
C LB =
K
t
dCpB
,
ΚχΚι + K
2
c
(8)
P
dC F
K\K.2
~aT
(7)
^Fl F
(9)
Κι' + Κ ' ~dT 2
dC F dt
K\K% k*C Ki + K
(10)
f
2
E q u a t i o n 7, w e c a n d e r i v e E q u a t i o n 9 f o r t h e rate of decrease of 0 . Ρ ΰ
Since t h e rate o f decrease of C
F
c a n b e expressed b y E q u a t i o n 10, t h e
rate of decrease of the t o t a l c o n c e n t r a t i o n i n the b l o o d , (C
F
+ C ), PB
is
d e s c r i b e d b y E q u a t i o n 11, a n d t h e rate constant o f a c e t y l a t i o n , k , is Ac
d e r i v e d as s h o w n i n E q u a t i o n 12.
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
84
BIOLOGICAL CORRELATIONS
dC
d{CpB + dt
dt
~
t p
dC dt
CF)
T H E HANSCH A P P R O A C H
F
y
+
κ{
+
κ;) (H)
V
KTTK?)
+ Ki
KI
-
kz
L
Ki +
κ,
f c 3
KjKj
F o r the l o g a r i t h m i c v a l u e of k
(12)
E q u a t i o n 13 a n d its m o d i f i c a t i o n ,
Ac>
E q u a t i o n 14, w e r e f o r m u l a t e d , w h e r e K °
is the dissociation constant of
A
s u l f a n i l a m i d e , a, p', c', p, a n d c are constants, a n d [ H ] is the h y d r o g e n Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
+
i o n c o n c e n t r a t i o n i n the b l o o d .
W e u s e d E q u a t i o n 14 to a n a l y z e the
a c e t y l a t i o n d a t a . T h e second t e r m o n the left of E q u a t i o n 14 expresses the d i s s o c i a t i o n effect of the free d r u g , b u t i t does not m e a n that the n e u t r a l f o r m is o n l y responsible for m e t a b o l i s m .
log k
log
+
Ac
log k
+
Ac
log
[H+] + [H+] +
Κ A K° = αχ +
p' ApK
A
A
[H+] +
Κ A
[H+]
= αχ +
ρ ApK
A
+ e
+ c
(13)
(14)
T h e s e equations are d e r i v e d i n a m a n n e r s i m i l a r to that for E q u a t i o n 3, as p r e v i o u s l y r e p o r t e d ( 1 ), a s s u m i n g that l o g kz c a n b e d e s c r i b e d b y a l i n e a r c o m b i n a t i o n of the free energy r e l a t e d substituent constants.
I Blood I CPB
Cp K / y
».
c
X
3
> Bladder
s
s
Figure 3.
tubule
n
Model of renal excretion
F o r r e n a l excretion, w e u s e d the m o d e l s h o w n i n F i g u r e 3.
Here,
the rate constant for the decrease i n the c o n c e n t r a t i o n of d r u g i n the b l o o d b y g l o m e r u l a r u l t r a f i l t r a t i o n is fci, for the t u b u l a r r e a b s o r p t i o n process is k , a n d for the m o v e m e n t of d r u g f r o m t u b u l e to b l a d d e r is k . 2
s
W e assume that k is m u c h larger t h a n fc a n d that c o n c e n t r a t i o n of the 2
3
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6.
Metabolism
FUJITA
and Excretion
of
85
Sulfonamides
d r u g i n the t u b u l e (C buie) is i n a steady state. T h u s , t h e rate constant tU
for t h e w h o l e process of r e n a l e x c r e t i o n c a n be expressed b y E q u a t i o n 15.
=
k
Ex
^ k
(15) 2
W e f u r t h e r assume that the t o t a l v o l u m e of b l o o d , V , is m u c h l a r g e r t h a n that filtered p e r u n i t t i m e , dv.
T h e rate of decrease for the a m o u n t
of free d r u g via g l o m e r u l a r u l t r a f i l t r a t i o n is C dv
at a n y t i m e so that t h e
F
rate of decrease for the c o n c e n t r a t i o n i n b l o o d ( —(dC /dt)o)
is g i v e n as
F
E q u a t i o n 16. T h e r e f o r e , the rate of decrease for the C t a i b y t h e same to
Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
r o u t e c a n b e d e s c r i b e d b y E q u a t i o n 17. T h u s , the r a t e constant, k\> is
- ( T ) (dC\
_
(d£_PB
\dt)
c
described
as dv/V
\
dt
"
Λ \
- F
C
dCA
_
_
dt) ~
+
G
j .
«·>
'G
X
K
K\
*
K
+
*
(
Kx'Kt'
V
\ r
Κ ') 2
\
KÏ + >) K
d v
ν
-
r ~~
(dC \ F
\
)
G
(17) d v
ν
w h i c h is constant t h r o u g h a series of
unless the test o r g a n i s m is c h a n g e d .
DT
compounds;
Since the r a t i o of k to fc w o u l d b e 2
3
p r o p o r t i o n a l to the c o n c e n t r a t i o n of the n e u t r a l d r u g i n the t u b u l e a n d also to its p e r m e a b i l i t y t h r o u g h the t u b u l a r m e m b r a n e , the l o g a r i t h m of c a n b e d e s c r i b e d as E q u a t i o n 18, w h e r e
k /k 2
s
log ^
=
^
log ^
[H ] +
is that of u r i n e i n
r-rj ι-i + log p e r m . + constant
(18)
the t u b u l e . L o g p e r m , c a n be f u r t h e r r e l a t e d to the free e n e r g y r e l a t e d p a r a m e t e r s ; thus, the v a l u e of l o g k
Ex
is expressed b y E q u a t i o n 19 w h i c h
c a n be m o d i f i e d to E q u a t i o n 20, w h e r e a, p, a n d c are constants.
log k
Ex
= log ki -
log k
Ex
log ^
-
log
=
K
log
a
^}^
Ka
+ Jj
+]
H+1
+ «Χ +
= αχ +
ApK
Ç
A
ρΔρ^Α + c
+ c
(19)
(20)
U s i n g E q u a t i o n s 14 a n d 20, w e a n a l y z e d the d a t a s h o w n i n T a b l e s I and II obtained by N o g a m i ( 6 ) , Y a m a z a k i ( 7 ) , a n d K a k e m i (8, 9) t h e i r associates b y the m e t h o d of least squares.
and
W e h a v e not i n c l u d e d
a l l c o m p o u n d s of the o r i g i n a l set i n the analyses since the p h y s i c o c h e m i c a l p a r a m e t e r s of some d e r i v a t i v e s are l a c k i n g .
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
86
BIOLOGICAL CORRELATIONS
T H E HANSCH A P P R O A C H
Table I.
Substituent Constants Rat Acetylation Rate h
Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
Compounds
log
Sulfanilamide Acetosulf amine Sulfathiazole Sulfadiazine Sulfamerazine Sulfisoxazole Sulfisomidine Sulfaphenazole Sulfamethoxypyridazine Sulfadimethoxine Sulfisomezole Sulfamonomethoxine
0.00 5.05 3.35 4.30 3.52 5.83 3.07 4.54 3.40 4.40 4.64 4.42
0.00 1.01 0.82 1.11 0.94 2.61 0.39 2.15 1.02 1.86 1.55 1.37
k
Ac
-0.45 -0.36 -1.06 -1.47 -1.33 -1.21 -0.96 -1.00 -1.42 -1.92 -1.38 -1.36
obs.
cale.
-0.45 1.64 -0.58 -0.20 -0.73 1.57 -0.65 0.50 -0.91 -0.55 0.22 0.03
-1.10
d
—
-0.43 -0.19 -0.33 1.04 -0.78 0.66 -0.26 —
0.17 0.02
The rate constant, k , is the value per hour. Derived from the values of pK in Ref. 16.
a
Ac
6
A
Calculated from the "Ubergangszahlen" in Ref. 3 with correction for ionization in the aqueous phase according to the K values obtained by Yamazaki et al., Ref. 16. Calculated by Equation 28. 0
A
d
Table II.
Substituent Constants Rat Excretion Rate h
Compounds Sulfanilamide Acetosulf amine Sulfathiazole Sulfadiazine Sulfamerazine Sulfisoxazole Sulfisomidine Sulfaphenazole Sulfamethoxypyridazine Sulfadimethoxine Sulfisomezole Sulfamonomethoxine
ΔρΚ
Α
0.00 5.05 3.35 4.30 3.52 5.83 3.07 4.54 3.40 4.40 4.64 4.42
6
%
b
0.00 1.01 0.82 1.11 0.94 2.61 0.39 2.15 1.02 1.86 1.55 1.37
x'
c
0.00 1.61 0.68 1.81 1.84 2.56 0.89 2.91 2.14 3.12 1.97 2.13
log k Ex
obs.
-1.18 -0.19 -0.63 -1.14 -1.17 -0.61 -0.64 -1.55 -1.55 -1.92 -1.34 -1.41
-1.18 -1.23 -0.71 -1.58 -1.28 -2.39 -0.69 -2.16 -1.64 -2.43 -2.03 -1.93
cale.
d
-1.06 -1.17 -1.28 -1.41 -1.37 -2.62 -0.91 -2.39 -1.47 -2.13 -1.78 -1.64
The rate constant, ksx, is the value per hour. The same values as in Table I. Calculated from the values of partition coefficient measured using a system of C H C l - p H 7.4 buffer solution (16). Calculated by Equation 38. a
6
c
3
d
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6.
Metabolism
FUJITA
and Excretion
87
of Sulfonamides
and Rate of Acetylation" Rat
Rabbit
A cetylation Rate
A cetylation Rate
h
obs.
cale.
-1.41
-1.41
-1.26
— — -1.51 — -1.72
— — -0.24 —1.06
— — -0.28 —1.03
-0.96
-0.65
-0.91
— — -2.28
— — -0.91
— — —0.10
Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
-1.38 -1.74
0.22 -0.35
e
-0.06
« Calculated by Equation Calculated by Equation Calculated by Equation Τ η β acetylation rate is (See Equation 14). 0
Λ
and Rate of Excretion
obs.
calcJ
-0.92 -0.90 -0.47 -0.50 -0.26 -0.87 -1.66 -0.58 -0.61 -1.16 -0.24 -0.55
-0.92 1.10 0.01 0.77 0.34 1.91 -1.35 0.92 -0.10 0.21 1.36 0.84
-1.01
22. 31. 34. obtained from:
obs.
calc.
-1.82
-1.82
-1.81
6
— —
-1.16
-1.60
-1.62
-0.70 -1.02
-2.48 -1.07
-2.65 -1.28
-1.84 -1.34 -1.63
-2.35 -2.03 -2.15
-2.34 -1.96 -1.85
— —
log k
Ac
calc.
-1.45 -1.58 -1.29 -1.51 -1.26 -1.40 -2.27 -1.46 -1.57 -2.52 -1.25 -1.68
-1.45 0.42 -0.81 -0.24 -0.66 1.38 -1.96 0.04 -1.06 -1.15 0.35 -0.29
-1.81
+ log (K
A
—
— —
0
—
-0.89 -0.57 -0.76 1.12 -1.38 0.60 -0.67
—
-0.07 -0.27
- f [H ])/([H+]). +
Human Excretion Rate
h
log kEx
— —
0.58
obs.
Excretion Rate
h
—
—0.79
Ac
Rabbit
Excretion Rate
—
—
-0.06 0.28 0.08 2.02 -0.56 1.49 0.17
log k
0
Rat
— —
h
log k Ac
/
— —
A cetylation Rate
h
log k Ac
Human
h
log k Ex
obs.
calcJ
log k
obs.
calc.
-1.02 -0.28 -0.36 -0.71 -0.68 -0.26 -0.92 -0.72 -0.94 -1.52 -0.65 -0.87
-1.03 -3.68 -2.07 -3.36 -2.56 -4.44 -2.36 -3.61 -2.70 -4.27 -3.64 -3.64
-0.86 -3.49 -2.68 -3.23 -2.81 -4.63 -2.34 -3.86 -2.80 -3.65 -3.59 -3.41
-1.50 -1.45 -1.05 -1.30 -1.90 -1.11 -1.08 -1.64 -2.17 -1.84 -1.39 -1.93
-1.50 -2.15 -1.08 -1.54 -1.95 -2.52 -1.10 -1.99 -2.21 -2.12 -1.80 -2.22
-1.51
Calculated by Equation 44. Calculated by Equation 47. Calculated by Equation 52. The excretion rate is obtained from: (See Equation 20).
Ex
0
—
-1.30 -1.70 -1.84
— —
-2.19 -2.00 -2.32 -1.72 -1.83
e
f
0
Λ
log UEX — log (K
A
+
[H ])/([H+]). +
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
88
BIOLOGICAL CORRELATIONS
T H E HANSCH A P P R O A C H
Results and Discussion For
the rate of a c e t y l a t i o n of six s u l f o n a m i d e d r u g s i n the r a t ( 6 )
the h i g h e s t c o r r e l a t i o n w a s o b t a i n e d i n E q u a t i o n 22. I f w e n e g l e c t the s e c o n d t e r m o n the left of the e q u a t i o n a n d a n a l y z e the l o g k
Ac
values
d i r e c t l y w i t h the substituent p a r a m e t e r s , the c o r r e l a t i o n becomes p o o r e r as s h o w n i n E q u a t i o n 25. F o r d a t a o b t a i n e d i n d e p e n d e n t l y o n 10 d r u g s ( 7 ) , E q u a t i o n 28 shows the best c o r r e l a t i o n . A n F test shows t h a t the ΔρΚ
t e r m i n E q u a t i o n 29 is justified o n l y at the 0.75 l e v e l of significance.
Α
F o r 10 d r u g s u s e d w i t h r a b b i t ( 7 ) a n d h u m a n ( 8 ) , E q u a t i o n s 31 a n d 34
Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
s h o w the best c o r r e l a t i o n . Rat (6) ([#+] ,
,
=
, ,
log k
Ac
+ log =
10" · ) 7
4
s
r
6
0.366
0.919
(21)
6
0.222
0.971
(22)
6
0.229
0.977
(23)
6
0.290
0.420
(24)
6
0.244
0.644
(25)
6
0.248
0.738
(26)
10
0.609
0.637
(27)
10
0.411
0.854
(28)
10
0.395
0.884
(29)
10
0.606
0.821
(30)
10
0.468
0.898
(31)
10
0.493
0.901
(32)
J J H +
-1.631 +
=
η [H+]
Κ Λ +
O.B78ApK
A
- 1 . 2 5 5 + 0.876x (±0.432) (±0.299)
=
-1.395 +
0.679π +
0.100Δρ#
=
-1.233 -
=
-1.220 -
0.200*
=
-1.382 +
Ο.ΙΙβΔρ^ -
Λ
log k c A
Rat (7) ([#+] ,
,
, ,
= =
7
,
Ac
= =
4
[H+]
H +
0.308Δρ^
- 1 . 1 0 2 + 0.821x (±0.573) (±0.408) -0.732 +
+ log =
0.428x
J J
A
-1.260 +
, ,
log k
+
K
Rabbit (7) ([#+] ,
A
== 1 0 - · )
log κ Ac + l o g =
0.059ApK
= K
A
1.271x -
0.228Δρ^
10- · ) 7
+
4
[H+]
J J
-1.599 +
H +
0.533ΔρΧ^
- 1 . 0 1 0 + 1.160π (±0.652) (±0.465) -1.170 +
0.989x +
0.098ΔρΧ
Λ
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6.
Metabolism
FUJITA
Human
(8) ([#+]
, log k
+
Ac
= = =
log
=
If
A
and Excretion
of
89
Sulfonamides
10~ - ) 7
+
4
[H+]
-2.260 +
0.483Δρ#
Λ
- 1 . 8 1 4 + 1.124x (±0.565) (±0.402) -1.735 +
1.208x -
0.048Δρ^
10
0.627
0.783
(33)
10
0.405
0.916
(34)
10
0.431
0.916
(35)
T h e c o m m o n feature of these correlations is that the ΔρΚ
term
Α
Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
p l a y s n o significant r o l e .
S i n c e N - 4 - a c e t y l a t i o n occurs b y a n u c l e o p h i l i c
attack of the lone p a i r of a r o m a t i c a m i n o n i t r o g e n , w e c o u l d assume that the m o r e the e l e c t r o n - d o n a t i n g p r o p e r t y of the N - l - s u b s t i t u e n t , the faster the r a t e of a c e t y l a t i o n at the N - 4 - p o s i t i o n . H o w e v e r , s e p a r a t e d f r o m the b e n z e n e r i n g b y the S 0 N H 2
g r o u p , the e l e c t r o n i c
effect of the N - l -
substituents m a y not b e w e l l t r a n s m i t t e d to the N - 4 p o s i t i o n (10).
There
fore, the l a c k of a significant r o l e of the Δ ρ Κ ^ t e r m i n these correlations shows that the most i m p o r t a n t factor g o v e r n i n g the r a t e - d e t e r m i n i n g step of the h e p a t i c a c e t y l a t i o n is the h y d r o p h o b i c i t y of t h e d r u g . T h e rate of r e n a l excretion i n the rat (6, E q u a t i o n s 38 a n d 44.
7)
is best c o r r e l a t e d
by
T h e t e r m c o r r e c t i n g the effect of d i s s o c i a t i o n i n
the t u b u l e is m a r k e d l y significant i n this case.
W i t h o u t this t e r m , the
correlation becomes m u c h poorer ( E q u a t i o n s 3 9 - 4 1 ) . E q u a t i o n 47 shows the best c o r r e l a t i o n .
F o r rabbits
T h e coefficient
of the
(7), ΔρΚ
Α
t e r m i n E q u a t i o n 47 is negative, i n contrast to that i n E q u a t i o n s 38 a n d 44.
S i n c e the 9 5 %
confidence i n t e r v a l s of coefficients
s u s c e p t i b i l i t y of the t u b u l a r m e m b r a n e
d o not
to the e l e c t r o n i c
overlap,
structure
of
p e r m e a t i n g d r u g s p r o b a b l y differs b e t w e e n rats a n d r a b b i t s .
Rat (7) ([#+]
log fcjsx -
log
10- · )
K
6
A
+
4
J J
η
s
r
[H+]
H +
=
-0.715 -
0.229ΔρϋΟ
12
0.523
0.556
(36)
=
-0.732 -
0.706x
12
0.324
0.858
(37)
12
0.299
0.893
(38)
= log
,
=
- 1 . 0 6 1 - 0.992x + 0 . 1 7 6 Δ # Λ (±0.602)(±0.483) (±0.242) Ρ
k
Ex
=
-1.254 +
0.037ΔρϋΟ
12
0.521
0.108
(39)
=
-0.913 -
0.160x
12
0.509
0.234
(40)
=
-1.483 -
0.657x +
12
0.455
0.565
(41)
0.Ζ0δΑρΚ
Α
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
90
BIOLOGICAL CORRELATIONS
Rat (6) ([#+]
, , log k
Ex
=
10- · ) 6
, Κ A + log ^
=
-1.476 -
0.119Δρ#
=
-1.386 -
0.427x
Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
-
Ex
=
, K log
A
η
s
r
7
0.470
0.458
(42)
7
0.332
0.779
(43)
7
0.207
0.937
(44)
[H+] j Α
10 · ) -8
+ ^
H +
8
[Η+] j
=
-0.680 -
0.628Δρ.ΚΆ
12
0.398
0.924
(45)
=
-1.639 -
1.193x
12
0.493
0.880
(46)
12
0.345
0.949
(47)
9
0.377
0.395
(48)
9
0.350
0.520
(49)
9
0.375
0.532
(50)
9
0.272
0.748
(51)
9
0.247
0.830
(52)
=
- 0 . 8 5 8 - 0.512x 0.419Δρ^ (±0.693)(±0.557) (±0.279) (9) ([#+]
Human ,
H +
- 1 . 8 0 7 - 0.988π + 0 . 2 9 8 Δ ρ ί : ^ (±0.563)(±0.589) (±0.279)
Rabbit (7) ([#+] log k
4
-
=
T H E HANSCH A P P R O A C H
,
,
log k
log
Ex
K
A
=
ΙΟ" ) 60
[H+]
+
J J H +
=
-1.445 -
0.104ApuC
=
-1.443 -
0.316x
=
-1.514 -
0.432π +
=
-1.284 -
0.292π'
=
A
0.058Δρ#Λ
- 1 . 5 1 4 - 0.487π' + 0 . 1 6 3 Δ ρ ^ (±0.572)(±0.372) (±0.252)
F o r h u m a n s ( 9 ) , the c o r r e l a t i o n is n o t as g o o d as those f o u n d for r a b b i t s a n d rats ( E q u a t i o n s 4 8 - 5 0 ) . T h i s m a y be the result of t h e s m a l l v a r i a b i l i t y of values o n the left of the e q u a t i o n a n d of the difference i n the a b i l i t y of p a r t i t i o n coefficient d a t a to define p e r m e a b i l i t y i n the d i f ferent test a n i m a l s . I f w e use ττ' values d e r i v e d f r o m the p a r t i t i o n coeffi cients w i t h a C H C l - w a t e r system i n s t e a d of those f r o m a n i s o b u t y l 3
a l c o h o l - w a t e r system, E q u a t i o n 52 results, w h i c h shows a reasonable correlation.
T h i s is the o n l y e x a m p l e h e r e w h e r e the ττ' v a l u e s f r o m a
C H C l - w a t e r system s h o w a better c o r r e l a t i o n t h a n those f r o m a n i s o b u t y l 3
a l c o h o l - w a t e r system. T h e s u s c e p t i b i l i t y of h u m a n t u b u l a r r e a b s o r p t i o n to the h y d r o p h o b i c i t y of d r u g s m i g h t b e different f r o m those of the rat a n d r a b b i t ; thus, the m o d e l w i t h a C H C l - w a t e r system c o u l d s i m u l a t e 3
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6.
Metabolism
FUJITA
and Excretion
of
91
Sulfonamides
the t u b u l a r m e m b r a n e better t h a n the m o d e l w i t h a n i s o b u t y l a l c o h o l w a t e r system. We
o m i t t e d the data for acetosulfamine,
sulfisoxazole,
and
sulfi
s o m i d i n e i n d e r i v i n g E q u a t i o n s 4 8 - 5 2 since a n active t u b u l a r secretion m e c h a n i s m has b e e n p o s t u l a t e d for their r e n a l excretion ( 9 ) w h i c h w o u l d also suggest a f u n c t i o n a l difference of h u m a n t u b u l a r m e m b r a n e
from
those of rats a n d r a b b i t s . I n fact, the d a t a for these three c o m p o u n d s fitted p o o r l y a p r e l i m i n a r y c o r e r l a t i o n w i t h the use of ττ'. T a b l e I gives the results of calculations of the a c e t y l a t i o n rate c o n stants b a s e d o n E q u a t i o n s 22, 28, 3 1 , a n d 34. A c e t o s u l f a m i n e a n d s u l f a d i
Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
m e t h o x i n e are o m i t t e d i n the correlations of 12 c o m p o u n d s for w h i c h the
substituent parameters
are k n o w n
since
preliminary calculations
s h o w e d that the d a t a for these t w o d i d not fit w e l l i n e a c h case. D i f f e r e n t routes for the m e t a b o l i s m of these t w o c o m p o u n d s m i g h t b e operative. I n fact, for s u l f a d i m e t h o x i n e , g l u c u r o n i d e f o r m a t i o n has b e e n s h o w n to o c c u r to a c o n s i d e r a b l e extent, a n d this c a n not be n e g l e c t e d as c o m p a r e d w i t h the a c e t y l a t i o n at l i v e r i n rats (6)
a n d h u m a n s (11).
W e expected
that acetosulfamine w o u l d b e h a v e as a n a c e t y l d o n o r as w e l l as the a c e t y l acceptor. T h u s , the N - 4 - a c e t y l g r o u p of N - 4 - a c e t y l a c e t o s u l f a m i n e m i g h t result not o n l y f r o m a c e t y l - C o A b u t also f r o m the N - l - a c e t y l g r o u p of another acetosulfamine
molecule.
T a b l e I I shows r e n a l excretion d a t a . t a i n e d f r o m E q u a t i o n s 38, 44, 47, a n d 52.
C a l c u l a t e d values w e r e H e r e , the rate constants
ob of
acetosulfamine a n d s u l f a d i m e t h o x i n e are as w e l l c o r r e l a t e d as those of the other c o m p o u n d s for rats a n d r a b b i t s . T h i s c o u l d be e x p e c t e d since the k
Ex
v a l u e is d i r e c t l y d e t e r m i n e d b y the p r o p o r t i o n of the i n t e g r a t e d
a m o u n t of n o n - m e t a b o l i z e d d r u g i n the t o t a l u r i n a r y excreted m a t e r i a l s whereas the k
Ac
v a l u e is d e r i v e d b y a s s u m i n g t h a t metabolites, other t h a n
N - 4 - a c e t y l d e r i v a t i v e s , are n e g l i g i b l e i n the u r i n e . F o r h u m a n s , the rate constant of s u l f a d i m e t h o x i n e is w e l l c o r r e l a t e d w h i l e t h a t of acetosulfa m i n e is not.
T h e latter m a y b e excreted b y a different m e c h a n i s m as
mentioned. T h e r e c o u l d b e alternate models t h a n those u s e d i n the a b o v e d i s cussions of the e l i m i n a t i o n processes. F o r instance, a m o d e l of a c e t y l a t i o n , w h e r e the b i n d i n g e q u i l i b r i a of drugs w i t h s e r u m p r o t e i n a n d l i v e r tissues are s l o w reactions a n d c o m p e t e w i t h each other for drugs, w o u l d result i n a different expression t h a n E q u a t i o n 14. H o w e v e r , analyses of the rates of a c e t y l a t i o n a n d excretion for v a r i o u s test organisms, w h i c h are p h y s i c o c h e m i c a l l y as w e l l as statistically reasonable, are o n l y possible w i t h the present models.
T h e p r o p r i e t y of u s i n g these m o d e l s w o u l d b e
f u r t h e r p r o v e d b y the f o l l o w i n g discussions o n the t i m e of d u r a t i o n . T h e most c o n v e n i e n t p a r a m e t e r w h i c h expresses the t i m e of d u r a t i o n is the v a l u e t , 1/2
w h i c h is i n v e r s e l y p r o p o r t i o n a l to the s u m of the
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
k
Ac
Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
92
BIOLOGICAL CORRELATIONS
pHurine
pHblood
6.4
7.4
Dependence of log k on p K
Figure 4. and k . Ex
T H E HANSCH A P P R O A C H
A l t h o u g h t h e values o f l o g k
Ac
and log k
A
Ex
(rat) can be individually
c o r r e l a t e d b y substituent constants, i t w o u l d b e m a t h e m a t i c a l l y as w e l l as p h y s i c o c h e m i c a l l y difficult to a n a l y z e s i m i l a r l y t h e v a l u e of l o g (k
Ac
k ). Ex
W e d i d not t r y t o a n a l y z e t ,
logt ,
b y substituent constants.
or l o g (k
1/2
1/2
+
directly
+ k )
Ac
Ex
Instead, w e c h e c k e d t h e p h y s i c o c h e m i c a l c o n
ditions w h i c h m a k e b o t h the l o g k
Ac
and log k
Ex
s i m u l t a n e o u s l y , so that the v a l u e of t
i/2
values as s m a l l as possible,
w o u l d be maximum.
B y t a k i n g the p a r t i a l differentials o f E q u a t i o n s 28 a n d 38, w e u n d e r s t a n d h o w t h e values o f l o g k
andlog k
Ac
Ex
for the rat vary according
to the variations of the pK a n d π values o f the N - l - s u b s t i t u e n t . E q u a t i o n s A
53 a n d 54 are the p a r t i a l differentials w i t h respect to p K , w h i c h i n d i c a t e A
that plots o f b o t h t h e l o g k values against \)K consist o f t w o phases as A
s h o w n i n F i g u r e 4. T h e l o g k
Ac
v a l u e decreases w i t h a d e c l i n e i n the ipK
A
of d r u g b e y o n d t h e v a l u e o f b l o o d p H w h i l e t h e l o g k
Ex
w i t h a d e c r e a s i n g pK
A
v a l u e increases
value beyond the urinary p H value.
Since the
u r i n a r y p H f o r the rat is a b o u t 6.4 ± 0.2 ( w h i c h is s m a l l e r t h a n that f o r b l o o d w h i c h is ca. 7 . 4 ) , w e w o u l d expect that w h e n t h e p K
A
of a drug
is l o c a t e d b e t w e e n these t w o p H values, b o t h l o g k values o f t h e d r u g w o u l d b e as s m a l l as possible s i m u l t a n e o u s l y . dlog k dpK
K
dlog k dpK
K
A
+ [H+l blood
Ex
A
(53)
A
Ac
A
K
A
+
[H+U
-0.176
(54)
C o m p a r i n g t h e p a r t i a l differentials w i t h respect to π of E q u a t i o n s 28 a n d 38 ( E q u a t i o n s 5 5 a n d 5 6 ) , w e see that t h e d e p e n d e n c e o f b o t h l o g k values o n π is almost opposite.
T h e larger t h e π v a l u e , t h e faster
the rate o f a c e t y l a t i o n a n d t h e s l o w e r that o f excretion. T h u s , w e c o u l d
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6.
Metabolism
FUJITA
and Excretion
of
93
Sulfonamides
not expect a h y d r o p h o b i c p r o p e r t y w h i c h w o u l d m a k e b o t h t h e l o g k values as s m a l l as possible.
If, h o w e v e r ,
t h e s m a l l difference
i n the
absolute values b e t w e e n p a r t i a l differentials c o u l d b e g i v e n a m e a n i n g , the l a r g e r the ττ v a l u e , the larger w o u l d b e t h e t i m e o f d u r a t i o n since t h e s u s c e p t i b i l i t y o f t u b u l a r r e a b s o r p t i o n to the h y d r o p h o b i c i t y is larger t h a n that o f h e p a t i c a c e t y l a t i o n . dlog
k
Ac
dlog k dx Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
Ex
F i g u r e 5 shows the t
0.821
(55)
-0.992
(56)
values for the rat, o b t a i n e d f o r 12 s u l f o n a m i d e
1/2
drugs ( 7 ) , p l o t t e d against pK . A
cussions are q u a l i t a t i v e l y correct.
T h i s figure shows that t h e a b o v e d i s The pK
A
values o f drugs w h i c h h a v e
•S-monomethoxine •S-diazine
•i S-dimethoxine
S-methoxypyridazine
9 H
10 i H Sulfanilamide
PK
10
A
20
30
t
1/2
Figure 5. p K and time of duration (rat). For acetosulfamine and sulfadimethoxine where different routes of hepatic metabolism are suggested, the t values are expressed by dotted columns. A
1/2
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
94
BIOLOGICAL CORRELATIONS
T H E HANSCH APPROACH
4H
f S-isoxasole ___-_-_-zj Acetosulfamine
S-monomethoxine S-dimethoxine
S-diazine ^S-thiazole
7 H Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
1
• S-merazine S-methoxypyridazine
S-isomidine
1
1
10
20
30
t
|
/
2
Figure 6. p K and time of duration (human). For acetosulfamine, sulfis oxazole, sulfisomidine, and sulfadimethoxine, where different mechanisms of renal excretion and hepatic metabolism are suggested by others, the t values are expressed by blank and dotted columns; see text. A
1/2
longer times o f d u r a t i o n are m o s t l y l o c a t e d i n t h e r a n g e p r e d i c t e d a b o v e —i.e., b e t w e e n t h e u r i n a r y a n d b l o o d p H values, pK
A
= 6 ^ 7.4. T h e
times o f d u r a t i o n o f s u l f a t h i a z o l e a n d sulfisomidine w h i c h are q u i t e short for t h e i r o p t i m u m pK values c a n b e u n d e r s t o o d b y t h e i r s m a l l π values. A
Since u r i n a r y a n d b l o o d p H values are s i m i l a r t o those f o r t h e rat, t h e a b o v e discussion c o u l d also b e a p p l i e d to the t i m e o f d u r a t i o n f o r h u m a n s . F i g u r e 6 shows that w h a t w e expect is also correct f o r t h e t
1/2
data
o b t a i n e d b y R i e d e r a n d others (4, 12). F o r t h e r a b b i t , t h e s i t u a t i o n is different. E q u a t i o n s 31 a n d 4 7 w i t h respect to pK
A
57-60.
P a r t i a l differentials o f
a n d π are g i v e n as E q u a t i o n s
A c c o r d i n g t o E q u a t i o n s 57 a n d 58, w e c a n d r a w b i p h a s i c plots dlog k
Ac
dpK
A
K
A
=
K
A
+ [H+] blood
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
(57)
6.
Metabolism
FUJITA
and Excretion
of
95
Sulfonamides
log k
Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
pHibloody pH 8.8
7.4 Figure 7.
Dependence of log k on p K
A
(rabbit)
4 -
5 -
6
7H
S-isomidine 8
9
10 H
Sulfanilamide
10
PKA
20
1 1/2
Figure 8. p K and time of duration (rabbit). For acetosulfamine and sulfadimethoxine where different mechanisms of hepatic metabolism are suggested by others, the t values are expressed by dotted columns. A
I / 2
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
96
BIOLOGICAL CORRELATIONS
T H E HANSCH A P P R O A C H
for l o g k vs. pK , as s h o w n i n F i g u r e 7. H e r e , t h e u r i n a r y p H , 8.8, is A
h i g h e r t h a n t h a t o f t h e b l o o d , 7.4. H e n c e , w e c o u l d n o t expect a n y o p t i m u m r a n g e for the pK . C o m p a r i s o n o f E q u a t i o n 59 w i t h 6 0 indicates A
dlog k dx
=
1.160
(59)
dlog k dx
=
-0.512
(60)
Ac
Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
Ex
t h a t h e p a t i c a c e t y l a t i o n is m u c h m o r e susceptible t o h y d r o p h o b i c i t y o f the d r u g t h a n is t u b u l a r r e a b s o r p t i o n i n r a b b i t s . T h e r e f o r e , t h e s m a l l e r the π v a l u e o f the N - l - s u b s t i t u e n t , the larger the t\/ v a l u e w o u l d b e c o m e . 2
T h e reason w h y s u l f a n i l a m i d e a n d sulfisomidine, w i t h π values w h i c h are a m o n g the smallest, h a v e l a r g e t
1/2
values ( 7 ) ( F i g u r e 8 ) c a n b e u n d e r
stood o n this basis. A n a l y s e s u s i n g free energy r e l a t e d e l e c t r o n i c a n d h y d r o p h o b i c
sub
stituent constants a r e c a p a b l e o f i l l u s t r a t i n g t h e rate constants o f h e p a t i c a c e t y l a t i o n a n d r e n a l excretion as w e l l as the t i m e of d u r a t i o n o f s u l f o n a m i d e drugs i n v a r i o u s test organisms.
T h e effects o f d r u g d i s s o c i a t i o n
on b i n d i n g e q u i l i b r i a w i t h various macromolecules
and o n permeability
through membranes
d o p l a y i m p o r t a n t roles i n e l i m i n a t i o n processes.
Although w e made
d r a s t i c assumptions i n d e r i v i n g t h e rate
constant
expressions, t h e reasonable correlations o b t a i n e d s h o w that these m o d e l s for t h e d r u g e l i m i n a t i o n processes are p r a c t i c a l l y u s e f u l a n d that other r e c e n t l y p o s t u l a t e d e l i m i n a t i o n processes—i.e., t u b u l a r active
secretion
(9, 13, 14) a n d N - l - g l u c u r o n i d a t i o n f o l l o w e d b y h e p a t o - b i l i a r y excretion (15), need not be considered
( e x c e p t f o r a f e w c o m p o u n d s ) as f a r as
c o m p o u n d s s t u d i e d i n this w o r k are c o n c e r n e d .
T h u s , w e expect that t h e
procedures d e v e l o p e d here w i l l p r o v i d e i n f o r m a t i o n o n the p h y s i c o c h e m i c a l p r o p e r t i e s w h i c h are f u n d a m e n t a l i n o u r search f o r n e w l o n g - a c t i n g derivatives o f the s u l f o n a m i d e f a m i l y as w e l l as other dissociable drugs. Acknowledgment T h e a u t h o r thanks C o r w i n H a n s c h f o r m a n y suggestive a n d f o r m a k i n g t h e regression analyses.
discussions
H e is also g r a t e f u l to M i n o r u
N a k a j i m a f o r his s u p p o r t o f this w o r k .
Literature Cited 1. Fujita, T., Hansch, C., J. Med. Chem. (1967) 10, 991. 2. Fujita, T., J. Med. Chem. (1972) 15, in press.
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6.
3. 4. 5. 6. 7. 8. 9. 10.
Downloaded by FUDAN UNIV on February 15, 2017 | http://pubs.acs.org Publication Date: August 1, 1974 | doi: 10.1021/ba-1972-0114.ch006
11. 12. 13. 14. 15. 16.
FUJITA
Metabolism
and Excretion
of
Sulfonamides
97
Krüger-Thiemer, E., Bünger, P., Chemotherapia (1965/1966) 10, 61, 129. Rieder, J., Arzneimittel-Forsch. (1963) 13, 81. Nelson, E., J. Pharm. Sci. (1961) 50, 181. Nogami, H., Hasegawa, Α., Hanano, M., Imaoka, K., Yakugaku Zasssi (1968) 88, 893. Yamazaki, M., Aoki, M., Kamada, Α., Chem. Pharm. Bull. (1968) 16, 707, 721. Kakemi, K., Arita, T., Koizumi, T., Arch. Pract. Pharm. (1965) 25, 22. Koizumi, T., Arita, T., Kakemi, K., Chem. Pharm. Bull. (1964) 12, 428. Yoshioka, M., Hamamoto, K., Kubota, T., J. Chem. Soc., Japan (1963) 84, 412. Bridges, J. W., Kibby, M. R., Walker, S. R., Williams, R. T., Biochem. J. (1969) 111, 167. Zbinden, G., ADVAN. CHEM. SER. (1964) 45, 25. Despopoulos, Α., Callahan, P. X., Am. J. Physiol. (1962) 203, 19. Arita, T., Hori, R., Owada, E., Takahashi, K., Chem. Pharm. Bull. (1969) 17, 2526. Millburn, P., Smith, R. L., Williams, R. T., Biochem. J. (1967) 105, 1283. Yamazaki, M., Aoki, M., Kamada, Α., Yata, N., Arch. Pract. Pharm. (1967) 27, 37.
RECEIVED
June 17, 1971.
Van Valkenburg; Biological Correlations—The Hansch Approach Advances in Chemistry; American Chemical Society: Washington, DC, 1974.