Chapter 19
Biological Monitoring Technology for Measurement of Applicator Exposure
Downloaded via NORTHWESTERN UNIV on July 10, 2018 at 05:46:12 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
S. Dubelman and J. E. Cowell Monsanto Agricultural Company, Monsanto Company, St. Louis, MO 63198
The measurement of a pesticide and its metabolites in urine is a direct and accurate means of determining actual applicator exposure. Biological monitoring studies with alachlor are used here to exemplify the techniques necessary for conducting a study and deter mining body dose. Animal metabolism and pharmacokinetic studies provided data about the nature of the metabo l i t e s , the elimination pathway (urine/feces) and the kinetics of excretion. Urine from applicators using alachlor was collected for a 5 day period following application. Twelve-hour urine composites were analyzed by GCMS or HPLC for DEA and HEEA, the chemophores derived from alachlor and its metabolites. Method sensitivity was 5.0 ppb (μg/L) for the total measured residue. Appropriate correction factors derived from animal studies were applied to the measured urinary excretion to determine the body dose. Background A number o f t e c h n i q u e s a r e c u r r e n t l y used t o m o n i t o r a p p l i c a t o r exposure t o p e s t i c i d e s . These i n c l u d e p a s s i v e d o s i m e t r y , b i o l o g i c a l m o n i t o r i n g and f l u o r e s c e n c e v i d e o imaging. T a b l e I shows a comparison o f the d i s t i n c t i v e f e a t u r e s o f each t e c h n i q u e . The main advantage o f p a s s i v e d o s i m e t r y i s t h e ease w i t h which samples can be o b t a i n e d and a n a l y z e d . Analysis i s usually f o r the p a r e n t p e s t i c i d e o n l y , and no metabolism i n f o r m a t i o n i s necessary. T h i s method produces data t h a t i s s u i t a b l e f o r i n c l u s i o n i n g e n e r i c databases c o n t a i n i n g l a r g e numbers o f s t u d i e s w i t h d i f f e r e n t p e s t i c i d e s . T h i s t e c h n i q u e can be used t o measure expo0097-6156/89/0382-0240$06.00/0 © 1989 American Chemical Society
Wang et al.; Biological Monitoring for Pesticide Exposure ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
19.
DUBELMAN AND COWELL
Table I. Technique
Biological Monitoring Technology
241
Comparison o f Exposure Measurement Techniques Measurement
Advantage/Best
Use
Passive Dosimetry
Dermal D e p o s i t i o n (Patches) Inhalation (Air Sampling) Parent P e s t i c i d e Analysis
D i s c r e t e Work Activities Most V u l n e r a b l e Body Areas Simple A n a l y s i s S e p a r a t e Dermal Inhalation Values
Fluorescence/ Imaging
Dermal D e p o s i t i o n (Video Imaging) F l u o r e s c e n t Dye Quantitation
Most V u l n e r a b l e Body Areas E s t i m a t i o n o f Dermal Deposition Education/Training
Biological Monitoring
Excreted P o r t i o n of Body Dose ( U r i n e )
I n t e g r a t e d Exposure: I n h a l a t i o n + Dermal + Ingestion No Need f o r Dermal Absorption Factor No C l o t h i n g P e n e t r a t i o n Assumption C l o s e s t Estimate of T o t a l Body Dose
Pesticide + Metabolite Analysis
sures r e c e i v e d d u r i n g d i s c r e t e work a c t i v i t i e s w i t h i n a workday, which makes i t v a l u a b l e i n e v a l u a t i n g exposure r e d u c t i o n p r a c tices. There are s e v e r a l d i s a d v a n t a g e s i n u s i n g p a s s i v e d o s i m e t r y f o r c a l c u l a t i o n o f body dose. One i s the need t o measure the amount of c h e m i c a l absorbed t h r o u g h the s k i n and l u n g s , o r t o assume 100% a b s o r p t i o n o f the compound. The l a t t e r assumption i s not supported by a number o f r e c e n t s t u d i e s . A l a r g e source o f e r r o r i s a l s o i n h e r e n t i n the e x t r a p o l a t i o n of r e s i d u e s found i n r e l a t i v e l y s m a l l t r a p p i n g d e v i c e s ( e . g . , gauze p a t c h e s ) t o e n t i r e body s u r f a c e a r e a s . S i n c e the p a t c h e s g e n e r a l l y cover 6% o r l e s s o f the body, exposure c o u l d be g r o s s l y over- o r u n d e r - e s t i m a t e d i f p e s t i c i d e d r o p l e t s h i t o r miss the p a t c h . An a d d i t i o n a l assumption l e a d i n g t o over- o r u n d e r - e s t i m a t i o n i n v o l v e s the amount o f p e s t i c i d e i n t e r c e p t e d by c l o t h i n g d u r i n g p e s t i c i d e a p p l i c a t i o n . Scenari o s u s i n g no p r o t e c t i o n (nude a p p l i c a t o r ) , 50%, 80%, o r 100% c l o t h i n g p r o t e c t i o n have been used by EPA i n c a l c u l a t i n g body doses from gauze p a t c h data f o r a number o f p e s t i c i d e s . E s t i m a t e s o f body dose can range s e v e r a l o r d e r s o f magnitude depending on how much body s u r f a c e i s assumed t o be p r o t e c t e d by c l o t h i n g . V i d e o imaging w i t h f l u o r e s c e n t t r a c e r s i s not y e t w i d e l y used. An o b s t a c l e t o w i d e s p r e a d use i s the c u r r e n t u n a v a i l a b i l i t y o f n o n t o x i c f l u o r e s c e n t t r a c e r s w h i c h would be c o m p a t i b l e w i t h a wide
Wang et al.; Biological Monitoring for Pesticide Exposure ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
BIOLOGICAL MONITORING FOR PESTICIDE EXPOSURE
242
range o f a g r i c u l t u r a l f o r m u l a t i o n s . The t e c h n i q u e q u a n t i f i e s dermal d e p o s i t i o n , which i s o f t e n t h e major component o f t h e exposure, b u t does n o t account f o r t h e p o r t i o n o f t h e dose r e s u l t i n g from i n h a l a t i o n o r i n g e s t i o n . E s t i m a t e s o f dermal p e n e t r a t i o n are s t i l l n e c e s s a r y f o r c a l c u l a t i o n o f body dose. An i m p o r t a n t advantage o f t h e t e c h n i q u e i s i t s a b i l i t y t o p r o v i d e a v i s u a l q u a l i t a t i v e assessment o f t h e a f f e c t e d body a r e a s . T h i s knowledge can be used t o d e s i g n exposure r e d u c t i o n measures and t o educate a g r i c u l t u r a l workers. The p r i m a r y advantage o f b i o l o g i c a l m o n i t o r i n g i s t h a t t h e a c t u a l body dose can be d i r e c t l y determined by measuring t h e concentration of the p e s t i c i d e or i t s metabolites i n the urine. T h i s dose i n c l u d e s exposure from a l l s o u r c e s : dermal, i n h a l a t i o n and i n g e s t i o n . There i s no need t o determine dermal a b s o r p t i o n o r c l o t h i n g p e n e t r a t i o n f a c t o r s , s i n c e a l l these a r e i n t r i n s i c and accounted f o r i n t h e m o n i t o r i n g . The main disadvantage o f t h e t e c h n i q u e i s t h a t d e t a i l e d knowledge o f metabolism and e x c r e t i o n k i n e t i c s i s needed b e f o r e q u a n t i t a t i v e s t u d i e s can be conducted. I n a d d i t i o n , t h i s t e c h n i q u e i s a p p l i c a b l e o n l y t o those chemicals where u r i n e i s t h e major r o u t e o f e x c r e t i o n . N e i t h e r b l o o d n o r f e c e s a r e p r a c t i c a l m a t r i x e s f o r t h e measurement o f t o t a l exposure. Alachlor Studies:
M e t a b o l i s m , E x c r e t i o n and Methods
M e t a b o l i s m and e x c r e t i o n k i n e t i c s s h o u l d be known b e f o r e t h e b i o l o g i c a l m o n i t o r i n g study a r e conducted. R e s u l t s o f these studies f o r a l a c h l o r , 2-chloro-2 ,6 -diethyl-N-(methoxymethyl) a c e t a n i l i d e , t h e a c t i v e i n g r e d i e n t i n Lasso h e r b i c i d e (Monsanto Co.), a r e shown i n T a b l e I I . The r a t metabolism s t u d y ( o r a l d o s i n g ) , r e q u i r e d f o r r e g i s t r a t i o n under FIFRA, p r o v i d e d m e t a b o l i t e i d e n t i f i c a t i o n data w h i c h s e r v e d as a b a s i s f o r d e v e l o p i n g a n a l y t i c a l methods f o r use i n t h e a p p l i c a t o r exposure s t u d y . 1
TABLE I I .
1
R e s u l t s o f M e t a b o l i s m and E x c r e t i o n S t u d i e s on A l a c h l o r
Study Oral Dosing C-Rats
Results I d e n t i f i c a t i o n o f Many M e t a b o l i t e s Y i e l d i n g E i t h e r DEA o r HEEA Upon Hydrolysis
O r a l Dosing C-Mice
I d e n t i f i c a t i o n of Metabolites Containing DEA and HEEA; S p e c i e s Comparison
Intravenous Dosing C-Monkeys
97% Dose Recovered i n U r i n e + Feces 87% Dose E x c r e t e d i n U r i n e 80% Dose E x c r e t e d i n 48 Hours Q u a n t i t a t i o n o f DEA/HEEA R a t i o
Dermal A b s o r p t i o n C-Monkeys
8.5% o f Dose Absorbed Through S k i n 88% o f Dose i n U r i n e
1 4
1 4
14
14
Wang et al.; Biological Monitoring for Pesticide Exposure ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
19.
DUBELMAN AND COWELL
Biological Monitoring Technology
243
F o r a l a c h l o r , the mouse metabolism study d i d not p r o v i d e much a d d i t i o n a l knowledge a p p l i c a b l e t o the exposure s t u d y , except f o r c o r r o b o r a t i o n o f m e t a b o l i t e p r o f i l e s and a d d i t i o n a l s p e c i e s compari s o n o f e x c r e t i o n pathways. The i n t r a v e n o u s i n j e c t i o n o f C - l a b e l e d p e s t i c i d e t o monkeys was used t o determine e x c r e t o r y r e c o v e r y and d i s t r i b u t i o n o f the t o t a l amount o f c h e m i c a l between u r i n e and f e c e s . T h i s s t u d y p r o v i d e d c o r r e c t i o n f a c t o r s f o r human e x c r e t o r y r e c o v e r y . Dermal a p p l i c a t i o n o f C - l a b e l e d a l a c h l o r t o monkeys p r o v i d e d e x c r e t i o n data t o determine the l e n g t h o f time f o r u r i n e c o l l e c t i o n by humans. The i n t r a v e n o u s and dermal monkey s t u d i e s showed t h a t 87-88% of the a d m i n i s t e r e d dose was e x c r e t e d i n the monkey u r i n e , and e x c r e t i o n was e s s e n t i a l l y complete f o u r days a f t e r dose a d m i n i s t r a t i o n . T h i s s e r v e d as a b a s i s f o r d e t e r m i n i n g t h a t u r i n e samples would be c o l l e c t e d f o r 5 days i n the a p p l i c a t o r exposure s t u d i e s , and a n a l y t i c a l r e s u l t s would be c o r r e c t e d f o r the 88% e x c r e t o r y f a c t o r i n o r d e r t o a r r i v e a t a t o t a l body dose. T h i s c o r r e c t i o n was i n a d d i t i o n t o a n a l y t i c a l c o r r e c t i o n s n o r m a l l y a p p l i e d f o r l o s s e s i n the r e s i d u e method. A s p e c i e s comparison f o r e x c r e t o r y r e c o v e r y and m e t a b o l i t e c l a s s i f i c a t i o n i s g i v e n i n Table I I I , w h i c h showed the m e t a b o l i t e p a t t e r n i n human and monkey u r i n e t o be n e a r l y i d e n t i c a l . 1 4
1 4
Table I I I . Comparison o f E x c r e t i o n P r o f i l e s and M e t a b o l i t e C l a s s i f i c a t i o n i n Various Species
% 1 4 c -- E x c r e t i o n Urine Feces
% Metabolite Class HEEA DEA
Rat
50
50
35
65
Mouse
35
65
40
60
Monkey
88
12
80
20
Human
—
—
80
20
The rodent and monkey metabolism s t u d i e s i n d i c a t e d t h a t a l a c h l o r was r a p i d l y t r a n s f o r m e d t o a number o f m e t a b o l i t e s t h a t c o n t a i n e d d i e t h y l - a n i l i n e (DEA) and 2 - ( l - h y d r o x y e t h y l ) - e t h y l a n i l i n e (HEEA) m o i e t i e s . An a n a l y t i c a l method f o r measuring these metabol i t e s i n the u r i n e of a p p l i c a t o r s was then developed based on h y d r o l y t i c c o n v e r s i o n o f a l l m e t a b o l i t e s t o DEA and HEEA, as shown i n F i g u r e 1. The l i b e r a t e d a n i l i n e s were t h e n q u a n t i t a t e d by n e g a t i v e c h e m i c a l i o n i z a t i o n GCMS ( I n d i a n a and Canada s t u d i e s ) a f t e r convers i o n t o the c o r r e s p o n d i n g h e p t a f l u o r o b u t y r i c a n h y d r i d e (HFBA) d e r i v a t i v e s , o r d i r e c t l y by HPLC w i t h e l e c t r o c h e m i c a l detection (Missouri studies).
Wang et al.; Biological Monitoring for Pesticide Exposure ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
244
BIOLOGICAL MONITORING FOR PESTICIDE EXPOSURE
The s e n s i t i v i t y o f the methods was each m e t a b o l i t e c l a s s .
5.0
PPB,
o r 2.5
ppb
for
F i e l d Procedures Based on the monkey e x c r e t i o n s t u d i e s , a p e r i o d o f 5 days was e s t a b l i s h e d f o r c o l l e c t i o n o f a p p l i c a t o r u r i n e . Male a p p l i c a t o r s c o l l e c t e d each u r i n e v o i d i n a s e p a r a t e g l a s s b o t t l e and d e l i v e r e d the c o n t a i n e r s d a i l y t o the study a d m i n i s t r a t o r . The study admini s t r a t o r combined the v a r i o u s u r i n e v o i d s i n t o 12-hour composites f o r each a p p l i c a t o r and r e c o r d e d the d a i l y volumes. A l l samples were l a b e l e d w i t h name, date and time o f c o l l e c t i o n and s t o r e d frozen u n t i l analyzed. C o n t r o l o r b a s e l i n e u r i n e samples were c o l l e c t e d from each a p p l i c a t o r p r i o r t o the exposure study. C o n t r o l u r i n e was f o r t i f i e d i n the f i e l d w i t h r e p r e s e n t a t i v e m e t a b o l i t e s and h a n d l e d e x a c t l y as the "exposure" samples. These samples p r o v i d e d r e c o v e r y data and c o r r e c t i o n f a c t o r s t o compensate f o r any l o s s e s d u r i n g t r a n s p o r t , s t o r a g e o r a n a l y s i s . F i e l d i n f o r m a t i o n was c o l l e c t e d on s p e c i a l l y d e s i g n e d f i e l d s u r v e y forms. Data c o l l e c t e d d e s c r i b e the c o n d i t i o n s o f each a p p l i c a t i o n , and i n c l u d e d weather, a p p l i c a t i o n d e t a i l s , p e r s o n a l c l o t h i n g and h y g i e n e , wind speed and d i r e c t i o n , h u m i d i t y , type o f equipment, amount o f a l a c h l o r a p p l i e d , p r o t e c t i v e equipment ( g l o v e s , g o g g l e s ) , body w e i g h t and a number of o t h e r i t e m s . Photographs and c o n t i n u o u s v i d e o t a p e s p r o v i d e d a d d i t i o n a l documentation. F o r the M i s s o u r i and Canadian s t u d i e s , an attempt was made t o c o r r e l a t e the b i o l o g i c a l m o n i t o r i n g r e s u l t s w i t h r e s u l t s from passive dosimeters. F o r t h a t p u r p o s e , 6 gauze p a t c h e s , 10 X 10 cm were a t t a c h e d t o the c l o t h i n g n e a r the forehead ( c a p ) , back ( s h i r t ) , c h e s t ( s h i r t ) , c h e s t ( u n d e r s h i r t ) , forearm ( s l e e v e on dominant arm) and t h i g h (pant l e g ) . Care was t a k e n t o l o c a t e t h e s e so as not t o b l o c k exposed s k i n s u r f a c e s . No gauze pads were used i n the I n d i a n a study. R e s u l t s and
Discussion
R e s u l t s from r e c o v e r y experiments o f l a b o r a t o r y and f i e l d f o r t i f i c a t i o n s are shown i n T a b l e s IV ( u r i n e ) and V (gauze p a d s ) . These were used t o c o r r e c t the v a l u e s o b t a i n e d i n each c o r r e s p o n d i n g study. I n g e n e r a l , t h e r e was r e a s o n a b l e agreement between l a b o r a t o r y and f i e l d r e c o v e r i e s , i n d i c a t i n g t h a t l o s s e s were l a r g e l y due t o a n a l y t i c a l p r o c e d u r e s , not t r a n s p o r t o r s t o r a g e s t a b i l i t y factors. A summary o f data o b t a i n e d f o r a l l a p p l i c a t o r s i s shown i n T a b l e V I . The body dose i s e x p r e s s e d i n micrograms per k i l o g r a m body w e i g h t per pound a c t i v e i n g r e d i e n t a p p l i e d ( p g / k g / l b ) . This i s a c o n v e n i e n t u n i t t h a t a l l o w s e x t r a p o l a t i o n t o any number of c o n d i t i o n s when the data i s l a t e r used f o r r i s k assessment. Any one o f the b i o l o g i c a l m o n i t o r i n g v a l u e s i n T a b l e VI can be c a l c u l a t e d as f o l l o w s : The t o t a l amount o f a l a c h l o r m e t a b o l i t e s e x c r e t e d by the a p p l i c a t o r d u r i n g the days f o l l o w i n g the a p p l i c a t i o n i s o b t a i n e d by a d d i n g the v a l u e s found i n each u r i n e sample
Wang et al.; Biological Monitoring for Pesticide Exposure ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Wang et al.; Biological Monitoring for Pesticide Exposure ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
96.2
15.3
Recov. Mean (%)
Std.
1985 = M i s s o u r i
19841 = I n d i a n a
1984C = Canada
HPLC/EC
8
95
72
2.52500
LAB 19841
GC/MS
34
No. o f S p i k e s
Dev.
10200
Fortification Range (ppb)
1984C
14.3
85.9
143
2.550
1985
20.3
18
95
48
24
100
1000
FIELD 19841
10200
1984C
8.1
85.1
18
2.525
1985
72
67
34
65.6
16
2.52500
10200
13.2
LAB 19841
1984C
11.6
87.2
141
2.550
1985
8.9
67.8
16
64
48
51000
10200
24
FIELD 19841
1984C
HEEA - Y i e l d i n g M e t a b o l i t e s
A l a c h l o r Recovery S t u d i e s - U r i n e
DEA - Y i e l d i n g M e t a b o l i e s
TABLE IV.
7.5
74.1
18
2.5250
1985
246
BIOLOGICAL MONITORING FOR PESTICIDE EXPOSURE
H
{
HYDROLYSIS
-N
H
DEA YIELDING ALACHLOR METABOLITES
HYDROLYSIS
HEEA YIELDING ALACHLOR METABOLITES F i g u r e 1. a n d HEEA.
Hydrolysis
TABLE V.
of Alachlor Metabolites
t o DEA
A l a c h l o r Recovery S t u d i e s - Gauze Pads
LAB
FIELD 1984 ( c ) 1985
1984 ( c )
1985
Fortification Range (pg)
0.01-600
0.5-5000
0.01-40
0.5-5000
No. o f S p i k e s
12
27
16
56
89.7
69.6
89.2
7.3
24.5
11.2
Recovery Mean (%)
S t d . Dev.
104
11.5
1984 = Canadian Study 1985 = M i s s o u r i Study
Wang et al.; Biological Monitoring for Pesticide Exposure ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
19. DUBELMAN AND COWELL
TABLE V I .
Biological Monitoring Technology
247
A l a c h l o r Body Dose E s t i m a t e s
Study/ A p p l i c a t o r Formul. Body Dose ( f j g / k g / l b ) A p p l i c a t o r No. Weight(kg) Oper.(1) B i o l . M o n i t . ( 2 ) P a s s i v e Dos.(3) IND IND IND IND CAN CAN
01 03 05 07 01 05
85 80 86 84 70. ,5 81. ,8
EC/MLA EC/MLA EC/MLA EC/MLA EC/MLA EC/MLA
0. 00526 0. 00574 0 0. 000676 0. 0270 0. 0199
IND IND IND IND CAN CAN MO MO MO MO
02 04 06 08 03 04 05 07 09 10
86 59 89 64 95. ,5 79. ,5 68. ,1 77. .2 63. .6 90, .8
MT/MLA MT/MLA MT/MLA MT/MLA MT/MLA MT/MLA MT/MLA MT/MLA MT/MLA MT/MLA
0. 0218 0. 0227 0. 00425 0. 00249 0.,112 0.,0405 0.,000722 0..00123 0 0..00149
0.0813 0.000153 0.000566 0.00135 0.000201
MO MO MO MO
06 08 11 12
95. .3 88. .5 79, .5 86, .3
WDG/MLA WDG/MLA WDG/MLA WDG/MLA
0..00158 0.,00231 0..000559 0
0.000268 0.000354 0.000332 0.000927
MO MO MO MO
27 28 29 30
70, .4 74, .9 74, .9 70, .4
EC/ML EC/ML EC/ML EC/ML
0 0 0,.00269 0
0 0.0000127 0.0000224 0
MO MO MO MO
25 26 31 32
77, .2 84, .0 81 .7 77 .2
MT/ML MT/ML MT/ML MT/ML
0,.000559 0,.000135 0 .000372 0 .00130
0.0000702 0.0000112 0.000184 0.000403
MO MO MO MO
33 34 35 36
81 .7 77 .2 102 .0 72 .6
WDG/ML WDG/ML WDG/ML WDG/ML
0 .000294 0 .000300 0 .000398 0 .000228
0.000118 0.000389 0.000102 0.000310
MLA = M i x e r / L o a d e r & A p p l i c a t i o n ML = M i x e r / L o a d e r Only
(1) (2) (3)
-
0.0151 0.128
1.38
IND = I n d i a n a CAN = Canada MO = M i s s o u r i
A l l US a p p l i c a t o r s a p p l i e d 80 l b a l a c h l o r t o 20 a c r e s ; Canadi a n s a p p l i e d 160 l b t o 40 a c r e s (EC) o r 150 t o 37 a c r e s (MT). C o r r e c t e d f o r 8 8 % u r i n a r y e x c r e t i o n (l4C/monkey e x c r e t i o n ) A d j u s t e d f o r 8.5% dermal a b s o r p t i o n (l4C/monkey dermal s t u d y )
American Chemical Society Library 1155 16th St. f N.VY.
Wang et al.; Biological Monitoring for Pesticide Exposure Washington, O.C. 20036 ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
248
BIOLOGICAL MONITORING FOR PESTICIDE EXPOSURE
c o l l e c t e d from t h e a p p l i c a t o r . F o r example, Table V I I shows t h a t M i s s o u r i A p p l i c a t o r #10 e x c r e t e d a t o t a l o f 9.48 Mg a l a c h l o r a f t e r a p p l i c a t i o n o f 80 l b a l a c h l o r t o a 20 a c r e p l o t (4 l b / a c r e ) . T h i s v a l u e i s then c o r r e c t e d f o r t h e 88% e x c r e t o r y r e c o v e r y o b t a i n e d i n t h e C-monkey s t u d i e s , and n o r m a l i z e d f o r body weight and pounds o f a c t i v e i n g r e d i e n t a p p l i e d : 14
9.48 Mg 0.88
1
x
1
x
90 kg body weight
0.00149 Mg/kg/lb
=
80 l b a p p l i e d
The v a l u e 0.00149 Mg/kg/lb i s shown i n t h e body dose column ( b i o l . m o n i t o r i n g ) o f Table VI under a p p l i c a t o r "MO 10". The v a l u e s i n t h e n e x t column o f Table V I , i . e . , body dose from t h e p a s s i v e d o s i m e t r y s t u d i e s , a r e c a l c u l a t e d from gauze pads by m u l t i p l y i n g t h e pad v a l u e by t h e exposed body area w h i c h i t represents: 2
Body dose (Mg/kg/lb) = measured ( g / c m ) X H
body weight
(kg)
X
exposed s k i n
2
(cm )
l b applied
2
2
Areas o f exposed s k i n were 650 cm f o r t h e f a c e , 150 cm f o r the f r o n t o f t h e neck and 110 cm f o r t h e back o f t h e neck (Davies 1980). A l l o t h e r areas were assumed t o be p r o t e c t e d by the c l o t h i n g . The hands were p r o t e c t e d by rubber g l o v e s , as p e r l a b e l d i r e c t i o n s . The measured v a l u e s were c o r r e c t e d f o r t h e 8.5% dermal a b s o r p t i o n o b t a i n e d i n t h e C - d e r m a l monkey s t u d i e s , p r o d u c i n g t h e body dose v a l u e s shown i n T a b l e V I . I n h a l a t i o n was n o t measured, but was p r e v i o u s l y shown t o be n e g l i g i b l e i n comparison t o dermal 2
14
TABLE V I I .
E x c r e t i o n P r o f i l e f o r M i s s o u r i A p p l i c a t o r #10 2
1
Hours A f t e r Application 0-12 12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120
Combined* Pesticide/ Metabolite Residue (Mg/mL) 0.01414 0.00499 0.00280 N.D. N.D. N.D. N.D. N.D. N.D. N.D.
3
Volume of Urine (mL) 434 451 388 691 1214 270 809 875 1042 531
Total excreted
4
Total* Mg 6.14 2.25 1.09 0 0 0 0 0 0 0 9.48
Mg
* Results corrected f o r a n a l y t i c a l / f i e l d f o r t i f i c a t i o n recovery N.D. = n o t d e t e c t e d (LOD = 0.0025 Mg/mL) ± T o t a l Mg o b t a i n e d by m u l t i p l y i n g t h e v a l u e i n column 2 w i t h t h e c o r r e s p o n d i n g v a l u e i n column 3. i s
Wang et al.; Biological Monitoring for Pesticide Exposure ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
19.
DUBELMAN AND COWELL
249
Biological Monitoring Technology
deposition. (Lauer and A r r a s , 1982; L i b i c h , e t a l . , 1984; Lavy, 1978). There appears t o be no d i f f e r e n c e i n exposure f o r the t h r e e f o r m u l a t i o n s t e s t e d , j u d g i n g by the v a l u e s o b t a i n e d f o r m i x e r l o a d e r s ( a p p l i c a t o r s M025-M036) a p p l y i n g the e m u l s i f i a b l e concent r a t e (Lasso), microencapsulated (Lasso MT), o r water d i s p e r s i b l e g r a n u l e (Lasso WDG) f o r m u l a t i o n s . V a r i a b i l i t y w i t h i n f o r m u l a t i o n s overshadows any p o t e n t i a l d i f f e r e n c e s between f o r m u l a t i o n s , as shown i n F i g u r e 2. S i n c e each o f the s t u d i e s was performed under a d i f f e r e n t s e t of c o n d i t i o n s (open v e r s u s c l o s e d - c a b t r a c t o r , e t c . ) , average body doses were c a l c u l a t e d f o r each s e p a r a t e study. V a l u e s are shown i n Table V I I I . These v a l u e s can be used f o r r i s k assessment c a l c u l a t i o n s under any number o f assumed farm s i z e s o r c o n d i t i o n s . I t s h o u l d be n o t e d , however, t h a t t h e s e v a l u e s are a p p l i c a b l e o n l y t o a p p l i c a t o r s u s i n g s m a l l c o n t a i n e r s , 2.5 - 5.0 g a l l o n s , w h i c h are predominant i n s m a l l farms (