Biologically Active Natural Products - ACS Publications - American

-related compounds have been identified in living systems. Some information ...... then, various other P-C containing analogs have been synthesized an...
1 downloads 0 Views 2MB Size
Chapter 13

Naturally Occurring Carbon—Phosphorus Compounds as Herbicides

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

Robert E. Hoagland Southern Weed Science Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Stoneville, MS 38776

Since the discovery in 1959 of the first naturally occurring compound containing a covalent C-P bond (2-aminoethylphosphonic acid, AEP), many phosphonate-related compounds have been identified in living systems. Some information on distribution, metabolic pathways and chemical properties exists, but no precise role for these compounds is known. In the early 1970's, the importance of some natural and synthetic phosphonates and their biological activity (e.g., antibiotics, herbicides) was recognized. The most successful synthetic phosphonate herbicide is glyphosate [N-(phosphonomethyl)glycine]. Bialaphos (L-2-amino-4-[(hydroxy)(methyl)phosphinoyl] butyryl-L-alanyl-L-alanine), isolated from Streptomyces viridochromogenes, was discovered and reported as an antibiotic (1972),and later found to be herbicidal. Phosalacine, a bialaphos analog, has been isolated from Kitasatosporia phosalacinea. Peptidases cleave amino acid moieties from the latter two compounds yielding the active component phosphinothricin whose site of action is inhibition of glutamine synthetase in plants. This compound is being marketed as the herbicide glufosinate. The biosynthetic pathway for bialaphos and the cloning and characterization of genes that code for these conversions have recently been elucidated. Naturally occurring compounds with potential for use as herbicides have recently become of great interest to weed scientists and agricultural chemists. This interest may be attributed to the facts that natural phytotoxins (1) have a co-evolved species specificity, (2) often have diverse chemistries that could lead to completely novel synthetic herbicides, (3) may have low mammalian toxicity and pose less of a biohazard because they are specific and more biodegradable than many commercial herbicides, and (4) may also be less costly to register as herbicides by regulatory agencies such as EPA. Furthermore, microbial plant pathogens may be directly used to control weeds, and two microorganism products currently are This chapter not subject to U.S. copyright Published 1988 American Chemical Society

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

13. HOAGLAND

Carbon—Phosphorus Compounds as Herbicides

183

c o m m e r i c a l l y a v a i l a b l e f o r weed c o n t r o l (1). T h i s has g e n e r a t e d i n t e r e s t i n t o x i n s produced by t h e s e pathogens as p e s t i c i d e s . Many n a t u r a l l y o c c u r r i n g p h y t o t o x i c compounds have been found t o be produced by h i g h e r p l a n t s , b a c t e r i a , f u n g i , and a n i m a l s . An e x c e l l e n t r e v i e w o f h e r b i c i d e s from some o f t h e s e n a t u r a l s o u r c e s has r e c e n t l y been p u b l i s h e d ( 2 ) . The f o c u s o f t h i s c h a p t e r w i l l be t o examine some o f t h e n a t u r a l l y o c c u r r i n g phosphonate compounds ( i . e . , b i a l a p h o s , p h o s a l a c i n e , and p h o s p h i n o t h r i c i n ) w i t h r e s p e c t t o t h e i r n a t u r a l s o u r c e s , b i o c h e m i s t r y , and b i o l o g i c a l p r o p e r t i e s . Special reference i s g i v e n t o t h e i r use and/or p o t e n t i a l use as h e r b i c i d e s , i n c l u d i n g t h e i r r e l a t i o n s h i p t o some s y n t h e t i c phosphonates t h a t have been examined f o r b i o l o g i c a l a c t i v i t y . D i s c o v e r y o f Carbon-Phosphorus Compounds i n Nature Phosphorus i s r e q u i r e d f o r t h e growth and r e p r o d u c t i o n o f a l l p l a n t s and a n i m a l s . O r g a n i c phosphorus compounds i n t h e form o f o r t h o p h o s p h a t e s a r e i n v o l v e d i n t h e s e many l i f e p r o c e s s e s and a r e contained i n basic biochemical constituents ( i . e . , proteins, c a r b o h y d r a t e s , n u c l e i c a c i d s , and p h o s p h o l i p i d s ) . They a r e a l s o used i n t h e g e n e r a t i o n o f h i g h energy bonds, p r o v i d e b u f f e r i n g c a p a c i t y , and t h e phosphate m o i e t y i m p a r t s water s o l u b i l i t y t o t h e s e compounds ( 3 ) . In s p i t e o f t h e m u l t i t u d e o f compounds o c c u r r i n g as o r t h o p h o s p h a t e - o x y g e n compounds ( e s t e r s , d i e s t e r s , and p h o s p h o r i c a c i d a n h y d r i d e s ) , some organophosphate compounds o c c u r i n n a t u r e w i t h carbon-phosphorus bonds; i . e . , phosphonates. These compounds had been c o n s i d e r e d as p o s s i b l e n a t u r a l l y o c c u r r i n g compounds by Chavane (4) as e a r l y as 1947, b u t a c t u a l i d e n t i f i c a t i o n o f t h e f i r s t phosphonate i n a l i v i n g system d i d n o t o c c u r u n t i l 1959 when H o r i g u c h i and Kandatsu (5) found 2 - a m i n o e t h y l p h o s p h o n i c a c i d (AEP, F i g u r e 1) i n an amino a c i d h y d r o l y s a t e from rumen p r o t o z o a l l i p i d . Over t h e p a s t 30 y e a r s , numerous r e p o r t s have shown t h e p r e s e n c e o f AEP and o t h e r phosphonates i n a wide range o f organisms, i n c l u d i n g b a c t e r i a , p r o t o z o a , c o e l e n t e r a t e s , m o l l u s c s , and u n i c e l l u l a r p l a n t s . D e t e c t i o n o f Phosphonates The c h e m i s t r y o f phosphonates has d e v e l o p e d r e l a t i v e l y s l o w l y compared t o t h a t o f p h o s p h a t e s . T h i s i s due t o t h e f a c t t h a t t h e carbon-phosphorus bond i s d i f f i c u l t t o s y n t h e s i z e and because o f t h e v a s t amount o f i n f o r m a t i o n on and d i s t r i b u t i o n o f phosphate and orthophosphate e s t e r s . F u r t h e r m o r e , e a r l y s t u d i e s on n a t u r a l phosphonates were slow due t o t h e l a c k o f s e n s i t i v e methodology f o r d e t e c t i o n o f t h e carbon-phosphorus bond. These e a r l y s t u d i e s c o n s i s t e d m o s t l y o f v a r i o u s c h r o m a t o g r a p h i c and i s o l a t i o n techniques. E a r l y a n a l y t i c a l methods f o r t h e d e t e c t i o n o f AEP i n b i o l o g i c a l m a t e r i a l s have been r e v i e w e d ( 6 ) . The p r o c e d u r e s u s u a l l y i n v o l v e d ion-exchange chromatography f o r t h e s e p a r a t i o n o f AEP f o l l o w e d by d e t e c t i o n u s i n g n i n h y d r i n . Various chromatographic m o d i f i c a t i o n s o f t h e s e p r o c e d u r e s have been expanded by s e v e r a l r e s e a c h e r s (7-10). More r e c e n t l y , g a s - l i q u i d chromatography and mass s p e c t r o m e t r y have been employed f o r aminophosphonate determination (11-13). Use o f t h e s e l a t t e r two t e c h n i q u e s o f t e n r e q u i r e s d e r i v i t i z a t i o n (14-16). I s o t a c h o p h o r e s i s has a l s o been used t o a n a l y z e aminophosphonates ( 1 7 ) . The use o f s o p h i s t i c a t e d t e c h n i q u e s such as NMR has made a n a l y s i s o f t i s s u e s and t i s s u e

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

184

BIOLOGICALLY ACTIVE NATURAL PRODUCTS

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

e x t r a c t s more r a p i d and s e n s i t i v e . NMR has been used by a number o f r e s e a r c h e r s f o r m e a s u r i n g phosphonates i n t i s s u e e x t r a c t s (18-21), v a r i o u s b i o l o g i c a l f l u i d s (22, 23), whole c e l l s (24, 25), and s o i l (26). B i o s y n t h e s i s and M e t a b o l i s m o f AEP Phosphonates can undergo v a r i o u s b i o c h e m i c a l t r a n s f o r m a t i o n s which i n v o l v e s y n t h e s i s o r c a t a b o l i s m o f t h e carbon-phosphorus bond, or t h a t p r o c e e d l e a v i n g the C-P bond i n t a c t . This l a t t e r category i n c l u d e s s y n t h e s i s and d e g r a d a t i o n r e a c t i o n s o f p h o s p h o n o l i p i d s , phosphonopeptides, o t h e r complex compounds, and N - m e t h y l a t i o n and t r a n s a m i n a t i o n (27, 28). B e f o r e 1983, e n z y m a t i c c o n v e r s i o n o f p h o s p h o e n o l p y r u v a t e t o 3-phosphonopyruvate v i a i n t r a m o l e c u l a r phosphate-phosphonate rearrangement i n v o l v i n g P O H m i g r a t i o n from oxygen t o c a r b o n was g e n e r a l l y a c c e p t e d (29-34). However, t h e enzyme r e s p o n s i b l e f o r t h i s has not been i s o l a t e d and characterized. In 1983 a l k y l p h o s p h i n o u s a c i d s were d e t e r m i n e d as p r e c u r s o r s o f aminophosphonates ( i n c l u d i n g p h o s p h i n o t h r i c i n ) and a n o v e l pathway o f C-P bond b i o s y n t h e s i s was p r o p o s e d which i n v o l v e s a r e d u c t i o n o f the phosphate t o p h o s p h i t e e s t e r p r i o r t o rearrangement o f p h o s p h o e n o l p y r u v a t e (35-37) ( F i g u r e 2 ) . Reduced 3-phosphonopyruvate may t h e n be o x i d i z e d t o 3-phosphonopyruvate o r d i r e c t l y undergo t r a n s f o r m a t i o n s l e a d i n g t o v a r i o u s a l k y l p h o s p h o n a t e compounds. Confirmation of t h i s proposal requires i s o l a t i o n of r e d u c e d 3-phosphonopyruvate and t h e enzymes i n v o l v e d . D e t a i l s on some o f t h e s e b i o s y n t h e t i c t r a n s f o r m a t i o n s have r e c e n t l y been r e p o r t e d and w i l l be p r e s e n t e d l a t e r i n the s e c t i o n c o n c e r n i n g s y n t h e s i s of bialaphos. a

a

The use o f l a b e l e d p r e s u r s o r s o f AEP i n i n t a c t c e l l s and c e l l - f r e e e x t r a c t s o f Tetrahymena showed t h a t AEP was formed from p h o s p h o n o e n o l p y r u v a t e v i a 3-phosphonopyruvate, but the e x a c t mechanism o f 3-phosphonopyruvate c o n v e r s i o n t o AEP was u n c l e a r . P r e s e n t l y two pathways a r e p r o p o s e d as summarized i n F i g u r e 3. One p r o p o s a l s u g g e s t s a m i n a t i o n f o l l o w e d by d e c a r b o x y l a t i o n o f 3-phosphonoalanine ( 3 1 ) . A second mechanism s u g g e s t s d e c a r b o x y l a t i o n as t h e f i r s t s t e p f o l l o w e d by phosphonoacetaldehyde a m i n a t i o n ( 3 3 ) . Both pathways may be o p e r a t i v e i n some systems (33). B i o s y n t h e s i s o f p h o s p h o n o l i p d s and N-methylated d e r i v a t i v e s have been r e v i e w e d e l s e w h e r e (38, 3 9 ) . D e t a i l s o f c a t a b o l i c r o u t e s o f n a t u r a l phosphonates have not been e x t e n s i v e l y examined e x c e p t f o r AEP and 3-phosphonalanine. In b a c t e r i a AEP i s degraded i n a two-step p r o c e s s i n v o l v i n g t r a n s a m i n a t i o n whereby AEP donates i t s amino group t o p y r u v a t e and i s c o n v e r t e d t o phosphonoacetaldehyde ( F i g u r e 4) (40-43). R e c e n t l y , an enzyme r e s p o n s i b l e f o r t h i s t r a n s a m i n a t i o n s t e p has been p u r i f i e d t o homogeneity from Pseudomonas a e r u g i n o s a ( 4 4 ) . O c c u r r e n c e and D i s t r i b u t i o n o f

Phosphonates

AEP and o t h e r phosphonates have been found i n a wide d i v e r s i t y o f l i v i n g organisms; but t h e s e p l a n t , a n i m a l , and m i c r o b i a l s o u r c e s r e p r e s e n t o n l y a minute f r a c t i o n o f t h e t o t a l l i v i n g organisms. The t r u e e x t e n t o f t h e d i s t r i b u t i o n o f t h e s e compounds i s confounded by (1) the l a c k o f complete s u r v e y s w i t h i n and among s p e c i e s , (2) t h e use o f i n s e n s i t i v e t e c h n i q u e s f o r d e t e c t i o n , and (3) t h e

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

13. HOAGLAND

Carbon—Phosphorus Compounds as Herbicides

0 II H N~CH -CH -P-0H 2

2

2

OH Figure

1.

COOH 0 I

II

C-Q-P-OH II

CH

COOH 0

reduction

I

II

C-Q-P-OH II

I

2

of 2-aminoethylphosphonate

Structure

OH

CH

I

2

(AEP).

0 II

Rearranr gement

C-COOH 1

H

CH I

further transforations

2

H-P-OH II

0 Figure

2.

P r o p o s e d pathway

f o r C-P b o n d

biosynthesis.

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

185

BIOLOGICALLY ACTIVE NATURAL PRODUCTS

NH 0 0 I transamiH decarboxy- U HOOC-C-H — HOOC-C C-H I nation I lation I CH CH CH

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

2

2

2

2

P03H

P0gH

2

2

transami­ nation

decarbo­ xylation CH NH 2

2

CH I P0aH

minor pathway

major pathway

2

2

CH I

2

Ρ0Λ

2

AEP F i g u r e 3.

CH2NH

AEP

Biosynthesis of 2 aminoethylphosphonate

pyruvate \ 2-aminoethylphosphonate

(AEP)

alanine 2-Phosphonoacetaldehyde HpO

p y r i d o x a l phosphate

r acetaldehyde + P i F i g u r e 4. Degradation of 2-aminoethylphosphonate B a c i l l u s cereus.

(AEP)

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

by

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

13.

HOAGLAND

Carbon-Phosphorus Compounds as Herbicides

187

d i s t r i b u t i o n o f phosphonates v i a f o o d c h a i n s t o organisms l a c k i n g biosynthesis routes f o r these materials. T a b l e I summarizes t h e d a t e and s o u r c e o f i s o l a t i o n o f v a r i o u s n a t u r a l l y - o c c u r r i n g phosphonate compounds. Compounds l i s t e d h e r e a r e aminophosphonates, but o t h e r phosphonates which a r e not s u b s t i t u t e d amines have been found. These i n c l u d e t h e a n t i b i o t i c s phosphomycin, phosphazomycin A, and phosphazomycin B; t h e phosphinous a c i d , 2 - h y d r o x y - 2 - c a r b o x y - e t h y l p h o s p h i n a t e ; and oxophosphonates. These oxophosphonates have been shown t o be i n t e r m e d i a t e s i n t h e b i o s y n t h e s i s o f AEP and β-phosphonalanine ( 3 7 ) . Phosphonates u s u a l l y r e p r e s e n t a s m a l l p o r t i o n o f t h e t o t a l phosphorus c o n t e n t o f i n d i v i d u a l s p e c i e s . F o r example, i n f r a c t i o n s o f s e v e r a l marine a n i m a l s , phosphonate p e r c e n t a g e s ranged from 0.16 t o 0.75* o f t o t a l phosphorus ( 5 0 ) . Arainophosphonic a c i d s i s o l a t e d from p l a n k t o n r e p r e s e n t e d 3* o f t h e t o t a l phosphorus c o n t e n t ( 5 1 ) . Phosphonate s t u d i e s i n b a c t e r i a s u g g e s t low l e v e l s ; i . e . , l e s s t h a n 1* o f t o t a l phosphorus (7, 9, 52-55). Phosphonates i n p r o t o z o a a s s o c i a t e d w i t h t h e a l i m e n t a r y t r a c t i n r u m i n a n t s a r e i n t h e range o f s e v e r a l p e r c e n t o f t o t a l phosphorus, but i n o t h e r p r o t o z o a , such as E u g l e n a g r a c i l i s , t h e l e v e l i s 0.10* o f t o t a l phosphorus (53) t o 15* i n T e t r a l y m e n a p y r i f o r m i s ( 1 4 ) . T. p y r i f o r m i s c o n t a i n s r e l a t i v e l y h i g h l i p i d c o n c e n t r a t i o n s i n microsomes and c i l i a (56, 57); and due t o i t s h i g h phosphonate c o n t e n t and ease o f l a b o r a t o r y c u l t u r e , t h i s organism has been used i n many s t u d i e s p e r t a i n i n g t o the b i o c h e m i s t r y o f AEP and l i p i d s c o n t a i n i n g AEP. The phylum C o e l e n t e r a t a has been shown t o c o n t a i n many organisms w i t h phosphonate compounds, some w i t h l e v e l s up t o 50* o f t o t a l phosphorus ( 5 0 ) . Phosphonate o c c u r r e n c e i n o t h e r i n v e r t e b r a t e s i s limited. AEP has, however, been d e t e c t e d i n t h r e e E c h i n o d e r m a t a [two s p e c i e s o f s t a r f i s h (50, 58) and a s e a u r c h i n ( 5 9 ) , and i n one s p e c i e s each o f Nemathelminthes ( 5 3 ) , S p o n g i a ( 5 9 ) ] , and Anne1ides (59) . S e v e r a l a r t h r o p o d s (marine c r u s t a c e a n s ) a l s o c o n t a i n AEP (8). The h i g h e s t l e v e l o f AEP i n l i v i n g t i s s u e y e t r e p o r t e d i s i n s n a i l ( H e l i s o m i a sp) eggs where n e a r l y a l l phosphorus o c c u r s as phosphonate phosphorus and 85* o f t h i s i s AEP ( 2 4 ) . The I s o l a t i o n o f AEP from t i s s u e s o f v a r i o u s r u m i n a t i n g c h o r d a t e s , i n c l u d i n g b r a i n (60) , m i l k ( 6 1 ) , l i v e r ( 6 2 ) , b i l e ( 6 3 ) , b l o o d ( 6 4 ) , and sperm (64) have s u g g e s t e d t o some r e s e a r c h e r s t h a t t h e aminophosphonates p r e s e n t a r e r e l e a s e d by d i g e s t i o n o f p r o t o z o a . Phosphonates have a l s o been found i n n o n - r u m i n a t i n g mammals, i n c l u d i n g r a t ( 1 2 ) , g u i n e a p i g ( 6 5 ) , and man (66, 6 7 ) . AEP has been d e t e c t e d i n human t i s s u e s such as b r a i n , l i v e r , s k e l e t a l muscle, and h e a r t i n amounts o f 0.01, 0.02, 0.04, and 0.06* o f wet w e i g h t , r e s p e c t i v e l y ( 1 1 ) . Phosphonate d i s t r i b u t i o n i n t h e p l a n t kingdom I s a p p a r e n t l y l i m i t e d t o t h e lower f u n g i and u n i c e l l u l a r p l a n t s , but as mentioned p r e v i o u s l y , s u r v e y s a r e i n c o m p l e t e . AEP has been d e t e c t e d i n marine p h y t o p l a n k t o n (68, 51) and i n a fungus, Pythium p r o l a t u m ( 6 9 ) . Enzyme I n h i b i t i o n by V a r i o u s Phosphonate Compounds. The e a r l i e s t r e p o r t o f enzyme i n h i b i t i o n by phosphonate compounds was t h e r e p o r t o f g l u t a m i n e s y n t h e t a s e (GS) i n h i b i t i o n by p h o s p h o n i c a n a l o g s o f g l u t a m i c a c i d ( 7 0 ) . S i n c e t h e n , numerous r e p o r t s have i n d i c a t e d i n t e r a c t i o n s o f phosphonates w i t h many d i f f e r e n t enzymes. T a b l e I I i s a c o m p i l a t i o n o f some enzymes which show i n v i t r o i n h i b i t i o n by v a r i o u s s u b s t i t u t e d phosphonates. S i n c e phosphonates i n h i b i t a wide

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988. a n t i b i o t i c FR-33289 a n t i b i o t i c FR-32863 -

3-(N-acetyl-N-hydroxyamino)-2hycroxypropylphosphonate

3-(N-formyl-N-hydroxyamino)1-t-propenylphosphonate

2-hydroxyphenyl -1-ami noethy1 phosphonate

2-aminoethylphosphinate

2-amino-2-carboxyethyl

3-amino-3-carboxy-propyl(phosphonate)

-

fosmidomycin

3-(Ν-acyl-N-hydroxyami n o ) p r o p y l phosphonate

phosphonate

a n t i b i o t i c FR-900098

-

4-carboxy-4-amino-2-t-butenyl phosphonic a c i d

3-(N-acetyl-N-hydroxyamino)propyl phosphonate

-

2-ami no-1-hydroxyethylphosphonate

phosphinothricin

-

3-amino-3-carboxy-propyl (methylphosphonate)

-

-

2-(N,N,N-trimethyl-2-aminoethyl phosphonate

phosphonate

phosphonate

2-(N,N-dimethyl)2-aminoethyl phosphonate

2-(N-methyl)2-aminoethyl

2-carboxy-2-aminoethyl

0-phosphonoalanine

c i l i a t i n e (AEP)

2-aminoethyl

phosphonate

Common Name

Chemical Name

Aminophosphonates

(1967)

(1967)

(1973)

(1972)

37

StreDtomvces h v a r o s c o D i c u s

(1983)

37

37

27

49

49

49

49

18

48

47

46

46

StreDtomvces h v a r o s c o D i c u s (1983)

StreDtomvces h v a r o s c o D i c u s (1983)

A c t i n o m v c e t e s s t r a i n K-26 (1982) Actinomadura S D i c u l o s o s D o r a

StreDtomvces l a v e n d u l a e (1981)

StreDtomvces r u b e l l o m u r i n u s subsD. i n d i a o f e r u s (1981)

StreDtomvces l a v e n d u l a e (1981)

StreDtomvces r u b e l l o m u r i n e s (1981)

StreDtomvces Dlumbeus (1976)

Acanthamoeba c a s t e l l a n i i

StreDtomvces v i r i d o c h r o m o a e n e s

A. xantoarammica

A. xantoarammica

46

A n t h o D l e u r a xantoarammica

(1967)

45

5

Ref.

Zoanthus s o c i a t u s Tetrahvmena D v r i f o r m e s (1964)

rumen p r o t o z o a (1959)

Date and Source o f f i r s t isolation

T a b l e I. Date and Source o f F i r s t I s o l a t i o n o f V a r i o u s

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

HOAGLAND

Carbon—Phosphorus Compounds as Herbicides

Table I I . J_n v i t r o Enzyme I n h i b i t i o n by Various Aminophosphonates Enzyme name and EC number

Ref.

Adenylosuccinase (4.3.2.2)

'71

Carboxypeptidase A (3.4.2.1)

91, 92

Adenylosuccinase synthetase (6.3.4.4)

71

Carnosine synthetase (6.3.2.11)

93

Cholinesterase (3.1.1.8)

94

Chymotrypsin (3.4.21.1)

95

C y t i d i n e deaminase (3.5.4.5)

96

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

D-Ala-D-Ala synthetase " (6.3.2.4) A l a n i n e dehydrogenase (1.4.1.1) L-Alanine racemase (5.1.1.1)

72, 73, 74 71 75, 76 73

1Ref.

Enzyme name and EC number

A l k a l i n e phosphatase (3.1.3.1)

77

5-Dehydroquinate (4.6.1.3)

83

D-Amino a c i d t r a n s aminase (2.6.1.21)

78

3-Deoxy-D-arabinoheptulosonate-7phosphate synthase (4.1.2.15)

97

E l a s t a s e (3.4.21.11)

95

Angiotensis converting enzyme (3.4.15.1) A n t h r a n i l a t e synthase (4.1.3.27)

79, 80, 81, 82 83

Arginase (3.5.3.1)

71, 84

A r g i n i n e transamidinase (3.5.3.6)

71, 84

Asparagine synthetase (6.3.1.1)

85

Asparagine synthetase (glutamine h y d r o l y z i n g , 6.3.5.4)

86

Asparaginyl-t-RNA synthetase (6.1.1.12)

5-Enolpyruvylshikimate98 3-phosphate synthase 5phosphoshikimate-l-carboxyv i n y l - t r a n s f e r a s e (2.5.1.19) Ethanolamine phosphatecytidyl transferase (2.7.7.14)

99

Glutamine synthetase (6.3.1.2)

70, 87, 100 -104

-Glutamyl c y s t e i n e synthetase (6.3.2.2)

105

87

Isoleucyl-t-RNA synthetase (6.1.1.5)

106

Aspartase (4.3.1.1)

71

Leucine aminopeptidase (3.4.11.1, c y t o s o l i c )

107

A s p a r t a t e aminot r a n s f e r a s e (2.6.1.1)

71 Leucine aminopeptidase (3.4.11.2, mircosomal)

107

A s p a r t a t e carbamoyl t r a n s f e r a s e (2.1.3.2)

88-90

Methionyl-t-RNA synthetase 108, (6.1.1.10) 109, 110 O r n i t h i n e carbamoyl t r a n s f e r a s e (2.1.3.3)

Leucyl-t-RNA synthetase (6.1.1.4) Sphingosine 1-phosphate l y a s e (4.7.7.)

121

106

T y r o s i n a s e (1.10.3.1)

107

111-113 T y r o s i n e amino t r a n s f e r a s e 122 (2.6.1.5) 114

T y r o s i n e decarboxylase (4.1.1.25)

122

Phenylalanyl-t-RNA synthetase (6.1.1.b) Phospholipase C (3.1.4.3)

115

Tyrosyl-t-RNA synthetase (6.1.1.1)

122, 114

Pyruvate kinase (2.7.1.40)

116

UDP-NAMA-L-Ala synthetase (6.3.2.8)

72, 73

Rennin (3.4.4.15) S e r i n e transhydroxymethylase (2.1.2.1)

118-120

Valyl-t-RNA synthetase 106-110, (6.1.1.9) 114, 123-124

120

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

190

BIOLOGICALLY ACTIVE NATURAL PRODUCTS

range o f enzyme systems, i t i s h i g h l y p r o b a b l e t h a t s p e c i f i c phosphonates can be found which w i l l i n h i b i t key p l a n t enzymes, making them p o s s i b l e h e r b i c i d e c a n d i d a t e s . Some phosphonate compounds can s e r v e as s u b s t r a t e s f o r s e v e r a l enzymes. Readers a r e r e f e r r e d t o a more comprehensive r e v i e w f o r f u r t h e r i n f o r m a t i o n on enzyme phosphonate i n t e r a c t i o n s ( 3 8 ) .

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

Phosphonates as H e r b i c i d e s , P l a n t Growth R e g u l a t o r s , Fungicides

and/or

T h e r e a r e many r e p o r t s i n the s c i e n t i f i c and p a t e n t l i t e r a t u r e d e s c r i b i n g phosphonates as h e r b i c i d e s , f u n g i c i d e s , and p l a n t growth regulators. T a b l e I I I i s a c o m p i l a t i o n o f some o f t h e s e compounds and shows t h e i r wide d i v e r s i t y o f c h e m i c a l s t r u c t u r e and b i o l o g i c a l activity. The most w i d e l y known and used o f the s y n t h e t i c phosphonates w i t h a g r i c u l t u r a l a p p l i c a t i o n s i s t h e h e r b i c i d e glyphosate, N-(phosphonomethyl)glycine, which was i n t r o d u c e d i n 1971 (124). T h i s compound combines h i g h , broad-spectrum h e r b i c i d a l a c t i v i t y w i t h low mammalian t o x i c i t y and a s h o r t h a l f - l i f e i n soils. The i n t e r e s t i n g l y p h o s a t e i s demonstrated by the voluminous r e p o r t s and p a t e n t s d e a l i n g w i t h i t s a p p l i c a t i o n and b i o c h e m i c a l and physiological action. A l s o , i t s u t i l i t y as a h e r b i c i d e g e n e r a t e d an enormous response i n the s y n t h e s i s o f a n a l o g s . Perhaps up t o a thousand g l y p h o s a t e d e r i v a t i v e s and a n a l o g s have been s y n t h e s i z e d and s c r e e n e d f o r h e r b i c i d a l a c t i v i t y (151). This stimulus of s y n t h e s i s produced some compounds w i t h h e r b i c i d a l a c t i v i t y , but none w i t h a c t i v i t y comparable t o g l y p h o s a t e . B i o c h e m i c a l and p h y s i o l o g i c a l s t u d i e s on t h e e f f e c t s o f g l y p h o s a t e have been examined by v a r i o u s w o r k e r s . F i g u r e 5 i n d i c a t e s some o f the major enzyme systems t e s t e d f o r i n v i t r o and i n v i v o e f f e c t s o f glyphosate. The mode o f a c t i o n o f g l y p h o s a t e i s c o n s i d e r e d t o be the i n h i b i t i o n of 5-enolpyruvylshikimate-3-phosphate synthase a c t i v i t y (168). There p r o b a b l y e x i s t n e a r l y 2,000 p u b l i c a t i o n s i n t h e s c i e n t i f i c l i t e r a t u r e on g l y p h o s a t e and i t s a c t i v i t y i n p l a n t s , s o i l s , and b a c t e r i a l systems. The r e a d e r i s r e f e r r e d t o r e v i e w s which c o v e r t h e many a s p e c t s o f the i m p o r t a n t r e s e a r c h conducted on t h i s h e r b i c i d e (169, 170, 171). G l y p h o s a t e i s not m e t a b o l i z e d a p p r e c i a b l y i n p l a n t s , but some microorganisms degrade i t r a p i d l y , and the major m e t a b o l i t e i s aminophosphonic a c i d . T h i s compound i s e s s e n t i a l l y n o n - t o x i c t o f i s h and w i l d l i f e . The next t h r e e most i m p o r t a n t compounds i n T a b l e I I I w i t h r e g a r d t o the p r e s e n t t o p i c a r e p h o s p h i n o t h r i c i n , b i a l a p h o s , and p h o s a l a c i n e which a r e n a t u r a l l y o c c u r r i n g s u b s t i t u t e d phosphonate compounds w i t h p o t e n t h e r b i c i d a l a c t i v i t y . B i a l a p h o s and p h o s a l a c i n e a r e p e p t i d e s c o n t a i n i n g a p h o s p h i n o t h r i c i n moiety. B i a l a p h o s has r e c e n t l y been marketed as a h e r b i c i d e i n Japan. This n a t u r a l l y o c c u r r i n g h e r b i c i d a l compound i s n o n - s e l e c t i v e and c o n t r o l s s e v e r a l s p e c i e s o f monocot and d i c o t weeds. I t has a h a l f - l i f e o f about 20-30 days i n s o i l and has low t o x i c i t y t o n o n - t a r g e t organisms (126). Hoechst AG i s d e v e l o p i n g c h e m i c a l l y s y n t h e s i z e d p h o s p h i n o t h r i c i n as the h e r b i c i d e HOE 39866, w i t h the common name g l u f o s i n a t e (125). In c o n t r a s t t o the many l i t e r a t u r e r e f e r e n c e s on g l y p h o s a t e , r e l a t i v e l y few r e p o r t s e x i s t on t h e b i o c h e m i c a l , p h y s i o l o g i c a l , and a p p l i e d a s p e c t s o f b i a l a p h o s , p h o s a l a c i n e , and p h o s p h i n o t h r i c i n . Most o f t h e s e d e a l w i t h the

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

2

3

2

3

2

3

2

2

2

2

2

2

2

2

3

2

2

CH -CH -0-P0 "-CO-NH

3

3

2

2

2

NH

4

+

fosamine ammonium

and o t h e r p e p t i d e s , contact herbicides

3

and N - g l y c y l d e r i v a t i v e

Ch -CH(NH )CONH-CH(CH )P0 H

3

R-C(P0 H ),NR'R"

2

R'=alky o r a c y l and R=alky o r a r y l (herbicide, defoliant)

post-emergence h e r b i c i d e

R=R'=H and R"=pyridyl herbicide

3

CH -CH(NH )-P(CH )0 H

2

R'-NH-C(R) -PO(OR)

2

(HOOC-CH -NH-CH ) P0 H

2

R-NH-CH -P0 H

3

CH -NH-CH -P0 H

172, 175

148

138-147

137

131-136

130

129

128

post-emergence h e r b i c i d e herbicide

127

phosalacine

2

phosphinothricin-ala-ala

2

phosphinothricin-ala-leu

2

69

125 126

3

glyphosate p h o s p h i n o t h r i c i n and g l u f o s i n a t e , (ammonium salt o f phosphinothricin) bialaphos

2

Reference

Activity

H00C-CH(NH )-CH2-CH -P(CH )0 H

2

HOOC-CH -NH-CH -P0 H

Herbicides:

Name o r Remarks

T a b l e I I I . Phosphonate Compounds with H e r b i c i d a l , F u n g i c i d a l , and P l a n t Growth R e g u l a t i n g

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Table III.

Continued.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

13. HOAGLAND

Carbon—Phosphorus Compounds as Herbicides

193

TANNINS

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

CHLOROGENIC

\

GALLIC ACID SINAPIC ACID FERULIC ACID

LIGNINS '

\ ISOFLAVONOIDS FLAVONOIDS CHALCONES

CAFFEIC ACID

ACID

i-CINNAMATE ®T

» £-COUMARATE » AMMONIA «

PROTEIN

TRYPTOPHAN

PHENYLALANINE



Ν© PREPHENATE







t ®

CHORISM ATE t ® t © f ®

SHIKIMATE

© © 3-DEOXY-D-ARABINO-HEPTULOSONATE-7-P

© ERYTHROSE-4-Ρ·

PHOSPHOENOL PYRUVATE

F i g u r e 5. S c h e m a t i c o f v a r i o u s i n t e r m e d i a t e s a n d p r o d u c t s o f p h e n o l i c m e t a b o l i s m a n d some o f t h e e n z y m e s w h i c h h a v e b e e n examined f o r e f f e c t s o f g l y p h o s a t e . Enzymes: 1, 3 deoxy-2-oxo-D-arabinoheptulosate-7-phosphate s y n t h a s e ; 2, 5 - d e h y d r o q u i n a t e s y n t h a s e ; 3, s h i k i m a t e d e h y d r o g e n a s e ; 4, s h i k i m a t e k i n a s e ; 5, 5 - e n o l p y r u v y l s h i k i m a t e - 3 - p h o s p h a t e s y n t h a s e ; 6, c h o r i s m a t e s y n t h a s e ; 7, c h o r i s m a t e m u t a s e ; 8, prephenate d e h y d r o g e n a s e ; 9, t y r o s i n e a m i n o t r a n s f e r a s e ; 1 0 , p r e p h e n a t e dehydratase; 11, p h e n y l a l a n i n e a m i n o t r a n s f e r a s e ; 12, a n t h r a n i l a t e s y n t h a s e ; 13, t r y p t o p h a n s y n t h a s e ; 14, p h e n y l a l a n i n e ammonia-lyase; 15, t y r o s i n e ammonia-lyase; and 16, p o l y p h e n o l oxidase. Reproduced from R e f . 169. C o p y r i g h t 1982 A m e r i c a n C h e m i c a l S o c i e t y .

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

194

BIOLOGICALLY ACTIVE NATURAL PRODUCTS

e f f e c t s o f p h o s p h i n o t h r i c i n on GS s i n c e t h e compound was i n i t i a l l y found t o be a s t r o n g GS i n h i b i t o r and because i t i s an a n a l o g o f a n o t h e r p o t e n t GS i n h i b i t o r , m e t h i o n i n e s u l f o x i m i n e . A b r i e f r e v i e w o f t h e b i o c h e m i c a l , p h y s i o l o g i c a l , and mode o f a c t i o n r e s e a r c h on t h e s e n a t u r a l l y o c c u r r i n g phosphonate h e r b i c i d e s w i l l be p r e s e n t e d i n a l a t e r s e c t i o n of t h i s chapter. Fosamine-ammonium, used p r i m a r l y f o r b r u s h c o n t r o l (172), i s t r a n s l o c a t e d i n both s u s c e p t i b l e and t o l e r a n t woody p l a n t s , b u t s u s c e p t i b l e p l a n t s a b s o r b and t r a n s l o c a t e s i g n i f i c a n t l y g r e a t e r q u a n t i t i e s o f t h e h e r b i c i d e t h a n do t o l e r a n t s p e c i e s . I t was proposed t h a t t h e p h y t o t o x i c i t y o f fosamine-ammonium i s due t o i t s a c t i o n o r t h e a c t i o n o f a m e t a b o l i t e a t o r above t h e p o i n t o f c o n t a c t (173). N e s q u i t e growth was i n h i b i t e d f o r up t o t h r e e y e a r s f o l l o w i n g t r e a t m e n t w i t h t h i s compound. These s t u d i e s i n d i c a t e t h e h e r b i c i d e i n h i b i t e s p r o t e i n and n u c l e i c a c i d s y n t h e s i s (174). Fosamine- ammonium i s r a p i d l y degraded by m i c r o o r g a n i s m s . The h a l f - l i f e i n s o i l i s about 10 days, compared t o about 2-3 weeks i n greenhouse-grown a p p l e s e e d l i n g s (175). Some phosphonates a r e used as commercial p l a n t growth regulators. Ethephon ( 2 - c h l o r o e t h y l p h o s p h o n i c a c i d ) i s used t o a c c e l e r a t e r i p e n i n g , i n d u c e f l o w e r i n g , promote a b s c i s s i o n , and t o s t i m u l a t e c o l o r (175). The a c t i o n o f t h i s compound i s v i a p r o d u c t i o n o f e t h y l e n e , a p r o d u c t o f ethephon d e g r a d a t i o n . The glyphosate analog, glyphosine [N,N,-bis(phosphonomethyl)glycine] i s used c o m m e r c i a l l y as a suger cane r i p e n e r . A t h i g h l e v e l s i t shows some h e r b i c i d a l a c t i v i t y and causes growth c e s s a t i o n , c h l o r o s i s , and d e s i c a t i o n (155). T h i s compound c a n reduce numbers o f 70-S ribosomes and c h l o r o p l a s t i c r i b o s o m a l RNA, b u t has no e f f e c t on p h o t o p h o s p h o r y l a t i o n (152). Other phosphonate p l a n t growth r e g u l a t o r s a r e p r o p y l p h o s p h o n i c a c i d , e t h y l h y d r o g e n p r o p y l p h o s p h o n a t e , and NIA 10637 (176). Ethyl p r o p y l p h o s p h o n a t e r e t a r d s t h e growth o f v a r i o u s woody s p e c i e s , and causes p h y s i c a l r e s p o n s e s such as i n c r e a s e d c o l d h a r d i n e s s , seed g e r m i n a t i o n i n d u c t i o n , and a f f e c t s f l o w e r i n g and f r u i t i n g . Several o t h e r a r o m a t i c phosphonates a r e r e p o r t e d t o have p l a n t growth regulator a c t i v i t y . S e v e r a l phosphonates have p o t e n t i a l as fungicides. V a r i o u s organophosphonates (some o f t h e organophosphonate c l a s s ) have been d e v e l o p e d over t h e p a s t 15 y e a r s which have r e l a t i v e l y low mammalian t o x i c i t y and e n v i r o n m e n t a l p e r s i s t a n c e compared t o t h e o r g a n o c h l o r i n e i n s e c t i c i d e s (177). Some o f t h e s e compounds a r e p r e s e n t e d and d i s c u s s e d elsewhere (178). There a r e a p p a r e n t l y no r e p o r t s o f n a t u r a l l y o c c u r r i n g phosphonates with useful i n s e c t i c i d a l a c t i v i t y . P h o s p h i n o t h r i c i n , B i a l a p h o s , and P h o s a l a c i n e as H e r b i c i d e s D i r c o v e r y and E a r l y Development. P h o s p h i n o t h r i c i n was i s o l a t e d from c u l t u r e s o f Streptomyces v i r i d o c h r o m o g e n e s (47) and from S. h y g r o s c o p i c u s as t h e p h o s p h i n o t h r i c y l a l a n y l a l a n i n e p e p t i d e (now c a l l e d b i a l a p h o s ) (179). T h i s t r i p e p t i d e was shown t o be a c t i v e as a b a c t e r i c i d e a g a i n s t Gram-negative and G r a m - p o s i t i v e b a c t e r i a and as a f u n g i c i d e a g a i n s t t h e f u n g i B o t r y t i s c i n e r e a , R h l z o c t o n i a s o l a n i , and P i r i c u l a r i a o r y z a e (180). The h e r b i c i d a l a c t i v i t y o f b i a l a p h o s was d e s c r i b e d i n 1979 (181). P h o s p h i n o t h r i c i n was f i r s t s y n t h e s i z e d i n 1972 ( 4 7 ) , and d e t a i l s and d i s c u s s i o n o f i t s

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

13. HOAGLAND

Carbon—Phosphorus Compounds as Herbicides

195

s y n t h e s i s a r e p r e s e n t e d elsewhere (104). Herbicidal properties of p h o s p h i n o t h r i c i n as a c o m m e r i c a l l y s y n t h e s i z e d ammonium s a l t were f i r s t r e p o r t e d i n 1977 (182). P h o s a l a c i n e i s a phosphonate p e p t i d e analog of bialaphos d i f f e r i n g only i n that i t possesses a C-terminal l e u c i n e r e s i d u e i n s t e a d o f a l a n i n e . T h i s compound was r e p o r t e d t o be a h e r b i c i d a l i s o l a t e from K i t a s a t o s p o r i a p h o s a l a c i n e a , an A c t i n o m y c e t e from s o i l (183). Streptomyces and A c t i n o m y c e s b e l o n g t o s e p a r a t e f a m i l i e s w i t h i n t h e same o r d e r ( A c t i n o m y c e t a l e s ) and produce v e r y s i m i l a r phosphonate p e p t i d e s . More r e c e n t l y , p h o s a l a c i n e has been p a t e n t e d as a d e f o l i a n t f o r hops (Humulus l u p u l u s ) (184). G e n e r a l P r o p e r t i e s and H e r b i c i d a l A c t i v i t y . B i a l a p h o s i s a c t i v e on t h e f o l i a g e o f v a r i o u s weeds, i n c l u d i n g p e r e n n i a l s (185). I t s p h y t o t o x i c i t y i s e x p r e s s e d more s l o w l y than t h a t o f p a r a q u a t , b u t more r a p i d l y t h a t t h a t o f g l y p h o s a t e . When f i v e weeds w i t h an LD range o f Q ) . R e d r a w n w i t h p e r m i s s i o n f r o m R e f . 1 8 3 . C o p y r i g h t 1984 J a p a n e s e A n t i b i o t i c s Research Association.

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

13. HOAGLAND

Carbon—Phosphorus Compounds as Herbicides

197

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

P h o s p h i n o t h r i c i n can a l s o i n c r e a s e e x t r a c t a b l e PAL a c t i v i t y on a f r e s h weight and a s p e c i f i c a c t i v i t y b a s i s i n soybean t i s s u e s (Hoagland, u n p u b l i s h e d d a t a ) . These e f f e c t s on g l y p h o s a t e , g l u f o s i n a t e , and p h o s p i n o t h r i c i n a r e c o n s i d e r e d t o be o n l y secondary w i t h r e g a r d t o i t s mode o f a c t i o n which i n v o l v e s GS i n h i b i t i o n , as d i s c u s s e d below. I n h i b i t i o n o f GS by N a t u r a l l y O c c u r r i n g Phosphonates. I t has been known s i n c e 1959 t h a t some phosphonic and p h o s p h i n i c a c i d a n a l o g s o f g l u t a m i c a c i d were i n h i b i t o r y t o g l u t a m i n e s y n t h e t a s e ( 7 0 ) . S i n c e then, v a r i o u s o t h e r P-C c o n t a i n i n g a n a l o g s have been s y n t h e s i z e d and some a l s o i n h i b i t t h i s enzyme from mammalian (191-193) and p l a n t s o u r c e s (101, 104, 191, 194). P h o s p h i n o t h r i c i n was r e p o r t e d as an i n h i b i t o r o f GS as e a r l y as 1972 ( 4 7 ) . There a r e a l s o known n a t u r a l l y o c c u r r i n g compounds o t h e r than t h o s e c o n t a i n i n g C-P bonds t h a t e x h i b i t p o t e n t i n h i b i t i o n o f GS a c t i v i t y . Comparative s t r u c t u r e s o f t h e s e n a t u r a l p r o d u c t s and s u b s t i t u t e d phosphonate a n a l o g s t h a t a r e GS i n h i b i t o r s a r e g i v e n i n F i g u r e 7. Oxetin, d e r i v e d from Streptomyces s p . , i s a r e c e n t l y d i s c o v e r e d GS i n h i b i t o r (195). T a b t o x i n i n e - p - l a c t a m , a l s o an i n h i b i t o r o f GS (196), i s produced by Pseudomonas t a b a c i (197). The GS i n h i b i t o r L-methionine s u l f o x i m i n e (198) i s found i n t h e bark o f a t r e e , C n e s t i s g l a b r a (199), but t h e i n h i b i t o r y a c t i o n o f s y n t h e s i z e d m e t h i o n i n e s u l f o x i m i n e has been known and u t i l i z e d f o r y e a r s ( 2 0 ) ) . L-(N -phosphono)methionine-S-sulfoximine i a metabolite of the N-phosphono compound, L-(N -phosphono)methionine-S-sulfoximinyl-La l a n y l - L - a l a n i n e (200), a n o t h e r Streptomyces p r o d u c t (201). This l a t t e r compound s h o u l d , however, n o t be c o n f u s e d w i t h carbon-phosphono compounds and t h e d i f f e r e n c e i s a p p a r e n t when s t r u c t u r e s a r e compared. G l y p h o s a t e d i d n o t i n h i b i t GS a c t i v i t y i n an enzyme p r e p a r a t i o n from pea (Pisum s a t i v u m L.) (104). P h o s p h i n o t h r i c i n was found t o be a more p o t e n t i n h i b i t o r o f GS from bean (Phaseolus v u l g a r i s L.) pod t i s s u e and o v i n e b r a i n t h a n m e t h i o n i n e s u l f o x i m e (202), w h i l e g l y p h o s a t e and 2-amino-4-phosphonobutyric a c i d a t c o n c e n t r t i o n s o f up t o 1 mM had no i n h i b i t o r y a c t i v i t y . e

s

e

Glutamine s y n t h e t a s e i n p l a n t s i s t h e key enzyme o f t h e GS/G0GAT (glutamine synthetase/glutamine:2-oxoglutarate aminotransferase) pathway and p l a y s a c r u c i a l r o l e i n t h e a s s i m i l a t i o n / r e a s s i m i l a t i o n o f ammonia (203, 204). A n a l y s i s o f two GS isozymes from v a r i o u s p l a n t s p e c i e s show a wide range o f r a t i o s f o r t h e isozymes w i t h s i m i l a r K± v a l u e s f o r p h o s p h i n o t h r i c i n , but no c o r r e l a t i o n w i t h whole p l a n t s u s c e p t i b i l i t y t o p h o s p h i n o t h r i c i n (186). T h i s suggests t h a t whole p l a n t s u s c e p t i b i l i t y i s not r e l a t e d t o d i f f e r e n c e s i n t h e degree o f enzyme i n h i b i t i o n . GS Isozymes from wheat r o o t s and l e a v e s i s s t r o n g l y i n h i b i t e d by p h o s p h i n o t h r i c i n i n v i t r o , however, t h e r o o t enzyme was more s t r o n g l y i n h i b i t e d by t h e h e r b i c i d e than was t h e c h l o r o p l a s t enzyme (194). The k i n e t i c s o f i n h i b i t i o n o f GS from pea l e a v e s by p h o s p h i n o t h r i c i n and m e t h i o n i n e s u l f o x i m i n e i n d i c a t e d an apparent K o f 0.073 mM and 0.16 mM, r e s p e c t i v e l y (205) . P h o s p h i n o t h r i c i n a l s o i n h i b i t s GS i n b a c t e r i a (47) and a l g a e (206) . K i n e t i c s t u d i e s have shown t h a t t h e n a t u r e o f p h o s p h i n o t h r i c i n i n h i b i t i o n o f GS a c t i v i t y i s i r r e v e r s i b l e and c o m p e t i t i v e with r e s p e c t t o glutamate. ±

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

BIOLOGICALLY ACTIVE NATURAL PRODUCTS

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

0 II CH-P 3

I OH

-CH-CH-CH-CO-NH-CH-CO-NH-CH-COOH I I I NH CH CH 2

2

2

3

o

3

Bialaphos 0 II CH-P -CH-CH-CH-COOH I I OH NH Phosphinothricin 3

2

2

2

0 II CH-S-CH-CH-CH-COOH 3„

2

2,

NH NH Methionine sulfoximine 2

Ο II CH-S-CH-CH-CH-COOH II 2 2, N-PO H NH 3

o

3 2

2

L- (N-phosphono)-methionine-S-sulfoximine Ο II HN-C I I HC-C-CH-CH-CH-COOH 2

ι

2

2 ,

OH NH Tabtoxinine-/3-lactam 2

0-CH-COOH I I HC-CH-NH 2 2 Oxetin F i g u r e 7. S t r u c t u r e s o f s e v e r a l n a t u r a l l y o c c u r r i n g compounds w i t h p o t e n t i n v i t r o i n h i b i t i o n o f GS a c t i v i t y .

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

13. HOAGLAND

Carbon-Phosphorus Compounds as Herbicides

199

Glutamine Antagonism and Ammonia T o x i c i t y . B i a l a p h o s a t c o n c e n t r a t i o n s up t o 3 mM d i d n o t i n h i b i t GS a c t i v i t y i n p l a n t s o f Japanese b a r n y a r d m i l l e t ( E c h i n o c h l o a u t i l i s ) but lowered e x t r a c t a b l e a c t i v i t y i n t r e a t e d s h o o t s (207). Phosphinothricin i n h i b i t e d GS b o t h i n v i t r o and e x t r a c t a b l e a c t i v i t y o f t r e a t e d shoots o f t h i s s p e c i e s . G l u t a m i n e c o n t e n t was r e d u c e d i n b i a l a p h o s - t r e a t e d s h o o t s 48 hours a f t e r t r e a t m e n t , but exogenous g l u t a m i n e d i d n o t a m e l e o r a t e b i a l a p h o s p h y t o t o x i c i t y . Glutamine has been r e p o r t e d t o a n t a g o n i z e b i a l a p h o s - c a u s e d growth i n h i b i t i o n on B a c i l l u s s u b t i l i s and C a m e l l i a j a p o n i c a L. p o l l e n t u b e s (47, 208) and t h e i n h i b i t i o n o f GS i n E. c o l i by p h o s p h i n o t h r i c i n (47). This p r o t e c t i v e e f f e c t o f g l u t a m i n e has a l s o been demonstrated i n o t h e r p l a n t s p e c i e s (209). Ammonia has been shown t o accumulate t o t o x i c l e v e l s i n plants treated with bialaphos or phosphinothricin (210-214). T h i s was n o t t o t a l l y unexpected s i n c e ammonia i n c r e a s e s i n p l a n t s t r e a t e d w i t h o t h e r GS i n h i b i t o r s , such as m e t h i o n i n e s u l f o x i m i n e (215), and t a b t o x i n (216). S i t e ( s ) o f A c t i o n o f P h o s p h i n o t h r i c i n . I n h i b i t i o n o f GS by phosphinothricin r e s u l t e d i n s u b s t a n t i a l light-dependent a c c u m u l a t i o n o f ammonia, i n h i b i t i o n o f p h o t o s y n t h e s i s , and e v e n t u a l p l a n t d e a t h (214). Because ammonia can o c c u r from t h r e e major s o u r c e s i n t h e p l a n t : (1) i n o r g a n i c n i t r o g e n a s s i m i l a t i o n , (2) c a t a b o l i c o r a n a b o l i c p r o c e s s e s , and (3) p h o t o r e s p i r a t i o n , t h e s e r e s e a r c h e r s a l s o examined t h e i n f l u e n c e o f n i t r a t e a s s i m i l a t i o n and p h o t o r e s p i r a t i o n as causes f o r ammonia a c c u m u l a t i o n i n p l a n t s treated with phosphinothricin. P h o t o r e s p i r a t i o n was r e s p o n s i b l e f o r about 60% o f t h e ammonia formed. S i n c e n i t r a t e r e d u c t i o n was found t o have a n e g l i g i b l e i n f l u e n c e on i n h i b i t i o n o f p h o t o s y n t h e s i s a t an e a r l y s t a g e , about 40% o f t h e i n c r e a s e d ammonia was s u g g e s t e d t o o r i g i n a t e from c a t a b o l i c o r a n a b o l i c r o u t e s . C o r r e l a t i o n s between ammonia c o n c e n t r a t i o n and p h o t o s y n t h e s i s l e v e l s were s i m i l a r r e g a r d l e s s o f n i t r a t e a d d i t i o n , and C 0 f i x a t i o n under non-photorespiratory c o n d i t i o n s remains l a r g e l y i n t a c t even a t h i g h ammonia l e v e l s . C o n t r a r y t o t h i s , n i t r o g e n f e r t i l i z e r s have been r e p o r t e d t o enhance b i a l a p h o s e f f i c a c y , p o s s i b l y due t o i n c r e a s i n g ammonia l e v e l s (217). However, t h e h e r b i c i d e g l u f o s i n a t e lowered n i t r a t e r e d u c t a s e l e v e l s i n r o o t s o f l i g h t - g r o w n soybeans (218). a

To c l a r i f y t h e r e l a t i o n s h i p o f p h o s p h i o t h r i c i n i n h i b i t i o n o f GS w i t h t h e r e d u c t i o n o f C 0 f i x a t i o n and t o e v a l u a t e t h e r o l e o f g l u t a m i n e , s t u d i e s were c o n d u c t e d on p r o t o p l a s t s , c h l o r o p l a s t s , and whole l e a v e s (209). R e s u l t s suggested that glutamine d e p l e t i o n caused by p h o s p h i n o t h r i c i n i s t h e main cause o f e a r l y p h o t o s y n t h e s i s i n h i b i t i o n and t h r e e s e n a r i o s which may be o p e r a t i v e i n t h e i n h i b i t i o n o f p h o t o s y n t h e s i s were p r o p o s e d ( F i g u r e 8 ) . B a s i c a l l y t h e s e i n v o l v e (1) i n h i b i t i o n o f p r o t e i n b i o s y n t h e s i s ; a l a c k o f r e g e n e r a t i o n o f Q p r o t e i n i n v o l v e d i n l i g h t dependent e l e c t r o n t r a n s p o r t would l e a d t o b l o c k a g e o f p h o t o s y n t h e t i c e l e c t r o n t r a n s p o r t ; an amino donor would not be p r e s e n t even f o r g l y o x y l a t e t r a n s a m i n a t i o n ; (2) t o x i c g l y o x y l a t e a c c u m u l a t i o n ; g l y o x y l a t e i s an i n h i b i t o r o f RuDP c a r b o x y l a s e / o x y g e n a s e (219), and (3) C a l v i n c y c l e i n t e r m e d i a t e d e p l e t i o n ; l a c k o f GS ( o r o t h e r enzymes t h a t p r e v e n t c a r b o n f l o w i n t o p h o t o r e s p i r a t i o n by t h e oxygenase r e a c t i o n ) l e a d s t o a l a c k o f RuDP f o r t h e C a l v i n c y c l e . a

B

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

200

BIOLOGICALLY ACTIVE NATURAL PRODUCTS

Glu

ΗΝ 3

j G , n

• toxic NH accumulation 4

^^^transamidation

•nucleotide depletion inhibition of protein synthesis

transamination—•toxic accumulation of glyoxylate depletion of Calvin cycle intermediates F i g u r e 8. P o s s i b l e s i t e s o f p h o s p h i n o t h r i c i n mode o f a c t i o n . Redrawn w i t h p e r m i s s i o n f r o m R e f . 209. C o p y r i g h t 1987 V e r l a g d e r Z e i t s c h r i f t f u r Naturforschung.

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

13.

HOAGLAND

Carbon—Phosphorus Compounds as Herbicides

B i o t e c h n o l o g l c a l and B i o c h e m i c a l A s p e c t s o f B i a l a p h o s P r o d u c t i o n . The pathway f o r t h e b i o s y n t h e s i s o f b i a l a p h o s has been d e t e r m i n e d u t i l i z i n g C - l a b e l e d p r e c u r s o r s , b l o c k e d mutants, m e t a b o l i c i n h i b i t o r s , and a n a l y s i s o f p r o d u c t s accumulated and c o n v e r t e d by a s e r i e s o f n o n - p r o d u c i n g mutants o f S. h y g r o s c o p i c u s ( F i g u r e 9 ) . V e r y r e c e n t l y , e x p e r i m e n t a t i o n has r e s u l t e d i n t h e i s o l a t i o n and m a n i p u l a t i o n o f genes r e s p o n s i b l e f o r b i a l a p h o s b i o s y n t h e s i s i n S. h y g r o s c o p i c u s (220). U s i n g a p l a s m i d v e c t o r , p r o d u c t i o n genes f o r t h i s h e r b i c i d e were c l o n e d from genomic DNA. S e v e r a l p l a s m i d s were i s o l a t e d which r e s t o r e d b i a l a p h o s p r o d u c t i v i t y t o mutants o f S. h y g r o s c o p i c u s ) t h a t were b l o c k e d a t d i f f e r e n t p o i n t s i n t h e b i o s y n t h e t i c pathway. A gene c o n f e r r i n g r e s i s t a n c e t o b i a l a p h o s was a l s o l i n k e d t o t h e p r o d u c t i o n genes. Mapping d e f i n e d t h e l o c a t i o n of t h e s e genes i n a 16 k d c l u s t e r . How t h e s e genes a r e c o n t r o l l e d ; i . e . , t h e t r a n s c r i p t i o n a l o r g a n i z a t i o n o f t h e c l u s t e r and t h e i n v o l v e m e n t o f r e g u l a t o r y genes remains t o be d e t e r m i n e d .

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

x a

Stereochemical Considerations. Absolute c o n f i g u r a t i o n of a b i a l a p h o s i n t e r m e d i a t e , 2-phosphinomethylmalic a c i d , has r e c e n t l y been found i n t h e S c o n f i g u r a t i o n (221). T h i s f a c t i s important i n the d e t e r m i n a t i o n o f t h e mechanism o f t r a n s f o r m a t i o n o f t h i s compound t o d i m e t h y l p h o s p h i n o t h r i c i n and t h e enzymes r e s p o n s i b l e f o r those metabolic s t e p s . The o p t i c a l r e s o l u t i o n o f r a c e m i c p h o s p h i n o t h r i c i n has been r e p o r t e d (222) and i t was c o n f i r m e d t h a t t h e L form p o s s e s s e s h i g h h e r b i d i c a l a c t i v i t y whereas t h e D - p h o s p h i n o t h r i c i n had o n l y v e r y low phytotoxicity. Potential

o f N a t u r a l l y O c c u r r i n g Phosphonates as H e r b i c i d e s

One o f t h e new s t r a t e g i e s o f h e r b i c i d e d i s c o v e r y i s t h e development of h e r b i c i d e c h e m i c a l c l a s s e s based on p r o d u c t s t h a t o c c u r naturally. Only a s m a l l p e r c e n t a g e o f h i g h e r p l a n t s p e c i e s and microorganisms have been e x t e n s i v e l y examined f o r such compounds. Only a few n a t u r a l p r o d u c t s have been a d e q u a t e l y examined f o r p o t e n t i a l h e r b i c i d a l a c t i v i t y (223). Naturally occurring phosphonate compounds a r e p r e s e n t i n a v a r i e t y o f s p e c i e s and a r e p r o b a b l y i n many o t h e r s y e t u n t e s t e d . Furthermore, some o f t h e s e phosphonates t h a t have been i s o l a t e d and i d e n t i f i e d and t h o s e t h a t have been s y n t h e s i z e d have been shown t o c o n t a i n p o t e n t b i o l o g i c a l a c t i v i t y , i n c l u d i n g h e r b i c i d a l and p l a n t growth r e g u l a t i n g properties. B i a l a p h o s i s t h e f i r s t h e r b i c i d e (and t h e f i r s t n a t u r a l l y o c c u r r i n g phosphonate compound) produced by f e r m e n t a t i o n t e c h n o l o g y to a c h i e v e commerical s t a t u s . The a c t i v e component o f t h i s compound, p h o s p h i n o t h r i c i n , i s o f such c h e m i s t r y t h a t i t s s y n t h e s i s was e c o n o m i c a l l y f e a s i b l e and i t c o u l d be produced as t h e h e r b i c i d e g l u f o s i n a t e and marketed on a competetive b a s i s w i t h o t h e r s y n t h e t i c herbicides. Phosphonate compounds a r e now known t o be w i d e l y d i s t r i b u t e d i n n a t u r e and t h e s e compounds may e x i s t i n many l i v i n g systems y e t untested. T h i s , c o u p l e d w i t h t h e a c t i v i t y o f v a r i o u s s y n t h e t i c and n a t u r a l l y o c c u r r i n g phosphonates as enzyme i n h i b i t o r s and t h e s u c c e s s o f p h o s p h i n o t h r i c i n , b i a l a p h o s , and p h o s a l a c i n e as h e r b i c i d e s s u g g e s t s t h a t i n c r e a s e d s c r e e n i n g programs c o u p l e d w i t h

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

201

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

CH

2

2

I

2

I CH-NH

CH

2

2

2

2

2

3



2

2

2

2

N - A c e t y l DMPT

COOH

CH-NH-Ac

CH

I

CH

2

2

P0 H

PnAA

T~ C=0 co HI

CH

I n



HMP

CHpOH

I

3

P0 3H,2

H

N - A c e t y l DMBA

CO-AlaAla

I

2

2

2

PF

2

I CH I CH-NH-Ac

2

P0 H CH

3

COOH

I

P0

2



PMM

CO-AlaAla

I

2

2

2

I CH I CH-NH-Ac

CH

2

CH COOH

I

2

HO-C-COOH

CH

2

N-Acetyl bialaphos

3

2

H C-P0 H

PPA

COOH

I

2

C=0

CH

2

Acetyl-CoA P0 H P0 H

F i g u r e 9. B i o s y n t h e t i c pathway o f b i a l a p h o s i n Streptomyces hygroscopicus. PEP=phosphoenolpyruvate; PnPy=phosphonopyruvate; PnAA=phosphonoacetaldehyde; HMP^hydroxymethylphosphonate; PF=phosphonoformate; PPA^phosphinopyruvate; PMM=phosphinomethylmalate; DKDPT=deamino-a-keto-demethylphosphinothricin; DMPT--=demethy L p h o s p h l n o t h r i c i n ; D M B A = d e m e t h y l b i a l a p h o s ; AlaAla=alanylalanine. Redrawn w i t h p e r m i s s i o n from R e f . 220. C o p y r i g h t 1986 S p r i n g e r V e r l a g .

DMPT

I

I

I

CH

2

PnPy

COOH

P0 H

2

2

3

C=0

I

CH

DKDPT



2

COOH

2

H

I

P0 H

COOH

I

I CHp I C=0

CH

2

P0 H

PEP

COOH

II C-O-PCU I

P0 H

2

9

bialaphos

CO-AlaAla

I

2

2

I CH I CH-NH

CH

2

COOH

H C-P0 H 3

2

CHOH

I I

CH H-C-COOH

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

j§ § cl

^ 3 ^ g £

>• Q

C

W

S C g§ Ρ

ο

13. HOAGLAND

203 Carbon-Phosphorus Compounds as Herbicides

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

traditional chemical synthesis backup and biotechnological approaches should lead to other novel phosphonate chemistries with useful herbicidal activity. Literature Cited 1. Charudattan, R.; Walker, H.L. Biological Control of Weeds with Plant Pathogens; Wiley-Interscience: New York, 1982. 2. Duke, S.O. Rev. Weed Sci. 1986, 2, 15-44. 3. Katchman, B.J. In Phosphorus and Its Compounds; Wiley-Intersciene: New York, 1961, Vol. 2, Chapter 20. 4. Chavane, M.V. Compt. Rend. 1947, 224, 406-4 5. Horiguchi, M.; Kandatsu, M. Nature 1959, 184, 901-2. 6. Horiguchi, M. In Analytical Chemistry of Phosphorus Compounds ; J. Wiley: New York, 1972; p. 703-24. 7. Czerkawski, J.W.; Faulds, C. J. Sci. Food Agr. 1974, 25, 45-55. 8. Tamari, M. Agr. Biol. Chem. 1979, 43, 651-2. 9. Dufva, G.S.; Bartley, E.E.; Arambel, M.J.; Galitzer, S.J.; Dayton, A.D. J. Animal Sci. 1982, 54, 837-40. 10. Malle, R.J.; Fischesser, J.G.; Anderson, R.J. J. Chromotog. 1977, 132, 366-8. 11. Alhadeff, J.A.; Daves, G.D. Biochim. Biophys. Acta 1971, 244, 211-3. 12. Alhadeff, J.Α.; van Bruggen, J.T.; Daves, G. Biochim. Biophys. Acta 1972, 286, 103-6. 13. Karlsson, K.A. Biochim. Biophys. Res. Comm. 1970, 39, 847-51. 14. Harvey, D.J.; Horning, M.G. Mass Spectrometry 1974, 9, 955-69. 15. Huber, J.W. J. Chromatogr. 1978, 152, 220-3. 16. Rueppel, M.L.; Suba, L.; Marvel, J. J. Biomed. Mass Spectrometry 1976, 3, 28-31. 17. Fitzgerald, E.A. J. Chromatog. Sci. 1983, 21, 188-9. 18. Park, B.P.; Hirota, Α.; Sakai, H. Agr. Biol. Chem. 1977, 41, 573-9. 19. Kowalik, J.; Azhmat, J . ; Masterlerz, P. Phosphorus and Sulfur 1983, 18, 393-6. 20. DaSilveira, J.F.; Colli, W. Biochim. Biophys. Acta 1981, 644, 341-50. 21. Glonek, T.; Henderson, T.O.; Hilderbrand, R.L.; Myers, T.C. Science 1970, 169, 192-4. 22. Ostrovskii, D.N.; Sepetov, N.F.; Samilenko, A.A.; Sibeldina, L.A. Dokl. Acad. Nauk SSSR 1981, 256, 1010-3. 23. Ostrovskii, D.M.; Sepetov, N.F.; Reshetyak, O.I.; Sibeldina, L.A. Biokhimya 1980, 45, 517-25. 24. Miceli, V.M.; Henderson, T.O.; Myers, T.C. Science 1980, 209, 1245-7. 25. Deslauriers, R.; Ekeil, I.; Kroft, T.; Smith, C.P. Biochim. Biophys. Acta 1982, 721, 449-57. 26. Newman, R.H.; Tate, K.R. Comm. Soil Sci. Plant Anal. 1980, 11, 835-42. 27. Kasa, H.; Yamato, M.; Koguchi, T.; Okachi, R.; Kasai, M.; Shirahata, K.; Kawamoto, I.; Shuto, K.; Karasawa, Α.; Deguchi, T.; Nakayama, K. Eur. Pat. Appl. 0.061.172, 1982.

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

204 28. 29. 30.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

31. 32. 33. 34. 35. 36. 37. 38.

39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54.

BIOLOGICALLY ACTIVE NATURAL PRODUCTS Hilderbrand, R.L.; Henderson, T.O. In The Role of Phosphonates in Living Systems; CRC Press: Boca Raton, FL, 1983; Chapter 2. Horiguchi, M.; Kittredge, J.S.; Roberts, E. Biochim. Biophys. Acta 1968, 165, 164-6. Liang, C.R.; Rosenberg, H. Biochim. Biophys. Acta 1968, 156, 437-9. Warren, W.A. Biochim. Biophys. Acta 1968, 156, 340-6. Liang, C.R.; Rosenberg, H. Comp. Biochem. Physiol. 1968, 25, 673-81. Horiguchi, M. Biochim. Biophys. Acta 1972, 261, 102-13. Horiguchi, M.; Rosenberg, H. Biochim. Biophys. Acta 1975, 404, 333-40. Seto, H.; Sasaki, T.; Imai, S.; Tsuruska, T.; Ogawa, H.; Satoh, Α.; Inouye, S.; Niida, T.; Otake, N. J. Antibiot. 1983, 36, 96-8. Seto, H.; Imai, S.; Tsuruoka, T.; Satoh, Α.; Kajima, M.; Inouye, S.; Sasaki, T.; Otake, N. J. Antiobiot. 1982, 35, 1719-21. Seto, H.; Imai, S.; Tsuruoka, T.; Ogawa, H.; Satoh, Α.; Sasaki, T.; Otake, N. Biochem. Biophys. Res. Comm. 1983, 111, 1008-14. Kafarski, P.; Mastalerz, P. Aminophosphonates. Natural Occurrence, Biochemistry, and Biological Properties Akademie-Industrie-Komplex, Inst. fur Wirkstofforschung: Berlin, 1984. Hilderbrand, R.L. The Role of Phosphonates in Living Systems; CRC Press: Boca Raton, FL, 1983. Cook, A.M.; Daughton, C.G.; Alexander, M. J. Bacteriol. 1978, 133, 85-90. Lacoste, A.M.; Neuzil, E. Compt. Rend. Acad. Sci., Paris, Ser. D. 1969, 269, 254-7. LaNauze, J.M.; Rosenberg, H. Biochim. Biophys. Acta 1968, 165, 438-47. LaNauze, J.M.; Rosenberg, H.; Shaw, D.C. Biochim. Biophys. Acta 1970, 212, 332-50. Dumora, C.; Lacoste, A.M.; Cassaigne, A. Eur. J. Biochem. 1983, 133, 119-25. Kittredge, J.S.; Hughes, R.R. Biochemistry 1964, 3, 991-6. Kittredge, J.S.; Isbell, A.F.; Hughes, R.R. Biochemistry 1967, 6, 289-95. Bayer, E.; Gugel, K.H.; Hagele, M.; Hagenmaier, T.; Jessipov, S.; König, W.A.; Zähner, H. Helv. Chim Acta 1972, 55, 224-39. Korn, E.D.; Dearborn, D.G.; Fales, H.M.; Sokoloski, E.A. J. Biol. Chem. 1973, 248, 2257-9. Okuhara, M.; Goto, T. Drugs Exptl. Clin. Res. 1981, 7, 559-64. Quin, L.D. Biochemistry 1965, 4, 324-30. Kittredge, J.S.; Horiguchi, M.; Williams, P.M. Comp. Biochem. Physiol. 1969, 29, 859-63. Steiner, S.; Conti, S.F.; Lester, R.L. J. Bacteriol. 1973, 116, 1199-1211. Horiguchi, M.; J. Agr. Chem. Soc. 1966, 40, R25-R30. Sarma, G.R.; Chandramaouli, V.; Venkitasubramanian, R.A. Biochim. Biophys. Acta 1970, 218, 561-3.

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

13. HOAGLAND 55. 56. 57.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85.

Carbon—Phosphorus Compounds as Herbicides205

Ling, J.R.; Buttery, P.J. Br. J . Nutr. 1978, 39, 165-79. Kennedy, K.E.; Thompson, 6.A. Science 1970, 168, 989-91. Thompson, G.A.,; Bambery, R.J.; Nozawa, J. Biochemistry 1971, 10, 4441-7. Karlsson, K.A. Chem. Phys. Lipids 1979, 5, 6-43. Quin, L.D.; Shelburne, A.F. J. Marine Res. 1969, 27, 73-84. Shimizu, H.; Kakimoto, J.; Nakajima, T.; Kanazawa, Α.; Sano, I. Nature 1965, 207, 1197-8. Kandatsu, M.; Horiguchi, M. Agr. Biol. Chem. 1965 29, 781-2. Hasegawa, S.; Tamari, M.; Kametaka, M. J. Biochem. 1976, 80, 531-5. Tamari, M.; Ogawa, M.; Hasegawa, S.; Kametaka, M. Agr. Biol. Chem. 1976, 40, 2057-62. Tamari, M.; Kametaka, M. Agri. Biol. Chem. 1980, 44, 1957-8. Glonek, T.; Kopp, S.J.; Kot, E.; Pettegrew, J.W.; Harrison, W.H.; Cohen, M.M. J. Neurochem. 1982 39, 1210-9. Baer, E.; Stanacev, N.Z. J. Biol. Chem. 1964, 239, 3209-14. Barnard, M.; Canioni, P.; Cozzone, P.J. Biochimie 1983, 65, 449-75. Baldwin, M.W.; Braven, J. J. Marine Biol. Assoc. 1968, 48, 603-8. Baird, D.D.; Upchurch, R.P.; Homesley, W.B.; Franz, J.E. Proc. Northcentr. Weed Contr. Conf. 1971, 26, 64-8. Mastalerz, P. Arch. Immun. Ter. Dosw. 1959, 7, 201-10. Brand, L.M.; Lowenstein, J.M. Biochemistry 1978, 17, 201-10. Atherton, R.F.; Hall, J.M.; Hassall, C H . ; Lambert, W.J.; Lloyd, P.S.; Ringrose, P.S.; Westmacott, D. Antimicrob. Ag. Chemother. 1982, 23, 571. Lambert, M.P.; Neuhaus, P.C. J. Bactriol. 1972, 110, 978-87. Lacoste, A.M.; Poulsen, M.; Cassaigne, Α.; Neuzil, E. Current Microbiol. 1979, 2, 113-7. Neuzil, E.; Cassaigne, A. Exp. Ann. Biochim. Med. 1980, 34, 165-210. Atherton, F.R.; Hall, M.J.; Hassall, C.H.; Lambert, R.W.; Lloyd, W.J., Ringrose, R.S. Antiomicrobial Agents Chemother. 1979, 15, 696-705. Landt, M; Baltz, S.C.; Butler, L.G. Biochemistry 1978, 17, 915-9. Soper, T.S.; Manning, J.M. J. Biol. Chem. 1981, 256, 4263-8. Petrillo, E.W.; Spitzmiller, E.R. Tetrahedron Lett. 1979, (51), 4929-30. Thorsett, E.D.; Harris, E.E.; Peterson, E.R.; Greenlee, W.J.; Patchett, A.A.; Ulm, E.H.; Vassil, T.C. Proc. Nat. Acad. Sci, USA 1982, 79, 2176-80. Galardy, R.E.; Knotoyiannidiou-Ostrem, V.; Kortylewicz, A.; Biochemistry 1983, 22, 1990-5. Petrillo, E.W.; Karanewsky, D.S.; Spitzmiller, E.R.; Duggan, M.E. Phosphorus and Sulfur 1983, 18, 489. Roisch, U.; Lingens, F. Hoppe-Seyler's Ζ. Physiol. Chem. 1980, 361, 1049-58. Lacoste, A.M.; Cassaigne, Α.; Neuzil, E. Compt. Rend. Acad. Sci. Paris, Ser. D. 1972, 275, 3009-12. Jayaram, H.N.; Cooney, D.A. Cancer Treatment Reports 1979, 63, 1095-1108.

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

206 86. 87. 88. 89. 90. Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118.

BIOLOGICALLY ACTIVE NATURAL PRODUCTS Pike, D.C.; Beevers, L. Biochim. Biophys. Acta 1982, 708, 203-9. Lejczak, B.; Starzemska, H.; Mastalerz, P. Experientia 1981, 37, 461-2. Hoogenraad, N.J. Arch. Biochem. Biophys. 1974, 161, 76-82. Swyryd, E.A.; Seaver, S.S.; Stark, G.R. J. Biol. Chem. 1974, 249, 6945-50. Collins, K.D.; Stark, G.R. J. Biol. Chem. 1971, 246, 6599-6605. Jacobsen, N.E.; Bartlett, P.A. J. Amer. Chem. Soc., 1981, 103, 654-7. Jacobsen, N.E. Bartlett, P.A. Amer Chem. Soc. Symp. Ser. 1981, 171. 221-4. Seely, J.E.; Marshall, F.D. Life Sci. 1982, 30, 1763-8. Petrenko, N.S.; Panasok, A.I.; Zbaritchenko, S.B.; Ivanova, Z.H.; Kim, T.V.; Suvalova, Ε.A. Fiziol. Aktiv. Veshchestva 1975, 7, 20-23. Lamden, L.A.; Bartlett, P.A. Biochem. Biophys. Res. Comm. 1983, 112, 1085-90. Ashley, G.W.; Bartlett, P.A. Biochem. Biophys. Res. Comm. 1982, 108, 1467-74. Rubin, J.L.; Gaines, C.G.; Jensen, R.A. Plant Physiol. 1982, 70, 833-9. Boocock, M.R.; Coggins, J.R. FEBS Lett. 1983, 154, 127-33. Plantavid, M.; Maget-Dana, R.; Douste-Blazy, L. Biochimie 1975, 57, 951-7. Meek, T.D.; Villafranca, J.J. Biochemistry, 1980, 19, 5513-9. Wedler, F.C.; Horn, B.R. J. Biol. Chem., 1976, 251, 7530-8. Wedler, F.C.; Horn, B.R.; Roby, W.G. Arch. Biochem. Biophys., 1980, 202, 482-90. Wu, C. J. Biochem., 1977, 55, 332-9. Maier, L.; Lea, P.J. Phosphorus and Sulphur, 1983, 17, 1-19. Sekura, R.; Meister, A. J. Biol. Chem., 1977, 252, 2599-2605. Neale, S. Chem.-Biol. Interactions, 1970, 2, 349-67. Lejczak, B.; Makowiecka, E.; Kafarski, P.; Mastalerz, P. in (38). Biryukov, A.I.; Ishmuratov, B.Kh.; Khomutov, R.M. FEBS Lett., 1978, 91, 249-52. Khomutov, R.M.; Osipova, T.I.; Biryukov, A.I.; Ishmuratov, B.Kh. Bioorg. Khimia, 1979, 5, 56-63. Biryukov, A.I.; Osipova, T.I.; Khomutov, R.M. FEBS Lett., 1978, 91, 246-8. Hoogenraad, N.J. Arch. Biochem. Biophys., 1978, 188, 137-44. Mori, M.; Aoyagi, K.; Tatibana, M.; Ishikawa, T.; Fshii, H. Biochem. Biophys. Res. Comm., 1977, 76, 900-4. Pennick, M.; Gigot, D. J. Biol. Chem., 1979, 254, 6392-6. Anderson, J.W.; Fowden, L. Chem.-Biol. Interact., 1970, 2, 53-5. Rosenthal, A.F.; Pousada, M. Biochim. Biophys. Acta, 1968, 164, 226-37. Izbicka-Dimitrijevic, E.; Masterlerz, P.; Kochman, M. Eur. J. Biochem., 1981, 114. 565-8. Pfeiffer, F.R. U.S. Patent 3 681 480, 1972. Turcotte, J.G.; Yu, C.S.; Lee, H.L.; Pavaranam, S.K.; Sen, S.; Smeby, R.R. J. Med. Chem., 1975, 18, 1184-90.

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

13. HOAGLAND 119.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 123 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151.

Carbon-Phosphorus Compounds as Herbicides

207

Pfeiffer, F.R.; Miao, C.K.; Itoka, S.C.; Weisbach, J.A. J. Med. Chem.. 1972, 15, 58-60. Schrich, L.V.; Diller, A. J. Biol. Chem., 1971, 246, 3961-6. Stoffel, W.; Grol, M. Chem. Phys. Lipids, 1974, 13, 372-88. Iron, Α.; Ruart, M.; Duboy, J.P.; Beranger, M.; Cassaigne, Α.; Neuzil, E. Biochem. Soc. Trans., 1981, 9, 246. Ovens, S.L.; Bell, F.E. J. Biol. Chem., 1970, 245, 5515-23. Southgate, C.B.; Dixon, H.B. Biochem. J., 1978, 175, 461-5. Fischer, H.P.; Bellus, D. Pestle. Sci., 1983, 14» 334-46. Mase, S. Jpn. Pestic. Inf.. 1984, 45, 27-30. Omura, S.; Hmotozawa, K.; Imamura, N.; Murata, M. J. Antibiot., 1984, 37, 939-40. Maier, L. Ger. Patent 24 48 869, 1980. Fredericho, P.M.; Summers, L.A. Z. Naturforsch., 1981, 36c, 242-5. Maier, L. Phosphorus and Sulfur, 1983, 14, 295-322. Birum, G.H. U.S. Patent 4 032 601, 1977. Birum, G.H. U.S. Patent 4 036 913, 1977. Issleib, K.; Hannirg, R.; Erfurt, G.; Dehre, H. GDR Patent 479, 1976. Kojima, T.; Otsuka, Y. Japanese Patent 76 98 221, 1976; Chem. Abstr., 1977, 86, 106772. Gunther, E.; Kochman, W.; Lottge, W.; Rothling, T.; Greuzburg, A. Ger. Patent 2 151 460, 1973. Roy, B.; Devlin, J. British Patent 1 508 772, 1978. Hoyle, W.; Vogel, R. Eur. Patent Appl. 10 067, 1980. Okamoto, Y. Internatl. Congr. Phosphorus Compounds, Rabat, 1977, p. 649-52. Suzuki, F.; Fujikawa, Y.; Yamamoto, S.; Mitzutani, H.; Funabashu, C.; Ohya, T.; Ikai, T.; Oguchi, T. German Patent 2 831 578, 1979. Kawamura, Y.; Oya, T.; Igai, T.; Takematsu, T. Japanese Patent 80 43 054, 1980; Chem. Abst., 1980, 93, 63620. Kawamura, Y.; Oya, T.; Igai, T.; Takematsu, T. Japanese Patent 80 43 055, 1980; Chem. Abst., 1980, 93, 63619. Nissan Chem. Ind. Ltd. Japanese Patent 80 98 105, 1980; Chem. Abst., 1980, 93, 232711. Nissan Chem. Ind. Ltd. Japanese Patent 80 98 194, 1980; Chem. Abst., 1980, 94, 4121. Suzuki, F.; Fujikawa, Y.; Kamamoto, S.; Hizutani, M.; Oya, T.; Kawamura, Y. Japanese Patent 79 144 383, 1979; CA, 1980, 93, 26547. Nissan Chem. Ind. Ltd. Japanese Patent 80 94 309, 1980; Chem. Abst., 1980, 93, 199240. Nissan Chem. Ind. Ltd. Japanese Patent 80 89 293, 1980; Chem. Abst., 1980, 93, 181017. Nissan Chem. Ind. Ltd. Japanese Patent 80 55 107, 1980; Chem. Abst., 1980, 93, 90191. Pickles, W.; Baylis, E.K. Eurpean Patent 0 010 066, 1980. Otsuka Chem. Co. Ltd. Japanese Patent 81 55 394, 1981; CA, 1981, 95, 204153. Large, G.B. U.S. Patent 4 170 463, 1979. Franz, J.E. In Advances of Pesticide Science, Vol. 2; Pergamon Press: Oxford, 1979; pp. 139-47.

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

208 152. 153. 154. 155. 156. 157.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

158. 159. 160. 161. 162. 163. 164. 165. 166. 167. 168. 169.

170. 171. 172. 173. 174. 175. 176. 177. 178. 179. 180.

BIOLOGICALLY ACTIVE NATURAL PRODUCTS Croft, S.M.; Arntzen, C.J.; Vanderhoef, L.N.; Zettinger, C.S. BBA, 1974, 335, 211-7. Slovin, J.P.; Tobin, E.M. BBA, 1981, 637, 177-84. Hoagland, R.E. Weed Sci., 1980, 28, 393-400. Hartman, F.A. U.S. Patent 3 894 861, 1975. Ratts, K.W. U.S. Patent 3 961 934, 1974. Gunther, E.; Lottge, W.; Kochmann, W. GDR Patent 94 280, 1972. Kramer, M.; Gunther, E.; Lottge, W.; Bech, R.; Kochmann, W. Environ. Qual. Saf. Suppl., 1976, 686; CA, 1976, 85, 11765. Gunther, E.; Lottge, W. Ger. Patent 2 022 228, 1971. Barth, P.; Gunther, E.; Kochmann, W. ; Kramer, W.; Lottge, W.; Rothling, T.; Wolter, G. GDR Patent 191 142, 1976. Azerbaev, I.N.; Tynibaev, B.D.; Abiyurov, B.D. USSR Patent 366 844, 1973. Phillips, W.G. U.S. Patent 4 164 406, 1979. Czerwinski, W.; Gancarz, R.; Przybylka, E.; Wieczorek, J.S. Acta Agrobot., 1982, 34, 253-60. Ogawa, Y.; Yoshida, H.; Kondo, Y. Japanese Patent 74 13 123, 1974; Chem. Abst., 1974, 80, 121102. Ogawa, Y.; Inouye, S.; Yamashina, H.; Niida, T. Sci. Rep. M e i j iSeikaKaisha, 1976, 15, 22-8. Takyama, S.; Sasaki, S.; Kimura, I. Japanese Patent 75 101 536, 1975; CA, 1975, 83, 189317. Azerbaev, I.N.; Bosyakov, Yu.; Dzailavlov, S.D.; Bobrov, L.G.; Rogozhin, A.K. USSR Patent 557 579, 1978. Amrhein, N.; Schab, J.; Steinrucken, H.L. Naturwiss, 1980, 67, 356-7. Hoagland, R.E.; Duke, S.O. In Biochemical Responses Induced by Herbicides; Moreland, D.E.; St. John, J.B.; Hess, F.D., eds.; ACS Symposium Series No. 181; Amer. Chem. Soc.: Washington, DC, 1982; pp. 175-205. Grossbard, E.; Atkinson, D., eds. The Herbicide Glyphosate; Butterworths: London, 1985. Duke, S.O. In Herbicides: Chemistry, Degradation, and Mode of Action; Kearney, P.C.; Kaufman, D.D., eds.; Marcel Dekker Inc.: New York, 1988; pp. 1-70. Zoebisch, O.C.; Rushing, T.T.; Barrier, G.E. Proc. Northeast Weed Sci. Soc., 1974, 28, 347-9. Kitchen, L.M.; Rieck, C.E.; Witt, W.W. Weed Res., 1980, 20, 285-9. Morey, P.R.; Dahl, B.E. Weed Sci., 1980, 28, 251-5. Herbicide Handbook, WSSA: 5th Ed., Champaign, IL., 1983. Dollwet, H.H.; Kumamoto, J.J. Plant Physiol., 1970, 46, 786-9. Murphy, S.D. Pesticides in Toxicology: The Basic Science of Poisons, 2nd ed., Doull, J.; Klaasen, C.D.; & Amdur, M.O., eds., Macmillan, New York, 1980, chap. 16. Hilderbrand, R.L. In The Role of Phosphonates in a Living System; CRC Press: Boca Raton, FL., 1983; chapter 6. Kondo, Y.; Shomura, T.; Ogawa, Y.; Suzuki, T.; Moriyama, Ch.; Yoshida, J.; Inonye, Sh.; Niida, T. Sci. Rept. Meiji Seika Kaisha, 1973, 13, 34-41. Meiji Seika Kaisha DOS 2 236 599 (1973, priority 28.7.1971).

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

13. HOAGLAND 181. 182. 183.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

184. 185. 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 200. 201. 202. 203. 204. Lea, 205. 206. 207. 208. 209. 210. 211.

Carbon—Phosphorus Compounds as Herbicides 209

Meiji Selka Kaisha, J 5 4092 628 (1979, priority 29.12.1977). Hoescht AG, DOS 2 717 440, 1977. Omura, S.; Murata, M.; Hanaki, H.; Hinotozawa, K.; Oiwa, R.; Tanaka, H. J. Antibiot. 1984, 37, 829-35. Jap. Kokai Tokkyo Koho, Japanese Patent 61 176 505, 1986. Tachibana, K.; Kaneko, Κ J. Pestic. Sci. 1986, 11, 297-304. Ridley, S.M.; McNally, S.F. Plant Sci. Lett. 1985, 39, 31-6. Suzuki, Α.; Nishide, K.; Shimura, M.; Yamamoto, I. J. Pestic. Sci. 1987, 12, 105-7. Lee, T.T.; Dumas, T.; Jevnikar, J.J. Pestic. Biochem. Physiol. 1983, 20, 354-9. Duke, S.O.; Hoagland, R.E. in The Herbicide Glyphosate; Butterworths: London, 1980; Chapter 6. Hoagland, R.E. Abstracts, 186th National Meeting, Amer. Chem. Soc.; 1983, Pestic. Div. Abst. No. 33. Wedler, F.C.; Horn, B.R.; Roby, W.G. Arch. Biochem. Biophys. 1980, 202, 482-90. Wu, C. Can. J. Biochem. 1977, 55, 332-9. Lejezak, B.; Stargemsko, H.; Mastalez, P. Experientia 1981, 37, 461-2. Manderscheid, R.; Wild, A. J. Plant Physiol. 1986, 123, 135-42. Omura, S.; Murata, M.; Imamura, N.; Iwai, H.; Taneka, H.; Furusaki, Α.; Matsumoto, T. J. Antibiot. 1984, 37, 1324-32. Siden, S.L.; Durbin, R.D. Nature 1968, 219, 379-80. Langston-Unkefer, P.L.; Macy, P.A.; Durbin, R.D. Plant Physiol. 1984, 76, 71-4. Tate, S.S.; Meister, A. In The Enzymes of Glutamine Metabolism, Academic Press: New York; pp. 77-127. Jeannoda, V.L.; Valeolalso, J.; Creppy, E.E.; Dorjeomer, G. Phytochemistry 1985, 24, 854-5. Ronzio, R.A.; Rowe, W.B.; Meister, A. Biochemistry 1969, 8,1066-75. Sekizawa, Y.; Takematsu, T. In Pesticide Chemistry, Human Welfare and the Environment, Vol. 2, Natural Products; Pergamon Press: Oxford, 1983; pp. 261-8. Hoagland, R.E. Abstracts, Weed Sci. Soc. Amer. Abst. No. 168, 1987. Tolbert, E.N. In The Biochemistry of Plants, Vol. 2 Academic Press: New York, 1980; pp. 488-523. Wallsgrove, R.M.; Keys, A.J.; Bird, J.F.; Cornelius, M.J.; P.J.; Miflin, B.J. J. Exp. Bot. 1980, 31, 1005-7. Leason, M.; Cunliffe, D.; Parkin, D.; Lea, P.J.; Miflin, B.J. Phytochemistry 1982, 21, 855-7. Lea, P.J.; Joy, K.W.; Ramos, J.L.; Guerrero, M.G, Phytochemistry 1984, 23, 1-6. Tachibana, K.; Watanabe, T.; Kekizawa, Y.; Takematsu, T. J. Pesti. Sci. 1986, 11, 27-31. Tachibana, K.; Watanabe, T.; Suzuki, Y.; Sekizawa, Y. Sci. Rpt. Meji Seika Kaisha 1980, 19, 27-31. Sauer, H.; Wild, Α.; Ruhle, W. Z. Naturforsch. 1987, 42, 270-8. Wild, Α.; Manderscheid, R. Z. Naturforsch 1984, 39c, 500-4. Wild, A.; Sauer, H.; Ruhle, W. Z. Naturforsch. 1987, 42c, 23-9.

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.

210 212. 213.

Downloaded by UNIV OF MASSACHUSETTS AMHERST on March 7, 2016 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch013

214. 215. 216. 217. 218. 219. 220. 221. 222. 223.

BIOLOGICALLY ACTIVE NATURAL PRODUCTS Tachibana, K.; Watanage, T.; Sekizawam Y.; Takemastsu, T. Pest. Sci. 1986, 11, 33-7. Tachibana, K.; Watanabe, T.; Sekizawa, Y.; Konnai, M.; Takematsu, T. Abst. 5th Int. Cong. Pestic. Chem.; Kyoto, IVa-19, 1982. Wild, A.; Sauer, H.; Fuhle, W. Z. Naturforsch. 1987, 42, 263-69. Platt, S.G.; Anthon, G.E. Plant Physiol. 1981, 67, 509-13. Turner, J.G. Physiol. Plant Pathol. 1981, 19, 57-67. Misato, T.; Yamaguchi, I. Outlook Agric. 1984, 13, 136-9. Hoagland, R.E. Abstracts, 185th National Meeting Amer. Chem. Soc. Pestic. Div. Abst. No. 96. Cook, C.M.; Tolbert, N.E. Plant Physiol. 1982, 69, Suppl. 52. Murakami, T.; Anzai, H.; Imai, S.; Satoh, Α.; Nagaska, K.; Thompson, C.J. Mol. Gen. Genet. 1986, 205, 42-50. Shimatohno, K.; Seto, H.; Otake, N.; Imai, S.; Setoh, A. J. Antibiot. 1986, 39, 1356-9. Goi, J.; Miyado, S.; Shomura, T.; Suzuki, Α.; Niwa, T.; Yamada, Y. Japanese Patent 3 55 47 630, 1980. Newman, E.I. Pestic. Sci. 1982, 13, 575-82.

RECEIVED

August 23, 1988

Cutler; Biologically Active Natural Products ACS Symposium Series; American Chemical Society: Washington, DC, 1988.