Chapter 16
Terpenoids as Models for New Agrochemicals Stella D. Elakovich
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch016
Department of Chemistry, University of Southern Mississippi, Hattiesburg, MS 39406-5043
This chapter examines the evidence that some terpenoids serve as plant growth regulators (allelochemicals) as well as anti-herbivore agents. The plant origin and bioassay method of terpenoid allelopathic agents is explored. The role these same compounds play in plant-insect communication due to volatiles, and their involvement as insect pheromones is discussed. The agrochemical possibilities are far-reaching. Terpenes and terpenoids are ubiquitous in the higher plant kingdom. Although the role of these compounds is s t i l l being debated, considerable evidence is accumulating that they have functions both as allelopathic agents and as anti-herbivore agents. As such, they possess the potential of being incorporated via genetic engineering methods into selected crop plants in order to both provide a defensive allelochemical edge over other plants, and also to minimize crop damage by insects. Many secondary compounds implicated in allelopathic interactions have also been reported to be involved in other protective or defensive roles for the plant (1). It is likely that many secondary compounds have more than one role in nature. This chapter will explore the role of terpenoids first as allelopathic agents--potential models for new herbicides-and then as important agents in plant-insect interactions. Allelopathic Agents In his classical paper titled "The Influence of One Plant on Another--Allelopathy", Hans Molisch in 1937 coined the term allelopathy to refer to biochemical interactions among all types of plants including microorganisms (2.). Rice, in the second edition of his comprehensive monograph Allelopathy supports this early definition which includes both inhibitory and stimulatory interactions (3). Not surprisingly, the most commonly identified allelopathic compounds produced by higher plants are simple phenols 0097-6156/88/0380-0250$06.00/0 © 1988 American Chemical Society
In Biologically Active Natural Products; Cutler, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
16.
ELAKOVICH
Terpenoids as Models for New Agrochemicals
251
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch016
and c i n n a m i c a c i d d e r i v a t i v e s ( 3 ) . A s l o n g ago a s 1 9 0 8 , Schreiner and Reed (4) r e p o r t e d t h a t v a n i l l i n , v a n i l l i c a c i d , and h y d r o q u i n o n e a r e commonly p r o d u c e d p l a n t c o n s t i t u e n t s i n h i b i t o r y t o s e e d l i n g growth. T h i s f o c u s i n g on p l a n t p h e n o l i c c o n s t i t u e n t s as a l l e l o c h e m i c a l s l i k e l y o c c u r r e d f o r two m a i n r e a s o n s : t h e e a s e o f i s o l a t i o n and i d e n t i f i c a t i o n o f p h e n o l i c compounds, and t h e i r h i g h water s o l u b i l i t y . R e c e n t l y F i s c h e r and Q u i j a n o (5) h a v e p r o p o s e d t h a t c o m p o u n d s o f l o w w a t e r s o l u b i l i t y may a c t a s a l l e l o c h e m i c a l s v i a m i c e l l e f o r m a t i o n , a n d t h e y s u g g e s t a réévaluation o f w a t e r i n s o l u b l e p l a n t c o n s t i t u e n t s as p o t e n t i a l a l l e l o p a t h i c a g e n t s . B o t h mono- a n d s e s q u i t e r p e n o i d s f r e q u e n t l y o c c u r i n t h e s t e a m v o l a t i l e e s s e n t i a l o i l s of higher plants. M o n o t e r p e n o i d s a r e 10c a r b o n c o m p o u n d s b i o g e n e t i c a l l y d e r i v e d f r o m two i s o p r e n e u n i t s (6.) . S e v e r a l h u n d r e d a r e known. T h e i r f u n c t i o n as g e r m i n a t i o n and p l a n t g r o w t h r e g u l a t o r s was r e v i e w e d b y E v e n a r i ( 7 ) i n 1949 a n d r e c e n t l y by F i s c h e r ( 8 ) . Sesquiterpenoids, 1 5 - c a r b o n compounds d e r i v e d f r o m t h r e e i s o p r e n e u n i t s ( 6 ) , d i s p l a y w i d e s t r u c t u r a l v a r i e t y and a d r a m a t i c i n c r e a s e i n t h e number o f known c o m p o u n d s - - s e v e r a l t h o u s a n d a r e known. The h i g h d e g r e e o f r e s e a r c h a c t i v i t y i n t h i s a r e a i s e x e m p l i f i e d by t h r e e r e v i e w s p u b l i s h e d i n the p a s t f i v e y e a r s . S t e v e n s (9) r e v i e w e d the b i o l o g i c a l l y a c t i v e s e s q u i t e r p e n e lactones, F i s c h e r (8) r e v i e w e d the g e r m i n a t i o n and p l a n t g r o w t h r e g u l a t o r y f u n c t i o n s o f b o t h mono- a n d s e s q u i t e r p e n o i d s , a n d E l a k o v i c h (10) reviewed sesquiterpenes a c t i n g as p h y t o a l e x i n s and p l a n t g r o w t h regulators. Since these are a l l q u i t e recent reviews, t h i s paper w i l l o n l y g i v e a c u r s o r y r e v i e w o f w o r k m e n t i o n e d i n them. Reports t h r o u g h l a t e 1987 o f mono- a n d s e s q u i t e r p e n o i d s a l l e g e d t o b e a l l e l o p a t h i c agents not i n c l u d e d i n these three recent reviews w i l l b e r e v i e w e d h e r e i n more d e t a i l . Monoterpenes. M o n o t e r p e n e s w e r e i m p l i c a t e d i n a l l e l o p a t h y o v e r 60 y e a r s ago w h e n S i g m u n d ( 1 1 ) s c r e e n e d e s s e n t i a l o i l s a n d p u r e monoterpenes and o b s e r v e d i n h i b i t i o n o f s e e d g e r m i n a t i o n and p l a n t g r o w t h i n wheat, r a p e and v e t c h . I n h i s 1986 r e v i e w , F i s c h e r g i v e s t h e s t r u c t u r e s o f 14 m o n o t e r p e n e s t h a t h a v e b e e n i m p l i c a t e d i n allelopathy (8). T e n o f t h e m , a- a n d β-pinene, c a m p h e n e , c a m p h o r , 1 , 8 - c i n e o l e , p u l e g o n e , b o r n e o l , l i m o n e n e , α-phellandrene a n d pc y m e n e a r e common c o n s t i t u e n t s o f p l a n t e s s e n t i a l o i l s a n d h a v e f r e q u e n t l y b e e n i m p l i c a t e d i n a l l e l o p a t h y . M u l l e r and M u l l e r (12) f o u n d c a m p h e n e , c a m p h o r , c i n e o l e , d i p e n t e n e , a- a n d β-pinene among t h e v o l a t i l e i n h i b i t o r s p r o d u c e d b y Salvia s p e c i e s . Of these, camphor and c i n e o l e were t h e most t o x i c t o r o o t g r o w t h o f t e s t seedlings (13). A s p l u n d (14) i n v e s t i g a t e d t h e i n h i b i t o r y n a t u r e o f c a m p h o r , p u l e g o n e , b o r n e o l , c i n e o l e , l i m o n e n e , α-phellandrene, pc y m e n e , a- a n d β-pinene t o w a r d r a d i s h s e e d g e r m i n a t i o n a n d f o u n d t h a t a l t h o u g h compounds w i t h a k e t o n e g r o u p , camphor and p u l e g o n e , w e r e more i n h i b i t o r y t h a n t h e o t h e r s , a l l were i n h i b i t o r y . Rather s u r p r i s i n g l y , a l l s t i m u l a t e d g e r m i n a t i o n a t low concentrations. The " b a r e z o n e s " , a r e a s f r e e o f h e r b a c e o u s v e g e t a t i o n , s u r r o u n d i n g n a t u r a l i z e d s t a n d s o f Eucalyptus camaldulensis are due t o t h e h i g h l y t o x i c c i n e o l e and l e s s t o x i c p i n e n e and a - p h e l l a n d r a n e f o u n d among t h e t e r p e n e s p r o d u c e d b y Ε. camaldulensis (15.) . This o r d e r o f t o x i c i t y i s r e i n f o r c e d by d a t a f r o m Weaver and K i s h (16) who m e a s u r e d t h e e f f e c t s o f e i g h t t e r p e n e s o n c u c u m b e r a n d f o u n d e v e n the s m a l l e s t amounts t e s t e d o f c i n e o l e , d i p e n t e n e , c i t r o n e l l o l ,
In Biologically Active Natural Products; Cutler, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch016
252
BIOLOGICALLY ACTIVE NATURAL PRODUCTS
menthol and t e r p i n e o l e s s e n t i a l l y e l i m i n a t e d both root and hypocotyl growth. H a l l i g a n (17) examined t h e r e l a t i v e a c t i v i t i e s o f t e r p e n o i d s f r o m Artemisia californica, w h i c h l i k e Eucalyptus, i s c h a r a c t e r i z e d b y bare zones under and a d j a c e n t t o t h e t h i c k e t s i t forms. O f t h e f i v e t e r p e n o i d s f o u n d i n m a j o r a m o u n t s , camphor was most t o x i c , f o l l o w e d b y c i n e o l e . S o u r o r a n g e , Citrus aurantium L., a l s o i n h i b i t s growth o f h e r b a c e o u s v e g e t a t i o n v i a a n a l l e l o p a t h i c m e c h a n i s m ( 1 8 - 1 9 ) . Among the v o l a t i l e i n h i b i t o r s i d e n t i f i e d a r e four terpenoids: a - a n d βpinene, (i)-limonene, and c i t r o n e l l a l . A l l o f t h e s e compounds r e d u c e d t h e h y p o c o t y l g r o w t h o f Amaranthus retroflexus; a l l except the lower c o n c e n t r a t i o n t e s t e d o f (+)-limonene a l s o reduced r a d i c a l l e n g t h o f A. retroflexus, and a l l except (-)-limonene i n h i b i t e d t h e g e r m i n a t i o n o f A. retroflexus seeds. Inhibitory effects increased with increased inhibitor concentrations. α-Pinene w a s t h e m o s t a c t i v e o f these i n h i b i t o r s ; t h i s i s the f i r s t report i m p l i c a t i n g citronellal i n allelopathy. The h e x a n e e x t r a c t o f s e e d s f r o m Eryngium paniculatum was f o u n d t o i n h i b i t g e r m i n a t i o n o f v e l v e t l e a f (Abutilon theophrasti M e d i c ) , a s e r i o u s weed i n c o r n a n d s o y b e a n f i e l d s ( 2 0 ) . F r a c t i o n a t i o n s m o n i t o r e d b y b i o a s s a y gave t h e t e r p e n e a l d e h y d e - e s t e r (-)-2,2,2-trimethyl-3-formyl-2,5-cyclohexadienyl angelate (1) as t h e o n l y a c t i v e component. S t r u c t u r e - a c t i v i t y studies o f (1) and nine analogs suggest that a c t i v i t y i sdiminished by removing the formyl group from t h e r i n g , t h e c y c l i c double bonds a r e r e q u i r e d , and t h e o r i e n t a t i o n o f t h e a c y l double bond i sn o ti m p o r t a n t .
H e i s e y a n d D e l w i c h e (21) o b s e r v e d a h i g h l y t o x i c monoterpene a l c o h o l a s a m a j o r i n h i b i t o r p r e s e n t i n Trichostema lanceolatum Benth. ( v i n e g a r weed). T h i s a l c o h o l , t e r p i n e n - 4 - o l , was l e s s i n h i b i t o r y t h a n c a m p h o r , b u t a l m o s t t w i c e a s i n h i b i t o r y a s 1,8c i n e o l e as measured b y g e r m i n a t i o n and r a d i c a l growth i n h i b i t i o n o f Hordeum vulgare ( s e l e c t e d because o f i t s g e n e t i c homogeneity) and Bromus mollis ( s e l e c t e d b e c a u s e i t i s common t o t h e C a l i f o r n i a grassland). I n o u r i n v e s t i g a t i o n s o f a l l e l o p a t h i c p l a n t s , we h a v e e x a m i n e d t h e c r e e p i n g p e r e n n i a l h e r b Lippia nodiflora, w h i c h i s known f o r i t s rampant growth ( 2 2 ) , and h a d e a r l i e r been r e p o r t e d t o be a g e r m i n a t i o n i n h i b i t o r ( 7 ) . We f o u n d t h e e s s e n t i a l o i l i n h i b i t o r y t o l e t t u c e s e e d l i n g s , p r o b a b l y due i n p a r t t o t h e p r e s e n c e o f t h e t e r p e n e s / ? - p i n e n e a n d p - c y m e n e a n d t h e s e s q u i t e r p e n e α-caryophyllene i d e n t i f i e d i n t h e complex e s s e n t i a l o i l . I n v e s t i g a t i o n (23) o f t h e e s s e n t i a l o i l o f a s e c o n d Lippia s p e c i e s , Lippia adoensis, revealed a simple mixture completely dominated by t h e terpene a l c o h o l , l i n a l o o l (81% o f the t o t a l e s s e n t i a l o i l ) . The a l l e l o p a t h i c m o n o t e r p e n e s 1 , 8 - c i n e o l e a n d a - a n d β-pinene w e r e a l s o i d e n t i f i e d . Lettuce s e e d l i n g b i o a s s a y o f both the e s s e n t i a l o i land o f pure l i n a l o o l showed s i m i l a r a c t i v i t y . B o t h appear t o enhance r a d i c a l growth a t l o w c o n c e n t r a t i o n s , a l t h o u g h t h e enhancement i s n o t
In Biologically Active Natural Products; Cutler, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
16.
ELAKOVICH
Terpenoids as Models for New Agrochemicals
253
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch016
statistically significant. A t 400 ppm l i n a l o o l c a u s e s a 4 2 % r e d u c t i o n a n d L. adoensis l e a f e x t r a c t a 45% r e d u c t i o n i n l e t t u c e radical length. Mechanisms o f A l l e l o p a t h i c I n h i b i t i o n by Mono-Terpenoids. There i s a d e a r t h o f i n f o r m a t i o n a v a i l a b l e on t h e s p e c i f i c e f f e c t s t h a t a l l e l o c h e m i c a l s produce. M u l l e r and M u l l e r (12) f o u n d camphor and c i n e o l e t o be t h e m o s t t o x i c among t h e v o l a t i l e i n h i b i t o r s p r o d u c e d b y Salvia species. I n d e e d , c i n e o l e was u s e d a s t h e s t r u c t u r a l b a s i s f o r the s y n t h e t i c h e r b i c i d e c i n m e t h y l i n (24). A s p l u n d (14) f o u n d t e r p e n o i d s c o n t a i n i n g a k e t o n e g r o u p , camphor and p u l e g o n e t o be t h e m o s t i n h i b i t o r y among n i n e t e r p e r o i d s e x a m i n e d . B o t h H e i s e y and D e l w i c h e (21) and E l a k o v i c h and O g u n t i m e i n (23) f o u n d m o n o t e r p e n e a l c o h o l s t o be t h e m a j o r v o l a t i l e i n h i b i t o r s p r o d u c e d by Trichostema lanceolatum a n d Lippia adoensis, respectively. C e r t a i n l y these r e s u l t s s u g g e s t t h a t o x y g e n a t e d t e r p e n e s a r e more h i g h l y i n h i b i t o r y than terpene hydrocarbons. E i n h e l l i g (25) s u g g e s t s t h a t i t i s a r a r e e x c e p t i o n when a s i n g l e s u b s t a n c e i s r e s p o n s i b l e f o r allelopathy. He h a s s h o w n (26.) t h a t b o t h a d d i t i v e a n d s y n e r g i s t i c i n h i b i t i o n may o c c u r , b u t t h e m e c h a n i s m s o f t h i s i n h i b i t i o n h a v e n o t been determined. M u l l e r (27.) h a s r e v i e w e d t h e p o s s i b l e m e c h a n i s m s i n v o l v e d i n a l l e l o c h e m i c a l i n h i b i t i o n of herbs. When Cucumis sativus (cucumber) s e e d l i n g s a r e e x p o s e d t o Salvia leucophylla vapors, elongation of t h e h y p o c o t y l s i s s e v e r e l y c u r t a i l e d and g r o w t h i s r e d u c e d t o 25% o f t h e c o n t r o l , i n d i c a t i n g b o t h stem and r o o t c e l l s a r e a f f e c t e d by the v o l a t i l e terpenoids. Those c e l l s w h i c h f i r s t d e v e l o p i n a g e r m i n a t i n g s e e d a r e more s u s c e p t i b l e t o t h e s e v o l a t i l e terpenoids t h a n a r e the c e l l s o f an o l d e r p l a n t and c e l l e l o n g a t i o n , cell d i v i s i o n , and t i s s u e m a t u r a t i o n a r e a l l i n f l u e n c e d ( 2 8 ) . Somewhat i n c o n t r a s t i s t h e w o r k o f W e a v e r a n d K l a r i c h ( 2 9 ) who f o u n d t h a t volatile s u b s t a n c e s , a s s u m e d t o be m o n o t e r p e n e s , f r o m Artemisia tridentata N u t t . s u p p r e s s e d s e e d l i n g g r o w t h and the r e s p i r a t i o n r a t e of j u v e n i l e p l a n t m a t e r i a l , but e l e v a t e d the r e s p i r a t i o n r a t e of mature leaves. T h e y s h o w e d i n l a b o r a t o r y t e s t s t h a t some t e r p e n e s r a i s e d and o t h e r s l o w e r e d the r e s p i r a t i o n i n wheat (Triticum aestivum L.). V o l a t i l e s o f S. leucophylla essentially halted m i t o s i s o f Allium cepa r o o t t i p s w i t h i n 72 h r s o f e x p o s u r e ( 3 0 ) . When l o w e r c o n c e n t r a t i o n s o f t h e t e r p e n o i d s w e r e u s e d f o r treatments, t h e e f f e c t on chromosomes c o u l d be s e e n t o be s i m i l a r t o t h a t c a u s e d by c o l c h i c i n e t r e a t m e n t . The l o n g e r t h e A. cepa b u l b s a r e e x p o s e d t o t e r p e n o i d s , o r t h e more c o n c e n t r a t e d t h e terpenoids t o w h i c h the c e l l s are exposed, the g r e a t e r are the chromosomal abnormalities. Increased c u t i n deposits i n root epidermal c e l l s , and i n c r e a s e d l i p i d a c c u m u l a t i o n i n r o o t c o r t i c a l c e l l s a l s o o c c u r w i t h i n c r e a s e d e x p o s u r e t o Salvia t e r p e n o i d s (31.) . T h e s e i n c r e a s e d c u t i n s a n d l i p i d s may e n h a n c e t h e t e r p e n o i d i n h i b i t o r y e f f e c t s b y making access of the a l l e l o c h e m i c a l s i n t o the c e l l s e a s i e r . E i n h e l l i g ( 2 5 ) s u g g e s t s t h a t l o s s o f membrane i n t e g r e t y b y a b s o r p t i o n o f l i p i d s o l u b l e t e r p e n e s i n t o t h e membranes i s a l i k e l y starting point for their destructive action. M u l l e r (27) s u g g e s t s t h a t e v e n i f s u s c e p t i b l e p l a n t s do s u r v i v e , t h e y w o u l d b e w e a k e r a n d t h u s more l i k e l y t o succumb t o e n v i r o n m e n t a l s t r e s s e s s u c h as drought. I t i s thus p o s s i b l e to m i t i g a t e or i n t e n s i f y a l l e l o p a t h i c e f f e c t s by e n v i r o n m e n t a l f a c t o r s .
In Biologically Active Natural Products; Cutler, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch016
254
BIOLOGICALLY ACTIVE NATURAL PRODUCTS
Sesquiterpene Hydrocarbons and T h e i r D e r i v a t i v e s . Recent reviews (8,10) o f s e s q u i t e r p e n e hydrocarbons and t h e i r d e r i v a t i v e s t h a t have b e e n i m p l i c a t e d i n a l l e l o p a t h y g i v e s t r u c t u r e s f o r 20 c o m p o u n d s . I n c l u d e d a r e b e r g a m o t e n e , b i s a b o l e n e , a - b u l n e s e n e , δ-cadinene, calamenene, β - c a r y o p h y l l e n e , α-copaene, a - g u a y e n e , β-patchoulin, and / 3 - s e l i n e n e , a l l h y d r o c a r b o n s f r e q u e n t l y f o u n d i n p l a n t e s s e n t i a l oils. Three sesquiterpene aldehydes, (-)-isobicyclogermacrenal, ( - ) - l e p i d o z e n a l , and ( + ) - v i t r e n a l a r e i n c l u d e d along w i t h the ketone zerumbone. The s e s q u i t e r p e n e a l c o h o l , f a r n e s o l , i t s a c e t a t e , t h e r e l a t e d c o m p o u n d m e t h y l f a r n e s a t e , a n d t h e c a d i n e n e d e r i v a t i v e , epikhusinol acetate are a l l phytotoxic. Two i n h i b i t o r y c o m p o u n d s h a v i n g m u l t i - f u n c t i o n a l i t y i n c l u d e t h e ent-2,3-secoa l l o a r o m a d e n d r a n e p l a g i o c h i l i n A a n d phomenone. Structure-activity s t u d i e s o f the l a t t e r suggest the epoxide f u n c t i o n i s necessary f o r growth i n h i b i t i o n , and a c e t y l a t i o n i s c l o s e l y connected w i t h t h e t o x i c p r o p e r t i e s (32.) . P a u l et al. ( 3 3 ) r e c e n t l y e l u c i d a t e d t h e s t r u c t u r e o f f i v e new b i o a c t i v e s e s q u i t e r p e n o i d s f r o m t h e g r e e n a l g a e , Caulerpa ashmeadii. F o u r o f t h e s e compounds, ( 2 ) , ( 3 ) , ( 4 ) , and ( 5 ) ,
showed a n t i m i c r o b i a l a c t i v i t y t o w a r d a t l e a s t one m a r i n e b a c t e r i u m and a l l were a l s o t o x i c t o w a r d t h e d a m s e l f i s h , Pomacentrus coeruleus. The a l d e h y d e a n d e n o l a c e t a t e f u n c t i o n a l g r o u p s p r e s e n t i n t h e s e compounds c a n p o t e n t i a l l y r e a c t w i t h p r o t e i n s i n a number o f ways t o a l t e r o r i n a c t i v a t e p r o t e i n o r enzyme f u n c t i o n , s u p p o r t i n g the hypothesis that these metabolites a r e used i n chemical defense. Seed g e r m i n a t i o n b i o a s s a y o f t h e e t h y l a c e t a t e e x t r a c t o f d r i e d , g r o u n d Ambrosia peruviana W i l l d . , w i l d t a n s y , showed i n h i b i t o r y a c t i v i t y (34). Five sesquiterpenes, four lactones of the pseudoguaianolide type and a d i o l were c h a r a c t e r i z e d from t h i s extract. T h e d i o l s t r u c t u r e was d e t e r m i n e d b y s p e c t r a l e v i d e n c e t o be (6), (+)-alloaromadendrane-4/3,10a-diol. This i s the f i r s t OH
(6) r e p o r t e d s e s q u i t e r p e n e d i o l f r o m Ambrosia s p e c i e s . I t i s antipodal t o a c o m p o u n d i s o l a t e d f r o m t h e m a r i n e s o f t c o r a l , Sinularia mayi and thus i l l u s t r a t e s t h e f r e q u e n t l y o b s e r v e d a n t i p o d a l r e l a t i o n s h i p between s e s q u i t e r p e n e s d e r i v e d from marine and t e r r e s t r i a l organisms. B i o a s s a y o f i s o l a t e d (6) s h o w e d i t t o c a u s e r e d u c t i o n o f c r e s s r o o t s and shoots a t the three c o n c e n t r a t i o n s t e s t e d , b u t o n l y
In Biologically Active Natural Products; Cutler, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
16.
ELAKOVICII
Terpenoids as Models for New Agrochemicals
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch016
t h e h i g h e s t c o n c e n t r a t i o n i n h i b i t e d l e t t u c e s e e d l i n g r o o t s and shoots. A t t h e two l o w e r c o n c e n t r a t i o n s t e s t e d , l e t t u c e r o o t s shoots were s i g n i f i c a n t l y s t i m u l a t e d .
255
and
Sesquiterpene Lactones. Of a l l o f t h e t e r p e n o i d compounds, t h e sesquiterpene l a c t o n e s possess the g r e a t e s t v a r i e t y o f b i o l o g i c a l activities. M o r e t h a n 1000 o f t h e s e c o m p o u n d s h a v e b e e n i s o l a t e d , c h i e f l y from the p l a n t f a m i l y Asteraceae (Compositae), but a l s o from the U m b e l l i f e r e a e and M a g n o l i a c e a e ( 8 ) . I n 1976 R o d r i g u e z , et al. (35) r e v i e w e d the b i o l o g i c a l a c t i v i t i e s and mechanism o f a c t i o n o f t h e s e compounds. I n a 1979 r e v i e w , F i s c h e r e t al. (36.) l i s t 950 s e s q u i t e r p e n e l a c t o n e s w h i c h h a d b e e n c h a r a c t e r i z e d b y 1977. They a l s o d i s c u s s the b i o g e n e t i c r e l a t i o n s h i p s of sesquiterpene l a c t o n e s . The a c t i v i t i e s t h e s e c o m p o u n d s p o s s e s s i n c l u d e a n t i n e o p l a s t i c agents, i n s e c t feeding d e t e r r e n t s , p l a n t growth r e g u l a t o r s , a n t i m i c r o b i a l agents, s c h i s t o s o m i c i d a l agents, v e r t e b r a t e poisons a n d c o n t a c t d e r m a t i t i s i n humans ( 8 , 1 0 ) . Several structure-activity s t u d i e s have l e d to the c o n c l u s i o n t h a t p l a n t growth r e g u l a t i o n r e q u i r e s the p r e s e n c e o f an e x o c y c l i c a,/3-unsaturated lactone moiety (7) w h i c h c a n combine w i t h s u l f h y d r y l g r o u p s i n k e y enzymes t h a t control cell division (8,9,35).
I n h i s 1984 r e v i e w , S t e v e n s ( 9 ) g i v e s s t r u c t u r e s o f 8 s e s q u i t e r p e n e l a c t o n e s which have a l l e l o p a t h i c a c t i v i t y . Fischer ( 8 ) , i n h i s 1986 r e v i e w , g i v e s s t r u c t u r e s o f 38 a d d i t i o n a l a l l e l o p a t h i c sesquiterpene lactones. A r e c e n t r e p o r t by G o l d s b y and B u r k e (34) g i v e s s t r u c t u r e s f o r f o u r s e s q u i t e r p e n e l a c t o n e s o f the pseudoguaianolide type i s o l a t e d from the e t h y l a c e t a t e e x t r a c t of Ambrosia peruviana. Three o f t h e s e , ( 8 ) , ( 9 ) , and ( 1 0 ) , a r e s t r u c t u r e s n o t r e p o r t e d by S t e v e n s (9) o r F i s c h e r ( 8 ) . Of t h e s e , a m b r o s i n (8) and p s i l o s t a c h y i n Β (10) were most a c t i v e i n p r e v e n t i n g g e r m i n a t i o n and r o o t and s h o o t g r o w t h i n l e t t u c e and c r e s s seedlings. D a m s i n (9) e x h i b i t e d b o t h s t i m u l a t o r y and i n h i b i t o r y e f f e c t s on s e e d l i n g g r o w t h , d e p e n d i n g on t h e c o n c e n t r a t i o n . I t was a l s o a c t i v e a g a i n s t t h e f u n g a l o r g a n i s m Cladosporium herbarium.
A g l a n c e a t any c u r r e n t i s s u e o f a p h y t o c h e m i c a l j o u r n a l r e v e a l s a n e v e r i n c r e a s i n g n u m b e r o f new s e s q u i t e r p e n e l a c t o n e s t r u c t u r e s i s o l a t e d from higher p l a n t s . No d o u b t many o f t h e s e , w h e n s u b j e c t e d t o g r o w t h i n h i b i t i o n a s s a y s , w i l l a l s o p r o v e t o be a l l e l o p a t h i c . Diterpenoids. Liverwarts c o n t a i n o i l bodies which are high i n terpenoid content. B e y e r et al. ( 3 7 ) i s o l a t e d s i x new diterpenoids
In Biologically Active Natural Products; Cutler, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch016
256
BIOLOGICALLY ACTIVE NATURAL PRODUCTS
f r o m t h e l i v e r w a r t Anas trophyHum minutum ( S c h r e b . ) S c h u s t . I n a d d i t i o n , t h e k n o w n s e s q u i t e r p e n e h y d r o c a r b o n s , a n a s t r e p t e n e , βb a r b a t e n e , a n d b i c y c l o g e r m a c r e n e were i s o l a t e d a n d i d e n t i f i e d . The s i x new d i t e r p e n o i d s , ( 1 1 ) , ( 1 2 ) , ( 1 3 ) , ( 1 4 ) , ( 1 5 ) , a n d ( 1 6 ) r e p r e s e n t a new d i t e r p e n o i d t y p e w h i c h t h e a u t h o r s t e r m e d sphenolobane. The s p h e n o l o b a n e s k e l e t o n p r o b a b l y a r i s e s b y t h e c y c l i z a t i o n o f g e r a n y l g e r a n y l pyrophosphate ( 3 7 ) . The m a j o r c o m p o u n d , 3α,4a-epoxy-5a-acetoxy-18-hydroxysphenoloba-13E,16E-diene, (11), showed l o w growth i n h i b i t o r y a c t i v i t y a g a i n s t r i c e s e e d l i n g s , Oryza sativa. The i n h i b i t o r y n a t u r e o f c o m p o u n d s ( 1 2 ) - ( 1 6 ) w a s n o t tested.
CP
CP
OR
(11)
OCOCHj
R=COCH
3
(13)
Allelochemicals
(15) (16)
(12) R = Η
R = C0CH, R = H
Involved i n Plant-Insect Interactions
A l l e l o c h e m i c a l s c a nbe used t o minimize c o m p e t i t i o n and i n v a s i o n o f weeds i n c r o p f i e l d s e s p e c i a l l y b y u s e o f c r o p r o t a t i o n schemes. I s o l a t i o n and i d e n t i f i c a t i o n o f s p e c i f i c a l l e l o c h e m i c a l s has lagged b e h i n d t h e i d e n t i f i c a t i o n o f a l l e l o p a t h i c p l a n t s , l a r g e l y due t o t h e t e d i o u s , time-consuming n a t u r e o f i s o l a t i n g l a r g e enough samples o f p u r e compounds f o r a d e t a i l e d s t r u c t u r e s t u d y . Some o f t h e i s o l a t e d a l l e l o c h e m i c a l s h a v e shown p o t e n t i a l f o r o t h e r u s e s , s p e c i f i c a l l y a s n a t u r a l p e s t i c i d e s a n d g r o w t h r e g u l a t o r s (38)· C e r t a i n l y t h e s e c o m p o u n d s h a v e t h e p o t e n t i a l o f s e r v i n g a s m o d e l s f o r u s e f u l new agrochemicals. A s L o d h i et al. s t a t e ( 1 ) , " I t i s c l e a r t h a t t h e i n v o l v e m e n t o f b i o c h e m i c a l s i n a n a g r o e c o s y s t e m i s a phenomenon t h a t cannot be ignored, because these p h y t o t o x i n s p l a y a multipurpose role." Duke, i n a n o t h e r c h a p t e r i n t h i s book, e x p l o r e s t h e p o t e n t i a l o f t e r p e n o i d s d e r i v e d f r o m t h e g e n u s Artemisia as pesticides. P o w e l l and Spencer, i n a separate chapter, e x p l o r e t h e p h y t o c h e m i c a l i n h i b i t o r s o f Arbutilon theophrasti (velvetleaf) g e r m i n a t i o n a s m o d e l s f o r new h e r b i c i d e s . The f i r s t p a r t o f t h i s chapter has explored t h er o l e o f terpenoids as a l l e l o p a t h i c agents; the remainder o f t h e c h a p t e r w i l l examine t h e e v i d e n c e t h a t these same t e r p e n o i d s a r e i m p o r t a n t a g e n t s i n p l a n t - i n s e c t i n t e r a c t i o n s . Because o f space c o n s t r a i n t s , t h e coverage w i l l be r e p r e s e n t a t i v e , not exhaustive. O l f a c t o r y responses toward p l a n t v o l a t i l e s . The g r e a t i m p o r t a n c e o f terpenoids as agents o f p l a n t - i n s e c t communication probably r e s u l t s from t h e i r v o l a t i l i t y combined w i t h t h e i r g r e a t s t r u c t u r a l d i v e r s i t y w h i c h a l l o w s s p e c i f i c i t y ( 3 9 ) . The o l f a c t o r y r e s p o n s e s toward monoterpene hydrocarbons, monoterpene a l c o h o l s , and s e s q u i t e r p e n e h y d r o c a r b o n s i s o l a t e d f r o m p i n e p h o l e m o f Hylobius abietis, a weevil
In Biologically Active Natural Products; Cutler, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
16.
ELAKOVICH
Terpenoids as Models for New Agrochemicals
257
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch016
w h i c h i s one o f t h e m o s t d e s t r u c t i v e p e s t s o f N o r d i c f o r e s t p l a n t a t i o n s , w e r e m e a s u r e d b y S e l a n d e r et al. (40). The t o t a l s t e a m d i s t i l l a t e was e i t h e r a t t r a c t i v e o r n e u t r a l t o t h e w e e v i l s . A f r a c t i o n o f m o n o t e r p e n e h y d r o c a r b o n s was s l i g h t l y r e p e l l e n t e v e n t h o u g h two o f t h e t h r e e m a j o r c o m p o n e n t s (α-pinene a n d 3 - c a r e n e ) were c l e a r l y a t t r a c t i v e . The t h i r d m a j o r c o m p o n e n t , l i m o n e n e , was n e u t r a l , which suggests t h a t the minor monoterpene hydrocarbons i n h i b i t the a t t r a c t a n t e f f e c t s o f the major components. Those f r a c t i o n s c o n t a i n i n g oxygenated t e r p e n e s were a t t r a c t i v e t o t h e w e e v i l s a s was a s e s q u i t e r p e n e h y d r o c a r b o n c o n t a i n i n g fraction. The o n l y p u r e c o m p o n e n t t e s t e d , t h e t e r p e n e a l c o h o l 4t e r p i n e o l was a l s o a t t r a c t i v e . I n g e n e r a l , f e m a l e s were more a t t r a c t e d by the t e r p e n e s t h a n were males, but c o n c e n t r a t i o n plays an i m p o r t a n t r o l e . S i m i l a r o l f a c t o r y responses have been observed i n Hylobius pales H e r b s t . w h i c h w e r e a t t r a c t e d t o t h e m o n o t e r p e n o i d s a n e t h o l e , α-phellandrene, d - a - p i n e n e , β-pinene, e u g e n o l , t e r p i n e o l , camphene, a l l o o c i m e n e , and 3 - c a r e n e ( 4 1 ) . The o x y g e n a t e d t e r p e n e s and s e s q u i t e r p e n e h y d r o c a r b o n s c l e a r l y p l a y an i m p o r t a n t r o l e i n olfactory orientation. B l u s t and H o p k i n s (42) e x a m i n e d t h e r o l e o f o l f a c t i o n i n t h e a d a p t i o n o f t h e s p e c i a l i s t g r a s s h o p p e r , Hypochlora alba Dodge w h i c h f e e d s a l m o s t e x c l u s i v e l y o n Artemisia ludoviciana, Louisiana sagewort. G e r e r a l i s t grasshoppers feed v e r y l i t t l e upon t h i s p l a n t which i s r i c h i n monoterpenes. Some 33 t o 50% o f t h e s e m o n o t e r p e n e s a r e one c o m p o n e n t , 1 , 8 - c i n e o l e . The p l a n t e x t r a c t c o n t a i n i n g a m i x t u r e o f m o n o t e r p e n e s e l i c i t e d g r e a t e r o l f a c t o r y r e s p o n s e t h a n any o f the 5 major monoterpene components t e s t e d i n d i v i d u a l l y . Of t h e i n d i v i d u a l m o n o t e r p e n e s t e s t e d , camphene, c i n e o l e , camphor, b o r n e o l a n d g e r a n i o l , b o r n e o l was t h e m o s t s t i m u l a t o r y . The s o y b e a n (Glycine max) g e n o t y p e PI 227687 i s r e s i s t a n t t o i n s e c t s , p a r t i c u l a r l y t o c a b b a g e l o o p e r (Trichoplusia ni). T. ni t h r i v e s on o t h e r s o y b e a n c o m m e r c i a l v a r i e t i e s s u c h as D a v i s , but f e e d s l e s s , grows more s l o w l y , and shows p o o r e r s u r v i v a l on r e s i s t a n t PI 227687 p l a n t s ( 4 3 ) . Steam d i s t i l l a t e s f r o m s u s c e p t i b l e D a v i s c u l t i v a r s a t t r a c t e d T. ni f e m a l e a d u l t s , w h e r e a s s t e a m d i s t i l l a t e s f r o m r e s i s t a n t P I 227687 c u l t i v a r s r e p e l l e d them and were a l s o more t o x i c t o f i r s t - i n s t a r l a r v a e . Since the p r i m a r y s e l e c t i o n o f h o s t p l a n t i s made b y t h e a d u l t Γ. ni m o t h i n conjunction with s e l e c t i o n of o v i p o s i t i o n a l s i t e s , v o l a t i l e plant c h e m i c a l s ( a l l e l o c h e m i c a l s ) a r e a s s u m e d t o be i m p o r t a n t , and r e p e l l e n t compounds a r e t h e d o m i n a n t v o l a t i l e c h e m i c a l m e s s e n g e r s . L i m i t e d c h e m i c a l d i f f e r e n c e s i n soybean p l a n t s can thus a l t e r t h e i r a c c e p t a b i l i t i e s t o Γ. ni ( 4 3 ) . Plant v o l a t i l e s a l s o c o n t r i b u t e to r i c e r e s i s t a n c e t o t h e l e a f h o p p e r Nephotettix virescens (44). When v o l a t i l e s from a r e s i s t a n t r i c e c u l t i v a r were a p p l i e d to a s u s c e p t i b l e c u l t i v a r , l e a f h o p p e r f e e d i n g was disrupted. The m o n o t e r p e n e m y r c e n e ( 1 7 ) , a l t h o u g h n o t y e t i m p l i c a t e d i n a l l e l o p a t h y , i s a common p l a n t c o n s t i t u e n t a n d i s p r e s e n t i n t h e o l e o r e s i n o f p i n e t r e e s (Pinus s p p . ) . B e e t l e s o f t h e g e n u s Ips a t t a c k and c o l o n i z e p i n e t r e e s . They a g g r e g a t e i n r e s p o n s e t o the t e r p e n e a l c o h o l s i p s i d i e n o l (18) and i p s e n o l ( 1 9 ) , and myrcene (17) c a n s e r v e as t h e p r e c u r s o r o f t h e s e pheromones ( 4 5 ) . The stimulus f o r t h e b i o s y n t h e s e s o f ( 1 8 ) a n d ( 1 9 ) i n t h e Ips g e n u s i s a s s o c i a t e d w i t h f e e d i n g , s u g g e s t i n g t h a t a g g r e g r a t i n g p h e r o m o n e s o f Ips beetles are waste products from terpene metabolism. Bark b e e t l e s of the
In Biologically Active Natural Products; Cutler, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
258
BIOLOGICALLY ACTIVE NATURAL PRODUCTS
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch016
g e n u s Dendroctonus m e t a b o l i z e α-pinene, a m o n o t e r p e n e w h i c h i s u b i q u i t o u s i n t h e o l e o r e s i n o f Pinus s p p . , t o t h e p h e r o m o n e s transv e r b e n o l ( 2 0 ) a n d v e r b e n o n e ( 2 1 ) among o t h e r m i n o r p r o d u c t s ( 4 6 ) . The same o r s i m i l a r s y s t e m s o f t e r p e n e m e t a b o l i s m a r e l i k e l y i n d i f f e r e n t s p e c i e s w i t h i n Dendroctonus and i n c l o s e l y r e l a t e d genera.
Insect mixed-function oxidases. M i x e d - f u n c t i o n o x i d a s e s (MFO, also k n o w n a s m i c r o s o m a l c y t o c h r o m e Ρ-450 m o n o o x y g e n a s e ) a r e a g r o u p o f w i d e l y d i s t r i b u t e d enzymes b e s t known f o r t h e i r a b i l i t y t o d e g r a d e d r u g s , p e s t i c i d e s , and o t h e r compounds. Their primary function i s t o c o n v e r t l i p o p h i l i c compounds i n t o more p o l a r , more r e a d i l y excreted hydrophilic metabolites. B r a t t s t e n et al. (47) h a v e shown t h a t MFO's o f t h e s o u t h e r n armyworm, Spodoptera eridania, are i n d u c e d by s e c o n d a r y p l a n t s u b s t a n c e s added t o i t s f o o d , and the i n d u c t i o n i s r a p i d enough t o p r o v i d e t h i s p o l y p h a g o u s i n s e c t w i t h p r o t e c t i o n a g a i n s t these p o t e n t i a l l y o f f e n s i v e d i e t a r y f a c t o r s . E i g h t t e r p e n o i d s w e r e e v a l u a t e d f o r t h i e r MFO a c t i v i t y i n d u c i n g ability. The m o s t p o t e n t i n d u c e r s w e r e t h e m o n o t e r p e n e h y d r o c a r b o n s (+)-α-pinene a n d m y r c e n e . E v e n a b r i e f e x p o s u r e t o a s m a l l amount o f t h e s e c o m p o u n d s a p p e a r s t o s u f f i c e t o t r i g g e r a n i n c r e a s e i n MFO activity. A l t h o u g h i n s e c t MFO enzyme s y s t e m s l i k e l y e v o l v e d f o r endogenous f u n c t i o n s , t h e i r o p e r a t i o n a g a i n s t hazardous secondary p l a n t s u b s t a n c e s , s u c h a s t h e u b i q u i t o u s t e r p e n o i d s , may b e t h e i r major d e t o x i f i c a t i o n f u n c t i o n . I n v e s t i g a t i o n s w i t h Peridroma saucia H u b n e r , t h e v a r i e g a t e d cutworm, suggest t h a t p l a n t s p e c i e s d i f f e r i n the degree t o w h i c h t h e y s t i m u l a t e t h e MFO s y s t e m , a n d t h u s a n i n s e c t ' s a b i l i t y t o d e t o x i f y i n s e c t i c i d e s may d e p e n d o n t h e t e r p e n o i d s ( a n d o t h e r compounds) p r o d u c e d by i t s h o s t p l a n t ( 4 8 ) . Further studies i n w h i c h f a l l a r m y w o r m s , Spodoptera frugiperda, a generalist insect, w e r e f e d d i e t s c o n t a i n i n g 0.2% o f 13 m o n o t e r p e n o i d s , 3 s e s q u i t e r p e n e s , 2 d i t e r p e n e s , 5 t r i t e r p e n e s , and the t e t r a t e r p e n e c a r o t e n e , showed t h e microsomes o f t h e s e i n s e c t s o x i d i z e d m o n o t e r p e n e s more f a v o r a b l y t h a n o t h e r t e r p e n o i d s , i n d i c a t i n g a p r e f e r e n c e f o r the monoterpenes (49). Conclusions From t h i s b r i e f r e v i e w i t i s c l e a r t h a t t e r p e n o i d s p l a y an i n c r e a s i n g l y important part i n p l a n t - p l a n t i n t e r a c t i o n s . As o u r k n o w l e d g e o f a l l e l o p a t h i c c o m p o u n d s a n d t h e i r modes o f a c t i o n i n c r e a s e , we w i l l b e b e t t e r a b l e t o a p p l y t h i s k n o w l e d g e t o s o l u t i o n s to problems i n a g r i c u l t u r e . Many o f t h e same t e r p e n o i d s w h i c h show a l l e l o p a t h i c a c t i v i t y a l s o p o s s e s s a c t i v i t y as i n s e c t pheromones. Research i n t h i s area of i n s e c t - p l a n t i n t e r a c t i o n s may y i e l d i n f o r m a t i o n o f much v a l u e i n t h e d e v e l o p m e n t o f s o p h i s t i c a t e d methods o f i n s e c t c o n t r o l as w e l l as i n t h e b a s i c r e l a t i o n s b e t w e e n i n s e c t s and p l a n t s ( 4 8 ) . Such s t u d i e s w i l l r e q u i r e e x t e n s i v e
In Biologically Active Natural Products; Cutler, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
16. ELAKOVICH
Terpenoids as Models for New Agrochemicals
259
cooperation among chemists, biologists, and agricultural scientists, but will be rewarded by the development of new and better herbicides and plant growth hormones based on structures of allelochemicals, by useful crop rotation schemes, and by the development of genetically engineered cultivars which not only repel traditional insect pests, but also retard growth of unwanted plants. The agrochemical possibilities are far-reaching!
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch016
Literature cited 1. 2. 3. 4. 5. 6. 7. 8.
9. 10.
11.
12. 13. 14. 15. 16. 17.
Lodhi, M.A.K., R. Bilal and K.A. Malik. 1987. Allelopathy in agroecosystems. J. Chem. Ecol. 13, 1881-1891. Molisch, H. 1937. Der Einfluss einer Pflanze auf die andere-Allelopathie. Fischer, Jena. 106 pp. Rice, E.L. 1984. Allelopathy, 2nd Ed., Academic Press, Inc., New York. Schreiner, O., and H.S. Reed. 1908. The toxic action of certain organic plant constituents. Bot. Gaz. (Chicago) 45, 73-102. Fischer, N.H., and L. Quijano. 1985. In A.C. Thompson (ed), The Chemistry of Allelopathy. American Chemical Society, Washington, D.C., pp. 133-147. Robinson, T. 1980. The Organic Constituents of Higher Plants, 4th Ed., Cordus Press, North Amberst, MA, chapter 8. Evenari, M. 1949. Germination inhibitors. Bot. Rev. 15, 153. Fischer, N.L. 1986. The function of mono and sesquiterpenes as plant germination and growth regulators. In A. Putnam and C.S. Tang (eds), The Science of Allelopathy, John Wiley and Sons, Inc., New York, pp. 203-218. Stevens, K.L. 1984. Biological activity and chemistry of sesquiterpene lactones. In W.D. Nes, G. Fuller, and L.S. Tsai (eds), Isopentenoids in Plants, Dekker, New York, pp. 65-80. Elakovich, S.D. 1987. Sesquiterpenes as phytoalexins and allelopathic agents. In G. Fuller and W.D. Nes (eds), Ecology and Metabolism of Plant Lipids, American Chemical Society, Washington, D.C., pp. 93-108. Sigmund, W. 1924. Uber die Einwirkung von Stoffwechselenprodukten auf die Pflanzen. III. Einwirkung N-frier pflanzlicher Stoffwechselendprodukte auf die Keimung von Samen (Aetherische Oele, Terpene u.a.). Biochem. Z. 146, 389-419. Muller, W.H., and CH. Muller. 1964. Volatile growth inhibitors produced by Salvia species. Bull. Torrey Bot. Club 91, 327-330. Muller, CH. 1965. Inhibitory terpenes volatilized from Salvia shrubs. Bull. Torrey Bot. Club 92, 38-45. Asplund, R.O. 1968. Monoterpenes: Relationship between structure and inhibition of germination. Phytochemistry 7, 1995-1997. del Moral, R., and C.H. Muller. 1970. The allelopathic effects of Eucalyptus camaldulensis. Am. Midl. Nat. 83, 254-282. Weaver, T. and L. Kish. 1982. Allelopathic potential of terpene secreting (aromatic) plants. Proc. Mont. Acad. Sci. 41, 51-56. Halligan, J.P. 1975. Toxic terpenes from Artemisia californica. Ecology 56, 999-1003.
In Biologically Active Natural Products; Cutler, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch016
260
BIOLOGICALLY ACTIVE NATURAL PRODUCTS
18. AlSaadawi, I.S. and A.J. AlRubeaa. 1985. Allelopathic effects of Citrus aurantium L. I. Vegetational patterning. J. Chem. Ecol. 11, 1515-1525. 19. AlSaadawi, I.S., M.B. Arif, and A.J. AlRubeaa. 1985. Allelopathic effects of Citrus aurantium L. II. Isolation, characterization, and biological activities of phytotoxins. J. Chem. Ecol. 11, 1527-1534. 20. Spencer, G.F. 1986. The effects of a terpene aldehyde-ester from Eryngium paniculatum and analogs on velvetleaf germination. J. Nat. Prod. 49, 924-926. 21. Heisey, R.M. and C.C. Delwiche. 1984. Phytotoxic volatiles from Trichostema lanceolatum (Labiatae). Amer. J. Bot. 71, 821-828. 22. Elakovich, S.D. and K.L. Stevens. 1985. Volatile constituents of Lippia nodiflora. J. Nat. Prod. 48, 504-506. 23. Elakovich, S.D. and B.O. Oguntimein. 1987. The essential oil of Lippia adoensis leaves and flowers. J. Nat. Prod. 50, 503506. 24. Duke, S. O. 1987. Terpenoids from the genus Artemisia as potential pesticides. 194th ACS national meeting, August 30September 4, 1987, New Orleans, LA. Agrochemicals abstract 104. 25. Einhellig, F.A. 1986. Mechanisms and modes of action of allelochemicals. In A.R. Putnam and C.-S. Tang (eds), The Science of Allelopathy. Wiley-Interscience, New York, pp. 171-188. 26. Einhellig, F.A. 1986. Interactions among allelopathic chemicals and other stress factors of the plant environment. In G.R. Waller (ed), Symposium on Allelochemicals: Role in Agriculture, Forestry and Ecology. American Chemical Society, Washington, D.C. 27. Muller, W.H. 1986. Allelochemical mechanisms in the inhibition of herbs. In A.R. Putman and C.-S. Tang (eds), The Science of Allelopathy. Wiley-Interscience, New York, pp. 189-199. 28. Muller, W.H. 1965. Volatile materials produced by Salvia leucophylla: effects on seedling growth and soil bacteria. Bot. Gaz. 126, 195-200. 29. Weaver, T.W. and D. Klarich. 1977. Allelopathic effects of volatile substances from Artemisia tridentata Nutt. Am. Midl. Nat. 97, 508-512. 30. Lorber, P. and W.H. Muller. 1980. Volatile growth inhibitors produced by Salvia leucophylla: effects on cytological activity in Allium cepa. Comp. Physiol. Ecol. 5, 60-67. 31. Muller, W.H. and R. Hauge. 1967. Volatile growth inhibitors produced by Salvia leucophylla: effects on seedling anatomy. Bull. Torrey Bot. Club 94, 182-191. 32. Capasso, R., N.J. Iacobellis, A. Bottalico and G. Randazzo. 1984. Structure-toxicity relationships of the eremophilane phomenone and PR-toxin. Phytochemistry 23, 2781-2784. 33. Paul, V.J., M.M. Littler, D.S. Littler and W. Fenical. 1987. Evidence for chemical defense in tropical green alga Caulerpa ashmeadii (Caulerpaceae: Chlorophyta). J. Chem. Ecol. 13, 1171-1185.
In Biologically Active Natural Products; Cutler, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.
16. ELAKOVICH
Terpenoids as Models for New Agrochemicals
261
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: November 28, 1988 | doi: 10.1021/bk-1988-0380.ch016
34. Goldsby, G. and B.A. Burke. 1987. Sesquiterpene lactones and a sesquiterpene diol from Jamaican Ambrosia peruviana. Phytochemistry 26, 1059-1063. 35. Rodriguez, Ε., G.H.N. Towers, and J.C. Mitchell. 1976. Biological activities of sesquiterpene lactones. Phytochemistry 15, 1573-1580. 36. Fischer, N.H., E.J. Oliver, and H.D. Fischer. 1979. The Biogenesis and Chemistry of Sesquiterpene Lactones. In Progress in the Chemistry of Organic Natural Products, Vol 38, Springer, New York, pp. 47-390. 37. Beyer, J., H. Becker, M. Toyota and Y. Asakawa. 1987. Diterpenoids with a novel skeleton from the liverwart Anas trophyllum minutum. Phytochemistry 26, 1085-1089. 38. Putnam, A.R. and W.B. Duke. 1978. Allelopathy in agroecosystems. Ann. Rev. Phytopathol. 16, 431-451. 39. Whittaker, R.H. and P.P. Feeny. 1971. Allelochemics: chemical interactions between species. Science 171, 757-770. 40. Selander, J., P. Kalo, E. Kangus and V. Perttunen. 1974. Olfactory behaviour of Hylobius abietes L. (Col., Curculionidae). I. Response to several terpenoid fractions isolated from Scots pine phloem. Ann. Ent. Fenn. 40, 108-115. 41. Thomas, H.A. and G.D. Hertel. 1969. Responses of the pales weevil to natural and synthetic host attractants. J. Econ. Ent. 62, 383-386. 42. Blust, M.H. and T.L. Hopkins. 1987. Olfactory responses of a specialist and a generalist grasshopper to volatiles of Artemisia ludoviciana Nutt. (Asteraceae). J. Chem. Ecol. 13, 1893-1902. 43. Khan, Z.R., A. Ciepiela, and D.M. Norris. 1987. Behavioral and physiological responses of cabbage looper, Trichoplusia ni (Hubner), to steam distillates from resistant versus susceptible soybean plants. J. Chem. Ecol. 13, 1903-1915. 44. Khan, Z.R. and R.C. Saxena. 1985. Effect of steam distillate extract of a resistant rice variety on feeding behavior of Nephotettix virescens (Homoptera: Cicadellidae). J. Econ. Entomol. 78, 562-566. 45. Hughes, P.R. 1974. Myrcene: a precursor of pheromones in Ips beetles. J. Insect. Physiol. 20, 1271-1275. 46. Hughes, P.R. 1975. Pheromones of Dendroctonus: origin of a -pinene oxidation products present in emergent adults. J. Insect. Physiol. 21, 687-691. 47. Brattsten, L.B., C.F. Wilkinson and T. Eisner. 1977. Herbivore-plant interactions: mixed-function oxidases and secondary plant substances. Science 196, 1349-1352. 48. Yu, S.J., R.E. Berry, and L.C. Terriere. 1979. Host plant stimulation of detoxifying enzymes in a phytophagous insect. Pestic. Biochem. Physiol. 12, 280-284. 49. Yu, S.J. 1987. Microsomal oxidation of allelochemicals in generalist (Spodoptera frugiperda) and semispecialist (Anticarsia gemmatalis) insect. J. Chem. Ecol. 13, 423-436. RECEIVED April
12, 1988
In Biologically Active Natural Products; Cutler, H.; ACS Symposium Series; American Chemical Society: Washington, DC, 1988.