Biomass as a Nonfossil Fuel Source - American Chemical Society

Some success in upgrading ruminant fodder has been achieved with steaming, treatment with dilute alkali, and digestion with aqueous sulfur dioxide sol...
3 downloads 0 Views 917KB Size
9 Key Factors in the Hydrolysis of Cellulose Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 24, 2015 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch009

JEROME F. SAEMAN Forest Products Laboratory, Forest Service, USDA, P.O. Box 5130, Madison, WI 53705

If a successful cellulose hydrolysis process were available, the food problems of the world would diminish and wood sugar could form the basis of new enterprises providing an important source of chemicals and fuels. This has been known for more than a century. Some hundred to perhaps hundreds of millions of dollars have been spent on research dealing with cellulose hydrolysis. Billions have been invested in commercial plants for the hydrolysis of wood. Success, however, has been limited and future prospects are uncertain. A review of early wood hydrolysis processes was published by Sherrard and Kressman (1). A more recent review was published by Wenzl (2). The coverage here is selective rather than comprehensive. It identifies some key issues that determine the future usefulness of wood hydrolysis processes. Cellulose is a polymeric carbohydrate (C H O ) having the same elemental composition as starch and also yielding only glucose on complete hydrolysis. Cellulose consists of long chains of beta glucosidic residues linked through the 1,4 positions. Starch consists of alpha glucosidic residues linked through the same positions. These linkages are as similar as right and left hands, but differences in overall configuration cause cellulose to have a high crystallinity and hence a low accessibility to enzymes or acid catalysts. Starch by contrast is very readily hydrolyzed, suiting its role as a form of stored food. 6

10

5

x

This chapter not subject to U.S. copyright. Published 1981 American Chemical Society

In Biomass as a Nonfossil Fuel Source; Klass, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

186

BIOMASS

AS

A

NONFOSSIL

FUEL

SOURCE

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 24, 2015 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch009

Cellulose fibers p r o v i d e for t h e s t r u c t u r a l needs of plants. Hemicellulose. an easily h y d r o l y z e d a m o r p h o u s h e t e r o - p o l y m e r y i e l d i n g several different sugars on hydrolysis, is i n t i m a t e l y associated w i t h cellulose. L i g n i n , an a r o m a t i c t h r e e d i m e n s i o n a l p o l y m e r , intersperses t h e f i b e r o u s c o n s t i t u e n t s . M a n y w o o d s c o n s i s t of a little less t h a n half cellulose a n d r o u g h l y a q u a r t e r each of h e m i c e l l u l o s e a n d l i g n i n . Cellulose is of t h e order of a h u n d r e d t i m e s as d i f f i c u l t t o h y d r o l y z e as s t a r c h . L i g n i n has little effect if a n y on t h e rate of a c i d hydrolysis, b u t it g r e a t l y i n h i b i t s e n z y m a t i c hydrolysis. This p r o t e c t s t h e p l a n t against its ready use as a f o o d b y o t h e r o r g a n i s m s . DILUTE A C I D HYDROLYSIS OF CELLULOSE M o s t s i m p l e o l i g o s a c c h a r i d e s are q u a n t i t a t i v e l y h y d r o l y z e d by b o i l i n g d i l u t e a c i d . Cellulose by c o n t r a s t is h y d r o l y z e d very s l o w l y , a n d even o n e x t e n d e d h y d r o l y s i s at h i g h e r t e m p e r a t u r e s , t h e m a x i m u m y i e l d of recoverable sugar is very low. This w a s e x p l a i n e d by Luers (3) w h o s h o w e d t h e cellulose h y d r o l y s i s in d i l u t e acid involves c o n s e c u t i v e first-order reactions of s o m e w h a t similar rates for t h e p r o d u c t i o n a n d t h e d e c o m p o s i t i o n of sugar. T h i s o b s e r v a t i o n f o r m e d t h e basis for t h e d e v e l o p m e n t of t h e Scholler p e r c o l a t i o n process. This process, w h i c h involves r e m o v a l of sugar f r o m t h e d i g e s t e r as it is f o r m e d , resulted in t w i c e t h e y i e l d o b t a i n a b l e by b a t c h hydrolysis. Luers erred, h o w e v e r , in c o n c l u d i n g t h a t c h a n g i n g t h e acid c o n c e n t r a t i o n a n d t e m p e r a t u r e c h a n g e d t h e rate b u t n o t t h e c o u r s e of t h e reaction nor t h e m a x i m u m y i e l d a t t a i n a b l e . S a e m a n (4) s h o w e d t h a t t h e h y d r o l y s i s reaction is a c c e l e r a t e d m o r e t h a n t h e d e c o m p o s i t i o n r e a c t i o n b y b o t h increased t e m p e r a t u r e a n d acid c o n c e n t r a t i o n . Hence, t h e sugar y i e l d increases w i t h b o t h acid c o n c e n t r a t i o n a n d t e m p e r a t u r e . This o b s e r v a t i o n is a p p l i c a b l e t o b o t h t h e p e r c o l a t i o n process a n d t o t h e m u c h s i m p l e r b a t c h process. SINGLE-STAGE DILUTE ACID HYDROLYSIS Figure I s h o w s t h e m a x i m u m y i e l d of " B " a n d t h e residual " A " in c o n s e c u t i v e f i r s t - o r d e r reactions: A X B l4 C for v a r i o u s ratios of k : k - kr. Parameters for cellulose h y d r o l y s i s w e r e d e t e r m i n e d by S a e m a n (4) a n d r e d e t e r m i n e d by Kirby j 5 ) . It m i g h t be n o t e d t h a t d e s p i t e a n a l y t i c a l a n d e x p e r i m e n t a l p r o b l e m s , t h e general m o d e l has been repeatedly c o n f i r m e d . k

k

1

2

U s i n g Kirby's d a t a a n d f a m i l i a r first order kinetics, t h e r e l a t i o n s h i p s h o w n in Figure II w a s d e r i v e d . T h i s w a s t e s t e d at t e m p e r a t u r e s u p t o 2 8 0 ° C ( c o r r e s p o n d i n g t o 9 1 6 l b s / s q in. e q u i l i b r i u m s t e a m pressure) in 0.25 i n c h d i a m e t e r c o p p e r t u b i n g reactors. In these b a t c h e x p e r i m e n t s , 0.6 g of

In Biomass as a Nonfossil Fuel Source; Klass, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

SAEMAN

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 24, 2015 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch009

RELATIVE

CO

Θ0

60

Figure 1.

187

Hydrolysis of Cellulose

50

40

30

20

TIME t'/-- HALF

LIFE

IS 10 9 β RESIDUAL A fC*) (PERCENT)

OF

C) A

7

6

5

4

3

2

1.5

The yield of product Β as a function of residual A in the consecutive ki

k

2

first-order reaction A -> Β -> C for various ratios of reaction rates k i and k

In Biomass as a Nonfossil Fuel Source; Klass, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

2

188

BIOMASS AS A NONFOSSIL FUEL SOURCE

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 24, 2015 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch009

p r e h y d r o l y z e d w o o d w a s reacted w i t h 1.5 m l of d i l u t e s u l f u r i c acid in an a t m o s p h e r e of c a r b o n d i o x i d e . T h e reactors w e r e heated w i t h s u i t a b l e p r e c a u t i o n s in a m o l t e n salt b a t h a n d q u e n c h e d in w a t e r . A s s h o w n i n Figure III, p r e d i c t e d general i m p r o v e m e n t in yield w a s m a i n t a i n e d u p t o 2 6 0 ° C . A t t h i s p o i n t , t h e y i e l d w a s 5 4 % . T h e t i m e t o m a x i m u m y i e l d at 2 6 0 ° C w a s 0.45 m i n u t e s . T h e m o d e l p r e s u m e s i s o t h e r m a l reaction c o n d i t i o n s , b u t w i t h a r e a c t i o n t i m e o f 3 0 s e c o n d s , t h e average reaction t e m p e r a t u r e w a s m u c h b e l o w t h e b a t c h t e m p e r a t u r e , t h u s r e s u l t i n g in l o w e r yields. A n e x a m i n a t i o n o f t h e kinetics s h o w s t h a t if t h e l o w e r l i m i t o f p r a c t i c a l r e t e n t i o n t i m e is r e a c h e d , it is a d v a n t a g e o u s t o l o w e r t h e a c i d i t y a n d raise t h e t e m p e r a t u r e . It is also e v i d e n t t h e p r e t r e a t m e n t s w h i c h accelerate t h e rate o f h y d r o l y s i s a n d increase t h e heat o f a c t i v a t i o n are a d v a n t a g e o u s . M i c r o t e c h n i q u e s are n o w available w h i c h c a n establish yields o n m i l l i g r a m samples h e a t e d in glass capillaries w i t h reaction t i m e s o f a f e w s e c o n d s a n d internal pressure in excess o f a 1 0 0 0 l b s / s q in b u t t h e y have n o t y e t been a p p l i e d t o t h i s p r o b l e m . P u m p e d h y d r o c e l l u l o s e slurries c a n b e heated b y s t e a m i n j e c t i o n a n d q u e n c h e d b y release o f pressure, b u t t h e p r a c t i c a b i l i t y of s u c h a p r o c e s s i n g t e c h n i q u e has n o t been e s t a b l i s h e d . G r e t h l e i n r e c e n t l y c o n f i r m e d S a e m a n ' s m o d e l by r e p o r t i n g a y i e l d o f over 5 0 % sugar f r o m cellulose u s i n g 1 % s u l f u r i c a c i d a n d a c o n t i n u o u s - f l o w reactor w i t h a residence t i m e o f 0.22 m i n u t e s at a t e m p e r a t u r e o f 2 3 7 °C (6). Research seeking h i g h e r y i e l d s b y t h i s a p p r o a c h s h o u l d be f r u i t f u l . DILUTE

ACID

HYDROLYSIS

BY

MULTISTAGE

OR

PERCOLATION

PROCESSING Early a t t e m p t s at d i l u t e a c i d h y d r o l y s i s b y single-stage p r o c e s s i n g w e r e l i m i t e d t o yields o f a b o u t 2 0 % f e r m e n t a b l e s u g a r b e c a u s e o f t h e u n f a v o r a b l e k IELD

IRRADIATION

4

(Pi TRCENTJ

POLYMER I Ζ AT ΙΟΝ

ιο-'

DOSE

5

λ

\ \

\ \ \

\

6

7 (ROENTGENS)

\

8

Λ

Figure 5. Overall sugar yield obtained by hydrolysis, degree of polymerization, and content of undecomposed carbohydrate as functions of irradiation dose (11)

OVERALL




ι

δ

to

VO

9.

SAEMAN

193

Hydrolysis of Cellulose

Spano reported t h a t cellulose p r e t r e a t e d b y r o l l - m i l l i n g w i t h a n energy i n p u t of 0 . 2 5 k i l o w a t t p e r h o u r p e r p o u n d w a s e n z y m a t i c a l l y h y d r o l y z e d t o t h e e x t e n t o f 4 5 % in 2 4 hours. T h e results o f t h i s w e r e said t o b e e n c o u r a g i n g (13). E N Z Y M A T I C HYDROLYSIS OF CELLULOSE

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 24, 2015 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch009

There is m u c h e x c e l l e n t basic w o r k u n d e r w a y o n t h e e n z y m a t i c hydrolysis o f cellulose. The key f a c t o r is t h e p r e t r e a t m e n t r e q u i r e d b y lignocellulose before it is a c t e d u p o n a t an a c c e p t a b l e rate. In p a r t i a l l y d e l i g n i f i e d p u l p s , t h e rate o f h y d r o l y s i s rises w i t h d e c r e a s i n g l i g n i n c o n t e n t , b u t p u l p i n g t h e s u b s t r a t e is impractical. P r e t r e a t m e n t s m e n t i o n e d previously i n c l u d e irradiation, b a l l - m i l l i n g , a n d rollm i l l i n g . S o m e success in u p g r a d i n g r u m i n a n t f o d d e r has been a c h i e v e d w i t h s t e a m i n g , t r e a t m e n t w i t h d i l u t e alkali, a n d d i g e s t i o n w i t h a q u e o u s sulfur d i o x i d e solutions. Intensive w o r k d i r e c t e d t o t h e d e v e l o p m e n t o f inexpensive solubilization m e t h o d s f o r increasing t h e y i e l d o f sugar f r o m lignocellulose b y acid or e n z y m a t i c hydrolysis is in progress at Purdue University. A recent report s h o w e d t h a t c a d o x e n is e f f e c t i v e b u t c a d m i u m presents u n a c c e p t a b l e hazards (14). A n a p p r o a c h in w h i c h p r e h y d r o l y z e d lignocellulose is t r e a t e d w i t h 7 0 % sulfuric acid f o l l o w e d b y m e t h a n o l has also been r e p o r t e d (14). T h e f l o w c h a r t calls f o r r e c y c l i n g 2.5 parts o f s u l f u r i c a c i d a n d 5.5 parts o f m e t h a n o l for each part o f sugar p r o d u c e d . A n o t h e r a p p r o a c h (15) calls for t h e use o f a solvent c o n s i s t i n g o f s o d i u m tartrate, ferric c h l o r i d e , s o d i u m sulfite, a n d s o d i u m h y d r o x i d e . S u c h t r e a t m e n t s increase t h e accessibility o f e n z y m e s t o cellulose a n d increase t h e rate o f a c i d hydrolysis, t h e k : k ratio, a n d t h e y i e l d o f sugar. T h e cost o f r e c o v e r i n g t h e reagents, h o w e v e r , is a key factor. W h i l e t h e r e is w i d e s p r e a d e n t h u s i a s m f o r t h e e n z y m a t i c hydrolysis o f lignocellulose a n d many pretreatments facilitate the reaction, published process d a t a d o n o t p e r m i t e c o n o m i c assessment. }

2

CONCLUSIONS T h e o u t l o o k f o r fuels a n d c h e m i c a l s f r o m b i o m a s s is c l o u d e d because it d e p e n d s o n t h e o u t l o o k f o r energy. T h e m o s t p r o b a b l e o u t l o o k for e n e r g y in t h e n e x t d e c a d e is t h a t it w i l l be e x p e n s i v e b u t available, a n d c o n s u m p t i o n w i l l c o n t i n u e t o increase. W h i l e t h i s s i t u a t i o n m a y n o t c o n s t i t u t e a crisis, it is "crisis p r o n e . " This latter f a c t justifies a careful c o n s i d e r a t i o n of biomass as a source of fuels a n d c h e m i c a l s .

In Biomass as a Nonfossil Fuel Source; Klass, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

194

BIOMASS

AS A

NONFOSSIL

FUEL

SOURCE

The price of b i o m a s s is critical in d e t e r m i n i n g its p o t e n t i a l . Because of lack of d e m a n d , c u r r e n t s p o t prices are o f t e n l o w . T h e price of a large q u a n t i t y of w o o d (a t h o u s a n d or m o r e t o n s / d a y ) for t h e life of a p l a n t (decades) is n o t l o w . Katzen in 1 9 7 5 (7) a s s u m e d t h a t a large q u a n t i t y of w o o d w i l l have a m i n i m u m v a l u e of $ 2 4 / t o n (dry basis) set b y its fuel e q u i v a l e n t , a n d t h e a d d i t i o n a l cost of assuring l o n g - t e r m s u p p l y w o u l d raise t h i s t o $ 3 6 / t o n . The

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 24, 2015 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch009

cost of w o o d , t o g e t h e r w i t h labor a n d capital costs, w i l l of course rise as t h e cost of p e t r o l e u m rises. T h e best use of b i o m a s s f o r all purposes requires realistic, d i s c r i m i n a t i n g , a n d selective s e t t i n g of priorities. W o o d c o n t r i b u t e s m o s t t o o u r e n e r g y b u d g e t w h e n it is used for t h e p r o d u c t i o n of s t r u c t u r a l a n d fiber p r o d u c t s , t h u s p r o v i d i n g a l t e r n a t i v e s t o e n e r g y - i n t e n s i v e materials. A t o n of w o o d in t h e materials s y s t e m c o n t r i b u t e s i n d i r e c t l y m a n y t i m e s as m u c h t o o u r n a t i o n a l e n e r g y b u d g e t as a t o n of w o o d in t h e fuel s y s t e m . T h e relative e c o n o m i c i m p o r t a n c e of forest p r o d u c t s w i l l increase as t h e e n e r g y s h o r t a g e w o r s e n s , a n d as forest p r o d u c t s i n d u s t r i e s accelerate t h e i r s u b s t i t u t i o n of l o w - g r a d e w o o d for fossil fuel. A f t e r s a t i s f y i n g t h e needs for an e n e r g y self-sufficient w o o d i n d u s t r y , t h e r e c o u l d still be available s o m e h u n d r e d or h u n d r e d s of m i l l i o n s of t o n s of b i o m a s s in t h e f o r m of w o o d , t o g e t h e r w i t h a similar q u a n t i t y of a g r i c u l t u r a l residues. T h e large-scale c h e m i c a l c o n v e r s i o n of s u c h r a w material w i l l p r o b a b l y i n v o l v e h y d r o l y s i s , b u t no available t e c h n o l o g y is c o n s i d e r e d e c o n o m i c a l l y viable. T h e key t o f u t u r e progress lies in basic s t u d i e s , a n d an e v o l u t i o n a r y a p p r o a c h t o possible large-scale i n t e g r a t e d c h e m i c a l utilization. Cellulose h y d r o l y s i s by m e a n s of e n z y m e s , s t r o n g a c i d , or d i l u t e acid is preferably p r e c e d e d by a p r e h y d r o l y s i s t o separate easily h y d r o l y z e d h e m i c e l l u l o s e c o n s t i t u e n t s . A s an e v o l u t i o n a r y s t e p , p r e h y d r o l y s i s itself m i g h t be a v i a b l e route for a l i m i t e d q u a n t i t y of special p r o d u c t s . Prehydrolysis Prehydrolysis is a s i m p l e a n d w e l l - k n o w n step r e q u i r i n g little f u r t h e r basic studies, b u t t h e r e are solvable t e c h n i c a l p r o b l e m s in o b t a i n i n g t h e p r e h y d r o l y z a t e s in f a v o r a b l e c o n c e n t r a t i o n . Prior t o t h e e s t a b l i s h m e n t of a f u l l y i n t e g r a t e d h y d r o l y s i s o p e r a t i o n , t h e r e m i g h t be o p p o r t u n i t i e s t o p r o d u c e a n d p u t t o use h a r d w o o d or c r o p - r e s i d u e prehydrolyzates. There are n o w in p r o s p e c t boiler p l a n t s w h i c h w i l l b u r n over 1,000 t o n s of w o o d / d a y . Preceding c o m b u s t i o n , w o o d can be p r e h y d r o l y z e d t o y i e l d a s t r e a m rich in pentoses for s u b s e q u e n t c o n v e r s i o n t o xylose, xylose

In Biomass as a Nonfossil Fuel Source; Klass, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

9.

SAEMAN

Hydrolysis of Cellulose

195

derivatives, f u r f u r a l , yeast, or o t h e r feed a n d f e r m e n t a t i o n p r o d u c t s 0 6 ) . T h e residual w o o d , a b o u t t h r e e - f o u r t h s o f t h e i n c o m i n g w e i g h t , c a n t h e n be b u r n e d f o r process s t e a m a n d a d d i t i o n a l s t e a m as a c o p r o d u c t . S u c h an o p e r a t i o n w o u l d be a n e v o l u t i o n a r y step t o w a r d an i n t e g r a t e d hydrolysis plant.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 24, 2015 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch009

Pretreatment for Enzymatic Hydrolysis W h i l e t h e r e has been m u c h progress in t h e s t u d y o f cellulases, t h e a p p l i c a t i o n s of s u c h t e c h n o l o g y have been l i m i t e d by a lack o f e c o n o m i c a l p r e t r e a t m e n t of t h e lignocellulose. W i t h o u t s u c h p r e t r e a t m e n t , hydrolysis is s l o w a n d i n c o m p l e t e . T h e v a l u e of e n h a n c e d e n z y m a t i c a t t a c k o n lignocellulose is n o t l i m i t e d t o t h e p r o d u c t i o n o f sugar a n d c h e m i c a l s . T h e same p r o c e d u r e s w o u l d be a p p l i c a b l e t o t h e increased d i g e s t i b i l i t y o f coarse fodder by ruminants. W h i l e g o v e r n m e n t - s u p p o r t e d research n o w emphasizes t h e p r o d u c t i o n o f l i q u i d fuels f r o m b i o m a s s , c o m m e r c i a l i z a t i o n m i g h t be reached sooner b y c o o p e r a t i o n w i t h t h o s e interested in cellulose d i g e s t i o n b y r u m i n a n t s . Experience in t h e practical u p g r a d i n g o f coarse f o d d e r w o u l d be d i r e c t l y a p p l i c a b l e t o t h e h y d r o l y s i s of b i o m a s s b y cellulases. The Strong Acid Hydrolysis o f Cellulose The h i g h yield a n d h e n c e h i g h e r p u r i t y o f sugar o b t a i n e d b y s t r o n g acid h y d r o l y s i s o f cellulose makes it a n a t t r a c t i v e process, b u t t h e lack of a recovery s y s t e m f o r s t r o n g acid c o m p l i c a t e s t h e outlook. T h e i m p r o v e m e n t o f m e m b r a n e t e c h n o l o g y w i l l p r o b a b l y p r o c e e d because o f p o t e n t i a l a p p l i c a t i o n s t o m a n y p r o b l e m s . A p p l i c a t i o n t o cellulose hydrolysis a d d s j u s t i f i c a t i o n for i n t e n s i f i e d w o r k in t h e field. The Dilute Acid Hydrolysis of Cellulose T h e r a p i d , h i g h - t e m p e r a t u r e h y d r o l y s i s o f cellulose seems t o g e t less a t t e n t i o n t h a n it deserves. T h e s e q u e n c e i n v o l v e d is s i m p l e ; t h e i n c o m i n g w e t m a t e r i a l need never be d r i e d . T h e c o n s e c u t i v e first-order reactions i n v o l v e d c a n b e s t u d i e d w i t h a d e q u a t e precision in very s i m p l e e q u i p m e n t . W h i l e t h e o u t l o o k f o r t h e process, based o n m e a g e r presently available d a t a , is m a r g i n a l , studies c a n be c o n d u c t e d t o increase t h e ratio o f t h e rate of sugar p r o d u c t i o n t o d e s t r u c t i o n a n d h e n c e t h e y i e l d , t o decrease t h e t e m p e r a t u r e a n d pressures i n v o l v e d , a n d t o increase t h e recovery o f c o p r o d u c t s .

In Biomass as a Nonfossil Fuel Source; Klass, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

196

BIOMASS AS A NONFOSSIL FUEL SOURCE

REFERENCES

1. Sherrard, E. C.; Kressman, F. W. Ind. Eng. Chem. 1945, 37, 5.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 24, 2015 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch009

2. Wenzl, H.F.J. "Chemical Technology of Wood"; Academic Press: New York, 1970. 3. Luers, H.Z. Angew. Chem. 1930, 43, 455; 1932, 45, 369. 4. Saeman, J.F. Ind. Eng. Chem. 1945, 37, 43. 5. Kirby, A. M. M.S. Thesis, University of Wisconsin, 1949. 6. Grethlein, H. E. "Proceedings", the Second Annual Fuels From Biomass Symposium sponsored by Rensselaer Polytechnic Institute, June 1978; Rensselaer Polytechnic Institute: Troy, N.Y., 1978; Paper No. 26. 7. Katzen, R., Associates. NTIS Accession No. PB 262 489. Natl. Tech. Inf. Serv., Springfield, Va. 1975. 8. Saeman, J. F. "Symposium Papers", Clean Fuels from Biomass and Wastes Symposium sponsored by the Institute of Gas Technology, Orlando, Florida, 1977. Institute of Gas Technology: Chicago, 1977. 9. Gregor, H. P., and Jefferies, T. W. Annals of New York Academy of Sciences, 1979, pp 273-87. 10. Millett, Μ. Α.; Moore, W. E.; Saeman, J. F. Ind. Eng. Chem., 1954, 46 (7), 1493. 11. Saeman, J. F.; Millett, Μ. Α.; Lawton, E. L. Ind. Eng. Chem. 1952, 44 (12), 2848-52. 12. Millett, Μ. Α.; Effland, M. J.; Caulfield, D. F. Adv. Chem. Ser., in press. 13. Bungay, H. R. and Walsh, T. J., Eds. Fuels from Biomass Fermentation Newsletter. Rensselaer Polytechnic Institute: Troy, N.Y., April and July 1978. 14. Ladisch, M. R.; Ladisch, C. M.; Tsao, G. T. Science 1978, 201, 743.

In Biomass as a Nonfossil Fuel Source; Klass, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.

9. SAEMAN Hydrolysis of Cellulose 15.

197

Tsao, G. T. "Proceedings", the Second Annual Fuels from Biomass Symposium sponsored by Rensselaer Polytechnic Institute, Troy, N.Y., June 1978; Rensselaer Polytechnic Institute: Troy, N.Y., 1978; Paper No. 30.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on November 24, 2015 | http://pubs.acs.org Publication Date: January 29, 1981 | doi: 10.1021/bk-1981-0144.ch009

16. Harris, J. F. "Applied Polymer Symposium"; John Wiley & Sons, Inc.: New York, 1975; Vol. 28, pp 131-44. RECEIVED JUNE 18,

1980.

In Biomass as a Nonfossil Fuel Source; Klass, D.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.