Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
Chapter 11 Biomass Pyrolysis Oil Feedstocks for Phenolic Adhesives H e l e n a C h u m , James D i e b o l d , J o h n Scahill, D a v i d Johnson, and Stuart Black Solar Energy Research Institute Golden, CO 80401
H e r b e r t Schroeder
R o l a n d E. K r e i b i c h
Colorado State University
4201 South 344th Street
Fort Collins, CO 80523
A u b u r n , W A 98001
Fast p y r o l y s i s o f pine sawdust i n a s m a l l v o r t e x reactor o p e r a t i n g at 10 to 20 kg/h a n d 480 t o 520 ° C produces h i g h y i e l d s o f pri mary p y r o l y s i s oils (over 5 5 % b y weight o n a d r y basis). T h e v o r t e x reactor t r a n s m i t s very h i g h heat fluxes t o the s a w d u s t , c a u s i n g pri marily d e p o l y m e r i z a t i o n o f the constituent p o l y m e r s i n t o m o n o m e r s a n d oligomers. A p r e l i m i n a r y scheme separates t h e r a w oils i n t o a c a r b o h y d r a t e - d e r i v e d aqueous f r a c t i o n a n d a p h e n o l i c - r i c h e t h y l a c etate (EA) soluble f r a c t i o n . T h e EA f r a c t i o n is washed w i t h water a n d w i t h aqueous s o d i u m b i c a r b o n a t e t o remove acids y i e l d i n g 2 0 % t o 2 5 % o f the feed as phenols a n d neutrals (P/N) in t h e EA s o l u t i o n . A f t e r ΕA e v a p o r a t i o n , a novolak f o r m u l a t i o n with 5 0 % p h e n o l a n d 5 0 % o f the P/N f r a c t i o n was successfully p r e p a r e d . G e l times for t h e P/N fractions s u i t a b l y prepared are i n t e r m e d i a t e between resorcinol a n d t r a d i t i o n a l phenol-formaldehyde resins. P r e l i m i n a r y p r o j e c t e d a m o r t i z e d p r o d u c t i o n costs for the P/N f r a c t i o n are 10(16) cents per p o u n d for a 1,000(250) tons per d a y p l a n t ( $ 1 0 / d r y t o n feedstock, 1 5 % interest w i t h 20-year a m o r t i z a t i o n ) . P y r o l y s i s o f biomass is k n o w n t o produce a c o m p l e x m i x t u r e o f p h e n o l i c c o m p o u n d s , w h i c h are derived p r i m a r i l y f r o m the l i g n i n f r a c t i o n o f t h e biomass (1-4)- E l d e r a n d Soltes (5, 6) have investigated a p h e n o l i c f r a c t i o n o b t a i n e d f r o m p y r o l y s i s oils m a d e i n a n u p draft gasifier b y T E C H A I R as a source o f p h e n o l i c adhesives; a phenolics f r a c t i o n was separated b y s o l u b i l i t y differences o f o i l fractions based o n s o l u b i l i t y o f acids i n aqueous b i c a r b o n a t e s o l u t i o n s a n d 0097-6156/89/0385-0135$06.00A)
c
1989 American Chemical Society
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
136
ADHESIVES F R O M RENEWABLE RESOURCES
s o l u b i l i t y o f the phenolics f r a c t i o n i n aqueous a l k a l i s o l u t i o n . A d h e s i v e f o r m u l a t i o n s were p r e l i m i n a r i l y tested, a n d the effect o f a few m e t a l ions (such as b a r i u m ) o n the gel t i m e s of adhesives was m e a s u r e d . T h e f o r m u l a t i o n s tested m e t w i t h l i m i t e d success. These results suggested t h a t these oils w o u l d have to be c h e m i c a l l y m o d i f i e d t o be a f u l l replacement for p h e n o l or c o u l d be c o n s i d ered as s i m p l e extenders for p e t r o l e u m - d e r i v e d p h e n o l . R u s s e l l a n d R e i n m a t h ( 7 ) have e m p l o y e d a s i m i l a r f r a c t i o n a t i o n m e t h o d o n oils f r o m high-pressure b i o m a s s l i q u e f a c t i o n (8). A l i m i t e d a m o u n t o f adhesive t e s t i n g was c a r r i e d o u t , a n d a few b o n d e d w o o d specimens were s h o w n t o have tensile strengths s u p e r i o r t o the adhesive b o n d o f a c o m m e r c i a l b i r c h veneer (9). T h i s chapter describes the i n i t i a l results of c o n v e r t i n g waste sawdust i n t o phenolics t h r o u g h fast p y r o l y s i s e m p l o y i n g a v o r t e x reactor a n d a very fast heat transfer t o d e p o l y m e r i z e b i o m a s s i n t o m o n o m e r i c a n d o l i g o m e r i c c o m p o n e n t s . T h e p y r o l y s i s m e t h o d a n d the c h e m i c a l f r a c t i o n a t i o n e m p l o y e d t o isolate the p h e n o l i c - r i c h f r a c t i o n used i n the subsequent adhesive gel t e s t i n g are d e s c r i b e d . R e s u l t s o f a n e c o n o m i c e v a l u a t i o n o f the process are presented as w e l l as the c h a r a c t e r i z a t i o n o f the p h e n o l i c - r i c h m a t e r i a l . A n o v o l a k a n d a resol were successfully p r e p a r e d w i t h these c o m p o u n d s . Experimental
Methodology
P r i m a r y P y r o l y s i s V a p o r G e n e r a t i o n i n t h e V o r t e x R e a c t o r (10). T h e p y r o l y s i s reactor used t o generate the p y r o l y s i s oils is s h o w n s c h e m a t i c a l l y i n F i g u r e 1. C o a r s e softwood sawdust ( < 5 m m ) was metered by a screw feeder i n t o the e n t r a i n e d s o l i d s / g a s flow f r o m the e x i t o f the recycle l o o p . T h e I D o f the 300 series stainless steel recycle l o o p was 11 m m . N i t r o g e n was used as the carrier gas r a t h e r t h a n s t e a m . T h e e n t r a i n e d particles flowed t o the n i t r o g e n ejector where t h e y were accelerated b y the supersonic j e t t o velocities over 100 m / s . T h e fastm o v i n g e n t r a i n e d solids flow t h e n entered t a n g e n t i a l l y i n t o the v o r t e x reactor. Inside the v o r t e x reactor, the b i o m a s s particles were centrifuged to the w a l l a n d were forced i n t o a n a b n o r m a l l y t i g h t h e l i c a l p a t h t h r o u g h the reactor. A s the p a r t i c l e s s l i d a n d b o u n c e d o n the w a l l , they were i n excellent t h e r m a l contact w i t h the e x t e r n a l l y heated w a l l m a i n t a i n e d at 625 ° C . U n d e r these c o n d i t i o n s , the p a r t i c l e surface is very r a p i d l y heated t o a b o u t 450 ° C , where p y r o l y s i s to oils is f a v o r e d . T h e d i a m e t e r o f the v o r t e x t u b e reactor was 13 c m , a n d i t s l e n g t h was 70 c m . A 5 - c m - d i a m e t e r , a x i a l e x i t t u b e p r o t r u d e d i n t o t h e aft e n d of the v o r t e x reactor, w h i c h served t o encourage p a r t i a l l y p y r o l y z e d feedstock a n d large char p a r t i c l e s t o enter the recycle l o o p . T h e feedstock was recycled u n t i l i t was f u l l y p y r o l y z e d , w h i c h allowed a d e c o u p l i n g o f the t i m e r e q u i r e d t o p y r o l y z e the feedstock p a r t i c l e s a n d the gaseous residence t i m e . T h e a b i l i t y of the carrier gas ejector t o create a pressure differential across the recycle l o o p d e t e r m i n e d the rate o f gas flow i n the recycle l o o p . T h e pressure o f the s y s t e m was a d j u s t e d t o m a i n t a i n the feed hopper at a b o u t 250 P a above a t m o s p h e r i c pressure ( 2 . 5 - c m water c o l u m n ) b y r e s t r i c t i n g the flow o u t o f the s y s t e m . T h e
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
11.
C H U M E T AL.
137
Biomass Pyrolysis Oil Feedstocks
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
char was r e m o v e d i n a hot cyclone. T y p i c a l t h r o u g h p u t for t h i s reactor is 10 t o 20 k g o f sawdust per h o u r w i t h 1- t o 2 - k g carrier gas per k i l o g r a m o f s a w d u s t . O i l C o l l e c t i o n . T h e p y r o l y s i s oils were collected i n a series o f condensers followed b y a coalescing filter t o remove r e s i d u a l aerosols, as s h o w n i n F i g u r e 2. T h e first condenser was a c y c l o n i c condenser 37 c m i n d i a m e t e r w i t h a 4 5 - c m - h i g h c y l i n d r i c a l section. T h e t a n g e n t i a l e n t r y was a r o u n d 5-cm t u b e . T h i s cyclone was w r a p p e d w i t h copper t u b i n g , t h r o u g h w h i c h c h i l l e d water c i r c u l a t e d at a b o u t 20 ° C . T h e c o o l i n g coils were e x t e r n a l l y i r r i g a t e d w i t h water t o transfer the heat f r o m the cyclone w a l l t o the c o o l i n g w a t e r . Inside a n d o u t s i d e the a x i a l o u t l e t o f the cyclone condenser were a d d i t i o n a l c o o l i n g coils. T h e p i p e c o n n e c t i n g the first a n d second condenser was also w r a p p e d w i t h a c h i l l e d water c o o l i n g c o i l a n d a d r a i n was p r o v i d e d for condensate. T h e second condenser consisted of a v e r t i c a l v o r t e x t u b e h a v i n g a 7.5-cm d i a m e t e r w i t h a r e c t a n g u l a r entrance m a d e f r o m a 1.7-cm I D t u b e a n d w i t h the a x i a l o u t l e t near the t a n g e n t i a l entrance. T h e v o r t e x t u b e condenser was cooled b y refrigerated g l y c o l at 2 ° C , w h i c h was c i r c u l a t e d t h r o u g h a copper t u b e w r a p p e d a r o u n d the O D . T h e t h i r d condenser was a 2 0 - L glass c a r b o y i m m e r s e d i n a d r y ice a n d p r o p a n o l b a t h . T h e e n t e r i n g gases were t a n g e n t i a l l y directed o n t o the I D of the carboy. T h e gas a n d aerosol s t r e a m t h e n passed t o the coalescing filter to remove the aerosols. E x c e p t for the glass carboy, the o i l c o l l e c t i o n s y s t e m was stainless steel, since the oils have been s h o w n t o be corrosive t o i r o n a n d z i n c (galvanized i r o n ) . F r a c t i o n a t i o n o f P y r o l y s i s O i l s . P y r o l y s i s o i l o b t a i n e d f r o m the v o r t e x re actor was f r a c t i o n a t e d a c c o r d i n g to the scheme s h o w n i n F i g u r e 3. W h o l e o i l (1 kg) was dissolved i n e t h y l acetate ( E A ) o n a 1:1 ( w / w ) basis. T h e o i l was t h e n v a c u u m filtered t h r o u g h filter paper t o remove fine c h a r . U p o n s t a n d i n g , the E A / p y r o l y s i s o i l separated i n t o t w o p h a s e s - a n o r g a n i c r i c h , E A - s o l u b l e phase a n d a n E A - i n s o l u b l e phase. M o s t of the water f o r m e d d u r i n g p y r o l y s i s is c o n t a i n e d i n the E A - i n s o l u b l e phase. T h e E A - s o l u b l e p o r t i o n o f the o i l was washed w i t h water (2 χ 75 m L ) t o remove the r e m a i n i n g w a t e r - s o l u b l e derived products. T h e E A - s o l u b l e phase was t h e n e x t r a c t e d w i t h N a H C 0 ( 5 % w / w , 10 χ 200 m L ) a n d the aqueous layer saved for i s o l a t i o n of the o r g a n i c acids f r a c t i o n . T h e solvent was r e m o v e d f r o m the r e m a i n i n g E A - s o l u b l e f r a c t i o n , w h i c h c o n t a i n e d the p h e n o l i c a n d n e u t r a l s ( P / N ) f r a c t i o n s , o n a r o t o e v a p o r a t o r u n t i l n o Ε A d i s t i l l e d over. T h e Ε A was not d r i e d p r i o r t o e v a p o r a t i o n , b u t r a t h e r , water was azeotroped d u r i n g the d i s t i l l a t i o n . F i n a l water contents of each f r a c t i o n were 0.5 t o 1.0% b y weight. 3
T h e o r g a n i c acids f r a c t i o n was i s o l a t e d b y a c i d i f y i n g the aqueous layer ( p H 2) w i t h 5 0 % H3PO4, s a t u r a t i n g the s o l u t i o n w i t h N a C l , a n d e x t r a c t i n g the o r g a n i c layer w i t h fresh E A . Solvent was removed b y r o t o e v a p o r a t i o n . T h e water-soluble a n d E A - i n s o l u b l e fractions were also i s o l a t e d b y r o t o e v a p o r a t i o n .
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
138
ADHESIVES F R O M RENEWABLE RESOURCES
F i g u r e 1. S c h e m a t i c o f v o r t e x reactor for fast p y r o l y s i s .
Pyrolysis Gases Coalescing Filter
Pyrolysis Vapors 400 C
Cyclone Condenser
Dry Ice/ Propanol Vortex Condenser
F i g u r e 2. S c h e m a t i c o f p y r o l y s i s o i l c o n d e n s a t i o n t r a i n .
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
11.
C H U M ET AL.
Methods
of
139
Biomass Pyrolysis Oil Feedstocks
Analysis.
Water
Content
of Fractions.
A
chromatographic
m e t h o d was e m p l o y e d u s i n g a glass c o l u m n (6 ft χ 0.2 m m I D ) p a c k e d w i t h P o r a p a k Q S . T h e c h r o m a t o g r a p h s used were a V a r i a n 3700 or a H e w l e t t P a c k a r d 5880. W a t e r contents were also d e t e r m i n e d b y the K a r l F i s h e r m e t h o d b y H u f f m a n Laboratories, Golden, Colorado. Total Carboxyl employed
S c h u e r c h (11)
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
and Phenolic
Hydroxyl
Content.
were m o d i f i c a t i o n s o f the procedure for l i g n i n t o t a l p h e n o l i c content.
Conductimetric titrations
described by
Sarkanen and
Spectroscopic determinations
o n t h e p h e n o l i c s a n d n e u t r a l s f r a c t i o n s were c a r r i e d o u t u s i n g the J E O L F X - 9 0 0 F o u r i e r T r a n s f o r m N M R s p e c t r o m e t e r a n d the N i c o l e t 5 S X C F o u r i e r T r a n s f o r m I n f r a r e d S p e c t r o m e t e r . I n a d d i t i o n , the s o l i d state C P / M A S
1 3
C - N M R spectra
were o b t a i n e d b y the R e g i o n a l N M R C e n t e r at C o l o r a d o S t a t e U n i v e r s i t y u s i n g c o n d i t i o n s d e s c r i b e d i n B r y s o n et a l . High
Performance
Size
Exclusion
(12). Chromatography.
The Hewlett-Packard
1090 l i q u i d c h r o m a t o g r a p h was used w i t h the H P 1040 d i o d e a r r a y or H P 1 0 3 7 A refractive i n d e x ( a n d H P 3392 i n t e g r a t o r ) detectors.
A fifty  (5 m m , 300
χ 7 m m ) P o l y m e r L a b o r a t o r i e s P L gel ( p o l y s t y r e n e - d i v i n y l b e n z e n e c o p o l y m e r gel) c o l u m n was used a n d s t a n d a r d s were as d e s c r i b e d i n C h u m et a l .
(13).
T e t r a h y d r o f u r a n s o l u t i o n s o f o i l a n d o i l f r a c t i o n s were a n a l y z e d . Molecular-Β
earn M ass-Spectrometry.
T h i s p r o c e d u r e was c a r r i e d o u t
e q u i p m e n t d e s c r i b e d by E v a n s a n d M i l n e (14)·
on
P y r o l y s i s o f the o i l s (or frac
t i o n s ) was p e r f o r m e d u n d e r c o n t r o l l e d c o n d i t i o n s a n d followed i n r e a l t i m e b y a free-jet, m o l e c u l a r b e a m M S . P y r o l y s i s p r o d u c t s a n d f r a g m e n t a t i o n ions were detected. A d h e s i v e T e s t i n g . A l l gel t i m e s o f the adhesive resins were d e t e r m i n e d u s i n g a s t i r r i n g a p p a r a t u s , w h i c h consisted of a 1 5 0 - m m l o n g , 2 5 - m m O D d i s p o s a b l e b o r o s i l i c a t e test t u b e t o w h i c h a t o t a l o f 5.0-g of resin p l u s a n y a d d i t i o n a l c o m p o n e n t was a d d e d . T h e v o l u m e i n the test t u b e was s u c h t h a t a p p r o x i m a t e l y 15 m m above the o u t s i d e b o t t o m e n d was filled w i t h m a t e r i a l . A 6 - m m glass r o d w i t h a f i r e - p o l i s h e d , c i r c u l a r t i p was fastened t o be p a r a l l e l t o a second 6 - m m glass r o d u s i n g two m i n i a t u r e ( 8 - m m w i d e ) w o r m - d r i v e hose c l a m p s . T h e second glass r o d was i n s e r t e d i n t o the chuck o f a low t o r q u e s t i r r i n g m o t o r . W i t h t h i s a r r a n g e m e n t , a t h i c k c y l i n d r i c a l p a t h was s t i r r e d t h a t averaged o n l y 2.5 m m f r o m the test t u b e w a l l , w i t h the result t h a t the s t i r r i n g r o d d i d not f o r m a hole i n the g e l l i n g r e s i n .
O n c e the s t i r r i n g was b e g u n , a p r e h e a t e d ,
m a g n e t i c a l l y s t i r r e d m o l t e n w a x b a t h was r a i s e d r a p i d l y s u c h t h a t t h e lower 40 m m o f the test t u b e was s u b m e r g e d . G e l t i m e s were f r o m i n i t i a l submergence of the test t u b e i n t o the w a x b a t h u n t i l the s t i r r i n g was s t o p p e d b y the g e l l i n g r e s i n . T h e s t i r r e r power s e t t i n g was kept c o n s t a n t , a n d a l l resin gel t i m e s were c o m p a r e d w i t h t h a t for fresh C a s c o p h e n 313 ( B o r d e n C h e m i c a l s l i q u i d p h e n o l f o r m a l d e h y d e resol w i t h 4 0 % s o l i d fillers used w i t h 2 . 5 % N a O H t o have a p H o f 11) d e t e r m i n e d at the same b a t h t e m p e r a t u r e . G e l t i m e s at the same b a t h t e m p e r a t u r e were r e p r o d u c i b l e w i t h i n 1 0 % o f each o t h e r a n d were often m u c h closer together. W h e n the gel t i m e was less t h a n 6 m i n u t e s , i t was r e d e t e r m i n e d
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
140
ADHESIVES F R O M RENEWABLE RESOURCES
at a lower t e m p e r a t u r e because there were i n d i c a t i o n s t h a t , at v e r y s h o r t gel t i m e s , the rate o f heat transfer became the d e t e r m i n i n g f a c t o r . N o v o l a k s were p r e p a r e d u s i n g a p h e n o l - t o - f o r m a l d e h y d e m o l a r r a t i o o f 4:1 w i t h 5 m o l e percent o f H S 0 a d d e d as a c a t a l y s t . T y p i c a l l y , 47 g l i q u i d p h e n o l ( 9 1 . 7 % assay), 3 g p a r a f o r m a l d e h y d e , a n d 30 m L water p l u s the r e q u i r e d a c i d c a t a l y s t were a d d e d t o a three-neck, 2 5 0 - m L r o u n d b o t t o m flask. T h e flask was f i t t e d w i t h a reflux condenser a n d s t i r r e r . T h e m i x t u r e was refluxed for 2 t o 4 h o u r s w i t h the o i l b a t h at 115 ° C ; t h e n , the m i x t u r e was n e u t r a l i z e d w i t h 5 0 % ( w / w ) N a O H a n d the excess p h e n o l removed b y s t e a m d i s t i l l a t i o n for 5 t o 6 h o u r s . T h e r e m a i n i n g viscous o i l y residue was washed r e p e a t e d l y w i t h b o i l i n g water. A n o v o l a k w i t h the P / N f r a c t i o n was p r e p a r e d as described above w i t h 1:1 b y v o l u m e p h e n o l a n d P / N f r a c t i o n a n d h a l f o f the a m o u n t of f o r m a l d e h y d e . Initial wood-gluing testing w i t h this novolak indicates wood failure rather t h a n glueline f a i l u r e .
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
2
4
T o prepare m a t e r i a l for gel t e s t i n g , 2 moles o f p a r a f o r m a l d e h y d e were a d d e d per m o l e o f p h e n o l i c h y d r o x y l . T h e p H was v a r i e d b y a d d i n g aqueous 5 0 % ( w / w ) N a O H dropwise w i t h r a p i d s t i r r i n g . A l l o f t h i s was done i n the disposable b o r o s i l i c a t e test t u b e . T o t a l a m o u n t o f a l l r e s i n f o r m u l a t i o n i n the test t u b e was always a d j u s t e d t o 5.0 g. T h e p y r o l y s i s oils were u s u a l l y s o l u b i l i z e d first b y a d d i n g sufficient N a O H . Results and Discussion F a s t P y r o l y s i s G l o b a l R e a c t i o n s . T h e p y r o l y s i s o f b i o m a s s occurs t h r o u g h a large n u m b e r o f reactions t h a t c a n be g r o u p e d i n t o : 1) d e h y d r a t i o n reactions t h a t f o r m c h a r , w a t e r , a n d a s m a l l a m o u n t o f c a r b o n oxides; a n d 2) d e p o l y m e r i z a t i o n reactions t h a t f o r m m o n o m e r fragments, m o n o m e r s , a n d o l i g o m e r s , w h i c h are o f interest for p h e n o l i c adhesive p r o d u c t i o n . H o w e v e r , as s h o w n i n F i g u r e 4, the p o l y m e r fragments are very reactive, a n d they q u i t e r e a d i l y u n dergo secondary reactions t o f o r m gases a n d m o r e stable o r g a n i c c o m p o u n d s (e.g., p o l y c y c l i c a r o m a t i c t a r s ) . A t low t e m p e r a t u r e s , the d e h y d r a t i o n reactions t h a t favor char f o r m a t i o n are faster t h a n t h e d e p o l y m e r i z a t i o n reactions t h a t f o r m p r i m a r y p y r o l y s i s o i l v a p o r s . However, the d e p o l y m e r i z a t i o n reactions are s t r o n g l y favored at elevated t e m p e r a t u r e s . C o n s e q u e n t l y , i t is necessary t o q u i c k l y heat the b i o m a s s p a r t i c l e s to elevated t e m p e r a t u r e s ( > 4 0 0 ° C ) to m a x i m i z e the p y r o l y s i s o i l y i e l d s a n d t h e n t o r a p i d l y c o o l the p r o d u c t v a p o r s . T h i s r a p i d h e a t i n g requires a large heat flux be p r o v i d e d t o the b i o m a s s s u r face, w h i c h c o n v e n t i o n a l l y w o u l d be achieved by u s i n g very h i g h t e m p e r a t u r e s . However, t h e presence o f the h i g h t e m p e r a t u r e s has the u n d e s i r a b l e effect of excessively h e a t i n g the o i l vapors t o cause some o f t h e m t o decompose t o gases (15). A n a l t e r n a t e m e t h o d o f s u p p l y i n g the large heat fluxes is to use a heat transfer m e c h a n i s m t h a t has a r e l a t i v e l y large heat transfer coefficient. F o r a c h i e v i n g these heat transfer p h e n o m e n a i n a c h e m i c a l reactor, a n e x t e r n a l l y heated v o r t e x t u b e was selected (16). T h e advantage o f t h i s reactor s y s t e m
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
11.
C H U M E T AL.
141
Biomass Pyrolysis Oil Feedstock
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
#79, 15% water, pH 2.8 Whole Oil I DiMotw In EtOAc/FIIter
—•Char: 3%
ι
EtOAc Insol: 29%
I
EtOAc Sol: 71% —Water -NaHC0
WS: 37% A: 7%
3
— Evaporate
P/N: 26%
Figure 3. Pine sawdust pyrolysis o i l fractionation scheme. Yields are on a dry basis.
Secondary Tare
Macropolymerlc Blomaee Solids
Monomerlc Primary Vapors
Ollgomerlc Liquids Macropolymer Char Solids • H 0• C0 2
X
Secondary Gaeee
F i g u r e 4. B i o m a s s p y r o l y s i s g l o b a l m e c h a n i s m .
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
142
ADHESIVES F R O M RENEWABLE RESOURCES
is the h i g h y i e l d s of p y r o l y s i s oils a n d the h i g h heat transfer possible f r o m the w a l l t o the b i o m a s s , w h i c h translates t o a r e l a t i v e l y s m a l l reactor w i t h a h i g h
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
throughput
(10).
O i l C o l l e c t i o n . T a b l e I shows the t e m p e r a t u r e of the process s t r e a m as i t passed t h r o u g h the heat exchangers, as w e l l as the a m o u n t a n d m o i s t u r e content of condensate collected at each l o c a t i o n . F o r R u n 83, t h i s o i l c o l l e c t i o n t r a i n d e m o n s t r a t e d a wet o i l recovery of 6 7 % of the d r y feedstock for a mass closure of 9 4 % . T h e wet o i l c o n t a i n e d a n average of 1 8 % water of p y r o l y s i s for a recovered y i e l d of 5 5 % d r y p y r o l y s i s o i l .
T a b l e I. P r i m a r y O i l C o l l e c t i o n T r a i n ( R u n 83)
Exit Temperature °C 15-Inch-diameter c y c l o n i c condenser 1-Inch-diameter transfer l i n e H X R 3-Inch-diameter v o r t e x condenser Dry-ice trap C o a l e s c i n g filter Total
50 40 30 -17 -17
Weight Percent of Dry Oil
H 0 Weight Percent in Wet Oil
50 21
20 10 8 30 31 18
23 11 5 100
2
T h e c o l l e c t i o n of the p y r o l y s i s oils is difficult due t o t h e i r tendency t o f o r m aerosols a n d also due t o the v o l a t i l e n a t u r e of m a n y of the o i l c o n s t i t u e n t s . A s the aerosols agglomerate i n t o larger droplets, they c a n be removed b y c y c l o n i c separators. However, the s u b m i c r o n aerosols cannot be efficiently collected b y c y c l o n i c or i n e r t i a l techniques, a n d c o l l e c t i o n b y i m p a c t of the aerosols due to t h e i r B r o w n i a n or r a n d o m m o t i o n m u s t be u t i l i z e d . A coalescing filter is r e l a t i v e l y p o r o u s , b u t i t contains a large surface area for the aerosol p a r t i c l e s to i m p a c t b y B r o w n i a n m o t i o n as t h e y are swept t h r o u g h b y the p y r o l y s i s gases. O n c e the aerosol droplets i m p a c t the filter fibers, t h e y are c a p t u r e d a n d coalesce i n t o large drops t h a t c a n flow d o w n the fibers a n d be collected. P y r o l y s i s Y i e l d s . Before the present c o l l e c t i o n s y s t e m h a d been developed, mass a n d e l e m e n t a l balances showed t h a t the y i e l d s of o x y g e n a t e d p y r o l y s i s oils generated i n the v o r t e x reactor m u s t be very h i g h a n d t h a t the observed large lack of mass balance closure c o u l d not be due t o large water y i e l d s . B a s e d o n e l e m e n t a l a n a l y s i s of the char, o i l , a n d gases, a char y i e l d of 1 2 . 7 % corresponds to c a l c u l a t e d y i e l d s of 6 9 % o i l v a p o r s , 1 4 % water, a n d 4 . 3 % gases. W i t h o u t the recycle l o o p , gas y i e l d s have been observed to be i n the 3 t o 4 % range of the p y r o l y z e d feedstock. However, w i t h the recycle l o o p i n s t a l l e d , the gas y i e l d s
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
11.
C H U M ET AL.
143
Biomass Pyrolysis Oil Feedstock
were seen t o increase t o a b o u t 1 4 % due t o a n increase i n the c r a c k i n g of the o i l v a p o r s t o a c h a r a c t e r i s t i c a l l y different slate of p e r m a n e n t gases (15).
Minor
changes i n the o p e r a t i o n of t h e v o r t e x reactor are e x p e c t e d t o reduce the gas y i e l d s i n the f u t u r e a n d t o result i n e n h a n c e d p y r o l y s i s o i l y i e l d s . P h e n o l i c s / N e u t r a l s f o r A d h e s i v e s . T h e f r a c t i o n a t i o n scheme d e s c r i b e d i n F i g u r e 3 allowed the i s o l a t i o n o f 2 1 % t o 3 1 % of the s t a r t i n g o i l as a P / N f r a c t i o n ,
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
as s h o w n i n T a b l e I I . T h i s f r a c t i o n consists o f 7 3 % p h e n o l i c s , e x t r a c t able b y aqueous s o d i u m h y d r o x i d e s o l u t i o n f r o m a n e t h y l acetate s o l u t i o n , a n d 2 7 % neutrals.
T h e t o t a l y i e l d of the P / N f r a c t i o n was r e p r o d u c i b l e (cf.
r u n s 79
a n d 83 i n T a b l e I I ) . I s o l a t i o n of the P / N f r a c t i o n f r o m o i l s condensed f r o m the c y c l o n e a n d t r a n s f e r - l i n e heat exchanger i n d i c a t e s t h a t the P / N f r a c t i o n p r e d o m i n a t e s i n the t r a n s f e r - l i n e heat exchanger condensate.
E x p e r i m e n t 78
was collected f r o m the c y c l o n i c condenser, a n d t h u s , the results c o m p a r e w e l l w i t h those f r o m e x p e r i m e n t 81 A .
T a b l e I I . F r a c t i o n a t i o n of S a w d u s t P y r o l y s i s O i l s Y i e l d s (% o n d r y o i l basis) Ethyl Acids
Phenols/
Experiment
Acetate
Water
No.
Insoluble
Soluble
78
43
25
6
21
79
29
37
7
26
81
23
39
7
31
8 1 A - cyclone
45
26
5
23
8 1 B - heat exchanger
20
28
9
47
Neutrals
T h e typical whole o i l contained about 6.2% and 0.4% phenolic hydroxy and c a r b o x y l i c a c i d contents, respectively. T h e P / N f r a c t i o n c o n t a i n e d 6 . 6 % p h e n o l i c h y d r o x y a n d n o c a r b o x y l i c a c i d content, whereas, the acids f r a c t i o n c o n t a i n e d 9 . 2 % a n d 0 . 9 % o f p h e n o l i c h y d r o x y a n d c a r b o x y l i c a c i d contents, respectively. T h e a p p a r e n t m o l e c u l a r weight d i s t r i b u t i o n s of selected f r a c t i o n s of i s o l a t e d o i l c o m p o n e n t s are s h o w n i n F i g u r e 5.
T h e phenols f r a c t i o n c o n t a i n e d the
highest a p p a r e n t m o l e c u l a r weight c o m p o n e n t s , a n d t h e i r a b s o r p t i o n s p e c t r a i n the U V region resembled t h a t of l o w - m o l e c u l a r - w e i g h t l i g n i n s . F r o m the m o l e c u l a r b e a m M S o f the p y r o l y s i s p r o d u c t s o f the P / N f r a c t i o n s , a n u m b e r of p h e n o l i c c o m p o u n d s were detected:
guaiacol
(2-methoxyphenol)
( m / z 124), catechols ( m / z 110), isomers o f s u b s t i t u t e d 2 - m e t h o x y p h e n o l s a l k y l groups such as m e t h y l ( m / z 138), v i n y l ( m / z 150),
with
3-hydroxy-propen(l)-
y l ( m / z 180), a l l y l ( m / z 164), h y d r o x y e t h y l ( m / z 168), a n d e t h y l (152), m o s t l i k e l y i n the para p o s i t i o n .
I n a d d i t i o n , a few c a r b o h y d r a t e - d e r i v e d
compo-
nents are also present i n t h i s f r a c t i o n such as f u r f u r y l a l c o h o l a n d o t h e r f u r f u r a l derivatives.
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
144
ADHESIVES F R O M RENEWABLE RESOURCES
W h o l e Oil
Acids
F i g u r e 5. H i g h - p e r f o r m a n c e size e x c l u s i o n c h r o m a t o g r a m s o f pine sawdust p y r o l y s i s oils a n d fractions o f acids, phenols, a n d n e u t r a l s c o n t a i n e d i n the e t h y l acetate soluble o i l .
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
11.
C H U M ET AL.
145
Biomass Pyrolysis Oil Feedstocks
F r o m the p r o t o n N M R o f the P / N f r a c t i o n , of the t o t a l p r o t o n i n t e n s i t y , the a r o m a t i c p r o t o n s (6.5 t o 10 p p m ) c o n s t i t u t e 5 2 % , the a l i p h a t i c (1.5 t o 3.5 p p m ) a b o u t 2 0 % , a n d the m e t h o x y region (3.0 t o 4.2 p p m ) 3 0 % , w h i c h is i n agreement w i t h the p r o p o s e d c o m p o u n d s o b t a i n e d f r o m the m o l e c u l a r b e a m M S pyrolysis experiment. T h e
1 3
C - N M R s p e c t r a o f the P / N f r a c t i o n also i n d i c a t e d
m i x t u r e s o f c o m p o u n d s w i t h a r o m a t i c c a r b o n s i n the 110 t o 148 p p m r e g i o n , a
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
very p r o n o u n c e d m e t h o x y peak at 55.6 p p m , a n d a l i p h a t i c c a r b o n s . P r e l i m i n a r y A d h e s i v e T e s t i n g R e s u l t s . P h e n o l at a p H o f 11 w i t h t w i c e the m o l a r a m o u n t o f f o r m a l d e h y d e was c o m p a r e d w i t h C a s c o p h e n 313 ( c o m m e r c i a l s o f t w o o d p l y w o o d r e s i n b y B o r d e n C h e m i c a l s ) . A t 124 ° C , C a s c o p h e n 313 t o o k 12.2 m i n u t e s t o g e l , whereas, the p h e n o l w i t h a d d e d p a r a f o r m a l d e h y d e d i d not gel even after 30 m i n u t e s . T a b l e I I I .
T a b l e I I I . G e l T i m e s for C a s c o p h e n a n d P h e n o l i c s / N e u t r a l s from Pyrolysis Oils
pH
Temperature
Gel Time,
Equivalent
Percent
^C
Minutes
Cascophen T i m e
Equivalent T i m e
118
15.3
125
12.2
130
9.7
Cascophen
1
Phenols/Neutrals
2
9.0
3
127
12.0
11.1
9.5
4
127
5.2
11.1
9.5
124
3.7
12.6
9.5
112
6.2
18.2
29 34
9.5
101
10.8
23.4
46
9.5
89
24J)
29J)
-
h g C a s c o p h e n + 0.2 m L o f 5 0 % N a O H , p H 11.5.
x
2
4g
Phenol/neutrals from
sawdust
p y r o l y s i s oils reacted
with
1
g
p a r a f o r m a l d e h y d e a n d 0.5 m L of 5 0 % N a O H . 3
0 . 2 m L of 5 0 % N a O H .
4
0 . 4 m L of 5 0 % N a O H .
O f the v a r i o u s f r a c t i o n s of p y r o l y s i s o i l , o n l y the P / N f r a c t i o n gave a p o s i t i v e gel test u n d e r these c o n d i t i o n s . I n p r e l i m i n a r y gel t e s t i n g o f the P / N e x t r a c t , a r b i t r a r i l y 1 g o f p a r a f o r m a l d e h y d e was a d d e d to 4 g o f the e x t r a c t . T h e p H of
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
146
ADHESIVES F R O M RENEWABLE RESOURCES
the e x t r a c t was a d j u s t e d b y a d d i n g 0.2 t o 0.8 m L of 5 0 % ( w / w ) N a O H . T h e r e a p p e a r e d t o be a s t r o n g buffering o f the p H b y the e x t r a c t at a p H o f 9.5. C a s c o p h e n 313 was used for c o m p a r i s o n . T h e i n f o r m a t i o n o b t a i n e d is presented i n T a b l e I I I . A t 0.5 m L of a d d e d N a O H , the gel t i m e of the P / N f r a c t i o n was m u c h shorter t h a n t h a t of the C a s c o p h e n , w i t h a gel t i m e of o n l y 2 9 % t h a t o f C a s c o p h e n at 124 ° C , at 112 ° C , i t was 3 4 % ; a n d at 101 ° C i t was 4 6 % t h a t o f C a s c o p h e n . A t the o r i g i n a l p H of 3 o f the P / N f r a c t i o n , there was no g e l l i n g o f the m i x t u r e even at 132 ° C w i t h the same a m o u n t o f a d d e d p a r a f o r m a l d e h y d e . T h e n o v o l a k s p r e p a r e d were characterized b y s o l i d - s t a t e C - N M R spec t r a . T h e peaks i n the C - N M R s p e c t r a o b t a i n e d i n t h i s s t u d y were assigned o n the basis of c o m p a r i s o n s w i t h s o l u t i o n - a n d s o l i d - s t a t e C - N M R of n o v o l a k s (12) a n d s o l u t i o n - s t a t e l i g n i n N M R s p e c t r a (17, 18). T h e s p e c t r a o f a p h e n o l - f o r m a l d e h y d e n o v o l a k a n d s i m i l a r n o v o l a k i n w h i c h 5 0 % b y v o l u m e of the p h e n o l was replaced b y the P / N f r a c t i o n f r o m the fast p y r o l y s i s o f p i n e sawdust are c o m p a r e d i n F i g u r e 6. T h e a u t h e n t i c n o v o l a k ( F i g u r e 6a) p r o d u c e d m a i n peaks ( f r o m d e c o n v o l u t i o n ) at 150, 130, a n d 120 p p m c o r r e s p o n d i n g t o hydroxy-substituted aromatic carbons, unsubstituted meia-aromatic carbons, a n d u n s u b s t i t u t e d p a r a - a r o m a t i c carbons, respectively; a n d i n the a l i p h a t i c re g i o n , the m a i n peaks are at 35 a n d 40 p p m , assigned t o ortho-para m e t h y l e n e bridges a n d para-para m e t h y l e n e bridges, respectively. T h e presence a n d i n t e n sity o f s u c h peaks c o r r e s p o n d t o the f o r m a t i o n o f r a n d o m n o v o l a k s as discussed by B r y s o n et a l . (12). O n s u b s t i t u t i o n o f p h e n o l w i t h the P / N f r a c t i o n ( F i g ure 6 b ) , the key peaks o f the r a n d o m n o v o l a k r e m a i n , b u t peaks c h a r a c t e r i s t i c of the types o f p h e n o l i c c o m p o u n d s present also appear such as at 155 p p m (metaa r o m a t i c carbons a t t a c h e d t o m e t h o x y g r o u p s ) , 55 p p m ( m e t h o x y g r o u p s ) , a n d 20 p p m ( a l i p h a t i c groups). K e y differences between the a u t h e n t i c n o v o l a k a n d the P / N - s u b s t i t u t e d n o v o l a k are i n r e l a t i v e p e a k intensities. W h i l e the r a t i o of u n s u b s t i t u t e d m et a- a r o m a t i c carbons t o ortho-para m e t h y l e n e bridges (130 t o 35 p p m ) i n the a u t h e n t i c s a m p l e is r o u g h l y 7:1, the r a t i o i n the P / N n o v o l a k is a p p r o x i m a t e l y 4:1 ( 6 0 % o f the o r i g i n a l value). S u c h a difference is e x p e c t e d , since the P / N n o v o l a k contains a n u m b e r of met α-substituted m e t h o x y c o m p o u n d s . T h e p h e n o l - f o r m a l d e h y d e novolak has a higher r a t i o o f h y d r o x y - s u b s t i t u t e d a r o m a t i c c a r b o n s (150 p p m ) to u n s u b s t i t u t e d m e t a - a r o m a t i c carbons (130 p p m ) t h a n the P / N n o v o l a k ( 4 0 % versus 3 0 % ) . 1 3
1 3
1 3
A few p r e l i m i n a r y resols have also been m a d e w i t h a 5 0 % replacement of p h e n o l b y the P / N f r a c t i o n o f the w o o d o i l . Tests have s h o w n these adhesives t o have shear strengths a n d w o o d f a i l u r e c o m p a r a b l e t o t h a t o b t a i n e d w i t h B o r d e n ' s C a s c o p h e n 313. T h i s work is i n progress. T e c h n o e c o n o m i c A s s e s s m e n t . A l t h o u g h the use of f r a c t i o n a t e d p y r o l y s i s oils as adhesives is s t i l l i n the e a r l y phases of development, a t e c h n o l o g i c a l as sessment o f the process was m a d e u s i n g the best p r o j e c t i o n s a v a i l a b l e for the y i e l d s a n d o p e r a t i n g c o n d i t i o n s . A d e t a i l e d process flowsheet was m a d e w i t h mass a n d energy balances a r o u n d each m a j o r piece o f e q u i p m e n t . T h e e q u i p ment was sized a n d t h e n v a l u a t e d u s i n g d a t a f r o m the l i t e r a t u r e . T h e costs
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
C H U M ET AL.
Biomass Pyrolysis Oil Feedstocks
147
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
11.
F i g u r e 6. C P / M A S
1 3
C - N M R of novolaks:
a) p h e n o l - f o r m a l d e h y d e ;
b) phe-
n o l : p h e n o l s / n e u t r a l s (1:1) p i n e sawdust p y r o l y s i s o i l f r a c t i o n a n d f o r m a l d e h y d e .
American Chemical Society Library 1155 16th St. N.W. Washington. U.C. 20036 In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
148
ADHESIVES F R O M RENEWABLE RESOURCES
for i n s t a l l e d e q u i p m e n t were c a l c u l a t e d u s i n g s t a n d a r d cost factors (19). All costs were u p d a t e d t o f o u r t h q u a r t e r 1986 d o l l a r s u s i n g the C E cost i n d e x . T h e process flowsheet i n c l u d e d a feedstock d r y i n g step u s i n g waste process heat. T h e d r y i n g step has a significant cost, b u t any m o i s t u r e i n the feedstock w o u l d be e v a p o r a t e d first i n the p y r o l y s i s step a n d t h e n a c c u m u l a t e d i n the process where i t w o u l d have t o be e v a p o r a t e d a g a i n w i t h p r e m i u m heat i n the i n c i n e r a t i o n section o f the furnace. S t e a m was used as the carrier gas at a weight r a t i o o f 1.33 t i m e s t h a t o f the feedstock. T h e energy for the d r y i n g step w o u l d be o b t a i n e d f r o m the c o o l i n g a n d c o n d e n s a t i o n o f the p y r o l y s i s process s t r e a m . T h e e x t r a c t i o n of the P / N f r a c t i o n was assumed to be b y the use o f Ε A as the solvent. T h e E A soluble acids were removed by a n aqueous s o d i u m c a r b o n a t e w a s h . T h e aqueous phase was first heated t o b o i l off the E A , w h i c h has a s i g nificant s o l u b i l i t y i n w a t e r . T h e water-soluble organics were t h e n c o n c e n t r a t e d i n triple-effect evaporators p r i o r t o t h e i r i n c i n e r a t i o n i n the convection section of the p y r o l y s i s furnace. T h e economics o f the p r o d u c t i o n of the P / N f r a c t i o n were e v a l u a t e d for a 1 5 % interest rate over a 20-year a m o r t i z a t i o n p e r i o d . T h e p r o d u c t i o n costs were s h o w n t o be a s t r o n g f u n c t i o n o f p l a n t size a n d feedstock costs as s h o w n i n F i g u r e 7. T h e cost t o p r o d u c e the P / N f r a c t i o n was p r o j e c t e d t o be a b o u t $0.10 per p o u n d i n a p l a n t c o n s u m i n g 1,000 T P D feedstock cost i n g $10 per d r y t o n . P r o d u c t i o n i n a s m a l l 250 T P D p l a n t w o u l d a d d a b o u t $0.06 per p o u n d . Increasing the feedstock cost t o $40 per d r y t o n w o u l d a d d $0.07 per p o u n d o f P / N . I f the p l a n t were t o be i n t e g r a t e d w i t h a n e x i s t i n g forest p r o d u c t s m i l l , some o f the costs r e l a t e d t o feedstock p r e p a r a t i o n w o u l d be c o n s i d e r a b l y reduced. It was c o n c l u d e d t h a t t h i s process has considerable economic p o t e n t i a l i f i t is developed p r o p e r l y a n d the a s s u m p t i o n s m a d e are verified t h r o u g h a d d i t i o n a l research a n d development. Conclusions Fast p y r o l y s i s o f b i o m a s s provides a m e t h o d for the p r o d u c t i o n of phenolics t h a t has the p o t e n t i a l t o replace at least 5 0 % or m o r e o f the p h e n o l i n p h e n o l f o r m a l d e h y d e t h e r m o s e t t i n g resins. T h e gel tests i n d i c a t e t h a t the P / N f r a c t i o n s f r o m p i n e sawdust p y r o l y s i s w i t h p a r a f o r m a l d e h y d e have shorter gel t i m e s t h a n c o m m e r c i a l p l y w o o d resins s u c h as C a s c o p h e n 313, even w i t h o u t p r e p o l y m e r f o r m a t i o n . A n o v o l a k f o r m u l a t i o n has been p r e p a r e d u s i n g 1:1 b y v o l u m e of p h e n o l a n d P / N f r a c t i o n a n d a b o u t h a l f o f the a m o u n t o f f o r m a l d e h y d e t h a t w o u l d be used t h a n i f p h e n o l alone were e m p l o y e d . V e r y p r o m i s i n g resols have also been m a d e w i t h a s i m i l a r s u b s t i t u t i o n o f the P / N f r a c t i o n for p h e n o l . W o o d t e s t i n g a n d resin f o r m u l a t i o n development are o n g o i n g a c t i v i t i e s . T h e p r o j e c t e d economics suggest t h a t a d d i t i o n a l research a n d development o f t h i s process are fully warranted.
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
11.
C H U M ET AL.
149
Biomass Pyrolysis Oil Feedstock
••Feed HDD Extn
^ Labor EZ1 Util. CD Inventory
• • Front End
Cases I 1 0 0 0 TPD, $ 4 0 / τ
"
• J J j j j j ^ [HI
^^^^^^^
1000 TPD, $10/T 250 TPD, $ 4 0 / T 250 TPD, $ 2 0 / T I
0
ι
0.05
ι
0.1
ι
0.15
ι
0.2
1
0.25
1
0.3
$/lb of Phenols and Neutrals F i g u r e 7. A m o r t i z e d costs o f phenolics a n d n e u t r a l s f r a c t i o n f r o m p i n e sawdust p y r o l y s i s c a l c u l a t e d as a f u n c t i o n o f feedstock cost a n d p l a n t size.
Note that
the c a l c u l a t i o n s i n c l u d e costs associated w i t h a l l feedstock p r e p a r a t i o n as i f t h i s were a n i n d e p e n d e n t p l a n t .
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
150
ADHESIVES F R O M RENEWABLE RESOURCES
A cknowledgment s T h i s w o r k was s u p p o r t e d b y the Office of I n d u s t r i a l P r o g r a m s of the U . S . p a r t m e n t of E n e r g y , W a s t e P r o d u c t s U t i l i z a t i o n B r a n c h , F T P 587.
The
De
encour
agement o f the D O E p r o g r a m m a n a g e r s , M r . A . S c h r o e d e r a n d D r . J . C o l l i n s , is g r a t e f u l l y a c k n o w l e d g e d . T h e C o l o r a d o S t a t e U n i v e r s i t y R e g i o n a l N M R ter, f u n d e d b y
the
N a t i o n a l Science F o u n d a t i o n G r a n t N o .
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
g r a t e f u l l y a c k n o w l e d g e d for the C P / M A S
N M R spectra.
Cen
C H E - 8 2 0 8 8 2 1 , is
Dr.
R. Evans kindly
p r o v i d e d the m o l e c u l a r - b e a m m a s s - s p e c t r o m e t r i c d a t a . H i s h e l p a n d t h a t of D r . T . M i l n e are g r a t e f u l l y a c k n o w l e d g e d . W e determinations and M r .
also t h a n k M s .
F . P o s e y for
M . R a t c l i f f for the s o l u t i o n - s t a t e N M R d a t a .
water
Mr.
A.
P o w e r ( A . J . P o w e r a n d A s s o c i a t e s , B o u l d e r , C o l o r a d o ) p e r f o r m e d the e c o n o m i c assessment, w h i c h w i l l be p u b l i s h e d i n d e t a i l elsewhere. Literature Cited
1. Soltes, E. J.; Elder, T . J . In Organic Chemicals from Biomass, Goldstein, I. S., E d . ; C R C : Boca Raton, FL, 1981, p. 63. 2. Overend, R. P.; Milne, T . Α.; Mudge, L . K . , Eds.; Fundamentals Biomass Conversion, Elsevier: London, 1985.
of Thermοchemical
3. Soltes, E. J.; L i n , S . - C . In Progress Biomass Conversion; Tillman, D . Α.; John, E. C., Eds.; Academic Press: New York, Vol. 4, 1983, p. 79, and references therein. 4. Preprints of papers presented at the Denver American Chemical Society Meeting, Production, Analysis and Upgrading Oils from Biomass, Division of Fuel Chemistry Preprints, A C S : Washington, D C , Vol. 32, No. 2, 1987. 5. Elder, T . J . ; Soltes, E. J . Wood and Fiber, 1979, 12,
217.
6. Elder, T . J . The Characterization and Potential Utilization of Phenolic Compounds Found in Pyrolysis Oil. P h . D . Dissertation, Texas A & M University, 1979. 7. Russel, J . ; Reinmath, W . F . ; "Method for Making Adhesives from Biomass," Patent 4 508 886, 1985.
U.S.
8. Davis, H. G.; Eames, Μ. Α.; Figueroa, C.; Gansby, R. R.; Schlaeger, L. L.; Watt, D . W . In Fundamentals of Thermochemical Conversion of Biomass; Overend, R. P.; Milne, Τ. Α.; Mudge, L . K., Eds.; Elsevier: London, 1027, 1985. 9. Nelson, D . Α.; Molten, P. M . ; Russell, J . Α.; Hallen, R. T . Ind. Res. Dev., 23. 471-475, 1984.
Eng.
Chem. Prod.
10. Diebold, J . P.; Scahill, J . W . Division Fuel Chemistry preprints, A C S : Washington, D C ; Vol. 32, No. 2, p. 21, 1987. 11. Sarkanen, Κ. V . ; Schuerch, C. Anal. Chem., 1955, 27,
1245.
12. Bryson, R. L . ; Hatfield, G . R.; Early, Τ. Α.; Palmer, A . R.; Maciel, G . E. Macro molecules, 1983, 16, 1669. 13. Chum, H . L.; Johnson, D . K.; Tucker, M . P.; Himmel, M . E. Holzforschung, 1987, 97. 14. Evans, R. J . ; Milne, T . A . Energy and Fuels, 1987, 1 (2),
41,
123.
15. Diebold, J . P., The Cracking Kinetics of Depolymerized Biomass Vapors in a Contin uous, Tubular Reactor, Thesis T-3007, Colorado School of Mines, Golden, C O , 1985.
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
11.
C H U M E T AL.
Biomass Pyrolysis OU Feedstocks
151
16. Diebold, J . P. In Proceedings of Specialist's Workshop on Fast Pyrolysis of Biomass, Copper Mountain, C O , October 19-22,1987. Solar Energy Research Institute, Golden, C O , SERI/CP-622-1096 (NTIS). 17. Nimz, H. H.; Tschirner, U.; Stahle, M.; Lehmann, R.; Schlosser, M. J. Wood Chem. Technol., 1984, 4 , 265. 18. Kringstadt, K . P.; Morck, R. Holzforschung, 1983, 37, 237.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 19, 2015 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch011
19. Guthrie, Κ. M. Process Plant Estimating, Co. of America, C A , 1974.
Evaluation and Control, Craftsman Book
R E C E I V E D September 6, 1988
In Adhesives from Renewable Resources; Hemingway, R., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.