Bioregulators for Pest Control - American Chemical Society

programs and as means of selectively reducing populations by luring individuals to ..... Pest Management"; Metcalf, R. L.; Luckman, W. Η., Eds.; John...
3 downloads 0 Views 1MB Size
25 Protein Hydrolysate Volatiles as Insect Attractants Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch025

KENT

E.

MATSUMOTO,

RON

G.

BUTTERY,

ROBERT

A.

FLATH,

T.

RICHARD

MON,

and

ROY TERANISHI Biocommunication Chemistry Research Unit, Western Regional Research Center, Agricultural Research Service, U . S . Department of Agriculture, Albany, CA 94710

Hydrolysed protein preparations have been used to attract various insects. The general subject of insect attractant use both in nature and by man is introduced, with particular reference to the Tephritid family of fruit flies. The work of the Biocommunication Chemistry Research Unit on the identification of the active attractant compounds in the hydrolysed corn protein, Nu-Lure Insect Bait (NLIB) is discussed. Different isolates have been obtained by running simultaneous steam distillation-extractions (SDE) under vacuum and atomospheric pressure and under basic and acidic conditions. Chemical fractionation of these isolates has also been accomplished. Chemical identification by gas chromatography/mass spectrometry (gc/ms) is discussed. M e t c a l f a n d M e t c a l f (1) h a v e q u o t e d R a c h e l C a r s o n (2) a s d e s c r i b i n g a t t r a c t a n t s a s "new, i m a g i n a t i v e , a n d c r e a t i v e a p p r o a c h e s t o t h e problem o f sharing o u r earth with other creatures". Many o f t h e s e a t t r a c t a n t s a r e n a t u r a l p r o d u c t s . We w o u l d l i k e t o d i s c u s s : 1) t h e u s e o f a t t r a c t a n t s i n p e s t c o n t r o l , 2) t h e e c o n o m i c i m p o r t a n c e o f the Tephritid family of fruit f l i e s , which i s t h e focus o fo u r research, and t h e use o f a t t r a c t a n t s i n i t s control, 3) t h e approach t h e Biocommunication Chemistry Research Unit i s taking toward finding new a t t r a c t a n t s , o u r progress t o date, ando u r p l a n s , a n d 4 ) some p r o b l e m s we h a v e e n c o u n t e r e d i n o u r r e s e a r c h . We w i l l t o u c h o n l y i n p a s s i n g u p o n t h e v e r y l a r g e a n d i m p o r t a n t f i e l d s o f pheromones a n d k a i r o m o n e s a s t h e y a r e c o v e r e d i n more d e t a i l i n t h e c h a p t e r s b y T u m l i n s o n (3) a n d K l u n ( 4 ) . Uses o f A t t r a c t a n t s A t t r a c t a n t s w e r e d e f i n e d b y D e t h i e r (5) a s " c h e m i c a l s t h a t c a u s e insects t o make oriented movements toward the source". He differentiated them from arrestants which "cause insects to aggregate". F o r t h e p u r p o s e s o f t h i s p a p e r , we w i l l n o t b e t h i s

This chapter not subject to U.S. copyright. Published 1985 American Chemical Society

Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch025

354

BIOREGULATORS FOR PEST CONTROL

s p e c i f i c i n our terminology, because, i n many cases, the b i o l o g i c a l observations necessary to make this d i f f e r e n t i a t i o n have not been made. Insect control professionals have used attractants as tools to monitor populations as part of integrated pest management (IPM) programs and as means of s e l e c t i v e l y reducing populations by l u r i n g individuals to traps, poisons, or even chemosterilants (6). Some work i s currently being done on the a t t r a c t i o n of natural enemies as well (7). (Please note that examples shown and references c i t e d are meant to be i l l u s t r a t i v e rather than exhaustive). But for what do insects use attractants? I t i s postulated that they are used for finding shelter, mates, oviposition s i t e s , and food (1, 8). I t i s here that the b i o l o g i s t becomes indispensible to the chemist. Only from h i s observations can chemists know where to look f o r naturally occuring attractants. I t i s also important to note that not a l l attractants are chemical. V i s u a l (9-11) and auditory (12) clues also play very important roles i n the behavior of some insects. Even with chemicals, whereas one tends to think of attractants as v o l a t i l e materials acting over some distance, some are active only over very short distances or induce the appropriate behavior only upon contact (13). What are some examples of these attractants? (Figure 1) For mate finding, the insect-produced pheromones are the primary examples. However, environmental factors may also play an important role i n the effectiveness of attractants. In the southern pine beetle, Dendroctonus f r o n t a l i s , alpha-pinene released from an attacked tree i s necessary along with the endogenously produced f r o n t a l i n i n order to attract males for mating (14). For species whose larvae are s p e c i a l i s t feeders, finding suitable plants for oviposition i s of great importance. Corn earworm moths, H e l i o t h i s armigera. will oviposit on twine impregnated with an extract of com s i l k (1!5). The r i c e stemborer, Chilo p l e j a d e l l u s . female w i l l be attracted to and oviposit near a component of r i c e plants i d e n t i f i e d as £-methylacetophenone (16). Some of these o v i p o s i t i o n attractants are contact materials and, thus, are probably of no use i n p r a c t i c a l applications. This i s the case f o r many of the b u t t e r f l i e s of the Nymphalid family. The Indian butterfly, Papilio demoleus, seems to require some non-volatile component i n c i t r u s leaves to induce o v i p o s i t i o n , although i t seems to be attracted, at least p a r t i a l l y , to the odor of the leaves (17). Food finding i s another area i n which attractants play a major role i n insect behavior. This i s true for some larvae as well as adults. Saxena (18) has shown that the larvae of P. demo 1 eus are attracted to the leaves of c i t r u s and cotton plants by their odor. However, i t seems that most chemicals which p o s i t i v e l y affect insect feeding are gustatory stimulants such as s i n i g r i n f o r the cabbage b u t t e r f l y , P i e r i s brassicae (19-21). This insect feeds on plants of the family Crueiferae whose members are unique i n having high concentrations of this and other mustard o i l glycosides. S i n i g r i n , or, more l i k e l y , a v o l a t i l e r e l a t i v e , w i l l also attract the adults of the diamondback moth, P l u t e l l a maculipennis (22), and the cabbage root f l y , Delia brassicae (23). Leek v o l a t i l e s w i l l attract the Ichneumid Diadromus pulchellus, a p a r a s i t o i d of the pupae of the leek moth Acrolepiopsis a s s e c t e l l a (24).

Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch025

25.

MATSUMOTO ET

AL.

Insect Attractants

355

However, t h e u s e o f n a t u r a l a t t r a c t a n t s i s b e s t known when the a d u l t s are host feeders: b r a n and m o l a s s e s f o r g r a s s h o p p e r s , M e l a n o p l u s spp. and Camnula spp. ( 2 5 ) ; s y r u p s f o r a n t s , I r i d o m y r m e x humilis and Tapinoma s e s s i l e ( 2 6 ) ; and peanut b u t t e r f o r the imported f i r e ant, Solenopsis saevissima r i c h t e r i (27). F r o m some n a t u r a l a t t r a c t a n t s of t h i s type d i s c r e e t chemical a t t r a c t a n t s have been i s o l a t e d (Figure 2): sotolone f o r a n t s , house f l i e s , and cockroaches ( 2 8 ) ; g e r a n i o l and e u g e n o l f o r the Japanese b e e t l e , P o p i l l i a j a p o n i c a (29); methyl eugenol f o r the o r i e n t a l f r u i t f l y , Dacus d o r s a l i s ( 3 0 ) ; c a r b o n d i o x i d e and l a c t i c a c i d f o r m o s q u i t o e s , Aedes a e g y p t i ( 3 1 - 3 2 ) ; and 3 - h e x e n - l - o l and 2 - h e x e n - l - o l f o r t h e s i l k w o r m , Bombyx m o r i ( 3 3 ) . T h e s e l a s t two c o m p o u n d s b e l o n g t o t h e " g r e e n o d o u r c o m p l e x " ( 3 4 ) , and e l e c t r o p h y s i o l o g y work has shown the e x i s t e n c e of "green" r e c e p t o r s i n t h i s s p e c i e s (35-36) and other species (37-38). T h e r e h a v e a l s o b e e n many s y n t h e t i c a t t r a c t a n t s ( F i g u r e 3 ) t h a t have been c l a s s i f i e d as f o o d l u r e s ( 3 9 ) : p_-acetoxyphenethyl m e t h y l ketone ( c u e - l u r e ) (40) f o r the melon f l y , Dacus c u r c u r b i t a e ; t e r t i a r y - b u t y l 2-methyl-4-chlorocyclohexanecarboxylate (trimedlure) (41) f o r the M e d i t e r r a n e a n f r u i t f l y , C e r a t i t i s c a p i t a t a ; p h e n e t h y l propionate (42), which, along with eugenol, i s used for the Japanese b e e t l e ; p r o p y l l,4-benzodioxan-2-carboxylate (amlure) (43) for the European c h a f e r , Amphimallon m a j a l i s ; e t h y l 3-isobutyl2 , 2 - d i m e t h y l c y c l o p r o p a n e c a r b o x y l a t e (44) f o r the coconut r h i n o c e r o s beetle, Orcytes r h i n o c e r o s ; a n d h e p t y l b u t y r a t e (45,) f o r y e l l o w jackets of the genus Vespula. Wasp traps containing pentyl v a l e r a t e are even a v a i l a b l e i n r e t a i l garden shops. Although these have been c a l l e d food lures, c u e - l u r e , t r i m e d l u r e , and methyl eugenol a t t r a c t mainly males. They have a l s o been r e f e r r e d t o as parapheromones ( 4 6 ) . A synthetic attractant f o r a predator has a l s o been found: c y c l o h e x y l p h e n y l a c e t a t e (47) w i l l a t t r a c t the checkered flower b e e t l e , Trichodes ornatus. Tephritid Attractants Our s e a r c h f o r a t t r a c t a n t s i s f o c u s e d on t h e T e p h r i t i d f a m i l y o f f r u i t f l i e s which i n c l u d e s s p e c i e s t h a t are of economic importance i n E u r o p e , A s i a , A u s t r a l i a , and t h e A m e r i c a s . I t i s estimated that the o l i v e f l y , Dacus o l e a e , causes ten percent fruit drop in European o l i v e s . Of t h e i n f e s t e d f r u i t r e m a i n i n g o n t h e t r e e s , 25 percent of the f l e s h i s destroyed (48). A conservative estimate of the annual cost of the recent Medfly i n f e s t a t i o n i n C a l i f o r n i a , not i n c l u d i n g c a p i t a l o u t l a y s , i s $59 m i l l i o n f o r c h e m i c a l controls, $38 m i l l i o n f o r q u a r a n t i n e a n d f u m i g a t i o n , a n d $ 2 6 0 m i l l i o n i n c r o p losses (49). I t i s e s t i m a t e d t h a t 70% of the s u s c e p t i b l e f r u i t i n E g y p t i s i n f e s t e d b y t h e M e d f l y ( 5 0 ) a n d a $50 m i l l i o n control program has been s t a r t e d t h e r e . B e c a u s e o f t h e i r v e r y l a r g e p o t e n t i a l f o r c r o p damage a n d f o r economic l o s s e s t o t h e e x p o r t m a r k e t , t h e A n i m a l and P l a n t H e a l t h I n s p e c t i o n S e r v i c e (APHIS), as w e l l as t h e A g r i c u l t u r a l Research Service (ARS), i s very concerned w i t h the c o n t r o l of Tephritid species. APHIS has a very active program of traps to spot i n f e s t a t i o n s of the Mediterranean fruit f l y , the o r i e n t a l fruit

Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

BIOREGULATORS FOR PEST CONTROL

356

ATTRACTANTS

MATE FINDING

DFNDROfTONUS FRONTALIS

OVIPOSITION

HELIOTHIS ARMIGFRA

V-METHYLACETOPHENONE (FROM RICE STALKS)

OVIPOSITION

CHILQ

CITRUS LEAF

OVIPOSITION (NON-VOLATILE) FOOD (VOLATILE)

PAPILIO niMÛLEJdi

a-PlNENE (FROM TREES) CORN SILK EXTRACT

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch025

SPECIES

USE

>COCH,

CITRUS LEAF

Figure 1.

PLFJADFI

PAPILIQ DEMQLEUS (LARVAE)

Attractants f o r mate f i n d i n g , o v i p o s i t i o n and food.

•OH

ANTS HOUSEFLIES COCKROACHES

S0T0L0NE

GERANIOL CH o, 3

EUGENOL CH O 3

CH30

JAPANESE BEETLE

X

\\

/ΓΛ-

METHYLEUGENOL C0

ORIENTAL FRUIT FLY

2

CH3CHCOOH OH

LACTIC ACID

MOSQUITOES

CH CH CH=CHCH CH OH 3

2

2

2

3-HEXEN-l-OL SILKWORM CH CH CHC H = C H CH OH 3

ι ιις

2

2

2

2-HEXEN-1-0L Figure 2.

Compounds i s o l a t e d from food sources.

Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

MATSUMOTO ET AL.

Insect Attractants

CH C O O ^ ~ ~ ^ CH CH COCH 3

2

2

3

CUE-LURE

D A C U S

C U C U R B I T A E

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch025

Cl

>^^COO(CH ) TRIMEDLURE 3

Ο

3

CH CH OCOC H 2

2

2

G E R A T I Τ I S

C A P I T A T A

5

EOPILLA JAPQNICA

COOC H -n 3

AMLURE

7

AMPHIMALLQN MAJALIS

X^^COOCzHj QRCYTES RHINOCEROS

CH (CH ) CH OCOC H -n 3

2

2

3

7

V E S P A

-OCOCH ^ 2

S P P .

β TRICHQDES QRNATUS

Figure 3.

Synthetic Attractants.

Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch025

358

BO IREGULATORS FOR PEST CONTROL

f l y , the melon f l y , the Mexican f r u i t f l y (Anastrepha ludens). and the Caribbean fruit f l y (A. suspensa). The California State Department of Food and Agriculture i s involved in a trapping program to halt the spread of the apple maggot (Rhagoletis pommenella). The ARS h a s p e r s o n n e l i n H o n o l u l u a n d H i l o ( H a w a i i ) , Weslaco (Texas), B e l t s v i l l e (Maryland), and M i a m i and G a i n e s v i l l e ( F l o r i d a ) , as w e l l as o u r f a c i l i t y i n A l b a n y ( C a l i f o r n i a ) w o r k i n g on t h e s e p r o b l e m s . A t t r a c t a n t s are a prominent p a r t of the work a t this laboratory. H i s t o r i c a l l y , s h o r t l y a f t e r the t u r n o f t h e c e n t u r y , an e i g h t y e a r o l d g i r l n o t i c e d t h a t f l i e s were a t t r a c t e d t o kerosene t h a t h e r m o t h e r h a d d a u b e d o n a h i t c h i n g p o s t t o k e e p a n t s away f r o m t h e jam she was cooling at the top of the post. On further investigation, the girl's father found that these flies were M e d f l i e s w h i c h w e r e i n d e e d a t t r a c t e d t o t h e k e r o s e n e and n o t t o t h e jam ( 5 1 ) . L a t e r , H o w l e t t (52) h e a r d a n e i g h b o r c o m p l a i n i n g t h a t he was b e i n g b o t h e r e d b y f l i e s a t t r a c t e d t o t h e o i l o f c i t r o n e l l a h e was u s i n g a s a m o s q u i t o r e p e l l a n t . Howlett i d e n t i f i e d these f l i e s a s m a l e D a c u s z o n a t u s a n d D. d o r a l i s a n d l a t e r i d e n t i f i e d methyl e u g e n o l as t h e a c t i v e component o f t h e c i t r o n e l l a o i l ( 3 0 ) . Now, t r i m e d l u r e i s used f o r surveying f o r the Medfly, cue-lure f o r the m e l o n f l y , m e t h y l e u g e n o l f o r t h e O r i e n t a l f r u i t f l y , and protein hydrolysates for the Mexfly and Caribfly. In fact, protein h y d r o l y s a t e s c a n b e u s e d f o r many s p e c i e s o f f r u i t f l i e s . Protein hydrolysates a l s o d i f f e r s i g n i f i c a n t l y from the s y n t h e t i c l u r e s i n that they w i l l a t t r a c t female f l i e s , e s p e c i a l l y g r a v i d ones, as w e l l as m a l e s . The sex pheromones o f t h e M e d f l y and the olive fruit f l y have been i d e n t i f i e d (53-55), synthesized (53-56.) and tested in the field (57-59). Methyl eugenol, mixed with an i n s e c t i c i d e and applied to cardboard pieces (60) o r s p o t s p r a y e d (61.), h a s been used i n male-annihilation eradication programs. Protein hydrolysates m i x e d w i t h an i n s e c t i c i d e h a v e b e e n u s e d i n many M e d f l y (62-65.) a n d Mexfly (64, 66.) eradication projects, i n c l u d i n g r e c e n t ones i n C a l i f o r n i a (61). Experimental Approach. Results,

and

Discussion

The Biocommunication Chemistry Research Unit, WRRC, USDA, has d e v e l o p e d a p r o g r a m t o f i n d o t h e r a t t r a c t a n t s f o r members o f the Tephitid family allowing for the development of new lures, i m p r o v e m e n t o f c u r r e n t IPM p r o g r a m s , i m p a r t i n g s p e c i e s selectivity t o p r o g r a m s , and possible replacement of c u r r e n t l y used b a i t s . These are i n a d d i t i o n to f i n d i n g a t t r a c t a n t s f o r p e s t s currently uncontrolled i n this way. We are examining those commonly u s e d b a i t s , t h e protein hydrolysates. Initial studies have used the corn gluten h y d r o l y s a t e c o m m o n l y k n o w n a s P I B - 7 o r , now, as N u - L u r e I n s e c t B a i t (NLIB). T h i s m a t e r i a l was used i n the recent successful Medfly e r a d i c a t i o n program in California. Since the fruit flies are p r o b a b l y a t t r a c t e d t o the v o l a t i l e emanations from the b a i t , we h a v e u s e d e q u i p m e n t a n d t e c h n i q u e s p r e v i o u s l y d e v e l o p e d b y members of our group for f l a v o r research. For example, a modified Likens-Nickerson simultaneous steam distillation-extraction head was d e v e l o p e d b y F l a t h a n d F o r r e y (67.). A l s o , t h e r e i s a 90 l i t e r

Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

25.

MATSUMOTO

ET AL.

Insect Attractants

359

p i l o t plant system (68) that can be used f o r i s o l a t i n g enough v o l a t i l e material f o r chemical and b i o l o g i c a l assays. This i s very important because without sufficient quantities of material, replicated b i o l o g i c a l testing and proper chemical fractionation, y i e l d i n g s u f f i c i e n t material for bioassays, would be impossible. Conventional vapor trapping techniques y i e l d only 10~ to 10" grams of material. Using a laboratory scale, 12 liter, simultaneous steam d i s t i l l a t i o n - e x t r a c t i o n system 10""* to 10~* grams can be collected. The 90 l i t e r p i l o t plant system w i l l y i e l d 10~ to 1 gram. Recent work has shown that the figures f o r these l a s t two methods can be increased by an order of magnitude. Thus, using the equipment and techniques already developed by our group, i t i s possible to produce material i n s u f f i c i e n t quantity to conduct both the b i o l o g i c a l and chemical investigations. Our f i r s t separation method involved running the simultaneous steam d i s t i l l a t i o n extraction under 100 mm vacuum i n order to minimize heat e f f e c t s . This was followed by extraction under atmospheric pressure i n order to get more complete recovery. This atmospheric extraction was run f o r 10 days, using a fresh batch of solvent each day (68-69). Approximately 10 times as much material was collected each day at atmospheric pressure as was collected under vacuum. Since Schultz, et. a l . (70) showed that many nonwater-soluble alcohols, esters, aldehydes, and ketones can be recovered by this system i n less than 3 hours, the c o l l e c t i o n of a large amount of material after 10 days i s indicative of a very complex and probably dynamic system. Gas chromatograms f o r these extracts (68) and some compound i d e n t i f i c a t i o n s (69) have been reported. (Other reports on the i d e n t i f i c a t i o n of v o l a t i l e s from protein hydrolysates are given i n references 71-75). Prelminary results have shown that the vacuum extracts are more a t t r a c t i v e f o r the Medfly than the atmospheric ones. Next, i n agreement with the work of Bateman and Morton (76) on the Queensland f r u i t f l y , we found that increasing the pH of the hydrolysate from i t s normal 4.2 to 8.5 to 9 increases the a t t r a c tancy of the b a i t f o r our test species. Gas chromatography (Figure 4) and gc/mass spectrometry (Finnigan/Incos model 4500X GC/MS with 0V-101 fused s i l i c a c a p i l l a r y column) on the isolated v o l a t i l e s of pH 4.2 and pH 9 hydrolysate show considerable differences. The major v o l a t i l e components of the pH 4.2 b a i t are 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, f u r f u r a l , 3-(methylthio)propanal, acetylfuran, phenylacetaldehyde, and acetophenone. The major v o l a t i l e components of the pH 9 bait are 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, methylpyrazine, dimethylpyrazine, ethylpyrazine, 2,3-dimethylpyrazine, ethylmethylpyrazine, trimethylpyrazine, dimethylethylpyrazine, and d i e t h y l pyrazine. The v o l a t i l e s of the pH 4.2 bait are dominated by aldehydes and ketones while those of the pH 9 bait are dominated by pyrazines. Figure 5 shows the structures of some of these pyrazines. I t i s interesting to note that some of these pyrazines have also been found i n the r e c t a l gland secretion of the male melon f l y (77). We have separated the v o l a t i l e s from the pH 9 bait into basic and neutral fractions by extraction with acid, followed by neturalization of the acid extract (Figure 6). 6

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch025

2

Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

3

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch025

360

BIOREGULATORS FOR PEST CONTROL

pH 4.2

pH 9

J IL l *.u Ο Min.

20

10

SO

F i g u r e 4. Gas chromatograms o f v o l a t i l e s i s o l a t e d from NLIB; t o p c h r o m a t o g r a m , p H 4 . 2 ; b o t t o m c h r o m a t o g r a m , p H 9; 3 0 m χ 0.25 mm f u s e d s i l i c a DB-1 c o l u m n , t e m p e r a t u r e p r o g r a m m e d : 50°C f o r 0.1 m i n . , t h e n 4 C / m i n . t o 2 2 0 C , h e l d a t 220°C f o r 2 0 m i n . e

e

Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

25.

MATSUMOTO ET AL.

Or XT XX

σ

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch025

361

Insect Attractants

METHYLPYRAZINE

ETHYLPYRAZINE

2,3-DlMETHYLPYRAZINE 3-DIMETHY

2-ETHYL-6-HETHYLPYRAZINE ETHYL-6-METH

TRIMETHYLPYRAZINE

Ï-ETHYL-2.5-DIMETHYLPYRAZINE

CC XIX

F i g u r e 5.

S t r u c t u r e s o f some p y r a z i n e s

i d e n t i f i e d i n NLIB.

ASD-N

iiuJLii ASD-B

ijJlLi 10

20

30

F i g u r e 6. Gas chromatograms o f v o l a t i l e s i s o l a t e d from pH 9 NLIB; t o p chromatogram, n e u t r a l f r a c t i o n ; bottom chromatogram, basic fraction; 60 m χ 0.32 mm fused silica DB-1 column, temperature programmed: 5 0 C f o r 0.1 min., t h e n 4°C/min. t o 2 3 0 C , h e l d a t 2 3 0 C f o r 10 min. e

e

e

Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch025

362

BIOREGULATORS FOR PEST CONTROL

The major components of the neutral f r a c t i o n are 2-methylpropanal, 2-butanone, 3-methylbutanal, 2-methylbutanal, dimethyl d i s u l f i d e , and 3-methylpentanal. The major components of the basic f r a c t i o n are 3-methylbutanal, methylpyrazine, dimethylpyrazine, ethylpyrazine, 2-ethy1-6-methy1pyrazine, trimethylpyrazine, and 3-ethy1-2,5-dimethylpyrazine. (The aldehyde was probably carried over during the extractions because of i t s s o l u b i l i t y i n both water and organic solvents.) Preliminary results show that this f r a c t i o n has some attraction for the male o r i e n t a l f r u i t f l y . We are now further bioassaying these fractions and w i l l further separate components i n order to isolate the active materials. Our very able entomologist-cooperators and t h e i r insect test species are l i s t e d i n Table I. We are also setting up f a c i l i t i e s to study the neurophysiology and ethology of these insects. This w i l l greatly expand the types of assays i n our research program.

Table I Entomologist-Cooperators

Roy T. Cunningham ARS, H i l o , HI

Mediterranean F r u i t F l y Oriental F r u i t F l y Melon F l y

William G. Hart ARS, Weslaco, TX

Mexican F r u i t F l y

Peter Landolt Dennis Howard ARS, Miami, FL

Caribbean F r u i t F l y

Shmuel Gothilf Volcani Institute Bet-Dagan, Israel

Mediterranean F r u i t F l y

What are some of the problems that researchers on attractants might face? One i s the p o s s i b i l i t y that mixtures are necessary f o r activity. Their components may even need to be i n s p e c i f i c ratios. This i s something that has become very apparent i n pheromone work (78). In our investigations of feeding attractants, t h i s may also be true (79). As most of us know, people often f i n d the odor of a complex natural o i l more a t t r a c t i v e than that of i t s most c h a r a c t e r i s t i c single component. However, current chemical a n a l y t i c a l methodology i s designed to separate materials into single components, and we w i l l have to f i n d ways of determining how to combine materials most e f f i c i e n t l y to obtain the best a c t i v i t y . A further complication when working with feeding attractants i s that the combination may have to include non-volatile arrestants such as carbohydrates or peptides with the v o l a t i l e materials i n order to be useful.

Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch025

25.

MATSUMOTOET AL.

Insect Attractants

363

Another problem with bioassays i s that many possible attractants can act as repellents at higher concentrations. Protocols must be designed to take this into acount, even though the concentration ranges over which the attractancy and/or repellancy occur may vary substantially from compound to compound. Putting a compound into a test at too high a concentration can swamp out even the standards, much i n the same way that a pheromone i s used i n a confusion technique. Also insects may be attracted to a compound only u n t i l i t reaches a certain concentration and then stop coming. I f this i s the case, insects may be attracted to a region around a trap but never enter the trap. How these problems are handled w i l l depend on whether the bioassay i s of the olfactometer type or the f i e l d type. Another problem i s the lack of knowledge about insect behavior. Although an insect i s attracted to a host plant, i t may be f o r reasons other than food. For instance, although an attractant i s isolated from a food source such as a f r u i t , i t may actually be a signal f o r the formation of a lek, that i s , a congregation of males f o r the purpose of attracting females. I f t h i s i s so, then the material may be e f f e c t i v e i n attracting insects to an area but may be i n e f f e c t i v e i n inducing them to enter into, or land on, a trap. Conclusions We have found that: 1) v o l a t i l e s from protein hydrolysates w i l l attract f r u i t f l i e s of various species, both male and female, 2) that v o l a t i l e s from protein hydrolysates which had been brought to pH 9 are more a t t r a c t i v e than v o l a t i l e s from protein hydrolysate as i t comes at pH A.2, 3) that isolates from protein hydrolysates are a t t r a c t i v e to various species of f r u i t f l i e s , and 4 ) that the basic i s o l a t e i s a t t r a c t i v e to male o r i e n t a l f r u i t f l i e s . We are continuing to pursue vigorously the i s o l a t i o n , i d e n t i f i c a t i o n , and b i o l o g i c a l testing of the active components of this mixture. I would also l i k e to reemphasize the usefulness of attractants research i n finding new ways of c o n t r o l l i n g insect pests; i t s e f f i c a c y has been shown. We must now refine the tools we have, as i s the case with the protein hydrolysates, and expand the range of pests than can be s e l e c t i v e l y controlled by t h i s technique. Acknowledgements I would again l i k e to acknowlege our entomologist--cooperators: Roy Cunningham, Shmuel G o t h i l f , B i l l Hart, Dennis Howard, and Peter Landolt; I would also l i k e to thank W. G. Schultz f o r h e l p f u l discussions and C. Caulins f o r the leading references on the history of Tephritid attractants. Reference to a company and/or product by name i s only f o r purposes of information and does not imply approval or recommendation of the product by the Department of Agriculture to the exclusion of others which may also be suitable.

Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch025

364

BIOREGULATORS FOR PEST CONTROL

Literature Cited 1. Metcalf, R. L.; Metcalf, R. A. In "Introduction to Insect Pest Management"; Metcalf, R. L.; Luckman, W. Η.,Eds.;John Wiley and Sons: New York, 1975; p. 275-6. 2. Carson, R. "Silent Spring"; Hoghton Mifflin: Boston, 1962; p. 296. 3. Tumlinson, J. H. In this volume. 4. Klun, J. A. In this volume. 5. Dethier, V. G.; Browne, L. B.; Smith, C. N. J. Econ. Entomol. 1960, 53, 134-6. 6. Metcalf, R. L.; Metcalf, R. A. Loc. cit.; pp. 285 ff. 7. Davis, H. G.; George, D. Α.; McDonough, L. M.; Tamaki, G.; Buditt, Jr., A. K. J. Econ. Entomol. 1983, 76, 674-5. 8. Il'ichev, A. L. Nauchnye Doklady Vysshei Shkoly, Biologi­ cheskie Nauki 1983, 9, 48-52. Rev. Appl. Entomol. Series A 1984, 72:1494. 9. Prokopy, R. J.; Owens, E. D. Ann. Rev. Entomol. 1983, 28, 337-64. 10. Nakagawa, S.; Prokopy, R. J.; Wong, T. T. Y.; Ziegler, J. R.; Mitchell, S. M.; Urago, T.; Harris, E. J. Ent. exp. appl. 1978, 24, 193-8. 11. Kirk, W. D. J. Ecolog. Entomol. 1984, 9, 35-41. 12. Burk, T; Webb, J. C. Ann. Entomol. Soc. Amer. 1983, 76, 678-82. 13. Yamamoto, I. In this volume. 14. Metcalf, R. L.; Metcalf, R. A. Loc. cit.; pp. 288. 15. ibid.; p. 283. 16. Saito, T.; Munakata, K. In "Control of Insect Behavior by Natural Products"; Wood, D. L.; Silverstein, R. M.; Nakajima, Μ., Eds; Academic Press: New York, 1970; p. 225-36. 17. Saxena, Κ. N.; Goyal, S. Ent. exp. appl. 1978, 24, 1-10. 18. Saxena, Κ. N.; Khatter, P.; Goyal, S. Experientia 1977, 33, 1312-13. 19. David, W. A. L.; Gardiner, B. O. Entomol. exp. appl. 1966, 9, 247-55. 20. Hanson, F. E. In "Herbivorous Insects: Host-Seeking Behavior and Mechanisms:; Ahmad, S., Ed.; Academic Press: New York, 1983; p. 12. 21. Ma, W. C. Meded. Landbouwhogesch. Wageningen 1972, 72-11, 1-162. 22. Gupta, P. D.; Thorsteinson, A. J. Entomol. exp. appl. 1960, 3, 305-14. 23. Finch, S. Entomol. exp. appl. 1978, 24, 350-9. 24. Lecomte, C.; Thibout, E. Entomophaga 1983, 28, 217-26. Rev. Appl. Entomol. Series A. 1984, 72: 272. 25. Metcalf, C. L.; Flint, W. P.; Metcalf, R. L. "Destructive and Useful Insects"; McGraw-Hill: New York, 1962; pp. 323, 468-9. 26. ibid.; p. 324, 897-8. 27. ibid.; p. 897. 28. Tokitomo, Y.; Kobayashi, Α.; Yamanishi, T.; Muraki, S. Proc. Japan Acad. Ser. Β 1980, 56, 457-462.

Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

25. MATSUMOTO ET AL. Insect Attractants 29.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch025

30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59.

365

Metcalf, C. L.; Flint, W. P.; Metcalf, R. L., Loc. cit., pp. 39A, 751. Howlett, F. M. Bull. Entomol. Res. 1915, 6, 297-305ff. Acree, Jr., F; Turner, R. B.; Gouck, H. C.; Beroza, M.; Smith, N. Science 1968, 161, 1346-7. Davis, Ε. E. J. Insect Physiol. 1984, 30, 211-5. Watanabe, T. Nature 1958, 182, 325-6. Visser, J. H.; Ave, D. A. Ent. exp. appl. 1978, 24, 738-49. Morita, H.; Yamashita, S. J. Exp. Biol. 1961, 38, 851-61. Priesner, E. Ann. Zool. Ecol. anim., 1979, 11, 533-546. Ma, W. C.; Visser, J. H. Ent. exp. appl. 1978, 24, 520-533. Visser, J. H. Ent. exp. appl. 1979, 25, 86-97. Metcalf, R. L.; Metcalf, R. A. Loc. cit., p. 284. Alexander, B. H.; Beroza, M.; Oda, T. Α.; Steiner, L. F.; Miyashita, D. H.; Mitchell, W. C. J. Agr. Food Chem. 1962, 10, 270-6. McGovern, T. P.; Beroza, M.; Ohinata, K.; Miyashita, D.; Steiner, L. F. J. Econ. Entomol. 1966, 59, 1450-5. Ladd, Jr., T. L.; McGovern, T. P.; Beroza, M.; Buriff, C. R.; Klein, M. G. J. Econ. Entomol. 1976, 69, 468-70. McGovern, T. P.; Fiori, B.; Beroza, M.; Ingangi, J. C. J. Econ. Entomol. 1970, 63, 168-71. Barber, I. Α.; McGovern, T. P.; Beroza, M.; Hoyt, C. P.; Walker, A. J. Econ. Entomol. 1971, 64, 1041-4. Davis, H. G.; Eddy, G. W.; McGovern, T. P., Beroza, M. J. Econ. Entomol. 1969, 62, 1245. Chambers, D. L. In "Chemical Control of Insect Behavior"; Shorey, H. H.; McKelvey, Jr., J. J., Eds.; John Wiley and Sons: New York; 1977; p. 331. Davis, H. G.; Eves, J. D.; McDonough, L. M. Environ. Entomol. 1979, 8, 147-9. Michelakis, S. E.; Neuenschwander, P. In "Fruit Flies of Economic Importance"; Cavalloro, R., Ed.; A. A. Balkema: Rotterdam; 1983; p. 603-11. Burk, T.; Calkins, C. O. Florida Ent. 1983, 66, 3-18. Schultz, W. G., private communcation. Severin, H. H. P.; Severin, H. C. J. Econ. Entomol. 1913, 6, 347-51. Howlett, F. M. Trans. Entomol. Soc. Lond. 1912, 60, 412-8. Jacobson, M.; Ohinata, K.; Chambers, D. L.; Jones, W. Α.; Fujimoto, M. S. J. Med. Chem. 1973, 16, 248-51. Baker, R.; Herbert, R.; Howse, P. E.; Jones, O. T.; Francke, W.; Reith, W. J. Chem. Soc., Chem. Comm. 1980, 52-3. Baker, R.; Herbert, R. H.; Parton, A. H. J. Chem. Soc., Chem. Comm., 1982, 601-3. Kay, I. T.; Williams, E. G. Tetrahedron Lett. 1983, 24, 5915-8. Zumreoglu, A. In "Fruit Flies of Economic Importance"; Cavalloro, R., Ed.; A. A. Balkema: Rotterdam; 1983; p. 495-9. Jones, O. T.; Lisk, J. C.; Howse, P. E.; Baker, R.; Ramos, P. ibid.; p. 500-5. Mazomenos, B. E.; Haniotakis, G. E.; Ioannou, Α.; Spanakis, I.; Kozirakis, E. ibid.; p. 506-12.

Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.

366 60. 61. 62. 63.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on January 30, 2017 | http://pubs.acs.org Publication Date: April 26, 1985 | doi: 10.1021/bk-1985-0276.ch025

64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79.

BIOREGULATORS FOR PEST CONTROL

Steiner, L. F.; Hart, W. G.; Harris, E. J.; Cunningham, R. T.; Ohinata, K.; Kamakahi, D. C. J. Econ. Entomol. 1970, 63, 131-5. Dowel1, R. Department of Entomology Seminar, University of California, Berkeley; 30 January 1984. Steiner, L. F. J. Econ. Entomol. 1952, 45, 838-48. Stephenson, B. C.; McClung, Β. B. Bull. Entomol. Soc. Amer. 1966, 12, 374. Hart, W. G.; Ingle, S.; Reed, D.; Flitters, N. J. Econ. Entomol. 1967, 60, 1264-5. Steiner, L. F. Proc. 1st Int. Citrus Symp. 1968, 2, 881-7. Lopez-D., F.; Chambers, D. L.; Sanchez-R., M.; Kamasaki, H. J. Econ. Entomol. 1969, 62, 1255-7. Flath, R. Α.; Forrey, R. R. J. Agric. Food Chem. 1977, 25, 103-9. Teranishi, R.; Buttery, R. G.; Mon, T. R. In "Isolation and Characterization of Biologically Active Natural Products"; Acree, T., Ed.; Walter DeGruyter: Berlin; in press. Buttery, R. G.; Ling, L. C.; Teranishi, R.; Mon, T. R. J. Agric. Food Chem. 1983, 31, 689-92. Schultz, T. H.; Flath, R. Α.; Mon, T. R.; Eggling, S. B.; Teranishi, R. J. Agric. Food Chem. 1977, 25, 446-9. Manley, C. H.; Fagerson, I. S. J. Food Sci. 1970, 18, 340-2. Manley, C. H.; Fagerson, I. S. J. Food Sci. 1970, 35, 286-91. Markh, A. T.; Vinnikova, L. G. Appl. Biochem. Microbiol. (Eng. Trans.) 1973, 9, 774-8. Withycombe, D. Α.; Mookherjee, Β. D.; Hruza, A. In "Analaysis of Food and Beverages"; Charalambous, G., Ed.; Academic Press: New York; 1978; p. 81-94 Morton, T. C.; Bateman, M. A. Aust. J. Agric. Res. 1981, 32, 905-16. Bateman, Μ. Α.; Morton, T. C. Aust. J. Agric. Res. 1981, 32, 883-903. Baker, R.; Herbert, R. H.; Lomer, R. A. Experientia 1982, 38, 232-3. Roelofs, W. In "Chemical Ecology: Odour Communication in Animals"; Ritter, F. J., Ed.; Elsevier: New York; 1979, p. 159-68. Yamamoto, I.; Yamamoto, R. In "Control of Insect Behavior by Natural Products"; Wood, D. L., Silverstein, R. Μ., Nakajima, Μ., Eds; Academic Press: New York; 1970; p. 331-45.

RECEIVED

November 8, 1984

Hedin et al.; Bioregulators for Pest Control ACS Symposium Series; American Chemical Society: Washington, DC, 1985.