20 Biphenyl Hydroxylase, Arylhydrocarbon Hydroxylase, and Epoxide Hydrolase Activities in Intestinal and Liver Microsomes of Rats Fed Selected Types of Dietary Fibers J. C. O P D Y C K E
1
and J. C. S T R E E T
Utah State University, Department of Animal, Dairy, and Veterinary Science, Toxicology Program, Logan, UT 84322
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
"Dietary fiber" has been shown to be protective against induction of colon cancer by some chemical carcinogens. One possible mechanism for this protective action may be altered xenobiotic metabolism. The affects of diets containing different types of purified fiber on intestinal and liver microsomal metabolism of biphenyl, benzo(a)pyrene and epoxides were assessed. Adult, male Wistar rats were individually fed chemically defined, nutrient density balanced rations containing either no dietary fiber, or15%pectin, Metamucil, lignin or cellulose for 30 days;a similar group was fed commercial laboratory chow diet as reference. The microsomal hydroxylations of biphenyl and benzo(a)pyrene (BaP) were compared following incubation with appropriate preparations of liver and intestinal mucosa. The hydroxybiphenyl products were determined by fluorimetric HPLC, hydroxylated BaP was determined by fluorimetry, and epoxide hydrolase activity was determined using 3-(p-nitrophenoxy)-1 ,2-propene oxide as a substrate. Activities were higher with liver microsomes than the intestinal microsomal preparations for each assay. Fiber-fed rats showed significantly higher hepatic but not intestinal epoxide hydrolase levels than did control rats. Hepatic arylhydrocarbon hydroxylase levels were higher in synthetic diet-fed rats than lab chowfed animals. Variations in intestinal biphenyl hydroxylase activities were not significant with respect to fiber type regardless of the specific metabolite measured. Hepatic biphenyl hydroxylase activities were significantly higher with synthetic diet-fed rats. 1
Current address: Mobay Chemical Corporation, Kansas City, MO
64120
0097-6156/83/0214-0285$06.00/0 © 1983 American Chemical Society
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
UNCONVENTIONAL
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
286
SOURCES OF DIETARY FIBER
Some c u r r e n t hypotheses about the e t i o l o g i e s of colon cancer and c h o l e s t e r e m i c disease impute a s p e c i a l f u n c t i o n t o d i e t a r y f i b e r and to some o f i t s components; that f u n c t i o n i s g e n e r a l l y a s s o c i a t e d w i t h disease prevention. Evidence f o r the p r o t e c t i v e f u n c t i o n o f d i e t a r y f i b e r has been obtained both from epidemiol o g i c a l s t u d i e s ( 1 - 8 ) and from experiments w i t h animals. Animal experiments, i n p a r t i c u l a r , have been u s e f u l i n t e s t i n g v a r i o u s hypotheses about t h e r e l a t i v e e f f e c t i v e n e s s o f d i f f e r e n t kinds o f d i e t a r y f i b e r and about p o s s i b l e mechanisms o f f i b e r e f f e c t s . Thus, s t u d i e s o f b u l k i n g a c t i o n ( 9 - 1 0 ) , o f s e l e c t i v e secondary b i l e a c i d b i n d i n g ( 1 1 - 1 2 ) , o f increased i n t e s t i n a l t r a n s i t times ( J J 3 ) , o f a l t e r e d b a c t e r i a l a c t i v i t i e s and secondary b i l e a c i d production ( 1 4 - 1 5 ) , and s e l e c t i v e b i n d i n g o f c a r c i n o gens ( 1 6 - 1 9 ) have been c a r r i e d out i n l a b o r a t o r y animals. S e v e r a l r e l a t e d s t u d i e s have been conducted i n humans as w e l l . Among the l a t t e r are i n v e s t i g a t i o n s o f t h e r e l a t i o n s h i p between t h e b u l k f i b e r c o n t e n t o f d i e t s and f e c a l b i l e a c i d s o r o t h e r s t e r o i d s ( 4 , 2 0 - 2 1 ) .
Because o f t h e p o s s i b l e i n t e r p l a y o f many f a c t o r s and p r o c e s s e s t h a t m i g h t o c c u r among t h e d i f f e r e n t c h e m i c a l s cons t i t u t i n g d i e t a r y f i b e r i t s e l f and carcinogens or promoters, we have been c o n d u c t i n g a s y s t e m a t i c s t u d y o f s u c h i n t e r a c t i o n s u s i n g a model e x p e r i m e n t a l d e s i g n w i t h t h e r a t . Our model cons i s t s of feeding purified diets containing different purified f i b e r s , i n h y d r a t e d form, f o r a 3 0 day p e r i o d t o a l l o w f o r t h o r o u g h b a c t e r i a l a d a p t a t i o n ( 2 2 ) . A t t h a t t i m e each r a t was t r e a t e d per os w i t h a s i n g l e dose o f a x e n o b i o t i c chemical s e l e c ted to e x e m p l i f y a s p e c i f i c aspect o f x e n o b i o t i c metabolism. T o x i c o k i n e t i c analyses were then u t i l i z e d to q u a n t i f y the c r i t i c a l parameters, such as a b s o r p t i o n and e l i m i n a t i o n r a t e constants f o r t h e p a r e n t compounds, t h e i r b a c t e r i a l m e t a b o l i t e s , and m e t a b o l i t e s undergoing enterohepatic c i r c u l a t i o n . By r e p e t i t i v e study w i t h d i f f e r e n t x e n o b i o t i c s w i t h i n the f i x e d d i e t a r y design, a comprehensive understanding o f the f i b e r r a n i m a l : c a r c i n o g e n i n t e r a c t i o n s i s being developed ( 2 2 - 2 4 ) . In order to f u l l y i n t e r p r e t the t o x i c o k i n e t i c experiments, a d d i t i o n a l b a s a l d a t a a r e r e q u i r e d f r o m t h i s d i e t model; i t i s p a r t i c u l a r y necessary to e s t a b l i s h parameters f o r the h e p a t i c and i n t e s t i n a l x e n o b i o t i c m e t a b o l i s m i n r a t s on the standard f i b e r d i e t s . T h i s paper p r e s e n t s our f i n d i n g s o f the e f f e c t s o f d i f f e r e n t d i e t a r y f i b e r types on h e p a t i c and i n t e s t i n a l metabol i s m o f reference x e n o b i o t i c s . Previous Work R e l a t i n g to S e l e c t i o n o f Substrates C h a r a c t e r i s t i c s o f I n t e s t i n a l vs H e p a t i c X e n o b i o t i c M e t a b o l i s m . I n t e s t i n a l mucosa has been shown both to m e t a b o l i c a l l y a c t i v a t e and to d e a c t i v a t e x e n o b i o t i c s . The mixed f u n c t i o n oxidase (MFO)
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
20.
OPDYCKE AND STREET
Intestinal and Liver Microsome Activities 287
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
of i n t e s t i n a l mucosa responds to inducers and i n h i b i t o r s d i f f e r e n t l y than h e p a t i c MFO. I n t e s t i n a l MFO a l s o d i f f e r s from h e p a t i c MFO i n i t s c o n s t i t u a t i v e l e v e l s , m e t a b o l i c p a t t e r n s , and subs t r a t e s p e c i f i c i t y (25-41 )» B i p h e n y l H y d r o x y l a t i o n . F a c t o r s a f f e c t i n g 2-,3-, and 4-biphenyl hydroxylase enzymes are: age, sex, species, n u t r i t i o n a l s t a t u s , genetic background, x e n o b i o t i c preexposure, and t i s s u e type. The 2- and 4-hydroxy biphenyl hydroxylases have been demonstrated to be d i f f e r e n t on the b a s i s of s e l e c t i v e i n d u c t i o n , conducted both i n v i v o and in v i t r o , and on d i f f e r e n t species s p e c i f i c i t i e s ( 4 2 jTT). Toftgard et al.(51 ) reported that changes i n d i f f e r e n t forms of cytochrome P-450 give r i s e to a l t e r e d proportions of biphenyl metabolites. I t i s now c l e a r that biphenyl 2-hydroxylase a c t i v i t y i s conferred only by cytochrome P-448-type i n d u c t i o n . Rat h e p a t i c b i p h e n y l 4-hydroxylase i s maintained at higher c o n s t i t u a t i v e l e v e l s than 2-hydroxylase, and i s conferred by both cytochromes P-450 and P-448 (52). W i e b k i n e t al.(53-54) summarized advant a g e s f o r use o f b i p h e n y l as s u b s t r a t e i n t h a t i t s m e t a b o l i c p r o f i l e provides an i n d i c a t o r to the t o x i c i t y of substrate and p r o d u c t s , i t h i g h l i g h t s f u r t h e r m e t a b o l i s m o f p r i m a r y metabol i t e s , and i n d i c a t e s the r e l a t i o n s h i p s among d i f f e r e n t MFO inducers; f o r these reasons we chose to use biphenyl as an i n d i c a t o r s u b s t r a t e to a s s e s s o v e r a l l MFO m e t a b o l i s m , as s u g g e s t e d by B i l l i n g s and McMahon (55)* I n t e s t i n a l microsomal metabolism can be monitored v i a biphen y l h y d r o x y l a t i o n as w e l l . Biphenyl hydroxylase assays are more s e n s i t i v e than some other hydroxylase assays which has permitted measurements of the low c o n s t i t u a t i v e enzyme l e v e l s i n i n t e s t i n a l mucosa and some other extrahepatic t i s s u e s (56-59)» Arylhydrocarbon Hydroxylase. B e n z o ( a ) p y r e n e (BaP) i s c o n s i d e r e d an i d e a l model compound f o r m o n i t o r i n g arylhydrocarbon hydroxy l a s e (AAH) MFO l e v e l s i n r a t s . I t s m e t a b o l i s m has been w i d e l y i n v e s t i g a t e d i n both r a t l i v e r and e x t r a h e p a t i c t i s s u e s (4041.61 -70). Arylhydrocarbon h y d r o x y l a s e has been compared to b i phenyl hydroxylase i n the i n t e s t i n e s of r a t s (25.28). I n t e s t i n a l AAH has been shown to be induced up to 3 0 - f o l d w i t h cytochrome P448-type inducers, while being i n s e n s i t i v e to P-450-type induction. Therefore, we have used i n t e s t i n a l AAH i n conjunction with biphenyl hydroxylation, to evaluate the e f f e c t s of d i e t a r y f i b e r s on i n t e s t i n a l metabolism. E p o x i d e H y d r o l a s e . E p o x i d e h y d r o l a s e (EH) a c t i v i t y has been studied i n numerous t i s s u e s with many d i f f e r e n t substrates (71 72). Hepatic microsomal EH has been shown to be induced by polyc y c l i c aromatic hydrocarbons, but i s i n s e n s i t i v e to cytochrome P450 type inducers (73)» Epoxide hydrolase has been r e l a t e d to the a c t i v a t i o n of p o l y c y c l i c aromatic hydrocarbons i n t o r e a c t i v e carcinogens (70). Epoxide hydrolase a c t i v i t y has been determined
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
UNCONVENTIONAL SOURCES OF DIETARY FIBER
288
i n t h e stomach as w e l l as t h e i n t e s t i n e and o t h e r e x t r a h e p a t i c t i s s u e s (74-75). I n d i c a t i o n s o f the e f f e c t s o f s p e c i f i c d i e t f i b e r s on epoxide hydrolase a c t i v i t y could be d i r e c t l y a p p l i e d to s u b s t a n t i a t e or modify f i b e r : c a r c i n o g e n e s i s hypotheses.
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
Methods and M a t e r i a l s D i e t a ry F i b e r s . The c e l l u l o s e used i n t h e s e e x p e r i m e n t s was SolkaFlok, KS-1016, a c e l l u l o s e derived from s u l f i t e processing o f wood ( b i r c h , beech, and maple) h a v i n g a p a r t i c l e s i z e o f 290 m i c r o n s and c o n t a i n i n g 0.15-0.2$ l i g n i n and 8-9$ h e m i c e l l u l o s e (Brown C o . , B e r l i n , N.H.). The l i g n i n used was I n d u l i n AT, w h i c h i s a K r a f t l i g n i n described as being 99$ l i g n i n and 1.0$ dry ash, f r e e of simple sugars, i n s o l u b l e i n water and s o l u b l e i n a l k a l i (Westvaco, N o r t h C h a r l e s t o n , S.C.). The l i g n i n was S o x h l e t ext r a c t e d f o r 30 hours using methylene c h l o r i d e which was evaporated from the l i g n i n i n a fume hood. The extracted, d r i e d l i g n i n was t h e n suspended i n d e i o n i z e d w a t e r and f i l t e r e d t h r o u g h a Buchner funnel w i t h Whatman 1 f i l t e r paper. T h i s washing process was r e p e a t e d u n t i l the f i l t r a t e was l i g h t orange i n c o l o r . The h e m i c e l l u l o s e used was M e t a m u c i l ( S e a r l e L a b o r a t o r i e s , C h i c a go,111.), a p h a r m a c e u t i c a l p r e p a r a t i o n o f I s p a g h u l a husk f r o m P l a n t a g o o v a t a ( F o r s k ) w h i c h has been c h a r a c t e r i z e d (76). The p e c t i n used was an NF c i t r u s p e c t i n , f i n e l y ground to a powder with p a r t i c l e s i z e of 200 microns (Hercules,Inc., Wilmington,DL). Diet Preparations. The American I n s i t u t e of N u t r i t i o n (AIN) synt h e t i c d i e t f o r m u l a t i o n was used a l o n g w i t h g e l a t i n t o form h y d r a t e d g e l l e d d i e t s . The i n g r e d i e n t composition i n grams/100 grams d i e t was: d e x t r o s e 64.6, c a s e i n 16.2, d l - m e t h i o n i n e 0.2, AIN s a l t m i x t u r e 3·5, AIN v i t a m i n m i x t u r e 1.5, g e l a t i n 6.0, and l a r d 8.0 f o r the c o n t r o l d i e t ; f i b e r d i e t s contained 15$ l e s s of each i n g r e d i e n t plus 15g f i b e r . Dry i n g r e d i e n t s were premixed and the hydrated g e l l e d d i e t s were prepared weekly by adding water (I90ml/I00g) and l a r d t o the a p p r o p r i a t e amount o f p r e m i x , blending f o r 1 minute, l e t t i n g the d i e t s g e l f o r 2 hours at 5°C, and reblending the s e m i g e l l e d d i e t s to evenly d i s t r i b u t e i n s o l u b l e i n g r e d i e n t s . The p r e p a r e d d i e t s were s t o r e d a t 5°C i n t u b s w i t h p l a s t i c f i l m l a i d d i r e c t l y on the s u r f a c e o f the d i e t s to minimize evaporative l o s s . Animal Treatment. S i x groups of 11 , t h i r t y - d a y o l d , male W i s t a r r a t s (100-120g), were r a n d o m l y d i v i d e d i n t o i n d i v i d u a l cages. A f t e r f i v e days a c c l i m a t i o n the groups were fed: Purina Lab Chow ad l i b i t u m , c o n t r o l ( f i b e r - f r e e g e l l e d d i e t ) and the g e l l e d d i e t s which c o n t a i n e d 15$ p e c t i n , M e t a m u c i l , l i g n i n , and c e l l u l o s e , r e s p e c t i v e l y . Every second day each r a t was weighed, unused food was weighed and f r e s h d i e t placed i n feeders secured at the f r o n t o f each cage. A t t h e end o f 28 days, two r a t s from each group were s a c r i f i c e d each day f o r 5 consecutive days.
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
20.
OPDYCKE AND STREET
Intestinal and Liver Microsome
Activities
289
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
Enzyme P r e p a r a t i o n . Each r a t was weighed, k i l l e d by c e r v i c a l d i s l o c a t i o n , the l i v e r removed and 2g homogenized i n 10 ml 0.05M T r i s . , 0.15M KCL, pH 7.8 b u f f e r . I n t e s t i n a l m i c r o s o m e s were p r e p a r e d a c c o r d i n g to S t o h s et al.(28). The e n t i r e s m a l l i n t e s t i n e o f each r a t was removed, washed w i t h b u f f e r , measured f o r length, s p l i t l o n g i t u d i n a l l y w i t h s c i s s o r s , l a i d mucosal s i d e up on a g l a s s p l a t e and s c r a p e d w i t h a g l a s s s l i d e . The m u c o s a l c e l l s were weighed and homogenized i n 10ml b u f f e r w i t h 20$ g l y c e r o l , 25mg t r y p s i n i n h i b i t o r and 2 u n i t s h e p a r i n . H e p a t i c and i n t e s t i n a l homogenates were c e n t r i f u g e d at 600g f o r 2 minutes and then at 13000g f o r 20 minutes, with the microsomes sedimented at 105,000g f o r 60 minutes. A s s a y s . P r o t e i n was d e t e r m i n e d a c c o r d i n g to Lowry ejb a l ( 7 7 ) ) . Biphenyl hydroxylase a c t i v i t y was determined w i t h 2 mg microsomal p r o t e i n , 400 micromoles NADP, 4 micromoles glucose-6-phosphate, 3 micromoles magnesium c h l o r i d e , and 0.5 u n i t s glucose-6-phosphate dehydrogenase i n 1 ml t o t a l volume. A f t e r a 2 minute preincubat i o n , 1 mM b i p h e n y l i n 10 m i c r o l i t e r s o f a c e t o n e was added to s t a r t the 15 minute incubation. The r e a c t i o n s were stopped w i t h 0.5 ml 6N HCL, e x t r a c t e d w i t h i s o o c t a n e and c h r o m a t o g r a p h e d by HPLC on M i c r o p a c NHp-C-10 ( V a r i a n ) w i t h i s o o c t a n e i a c e t o n i t r i l e : i s o a m y l a l c o h o l (100:4:4)(59). D e t e c t i o n o f the 2-, 3-, and 4 - h y d r o x y b i p h e n y l p r o d u c t s was by f l u o r e s c e n c e d e t e c t i o n w i t h e x c i t a t i o n at 275nm and e m i s s i o n at 38nm. Q u a n t i t a t i o n of 2-, 3-, and 4-hydroxybiphenyls was accomplished with peak height comparisons to 1 .25, 2.50, and 3*75 m i c r o g r a m s o f each s t a n d a r d ; s t a n dards were incubated and extracted with each set of determinat i o n s . Epoxide hydrolase a c t i v i t y was determined by the method of G i u l i a n o ejt a l ( 7 5 ) u s i n g 3-(p-nitrophenoxy)-1 ,2-propene oxide as substrate w i t h 0.5mg microsomal p r o t e i n . The d i o l was separated u s i n g ODS r e v e r s e phase HPLC w i t h 40$ a c e t o n i t r i l e i n water. D e t e c t i o n was accomplished u s i n g UV absorbance at 315nm. A r y l h y drocarbon hydroxylase a c t i v i t y was determined by the assay procedure of Dehnen e_t al.(78) on an AmincoBowman s p e c t r o f l u o r o m e t e r a f t e r i n c u b a t i o n s w i t h 0.5mg microsomal p r o t e i n and NADPH genera t i n g system. One u n i t a c t i v i t y i s defined as picomoles/mg/minute as based on the f l u o r e s c e n c e of 20 ng 3-hydroxybenzo(a)pyrene. Results and D i s c u s s i o n Results of body, l i v e r and l i v e r / b o d y weight r a t i o s a f t e r 30 days on s p e c i f i e d d i e t s a r e l i s t e d i n T a b l e I. Each o f the treatment groups showed an i n i t i a l weight l o s s upon i n t r o d u c i n g the p u r i f i e d d i e t s . However, a l l but the l i g n i n - f e d a n i m a l s q u i c k l y recovered to steady weight gains throughout the r e s t of the experiment. Lab Chow-fed r a t s were s i g n i f i c a n t l y h e a v i e r than the p u r i f i e d d i e t - f e d r a t s . Body weights i n pectin-and Metamucilfed r a t s were s i g n i f i c a n t l y (0.05 l e v e l ) h i g h e r than c o n t r o l - ,
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
UNCONVENTIONAL SOURCES OF DIETARY FIBER
290
Table I.
Body and L i v e r Weights and L i v e r t o
Body Weight Ratios o f Fiber-Fed R a t s .
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
Diet Type
Control
(No F i b e r )
Body Weigjit
L i v e r Weight
a
L i v e r Wt./Body Wt.
g
g
g
182 + 12
6.90 + 1.38
0.037 + 0.006
Lab Chow
300
15% P e c t i n
b
28
11.14
220°
18
15% Metamucil
224°
15% L i g n i n
15% C e l l u l o s e
b
1.63
.037
.004
7.73
1.19
.034
.003
12
7.83
1.19
.034
.006
153
15
5.61
0.64
.036
.003
172
10
6.10
0.50
.035
.002
Values are means + S.D. f o r groups of 11 r a t s . b
S i g n i f i c a n t l y d i f f e r e n t from a l l other groups (P=.05) .
c S i g n i f i c a n t l y d i f f e r e n t from the other groups f e d p u r i f i e d d i e t s (P=.05),
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
20.
OPDYCKE AND
STREET
Intestinal and Liver Microsome
Activities
291
l i g n i n - o r c e l l u l o s e - f e d a n i m a l s . L i g n i n - f e d a n i m a l s c o u l d be considered to be under weight. L i g n i n - and c o n t r o l - f e d a n i m a l s ate s i g n i f i c a n t l y l e s s p u r i f i e d d i e t than other treatment groups. L i v e r weights i n Lab Chow-fed r a t s were a l s o s i g n i f i c a n t l y higher than i n r a t s fed p u r i f i e d d i e t s . The l i v e r weights of p e c t i n - and Metamucil-fed r a t s were s l i g h t l y higher (not s i g n i f i c a n t l y ) than c o n t r o l - , l i g n i n - or c e l l u l o s e - f e d r a t s . L i v e r : t o : b o d y r a t i o s were not s i g n i f i c a n t l y d i f f e r e n t i n any of the treatment groups. The i n f l u e n c e o f s p e c i f i c d i e t a r y f i b e r s on s m a l l i n t e s t i n e length, on the amount of mucosal m a t e r i a l scraped from the i n t e s t i n e , and on the r a t i o s o f grams mucosa/cm o r cm/g mucosa i s i n d i c a t e d by the d a t a i n T a b l e I I , w h i l e T a b l e I I I l i s t s the i n t e s t i n a l microsomal p r o t e i n (expressed as t o t a l or mg/cm s m a l l i n t e s t i n e ) . Lab Chow and d i e t s c o n t a i n i n g p e c t i n o r M e t a m u c i l produced i n t e s t i n e lengths that were s i g n i f i c a n t l y longer than i n the r a t s f e d the c o n t r o l , l i g n i n , o r c e l l u l o s e d i e t s . These r e s u l t s support s i m i l a r f i n d i n g s by deBethizy (23-24) and Rotenb e r g and J a k o b s e n (79). The s t a b l e g e l s formed by M e t a m u c i l and p e c t i n f i b e r s caused s i g n i f i c a n t i n t e s t i n a l t r a c t enlargement, even though f e d i n h y d r a t e d form. The r a t s f e d Lab Chow and the p e c t i n d i e t had the highest mucosal weights, which were s i g n i f i c a n t l y higher than i n c o n t r o l - , l i g n i n - , o r c e l l u l o s e - f e d animals. L i g n i n - f e d animals y i e l d e d the l e a s t amount of mucosal m a t e r i a l , which c o i n c i d e s w i t h t h e i r having the s h o r t e s t s m a l l i n t e s t i n e s and lowest body weights (Table IV). T o t a l i n t e s t i n a l microsomal p r o t e i n d i d not d i f f e r s i g n i f i c a n t l y (0.05 l e v e l ) among treatment groups, although p e c t i n d i e t and Lab Chow-fed r a t s had r e l a t i v e l y higher t o t a l microsomal p r o t e i n values. Both l i v e r and i n t e s t i n a l mucosa m i c r o s o m a l p r o t e i n v a l u e s a r e l i s t e d i n T a b l e IV. T h e r e were no s i g n i f i c a n t d i f f e r e n c e s between t r e a t m e n t groups f o r e i t h e r tissue. L i s t e d i n T a b l e V a r e the v a l u e s o f 2 - , 3 - , 4 - b i p h e n y l hyd r o x y l a s e a c t i v i t i e s i n l i v e r microsomes of f i b e r - f e d r a t s . V a l u e s a r e e x p r e s s e d as nanomoles (2-, 3-,or 4 - h y d r o x y b i p h e n y l ) / m g / l 5 m i n u t e i n c u b a t i o n ; the l e a s t d e t e c t a b l e amount was 0.05 moles/mg. The h e p a t i c m i c r o s o m a l l e v e l s o f 4 - b i p h e n y l hyd r o x y l a s e were on the o r d e r o f 4 0 - f o l d h i g h e r t h a n the 2-or 3biphenyl hydroxylase a c t i v i t i e s . This difference i s s l i g h t l y g r e a t e r t h a n the h i g h e r c o n s t i t u a t i v e 4 - b i p h e n y l h y d r o x y l a s e l e v e l s r e p o r t e d by o t h e r s (46,50,80). The y i e l d o f 2 - h y d r o x y b i p h e n y l was s i g n i f i c a n t l y h i g h e r w i t h h e p a t i c m i c r o s o m e s from l i g n i n - f e d a n i m a l s t h a n w i t h m i c r o s o m e s from any o f the o t h e r treatment groups. The s l i g h t l y higher b i p h e n y l hydroxylase values f o r the p u r i f i e d d i e t - f e d r a t s i s notable. L i g n i n - f e d r a t s a l s o showed the highest 3-hydroxybiphenyl y i e l d s although t h i s e f f e c t was not s i g n i f i c a n t . The l e v e l s of h e p a t i c microsomal 4-hydroxyb i p h e n y l h y d r o x y l a s e were s i g n i f i c a n t l y l o w e r i n Lab Chow-fed animals than l i g n i n - f e d animals. There were no s i g n i f i c a n t d i f f e r e n c e s among the p u r i f i e d d i e t t r e a t m e n t groups, however, l i g n i n - f e d r a t s again had s l i g h t l y higher l e v e l s of a c t i v i t y .
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
4.95 6.39 6.74 6.48
34.70 39.86 48.01 41.06
.004 .004 .003 .004
.029 .025 .021 .026
6 6
108° e
I n t e s t i n e s i g n i f i c a n t l y longer
°
(P=.05).
(P=.05).
Mucosal weight s i g n i f i c a n t l y greater
^
f o r groups of 11 rats.
4
96
.35
2.30
15% Cellulose
Means + S.D.
6
93
.35
1.98
15% Lignin
108
.51
2.78
.39
2.88
e
31.84
III
.42
.004
36.79 + 6.92
.032
0.028 + 0.005
94 + 4
cm
cm/g Mucosa
8
g
cm
15% Metamucil
b
Mucosal Wt./cm
Small I n t e s t i n e
3.15
b
3.52
2.65 + 0.47
g
Mucosa
a
Small I n t e s t i n e Length, Mucosal Weight and t h e i r Ratio i n Fiber-Fed R a t s .
15% Pectin
Lab Chow
Control (No Fiber)
Diet Type
Table I I .
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
20.
OPDYCKE AND STREET
Intestinal and Liver Microsome
293
Activities
Table I I I . Microsomal P r o t e i n i n Small I n t e s t i n e
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
Mucosa of Fiber-Fed Rats.
Type
T o t a l mg
Control
(No F i b e r )
13.77 + 5.80
mg/cm Length
0.14 + 0.06
Lab Chow
14.81
7.88
.13
.07
15% P e c t i n
15.23
5.45
.14
.05
15% Metamucil
10.50
5.20
.19
.05
15% L i g n i n
10.09
6.74
.11
.08
15% C e l l u l o s e
11.27
6.42
.12
.07
a
Mean microsomal p r o t e i n + S.D. f o r groups o f 11 r a t s ; d i f f e r e n c e s were not s i g n i f i c a n t (P=.05).
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
294
UNCONVENTIONAL SOURCES OF DIETARY FIBER
Table IV.
Microsomal P r o t e i n i n L i v e r and I n t e s t i n a l
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
Preparations
Diet Type
from Fiber-Fed
mg P r o t e i n / g L i v e r
Rats.
a
mg P r o t e i n / g
Mucosa
C o n t r o l (No F i b e r )
11.8 + 6.0
5.59 + 3.48
Lab Chow
14.5
4.6
4.26
2.46
15% P e c t i n
12.4
5.4
4.97
1.87
9.4
3.7
3.71
1.94
15% L i g n i n
12.1
7.4
5.11
3.83
15% C e l l u l o s e
15.1
4.3
4.91
2.30
15% Metamucil
Values are mean + S.D. f o r groups of 11 r a t s . treatments were not s i g n i f i c a n t (P=.05).
D i f f e r e n c e s among
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
20.
Intestinal and Liver Microsome
OPDYCKE AND STREET
Table V.
295
Activities
Biphenyl Hydroxylase A c t i v i t i e s i n L i v e r Microsomes o f Fiber-Fed R a t s .
3
Nanomoles/mg/15 min
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
Diet Type
2-OH
3-0H
Control (No F i b e r ) 0.43 + 0.10
Lab Chow
,30
15% P e c t i n
b
4-OH
0.40 + 0.13
.06
.36
.44
.15
15% Metamucil
.41
15% L i g n i n
15% C e l l u l o s e
b
15.98 + 5.75
b
.07
9.77
1.94
.32
.09
12.46
3.04
.08
.29
.07
13.82
4.00
.81°
.35
.62
.18
20.03
5.65
.30
.06
.28
.07
11.43
2.57
a
Values are mean hydroxylase a c t i v i t y + SE (N=10) i n nanomoles/mg p r o t e i n / 1 5 min.; min. d e t e c t a b l e amount was 0.05 nmole.
b
D i f f e r e n c e from l i g n i n - t r e a t e d animals s i g n i f i c a n t
C
D i f f e r e n c e from c o n t r o l and a l l other groups s i g n i f i c a n t
(P=.05).
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
(P=.05).
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
296
UNCONVENTIONAL SOURCES OF DIETARY FIBER
I n t e s t i n a l microsomal biphenyl h y d r o x y l a t i o n f o r f i b e r - f e d r a t s i s l i s t e d i n T a b l e VI. Due to the v a r i a b i l i t y o f the d a t a t h e r e were no s i g n i f i c a n t (0.05 l e v e l ) d i f f e r e n c e s among the groups o f f i b e r - f e d r a t s . L i g n i n f e e d i n g l e d to the h i g h e s t i n t e s t i n a l 2-biphenyl hydroxylase a c t i v i t i e s , while a l l the r a t s f e d p u r i f i e d d i e t s had h i g h e r l e v e l s t h a n the Lab Chow group. Among the groups fed p u r i f i e d d i e t s , the p e c t i n - f e d r a t s had the lowest 2-biphenylhydroxylase l e v e l s . P e c t i n feeding a l s o gave the highest i n t e s t i n a l 3-biphenylhydroxylase although that d i f f e r e n c e o n l y approached s i g n i f i c a n c e a t the 0.05 l e v e l . Lab Chow-fed r a t s had the l o w e s t 3 - b i p h e n y l h y d r o x y l a s e l e v e l i n i n t e s t i n a l microsomes. I n t e s t i n a l microsomes from f i b e r - f e d r a t s d i d not d i f f e r s i g n i f i c a n t l y (0.05 l e v e l ) i n 4-biphenyl hydroxylase a c t i v i t y . C e l l u l o s e - f e d animals had the lowest l e v e l , with the cont r o l s and l i g n i n - f e d r a t s showing the highest i n t e s t i n a l microsomal 4-biphenylhydroxylase values. P e c t i n - and Metamucil-fed r a t s had r e l a t i v e l y low l e v e l s of 4-biphenyl hydroxylase a c t i v i t i e s . The r e s u l t s of a p r e l i m i n a r y i n t e s t i n a l microsomal biphenyl hydroxylase t r i a l are l i s t e d i n Table VII. These r a t s were on the same h y d r a t e d p u r i f i e d d i e t s c o n t a i n i n g 15$ f i b e r f o r 32 days before the microsomal enzyme determinations. One d i f f e r e n c e between these animals and those i n the primary experiment reported h e r e i n i s t h a t t h e y were s t a r t e d on the d i e t s a t 45 days o f age and weighed about 200g at the s t a r t . The biphenyl h y d r o x y l a t i o n i n c u b a t i o n was done with 5 mg i n t e s t i n a l microsomal p r o t e i n as compared to 2 mg p r o t e i n used i n the subsequent incubations. The b i p h e n y l h y d r o x y l a t i o n v a l u e s were not s i g n i f i c a n t l y d i f f e r e n t (0.05) i n any of the treatment groups although Lab Chow-fed r a t s had s l i g h t l y higher 4-hydroxy biphenylhydroxylase values. Benzo(a)pyrene hydroxylase a c t i v i t i e s i n h e p a t i c and i n t e s t i n a l microsomes of f i b e r - f e d r a t s are presented i n Table V I I I . There were no s i g n i f i c a n t d i f f e r e n c e s (0.05 l e v e l ) among any of the p u r i f i e d f i b e r treatment groups i n e i t h e r l i v e r or i n t e s t i n a l microsomes. Lab Chow-fed r a t s had the l o w e s t l i v e r m i c r o s o m a l benzo(a)pyrene h y d r o x y l a s e (AHH) l e v e l . The i n d i c a t i o n o f enhanced i n t e s t i n a l P-448-dependent h y d r o x y l a t i o n of biphenyl i n the p e c t i n - f e d r a t s (seen as elevated 3-hydroxybiphenyl formation i n microsomes, Table Vl) was not supported by these p r e l i m i n a r y data. Microsomal epoxide hydrolase a c t i v i t i e s are l i s t e d i n Table IX. There was s i g n i f i c a n t l y higher (0.05 l e v e l ) h e p a t i c microsomal e p o x i d e h y d r o l a s e a c t i v i t y i n p e c t i n - , M e t a m u c i l - , and c e l l u l o s e - t r e a t e d r a t s , as compared to c o n t r o l - , l i g n i n - and Lab Chow-fed animals. There was no s i g n i f i c a n t d i f f e r e n c e i n i n t e s t i n a l m i c r o s o m a l e p o x i d e h y d r o l a s e a c t i v i t i e s among any o f the treatment groups. Studies d i r e c t l y probing the i n t e r a c t i o n of d i e t a r y f i b e r s on f o r e i g n compound m e t a b o l i s m a r e l i m i t e d . Brown,_ejt al.(81 ) reported that r a t s fed b a s a l chow d i e t s had no l i v e r metabolism d i f f e r e n c e s compared to r a t s on d i e t s supplemented w i t h p e c t i n or
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
20.
OPDYCKE AND STREET
Table VI.
Intestinal and Liver Microsome
Activities
297
Biphenyl Hydroxylase A c t i v i t y i n I n t e s t i n a l Microsomes of F i b e r - F e d R a t s .
a
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
Nanomoles/mg/15 min Diet Type
C o n t r o l (No F i b e r )
2-OH
0.38 + 0.16
3-OH
4-OH
0.79 + 0.35
1.13 + 0.74
Lab Chow
.30
.09
.46
.14
.79
.24
15% P e c t i n
.19
.05
2.08
.74
.35
.09
15% Metamucil
.50
.01
.88
.13
.92
.45
15% L i g n i n
.68
.32
1.14
.26
1.32
1.06
15% C e l l u l o s e
.47
.07
.46
.13
.22
.08
a
Values are mean hydroxylase a c t i v i t y + SE f o r groups of 7 r a t s ; d i f f e r e n c e s among treatments were not s i g n i f i c a n t (P=.05).
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983. 3.22
S i g n i f i c a n t d i f f e r e n c e from c o n t r o l , P>.05.
5.73
C
0.62
Nanomoles/mg p r o t e i n i n mucosal microsomes/15 min.
2.86
0.25
6.39
4.41
1.24
0.50
0.64
1.40
.97
.97
.83
.41
0.95
n=2.
a
.21
.42
.15
.12
.73
.44
.85
.72
0.98
.12
.19
.11
.09
+ 0.09
Biphenyl Hydroxylase^ 3-OH
+ 0.22
2-OH
of 3 r a t s , except hydroxylase values where
5
2.56
0.27
^
103
15% C e l l u l o s e
7
2.55
0.70
7.28 + 0.90
Microsomal x) Protein (mg/g)
Values are means + S.D.
101
15% L i g n i n
8
2.51
2.30 + 0.45
Mucosal x) Weight (g)
Rats.
.73
.45
.33
1.19
0.77
and Biphenyl Hydroxylase A c t i v i t i e s
i n I t i t e s t i n a l Microsomes of Fiber-Fed
Small Intestine Parameters
3
119
15% Metamucil
6
100 + 3
108
(No Fiber)
I n t e s t i n e x) Length (cm)
Lab Chow
Control
Fiber Type
Table VII.
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
+
4-OH
.09
.07
.07
.56
0.11
20.
OPDYCKE AND STREET
Table V I I I .
Intestinal and Liver Microsome
Activities
299
Benzo(a)pyrene Hydroxylase A c t i v i t i e s i n
Hepatic and I n t e s t i n a l Mucosa Microsomes of Fiber-Fed
Rats.
a
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
Picomoles /mg/min Diet Type
Control
(No F i b e r )
Lab Chow
Liver
216 +
92
u
Small I n t e s t i n e
87.9
7.1
14.5 +
1.6
19.9
6.8
15% P e c t i n
193
81.1
17.9
4.7
15% Metamucil
263
98.1
18.7
5.3
15% L i g n i n
255
86.4
19.3
3.4
15% C e l l u l o s e
245
98.1
19.6
4.8
Values are means + SE f o r groups of 7. Q u a n t i t a t i o n was based on the fluorescence of 20ng 3-hydroxy-benzo(a)pyrene and s c a l e d to mg microsomal p r o t e i n . S i g n i f i c a n t d i f f e r e n c e from c o n t r o l s , P>.05.
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
300
UNCONVENTIONAL SOURCES OF DIETARY FIBER
Table IX.
Epoxide Hydrolase A c t i v i t i e s i n
L i v e r and I n t e s t i n a l Mucosa Microsomes of Fiber-Fed
Rats.
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
Nanomoles/mg/5 min Diet Type
Liver
Small I n t e s t i n e
C o n t r o l (No F i b e r )
38.0 4- 8.13
14.9 + 2.94
Lab Chow
45.0
7.24
13.1
3.28
15% P e c t i n
64.3
11.81
12.6
3.05
15%
62.0
13.32
16.3
3.24
15% L i g n i n
44.9
4.94
14.3
4.33
15% C e l l u l o s e
64.4
18.6
7.01
Metamucil
υ
U
22.1
Values are means + SE f o r groups o f seven s c a l e d to mg microsomal p r o t e i n f o r 3-(p-nitrophenoxy)-l,2-propene oxide as s u b s t r a t e . S i g n i f i c a n t l y d i f f e r e n t from c o n t r o l s , P>.05.
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
20.
OPDYCKE AND STREET
Intestinal and Liver Microsome
Activities
301
wheat bran as judged by a n t i p y r i n e and acetaminophen metabolism, Chadwick et al.(82), however, d e m o n s t r a t e d s i g n i f i c a n t enhancement o f l i n d a n e m e t a b o l i s m i n p e c t i n - f e d r a t s - P r o i a e t al.(83) r e c e n t l y reported that p e c t i n feeding lowered hepatic cytochrome P-450 l e v e l s w h i l e a t t h e same t i m e i n c r e a s i n g i n t e s t i n a l benzo(a)pyrene hydroxylase l e v e l s . I t remains to be evaluated to what e x t e n t t h e d i f f e r e n c e s o b s e r v e d i n d r u g o r o t h e r f o r e i g n compound _in v i v o metabolism i n r a t s f e d p e c t i n or other p u r i f i e d f i b e r s can be explained by d i f f e r e n c e s i n c o n s t i t u a t i v e l e v e l s of the relèvent enzymes i n l i v e r and i n t e s t i n a l mucosa. Our d a t a suggest that MFO h y d r o x y l a t i n g a c t i v i t i e s i n both t i s s u e s are not p a r t i c u l a r l y s e n s i t i v e to e f f e c t s o f feeding p u r i f i e d f i b e r s at high l e v e l s (the d i e t model used i n our work represents extremes i n f i b e r i n t a k e ) . The s i g n i f i c a n t e f f e c t on h e p a t i c e p o x i d e hydrolase seen with p e c t i n - , Metamucil-, and c e l l u l o s e - f e d r a t s (Table IX) may point toward a more important response i n r e l a t i o n to chemical carcinogenesis. Studies are i n progress i n our l a b o r a t o r y t o compare G S H - t r a n s f e r a s e a c t i v i t i e s and t h e t i s s u e g l u t a t h i o n e s t a t u s i n s p e c i f i c f i b e r - f e d r a t s . These s t u d i e s may enhance o u r a p p r e c i a t i o n o f t h e c o n t r i b u t i o n s o f t h e nono x i d a t i v e enzymes i n f o r e i g n compound metabolism to the r e l a t i o n ships between n u t r i t i o n a l s t a t e and chemical carcinogenesis. Acknowledgment s T h i s r e s e a r c h was s u p p o r t e d , i n p a r t , by a g r a n t f o r the study of "Diet and Colon Cancer i n Man: The E f f e c t o f F i b e r (CA25580)" and a g r a n t f o r t o x i c o l o g y t r a i n i n g (ES-7097) from the N a t i o n a l I n s t i t u t e s o f H e a l t h . F a c i l i t i e s and o t h e r s u p p o r t by the Utah A g r i c u l t u r a l Experiment S t a t i o n are a l s o acknowledged.
Literature Cited 1. Burkitt, D. P.; Walker, A. R. P.; Painter, N. S. J. Am.Med. Assoc. 1974, 229, 1068. 2. Haenzel, W.; Berg, J. W.; Mitsou, S.; Kuirhara, M.; Locke,F.B.; Segi, M. J. Natl. Cancer Inst. 1973, 5, 1765. 3. Graham, S. H. D.; Swanson, M.; Mittleman, Α.; Wilkinson, G.J. Natl. Cancer Inst. 1978, 61, 709. 4. IARC (International Agency for Research in Cancer).Lancet 1977, 2, 207. 5. Audigier, J.C.; Lambert,R.Rev. Prat.1979, 29(13),1055· 6. Liu, K.; Moss, D.; Persky, V.; Stamler, J.; Garside,D.; Soltero, I. Lancet 1979, 2(8146), 789. 7. Jensen,O.M.;MacLennan Isr. J. Med. Sci. 1 979,15(4),329. 8. Modan,B.;Lubin,F. "Medical Aspects of Dietary Fiber"; Spiller,G.A.; McKay,R., Ed.; Plenum: New York, 1980; p.119. 9. Takeda, H.; Kiriyama, S.; J. Nutr. 1979, 109(3), 388.
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
302
UNCONVENTIONAL SOURCES OF DIETARY FIBER
10. Brown, W. "Dietary Fibers: Chemistry and Nutrition"; Inglett, G. E.; Falkehag, S. I., Ed.; Academic Press, New York,1979; p.1. 11. Abraham, R., Barbolt, Τ. Α.; Rodgers, J.B. Exp.Molec. Pathol. 1980, 33, 133. 12. Kern, F.H.; Birkner, J . ; Ostrower, V.S. Am. J. Clin. Nutr. 1978, 31, 5175. 13· Takeda, H.; Ebihara, K.; Kiriyama, S. Nippon Nogeikagaku Kaishi 1981, 55(2), 125. 14. Weisburger, J. H.; Reddy, R.S.; Springarn, N.E.; Wynder, E.L. "Current Views on the Mechanisms Involved in the Etiology of Colorectal Cancer; Prevention, Epidemiology, and Screening"; Winawer, F.; Schottenfeld, D.; Sher lock,P., Ed.; Raven Press: New York, 1980; p. 19. 15. Hill, M. J.; Draser, B. S.; Aries, V. C.; Crowther, J. S. Hawsworth, G.; Williams, R. E. O. Lancet 1971, I,95. 16. Fleizer, D. J.; Macfarlane, J.; Murray, D.; Brown, R. A. Lancet 1978, 2, 552. 17. Freeman, H. J.; Spiller, G. Α.; Kim, Y. S. Cancer Res. 1978, 38, 2912. 18. Kimura, T.; Furata, H.; Matsumoto, Y.; Yoshida, A. J. Nutr 1980, 110(3), 513. 19. Reddy, B. S.; Cohen, L. Α.; McCoy, G. D.; Hill, P.; Weisburger, J.H.; Wynder, E.L. Adv. Cancer Res. 1980,32, 237. 20. Cummings, J. H.; Wiggins, H. S. Gut 1976, 17, 219. 21. Cummings, J. H.; Hill, M. J.; Jivraj, T.; Branch, W. J.;Jenkins, D. J. A. Am. J. Clin. Nutr. 1979, 32, 2086. 22. deBethizy, J.D.; Street, J.C. The Toxicologist 1982,1, 94, published abstract. 23. deBethizy,J.D.;Street, J.C. The Toxicologist 1981,1, 108, published abstract. 24. deBethizy, J.D.; Street, J.C. The Pharmacologist 1981, 2, published abstract. 25. Chhabra,R.S.;Pohl,R.J.; Fouts, J.R. Drug Metab. Dispos. 1974, 2(5), 443. 26. Miranda, C.L.; Chhabra, RS. Biochem. Pharmacol.1980, 29, 1161. 27. Chhabra,R.S.;Fouts, J.R. Drug Metab.Dispos. 1974,2(4), 375. 28. Stohs,S.J.; Grafstrom, R.C.; Burke,M.D.; Moldeus,D.W.; Orrenius, S.G. Arch. Biochem. Biophys. 1976,177, 105. 29· Shirkey, R.J.; Chakraborty,J.; Bridges,J.W. Anal.Biochem. 1979, 93, 7330. Shirkey, R.J.; Chakraborty, J.; Bridges, J.W. Biochem. Pharmacol. 1979, 28, 2835· 31. Shirkey, R.J.; Kao, J.; Fry, J.R.; Bridges, J.W. Biochem. Pharmacol. 1979, 28, 1461. 32. Stohs, S.J., Grafstrom, R.C.; Burke, M.D.; Orrenius,S.G. Arch. Biochem. Biophys. 1977, 179, 71.
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
20.
OPDYCKE AND STREET
Intestinal and Liver Microsome
Activities
33. Halladay,S.C.;Ryerson,B.A.;Smith, C.R.;Parkinson,T.M. Fd. Cosmet. T o x i c o l . 1980, 18, 569. 34. Fang, W-F.;Strobel,H.W. C a n c e r Res. 1978, 38, 2939. 35. C o r r e i a , M.A.; Schmid, R. Biochem. Biophys. Res. Commun. 1975, 65(4), 1378. 36. H e i t a n e n , E.; V a i n i o , H. A c t a P h a r m a c o l , e t Toxicol. 1973, 33, 57-64. 37. Hoensch,H.;Woo, C.H.; Schmid, R. Biochem. Biophys.Res. Commun. 1975, 650(1), 399. 38. Dawson,J.R.; B r i d g e s , J.W. Biochem. Pharmacol.1979,28, 3299. 39. Grafstrom,R.; Ormstaf,K.; Moldeus,P.; O r r e n i u s . Biochem. Pharmacol. 1979, 28, 3573. 40. Grafstrom, R.; Green, F. E. Biochem. Pharmacol. 1980, 29, 1517. 41. Grafstrom, R.; Holmberg, B. T o x i c o l . L e t t s . 1980, 7, 79. 42. Atlas,S.A.;Nebert,D.W. A r c h . Biochem. and B i o p h y s . 1976, 175, 495. 43. Wyndham, C.; S a f e , S. Can. J. Biochem. 1978, 56, 993. 44. B e n f o r d , D.J.; B r i d g e s , J.W. Biochem. P h a r m a c o l . 1980, 29, 2345. 45. McPherson, F.J.;Bridges, J.W.; P a r k e , D.V. N a t u r e l 9 7 4 , 252, 488. 46. McPherson, F.J.; B r i d g e s , J.W.; P a r k e , D.V. Biochem.J. 1976, 154, 773. 47. McPherson, F.J.; B r i d g e s , J.W.; P a r k e , D.V. Biochem. Pharmacol. 1976, 25, 1345. 48. Basu, T.K.;Dickerson,J.W.T.; P a r k e , D.V. Biochem.J. 1971, 124, 19. 49. Thorgeirsson, S. S.; A t l a s , S. Α.; Boobis, A.R.; F e l t o n , J.S. Biochem. Pharmacol. 1979, 28, 217. 50. Burke, M.D.; Orrenius, S.; Gustafsson, J.A. Biochem. Pharmacol. 1978, 27, 1125. 51. Toftgard, R.; N i l s e n , O.G.; Ingelman-Sandberg,M.; Gustafsson, J . A. Acta Pharmacol. et T o x i c o l . 1980, 46, 353. 52. Burke, M.D.; B r i d g e s , J.W. X e n o b i o t i c a 1975, 5(6), 357. 53. Wiebkin, P.; F r y , J.R.; Jones, C.A.; Lowing, R.K.; Bridges, J.W. X e n o b i o t i c a 1976, 6(12), 725. 54. Wiebkin, P.; F r y , J.R.; Jones, C.A.; Lowing, R.K.; Bridges, J . W. Biochem. Pharmacol. 1978, 27, 1899. 55. Billings, R.E.; McMahon, R.E. Mol. Pharmacol. 1977, 14, 145. 56. Bridges, J.W.; Creaven, P.J.; Williams, R.T. Biochem.J. 1965, 96, 872. 57. Creaven, P.J.; Parke, D.V.; Williams, R.T. Biochem.J. 1965,96, 879. 58. Yamazoe, Y.; Takanaki, T.; Kato, R. Anal. Biochem. 1980, 111, 126. 59. Burke, M.D.; Prough, R.A. Anal. Biochem. 1977,83, 466.
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.
UNCONVENTIONAL SOURCES OF DIETARY FIBER
Downloaded by UNIV OF LEEDS on October 18, 2016 | http://pubs.acs.org Publication Date: April 11, 1983 | doi: 10.1021/bk-1983-0214.ch020
304
60. Conney, A.H. Pharmacol. Rev. 1967, 19, 317. 61. Al-Turk, W.A.; Stohs, S.J.; Roche, E.B. Horm.Metabol. Res. 1980, 12, 404. 62. Gontovnick, L.S.; Bellward, G.D. Drug Metabol. Dispos. 1981, 9(3), 265. 63. Bock, K.W.; Clausbruch, U.C.; Winne, D. Med. Biol.1979, 57, 262. 64. Nebert,D.W.; Gelboin, H.V. Arch. Biochem. Biophys.1969, 134, 76. 65. Zampaglione,N.G.; Mannering, G. J. J. Pharm. Exp.Therap. 1973, 185, 676. 66. Vadi, H.; Moldeus, P.; Capdevia, J.; Orrenius, S. Cancer Res. 1975, 35, 2083. 67. Wattenberg, L.W. Cancer 1971, 6, 99. 68. Cantoni, L.W.; Rizzardini, M.; Belvedere, G.; Cantoni,R.; Funelli.R.; Salmona, M. Toxicology 1981, 21,1959. 69. Stohs, S.J.; Wu, L.J. Res. Commun. Cem. Path. Pharmacol. 1981, 34(3), 461. 70. Guenthner, T.M.; Oesch, F. Trends in Pharmacol. Sci.1981, 5, 129. 71. Oesch, F. "Progress in Drug Metabolism"; Bridges, J.W.; Chassaud,L.F., Eds.; John Wiley, London, 1979, Vol. III, p. 253. 72. Oesch, F. ExcerptaMedica (Ciba Found.Sympos.) 1980,76, 169. 73. Oesch, F. Biol. Chem. 1976, 251, 79. 74. Suzuki,K.; Lee, I.P.Toxicol. Appl. Pharmacol. 1981, 58, 151. 75. Giuliano, K.A.; Lau, E.P.; Fall, R.R. J. Chromat.1980, 202, 447. 76. Kennedy, J.F.; Sandhu, J.S.; Southgate, D.A.T. Carbohy. Res. 1979, 75, 265. 77. Lowry,O.H.;Rosenbrough, N. J.; Farr, A.L.; Randall, R.T. Biol. Chem. 1951, 139, 265. 78. Dehnen, W.; Tomingas, R.; Roos, J. Anal. Biochem. 1973, 53, 373. 79. Rotenberg, S.; Jakobsen, P. E. Z.Tierphysiolgie 1979, 42, 299. 80. Haugen, D.A. Drug Metab. 1981, 9(3), 212. 81. Brown, R.C; Kelleher, J.; Losowsky, M.S. Brit. J. Nutr. 1979, 42, 357. 82. Chadwick, R.W.; Copeland, M.F.; Chadwick, C.J.Fd. Cosmet. Toxicol. 1978, 16, 217. 83. Proia, A.D.; McNamara; K.D.G. Edwards, and K.E.Anderson. ASPET Meeting Abstract 1981,240,158. RECEIVED January 20, 1983
Furda; Unconventional Sources of Dietary Fiber ACS Symposium Series; American Chemical Society: Washington, DC, 1983.