bk-1978-0070.ch007

time computed for the peak center-of-gravity or cen- troid (54). Mass/time function. ...... quality data, a flexible interactive and user-oriented sof...
0 downloads 0 Views 3MB Size
7 Introduction to Gas Chromatography/High Resolution Mass Spectrometry B. J. KIMBLE Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

University of California-Berkeley, Berkeley, CA 94720

The combination of a gas chromatograph (GC), a mass spectrometer (MS) and an on-line computer is now well-established as an exceptionally powerful and versatile tool for identifying and quantitating the components present in organic mixtures. As with any successful technique, many improvements have been incorporated in recent years in order to provide the maximum amount of information that can be derived from a GC/MS analysis. Significant developments include the use of: a) glass capillary columns (1-3), for minimized surface effects and increased chromatographic resolution; b) direct interfacing of capillary columns to the mass spectrometer ion source (4-7), to reduce sample losses in a molecular separator and to preserve chromatographic resolution by elimi nating large-volume connectors; c) high pressure ionization methods (e.g., chemical ionization, 8-14), to provide complementary in formation to assist in the interpretation of electron impact spectra; d) improved computer techniques, for automated data acquisition, data handling (15-17), spectrum recognition (18-23) and interpretation (24-26). An a d d i t i o n a l approach f o r t h e improved u t i l i t y o f t h e GC/MS t e c h n i q u e would be t o d e t e r m i n e t h e r e c o r d ed mass v a l u e s i n each spectrum w i t h s u f f i c i e n t a c c u r a c y t o be a b l e t o compute t h e e x a c t e l e m e n t a l comp o s i t i o n o f each o f t h e i o n s p e c i e s c o n t r i b u t i n g t o t h e spectrum (27) . Such an achievement would p r o v i d e t h e maximum amount o f s t r u c t u r a l i n f o r m a t i o n t h a t c a n be d i r e c t l y d e r i v e d from a mass spectrum — i . e . , a d a t a ©0-8412-0422-5/78/47-070-120$10.00/0

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

7.

KIMBLE

Gas Chromatography/High Resolution Mass Spectrometry

121

s e t c o m p r i s e d o f e x a c t e l e m e n t a l c o m p o s i t i o n s and t h e i r r e l a t i v e abundances. The r o u t i n e a v a i l a b i l i t y o f e l e m e n t a l c o m p o s i t i o n s p e c t r a from a GC/MS a n a l y s i s would s u b s t a n t i a l l y a s s i s t t h e i n t e r p r e t e r / a n a l y s t i n s e v e r a l ways, a l l o f w h i c h d e r i v e from t h e i n c r e a s e d s t r u c t u r a l s p e c i f i c i t y i n h e r e n t i n such d a t a . I n t h e case o f mass s p e c t r a which a r e , i n f a c t , interprétable by a t r a i n e d spect r o m e t r i s t , exact elemental composition i n f o r m a t i o n would e l i m i n a t e t h e guesswork i n v o l v e d i n r e l a t i n g mass v a l u e s and mass d i f f e r e n c e s t o s t r u c t u r a l u n i t s , and t h u s , would r e s u l t i n more r a p i d and r e l i a b l e i n t e r pretations. T h i s i s p a r t i c u l a r l y t r u e when t h e r e c o r d e d spectrum r e s u l t s from t h e c o - e l u t i o n o f two o r more components, and t h e i n t e r p r e t i v e p r o c e s s has t o i n c l u d e t h e c o r r e c t assignment o f masses i n t o t h e i r appropriate "sub-spectra". Elemental composition i n f o r m a t i o n would a l s o f a c i l i t a t e t h e l o c a t i o n and q u a n t i t a t i o n o f s p e c i f i c components i n m i x t u r e s , s i n c e the i n t e n s i t i e s f o r a p a r t i c u l a r e l e m e n t a l c o m p o s i t i o n c o u l d be p l o t t e d as a f u n c t i o n o f scan number; such an e l e m e n t a l c o m p o s i t i o n chromatogram would c o n s t i t u t e a more s p e c i f i c s t r u c t u r a l i n d i c a t o r t h a n do n o m i n a l mass chromatograms. Of p a r t i c u l a r u t i l i t y , e l e m e n t a l c o m p o s i t i o n s p e c t r a would p r o v i d e d i r e c t s t r u c t u r a l i n f o r m a t i o n i n t h e case o f " h a r d - t o - i n t e r p r e t " s p e c t r a o f t r u l y unknown components — t h a t i s , when l i t t l e o r no c h e m i c a l information i s a v a i l a b l e to a s s i s t i n the i n t e r p r e t a t i o n . A l s o , unexpected compounds c a n a r i s e i n a v a r i e t y o f s i t u a t i o n s as a r t i f a c t s o r c o n t a m i n a n t s , o r due t o i n a d e q u a t e f r a c t i o n a t i o n and/or d e r i v a t i z a t i o n p r o c e d u r e s , e t c . ; and o f c o u r s e , " d i f f i c u l t " s p e c t r a occur p a r t i c u l a r l y i n analyses o f mixtures c o n t a i n i n g s e v e r a l hundred components. W i t h t o d a y s i n c r e a s i n g need t o s t u d y more and more c o m p l i c a t e d samples ( p a r t i c u l a r l y e n v i r o n m e n t a l m i x t u r e s such as sewage e f f l u e n t s , and samples f o r w h i c h m i n i m a l s e p a r a t i o n and f r a c t i o n a t i o n steps are d e s i r e d ) , i t i s t h i s aspect o f complex m i x t u r e a n a l y s i s t h a t would p a r t i c u l a r l y benef i t from t h e a v a i l a b i l i t y o f e l e m e n t a l c o m p o s i t i o n spectra. To d a t e , t h e concept o f e l e m e n t a l c o m p o s i t i o n assignments i n GC/MS a n a l y s e s has been e x p l o r e d i n a v a r i e t y o f ways, and a p p l i c a t i o n s o f t h e t e c h n i q u e seem l i k e l y t o i n c r e a s e as s u i t a b l e commercial i n s t r u m e n t a t i o n becomes more w i d e l y a v a i l a b l e . U n f o r t u n a t e l y , a somewhat ambiguous t e r m i n o l o g y has a l r e a d y e v o l v e d conc e r n i n g use o f t h e p h r a s e s " a c c u r a t e mass measurement" and, i n p a r t i c u l a r , " h i g h r e s o l u t i o n " . In general, 1

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

122

HIGH

PERFORMANCE

MASS SPECTROMETRY

t h e s e terms a r e used t o c o n t r a s t w i t h t h e measurement o f n o m i n a l masses ( e . g . , m/e 100 o r 101) and i n s t r u m e n t o p e r a t i o n a t n o m i n a l mass r e s o l u t i o n ( e . g . , Μ/ΔΜ < 1,000); however, i t s h o u l d be r e c o g n i z e d t h a t i n p r a c t i c e t h e s o - c a l l e d a c c u r a t e mass measurements may n o t be p a r t i c u l a r l y " a c c u r a t e " , n o r t h e mass r e s o l u t i o n p a r t i c u l a r l y " h i g h " . F o r s i m p l i c i t y , t h e acronyms GC/LRMS and GC/HRMS w i l l be used here t o denote GC/MS a n a l y s e s i n v o l v i n g t h e c o n t i n u o u s r e c o r d i n g o f complete mass s p e c t r a a t n o m i n a l (low) r e s o l u t i o n and h i g h e r mass r e s o l u t i o n s r e s p e c t i v e l y . I t s h o u l d a l s o be n o t e d t h a t t h e terms " a c c u r a t e mass measurement" and " h i g h r e s o l u t i o n " a r e n o t synonymous; t h i s may be i l l u s t r a t e d by summarizing t h e approaches t h a t have been r e p o r t e d i n the l i t e r a t u r e concerning the use o f elemental c o m p o s i t i o n i n f o r m a t i o n i n GC/MS a n a l y s e s . E l e m e n t a l c o m p o s i t i o n m o n i t o r i n g o f GC e f f l u e n t s . I n t h i s approach, t h e o b j e c t i v e i s t o u t i l i z e t h e mass s p e c t r o m e t e r as a h i g h l y s t r u c t u r a l l y s p e c i f i c GC d e t e c t o r f o r q u a n t i t a t i v e s t u d i e s , p a r t i c u l a r l y when the compound o f i n t e r e s t i s p r e s e n t i n a h i g h l y complex m i x t u r e (28-35). The mass s p e c t r o m e t e r i s o p e r a t e d a t some i n c r e a s e d mass r e s o l u t i o n ( e . g . , 10,000) w i t h a s i n g l e a c c u r a t e mass ( c h a r a c t e r i s t i c o f t h e components o f i n t e r e s t ) f o c u s s e d c o n t i n u o u s l y on t h e d e t e c t o r . The i n c r e a s e d mass r e s o l u t i o n aims t o reduce t h e i n t e r ­ f e r e n c e s from o t h e r i o n s h a v i n g t h e same n o m i n a l mass but o f a d i f f e r e n t e l e m e n t a l c o m p o s i t i o n , thus en­ h a n c i n g compound s p e c i f i c i t y w i t h r e s p e c t t o c o - e l u t i n g components from t h e gas chromatograph, i n s t r u m e n t back­ ground, column b l e e d , e t c . E l e m e n t a l c o m p o s i t i o n assignments from s p e c t r a r e ­ c o r d e d a t n o m i n a l mass r e s o l u t i o n . Here, t h e masses o f the r e c o r d e d peaks i n each spectrum a r e d e t e r m i n e d w i t h g r e a t e r t h a n n o m i n a l mass a c c u r a c y , and e l e m e n t a l c o m p o s i t i o n s a r e computed from t h e mass measurements (36; see a l s o 37, 3 8 ) . However, as t h e mass r e s o l u t i o n i s n o t i n c r e a s e ? , problems a r i s e i f t h e nominal mass r e s u l t s from i o n s o f more t h a n one e l e m e n t a l compo­ sition i . e . , i f t h e peak i s a c t u a l l y an u n r e s o l v e d doublet or m u l t i p l e t . This disadvantage represents a p a r t i c u l a r problem i n t h e a n a l y s i s o f complex m i x t u r e s when t h e components o f t h e m i x t u r e may n o t be chromat o g r a p h i c a l l y r e s o l v e d , and more c o m p l i c a t e d s p e c t r a a r e o f t e n produced. The u s e o f a double-beam mass s p e c t r o m e t e r f o r GC/MS a n a l y s e s (39^-41) i n which a mass c a l i b r a n t and t h e sample a r e a n a l y s e d s e p a r a t e l y but s i m u l t a n e o u s l y u s i n g two s e p a r a t e i o n s o u r c e s , a

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Gas Chromatography/High Resolution Mass Spectrometry

123

common mass a n a l y z e r and two s e p a r a t e d e t e c t o r s s h o u l d improve mass measurement a c c u r a c y b u t does n o t s o l v e the problem o f inadequate r e s o l u t i o n o f doublet o r m u l t i p l e t masses i n t h e sample s p e c t r a . A n o t h e r t e c h n i q u e , w h i c h u t i l i z e s a q u a d r u p o l e mass s p e c t r o ­ meter t o " s i m u l t a n e o u s l y p r o d u c e p o s i t i v e and n e g a t i v e i o n s p e c t r a , may a l s o be d e v e l o p e d f o r a c c u r a t e mass measurement i n GC/MS s t u d i e s (£2).

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

1 1

E l e m e n t a l c o m p o s i t i o n assignment from s p e c t r a r e c o r d e d a t i n c r e a s e d mass r e s o l u t i o n . I n t h i s c a s e , t h e aim i s t o c o n t i n u o u s l y r e c o r d complete mass s p e c t r a t h r o u g h o u t a c h r o m a t o g r a p h i c a n a l y s i s a t a s u f f i c i e n t l y h i g h mass r e s o l u t i o n t o e l i m i n a t e u n r e s o l v e d peaks and w i t h s u f ­ f i c i e n t mass measurement a c c u r a c y t o e x a c t l y d e t e r m i n e a l l o f t h e e l e m e n t a l c o m p o s i t i o n s p r e s e n t i n each spec­ trum. I n p r i n c i p l e , t h i s GC/HRMS method c a n be under­ t a k e n u s i n g mass s p e c t r o m e t e r s equipped f o r e i t h e r p h o t o p l a t e d e t e c t i o n (43-45) o r e l e c t r i c a l d e t e c t i o n (44-51, see a l s o 5 2 ) . I n p r a c t i c e , however, i t i s t h e l a t t e r method (which p a r a l l e l s n o m i n a l mass GC/MS o p e r a t i o n ) w h i c h has t h e p o t e n t i a l f o r p r o v i d i n g t h e maximum f l e x i b i l i t y and speed i n terms o f c o m p u t e r i z e d o p e r a t i o n , r e p e t i t i v e spectrum a c q u i s i t i o n , l a r g e spectrum c a p a c i t y , and t h e g e n e r a t i o n o f t o t a l i o n i z a ­ t i o n and mass chromatograms. I t i s t h i s GC/HRMS approach u t i l i z i n g magnetic s c a n n i n g and e l e c t r i c a l d e t e c t i o n w h i c h w i l l be d i s ­ c u s s e d more f u l l y h e r e . I t i s not intended t o describe d e t a i l s o f i n s t r u m e n t d e s i g n and s e t - u p p r o c e d u r e s , b u t r a t h e r t o present f o r the chemist/user the p r i n c i p a l p a r a m e t e r s i n v o l v e d , and t h e i r r e q u i r e m e n t s , l i m i t a ­ t i o n s and i n t e r - r e l a t i o n s h i p s ; i t i s t h i s knowledge t h a t becomes i m p o r t a n t i n p r a c t i c a l terms f o r t h e e f f e c t i v e and e f f i c i e n t i n t e r p r e t a t i o n o f GC/HRMS d a t a . Background The p r i m a r y parameters o f i n t e r e s t i n o b t a i n i n g e l e m e n t a l c o m p o s i t i o n s p e c t r a a r e mass measurement a c c u r a c y (a measure o f a b i l i t y t o a c c u r a t e l y d e t e r m i n e the t r u e mass) and dynamic mass r e s o l u t i o n ( t h e degree t o w h i c h masses c a n be r e s o l v e d under magnetic s c a n n i n g conditions). I n v e s t i g a t i o n o f t h e s e parameters de­ pends, o f c o u r s e , on t h e s p e c i f i c mode o f s p e c t r o m e t e r and computer o p e r a t i o n ; t h e d i s c u s s i o n h e r e i s based on d e v e l o p m e n t a l GC/HRMS s t u d i e s u n d e r t a k e n u s i n g a modi­ f i e d ΑΕΙ MS-902 d o u b l e - f o c u s s i n g mass s p e c t r o m e t e r t o g e t h e r w i t h o n - l i n e , r e a l - t i m e d a t a a c q u i s i t i o n and r e d u c t i o n (47-49, 5 3 ) .

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

124

HIGH

PERFORMANCE

MASS

SPECTROMETRY

I n o u t l i n e , a spectrum i s produced by exponen­ t i a l l y s c a n n i n g over the mass range from h i g h mass t o low mass. The r e s u l t i n g a n a l o g s i g n a l from the de­ t e c t o r a m p l i f i e r i s d i g i t i z e d a t e q u a l time i n t e r v a l s and the d i g i t a l v a l u e s f o r each peak d e t e c t e d above a c o n s t a n t p r e s e t t h r e s h o l d v a l u e a r e saved f o r a n a l y s i s , t o g e t h e r w i t h the a b s o l u t e time o f o c c u r r e n c e o f t h e peak w i t h r e s p e c t t o the s t a r t o f the scan (54). The d i g i t a l v a l u e s f o r each peak d e f i n e the peak p r o f i l e , from w h i c h the peak i n t e n s i t y i s d e t e r m i n e d from i t s a r e a (5J5, the sum o f t h e d i g i t a l v a l u e s f o r t h a t peak) and the peak p o s i t i o n i n time i s d e t e r m i n e d from t h e t i m e computed f o r the peak c e n t e r - o f - g r a v i t y o r cent r o i d (54). Mass/time f u n c t i o n . In the i d e a l c a s e , t h e r e f o r e , t h e mass (M) o f any peak i s an e x p o n e n t i a l f u n c t i o n o f t h e e l a p s e d time ( t ) from the s t a r t o f the s c a n ( F i g u r e 1 ) . That i s , M « "

t / T

(1)

e

,f

where τ i s t h e t i m e c o n s t a n t " o f the e x p o n e n t i a l f u n c ­ t i o n , i . e . , t h e time t a k e n t o scan between any mass, M , and the mass M /e (where e=2.718). At the s t a r t o f the s c a n , t = 0 and M i s e q u a l t o the maximum mass value, M , so t h a t e q u a t i o n (1) becomes x

x

m a x

M = M

max

e"

t / x v

(2) J

S c a n r a t e . The s c a n r a t e i n t h e commonly quoted u n i t s o f seconds/mass decade (a mass decade c o v e r s the range Μ t o M /10) can be d e r i v e d from t h i s e q u a t i o n by con­ s i d e r i n g t h e t i m e d i f f e r e n c e ( t - t i ) f o r two masses Mi and Mi/10: χ

x

2

M

>

M

e

• max "

t l / T

a n d

M

'

-

M

max

β

'*

ΐ Λ

These e q u a t i o n s combine t o g i v e t -ti

= τ l o g 10 = τ (3) G 10 where τ i s the time t o scan one mass decade, i . e . , the s c a n r a t e i n seconds/decade. 2

1 0

R e s o l u t i o n . As n o r m a l l y d e f i n e d , the mass r e s o l u t i o n , R, a t 10% v a l l e y s e p a r a t i o n o f two e q u a l mass peaks i s g i v e n by

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

7.

KIMBLE

Gas Chromatography/High R

125

Resolution Mass Spectrometry

= Μ/ΔΜ

(4)

where M i s t h e n o m i n a l mass and ΔΜ i s t h e a c c u r a t e mass d i f f e r e n c e f o r t h e two mass peaks ( F i g u r e 2 ) . The time d i f f e r e n c e , A t , between t h e maxima o f t h e s e two peaks can be d e t e r m i n e d from t h e r a t e o f change o f mass w i t h time (from e q u a t i o n 2) g i v i n g -M

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

d

M

= —5**

. '

t / T

e

·dt

which approximates t o τ f o r s m a l l v a l u e s o f ΔΜ and A t . (2) g i v e s AM -At M ~T~

D i v i d i n g by e q u a t i o n

and u s i n g e q u a t i o n ( 4 ) , t h i s reduces t o At = " I

(5)

From symmetry c o n s i d e r a t i o n s , t h e time d i f f e r e n c e , A t , between t h e peak maxima i s e q u a l t o t h e time t a k e n t o scan a c r o s s one o f t h e s e peaks between t h e p o i n t s w h i c h a r e a t 5% o f t h e maximum peak h e i g h t ( F i g u r e 2 ) . Thus, i f τ and At a r e known, then t h e r e s o l u t i o n c a n be c a l c u l a t e d f o r each s i n g l e peak t h r o u g h o u t t h e mass range. A l s o , e q u a t i o n ( 5 ) shows t h a t f o r c o n s t a n t mass r e s o l u t i o n , R , and s c a n r a t e τ (=τ l o g 1 0 ) , t h e w i d t h s o f a l l s i n g l e t peaks measured a t 5 1 o f r h e i r maximum h e i g h t s h o u l d be c o n s t a n t . E q u a t i o n s 3 and 5 , combined t o g i v e 1 0

t =

- T

1

0

/ R

log

e

10 ,

(6)

p e r m i t v a r i o u s i n s t r u m e n t parameters t o be c a l c u l a t e d and compared w i t h e x p e r i m e n t a l r e s u l t s . F o r example, f o r a c o n s t a n t r e s o l u t i o n (10% v a l l e y ) o f 10,000 and a s c a n r a t e o f 6 seconds/decade, t h e p e a k w i d t h f o r a l l masses a t t h e i r 5% l e v e l s i s g i v e n by At =

s e c = 260.6 ysec ΙΟ* χ 2.3026

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

PERFORMANCE

MASS

SPECTROMETRY

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

HIGH

ρ _ M . M _ " M -M, ΔΜ ~ 2

Τ

At

Figure 2. Mass resolution (10% valley defi­ nition)

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

7.

KIMBLE

Gas Chromatography/High

Resolution Mass Spectrometry

127

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

For a d i g i t i z a t i o n r a t e o f 50 kHz, t h e d a t a p o i n t s a r e s e p a r a t e d i n time u n i t s o f 1/50,000 s e c o r 20 y s e c , so t h a t i n t h i s example, t h e w i d t h s o f a l l s i n g l e t peaks s h o u l d be d e f i n e d by 260/20 = 13 d a t a p o i n t s between t h e i r 5% l e v e l s . Mass measurement a c c u r a c y . I t i s t h e a b i l i t y t o mea­ sure masses i n a spectrum w i t h h i g h a c c u r a c y t h a t i s the b a s i s f o r d e t e r m i n i n g t h e c o r r e c t e l e m e n t a l com­ p o s i t i o n s . As p e r f e c t l y e x a c t mass measurements cannot be a c h i e v e d i n p r a c t i c e , t h e approach used t o g e n e r a t e a h i g h r e s o l u t i o n spectrum i s t o compute, f o r each measured mass, a l i s t o f p o s s i b l e e l e m e n t a l compo­ s i t i o n s (56) whose a c c u r a t e masses f a l l w i t h i n a s m a l l mass "wincfow" around each measured mass. I n o r d e r t o r e s t r i c t t h e e l e m e n t a l c o m p o s i t i o n l i s t i n g t o somewhat manageable p r o p o r t i o n s , t h e u s e r i s r e q u i r e d t o s e l e c t the t y p e s and maximum numbers o f each element t h a t he c o n s i d e r s r e l e v a n t on c h e m i c a l grounds. He i s a l s o r e q u i r e d t o i n p u t t h e " w i d t h " o f t h e mass window t o be used f o r t h e c a l c u l a t i o n s i . e . , t h e measured mass ± 6ppm, o r a mass window o f 26. The v a l u e o f 6 must be chosen c a r e f u l l y so t h a t the c o r r e c t e l e m e n t a l c o m p o s i t i o n f o r a p a r t i c u l a r measured mass i s i n c l u d e d i n t h e l i s t o f p o s s i b i l i t i e s . I f t h e chosen v a l u e o f 6 i s t o o s m a l l , t h e n t h e c o r r e c t c o m p o s i t i o n may n o t be l i s t e d ; however, i f t h e chosen v a l u e o f δ i s s i g n i f i c a n t l y l a r g e r than necessary, then the r e s u l t i n g l i s t o f c o m p o s i t i o n s r a p i d l y becomes t o o u n w i e l d y t o e v a l u a t e . The s e l e c t i o n o f t h e a p p r o p r i a t e v a l u e o f 6 f o r any p a r t i c u l a r s e t o f i n s t r u m e n t oper­ a t i n g parameters depends d i r e c t l y on a knowledge o f t h e mass measurement a c c u r a c y d e t e r m i n e d e x p e r i m e n t a l l y under t h o s e c o n d i t i o n s . The a t t a i n m e n t o f h i g h mass measurement a c c u r a c y i s dependent upon many f a c t o r s (57-60) such as adequate d e f i n i t i o n o f a c t u a l peak shapes, tTïë absence o f abnormal peakshapes, d e f i n i t i o n o f t h e a c t u a l mass/time f u n c t i o n , s o f t w a r e a l g o r i t h m s f o r mass c a l c u l a t i o n , and mass r e s o l u t i o n . The dependency on mass r e s o l u t i o n r e l a t e s t o t h e p r e s e n c e o f u n r e s o l v e d peak d o u b l e t s o r m u l t i p l e t s ( F i g u r e 3 ) ; f o r these peakshapes, t h e p o s i t i o n o f t h e c e n t e r - o f - g r a v i t y o f t h e o v e r a l l peak p r o f i l e i s i n a c c u r a t e , r e s u l t i n g i n i n a c c u r a t e mass measurements f o r t h e i o n s p e c i e s a c t u a l l y p r e s e n t . I n g e n e r a l , improved mass measurements c a n be o b t a i n e d by a v e r a g i n g t h e measurements from s e v e r a l s p e c t r a ( 6 1 , 6 2 ) . T h i s p r o c e s s r e d u c e s t h e e f f e c t o f t h e random e r r o r s a s s o c i a t e d w i t h a c c u r a t e mass d e t e r m i n a t i o n s , and, t h u s , a s m a l l e r mass window c a n be used i n t h e

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

128

HIGH

PERFORMANCE

MASS

SPECTROMETRY

generation o f p o s s i b l e elemental compositions f o r averaged mass measurements. S t a t i s t i c a l l y , the mass measurement a c c u r a c y would be e x p e c t e d t o be improved by a f a c t o r o f /n where η i s t h e number o f measurements averaged f o r a p a r t i c u l a r a c c u r a t e mass.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

P r a c t i c a l C o n s i d e r a t i o n s and t h e E v a l u a t i o n o f Instrument Performance? GC and f a s t - s c a n n i n g HRMS. I n p r a c t i c a l t e r m s , t h e a b i l i t y t o d e t e r m i n e a c c u r a t e mass measurements f o r s p e c t r a r e c o r d e d from c h r o m a t o g r a p h i c e f f l u e n t s c e n t e r s on the performance o f t h e f a s t - s c a n n i n g h i g h r e s o l u t i o n mass s p e c t r o m e t e r and i t s d a t a system (57, 63^-67). As f o r GC/LRMS, t h e gas chromatograph and GC/MS i n t e r f a c e may be o f v a r i o u s d e s i g n s p r o v i d e d t h a t : a) the i n c r e a s e d p r e s s u r e i n t h e i o n s o u r c e due t o the c a r r i e r gas p e r m i t s o p e r a t i o n o f the mass spectrometer ; b) each c h r o m a t o g r a p h i c peak i s o f s u f f i c i e n t d u r a t i o n so t h a t s p e c t r a w i l l be r e c o r d e d f o r each component; c) a s u f f i c i e n t amount o f each component i s i n t r o ­ duced v i a t h e GC i n l e t system i n t o t h e i o n s o u r c e so t h a t r e c o g n i z a b l e s p e c t r a c a n be recorded. As t h e s e d e s i g n c o n s i d e r a t i o n s have been t h e s u b j e c t o f many p u b l i c a t i o n s ( e . g . , 6 8 ) , o n l y the most i m p o r t a n t a s p e c t s f o r GC/HRMS w i l lïïe"d i s c u s s e d f u r t h e r h e r e . The main parameters f o r GC/HRMS o p e r a t i o n a r e summarized i n T a b l e 1; many o f t h e s e p a r a m e t e r s , o f c o u r s e , a l s o p e r t a i n t o GC/LRMS a n a l y s e s , b u t they become somewhat more c r i t i c a l f o r t h e c o n c o m i t a n t measurement o f a c c u r a t e masses under f a s t - s c a n n i n g h i g h r e s o l u t i o n c o n d i t i o n s . The t a b l e a l s o i n d i c a t e s t h e p r i m a r y optimum r e q u i r e m e n t s f o r each parameter. F o r s e v e r a l o f these, there are c o n f l i c t i n g requirements due t o t h e i n t e r - r e l a t i o n s h i p s t h a t e x i s t between t h e d i f f e r e n t p a r a m e t e r s , and t h e a c t u a l v a l u e s u t i l i z e d f o r a n a l y s e s w i l l n e c e s s a r i l y be a s e t o f v a l u e s t h a t a c h i e v e t h e optimum compromise. Scan c y c l e t i m e . The o v e r a l l c y c l e time f o r r e c o r d i n g a s i n g l e spectrum i s a f u n c t i o n o f the s c a n r a t e , t h e mass r a n g e , and t h e time r e q u i r e d t o r e s e t the magnetic f i e l d between t h e minimum and maximum mass v a l u e s . As d e s c r i b e d above, t h e t h e o r e t i c a l s c a n r a t e , τ , i s a c o n s t a n t and i s d i r e c t l y p r o p o r t i o n a l t o t h e time c o n s t a n t o f t h e e x p o n e n t i a l f u n c t i o n , τ. I n p r a c t i c e , 1 0

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

7.

KIMBLE

Gas Chromatography/High Resolution Mass Spectrometry

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

T a b l e 1,

129

P r i m a r y C o n s i d e r a t i o n s f o r GC/HRMS

Parameter

Requirement

mass measurement accuracy

maximize t o l i m i t number o f p o s s i b l e e l e m e n t a l comp o s i t i o n s generated

dynamic mass resolution

maximize t o reduce number o f u n r e s o l v e d p e a k s , hence i n c r e a s e mass measurement accuracy minimize t o increase sensitivity

sensitivity

maximize t o reduce sample quantity requirements

scan t i m e ( f u n c t i o n of mass range and s c a n r a t e )

m i n i m i z e scan time t o p r e s e r v e chromatographic r e s o l u t i o n i n t o t a l i o n i z a t i o n and mass chromatograms maximize mass range f o r u s e f u l information maximize s c a n r a t e (sec/decade) for increased s e n s i t i v i t y and mass measurement accuracy

magnet r e s e t t i m e

m i n i m i z e t o reduce "wasted" t i m e and p r e s e r v e chromatographic resolution i n t o t a l i o n i z a t i o n and mass chromatograms

GC peak e l u t i o n time

m i n i m i z e f o r h i g h e r chromatographic r e s o l u t i o n maximize w i t h r e s p e c t t o s c a n c y c l e time ( i . e . , s c a n time + magnet r e s e t time) to ensure s u f f i c i e n t time f o r r e c o r d i n g mass s p e c t r a

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

130

HIGH

PERFORMANCE

MASS SPECTROMETRY

the mass/time f u n c t i o n i s n o t p e r f e c t o v e r t h e whole mass range; t h a t i s , τ i s n o t c o n s t a n t b u t v a r i e s w i t h mass as i l l u s t r a t e d i n F i g u r e 4. The use o f an i n t e r ­ n a l mass s t a n d a r d such as p e r f l u o r o k e r o s i n e ( P F K ) , w h i c h c o n t r i b u t e s peaks o f known a c c u r a t e mass t h r o u g h ­ out t h e mass r a n g e , p r o v i d e s a means f o r d e t e r m i n i n g the a c t u a l mass/time f u n c t i o n over s m a l l s e c t i o n s o f the mass range. Thus, a v a l u e o f τ can be a s s i g n e d t o each o f t h e c a l i b r a t i o n masses, and from each o f t h e s e v a l u e s t h e measured s c a n r a t e , τ , i n seconds/decade can be c a l c u l a t e d from e q u a t i o n 3. The v a r i a t i o n o b s e r v e d f o r a n o m i n a l s c a n r a t e o f 6 seconds/decade f o l l o w s t h e p r o f i l e f o r τ shown i n F i g u r e 4, and ranges between about 6.5 seconds/decade a t m/e 580 and 5.5 seconds/decade a t m/e 80; t h e a c t u a l o v e r a l l s c a n t i m e between m/e 800 and m/e 65 i s about 7.2 seconds (48, 49). I t s h o u l d be n o t e d t h a t t h e upper s e c t i o n oF~~the mass range (~ m/e 800-650) i s n o t e a s i l y u s a b l e f o r ac­ c u r a t e mass a s s i g n m e n t s due t o t h e low i n t e n s i t y o f t h e PFK c a l i b r a t i o n masses i n t h i s r e g i o n , and t h e r a p i d r a t e o f change o f τ i n t h i s r e g i o n p r e c l u d e s a c c u r a t e e x t r a p o l a t i o n o f τ above t h e h i g h e s t r e l i a b l e c a l i ­ b r a t i o n mass. The t i m e t a k e n t o r e t u r n t o t h e i n i t i a l maximum mass v a l u e f o r t h e n e x t scan ( t h e magnet r e s e t t i m e ) s h o u l d , o f c o u r s e , be m i n i m i z e d as f a r as p o s s i b l e t o r e d u c e "wasted" t i m e and m i n i m i z e t h e o v e r a l l scan c y c l e t i m e . As r e p o r t e d p r e v i o u s l y (£8), magnet c i r ­ c u i t m o d i f i c a t i o n s u n d e r t a k e n on a MS-902 mass spec­ t r o m e t e r have p e r m i t t e d t h i s t i m e t o be r e d u c e d t o 2.4 seconds w h i l s t m a i n t a i n i n g mass c a l i b r a t i o n up t o - m/e 650 f o r t h e subsequent s c a n . W i t h t h e s e i n s t r u m e n t p a r a m e t e r s , t h e r e f o r e , t h e o v e r a l l scan c y c l e t i m e ( i . e . , s c a n t i m e + magnet r e s e t time) i s j u s t under 10 seconds.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

1 0

GC peak e i u t i o n t i m e . The v a l u e f o r t h e o v e r a l l scan c y c l e t i m e i s i m p o r t a n t f o r t h e a d j u s t m e n t o f t h e gas c h r o m a t o g r a p h i c o p e r a t i n g parameters ( e . g . , f l o w r a t e , column t e m p e r a t u r e and programming r a t e ) . In order to e n s u r e t h a t mass s p e c t r a can be r e c o r d e d f o r any GC peak, t h e t i m e f o r e i u t i o n o f a peak has t o be a d j u s t e d so t h a t i t i s a t l e a s t t w i c e t h e scan c y c l e t i m e . As i l l u s t r a t e d i n F i g u r e 5, t h e minimum f a c t o r o f two d e r i v e s from t h e unknown time r e l a t i o n s h i p between t h e s t a r t o f a s c a n and t h e commencement o f e i u t i o n o f a GC peak. I t i s n e c e s s a r y , t h e r e f o r e , i n t h i s c a s e , t o ensure t h a t a l l c h r o m a t o g r a p h i c peaks e l u t e i n t o t h e mass s p e c t r o m e t e r i o n s o u r c e over a time p e r i o d o f a t

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

KIMBLE

Gas Chromatography/High

Resolution Mass Spectrometry

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

Mass A

Centroid of Mass A

Figure 3. Effect of inadequate mass resolution on mass measurement ac­ curacy

Figure 4. The variation of τ as a function of mass

Figure 5. The extreme relationships between scan cycle time and GC peak eiution time; scan cycle time equals one-half of the GC peak eiution time

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

132

HIGH

PERFORMANCE

MASS

SPECTROMETRY

l e a s t 20 seconds so t h a t a t l e a s t one u s a b l e spectrum can be r e c o r d e d . The u s e o f a GC peak e i u t i o n time o f j u s t t w i c e the scan c y c l e time r e s u l t s i n mass chromatograms which show a v a r i e t y o f p r o f i l e s from t h e same GC peak ( s e e F i g u r e 6 ) . S i m i l a r f e a t u r e s may a l s o be seen w i t h t o t a l i o n i z a t i o n chromatograms, which c a n c o m p l i c a t e the matching o f such o u t p u t w i t h gas chromatograms r e c o r d e d by a flame i o n i z a t i o n d e t e c t o r ; q u a n t i t a t i v e comparisons a r e a l s o more d i f f i c u l t t o u n d e r t a k e w i t h such v a r i a t i o n s i n peak h e i g h t s . The scan c y c l e t i m e , t h e r e f o r e , d i r e c t l y l i m i t s t h e o v e r a l l gas chromato­ g r a p h i c performance t h a t c a n be u t i l i z e d e f f e c t i v e l y . Mass measurement a c c u r a c y . The a b i l i t y t o a c c u r a t e l y measure masses under GC/HRMS c o n d i t i o n s i s , o f c o u r s e , the o b j e c t o f t h e e x e r c i s e . However, i t i s t h e i n t r o ­ d u c t i o n o f t h e sample v i a a gas chromatograph t h a t p r e s e n t s major problems f o r d e t e r m i n i n g a c c u r a t e mas­ s e s . Because o f t h e s h o r t r e s i d e n c e time o f each component i n t h e i o n s o u r c e , a w e l l - d e f i n e d peak p r o ­ f i l e f o r each mass has t o be d e t e r m i n e d i n a v e r y s h o r t time (~ 260 psec a t a s c a n r a t e o f 6 seconds/decade and a r e s o l u t i o n o f 10,000). A l s o , o n l y one o r two r e a ­ s o n a b l y i n t e n s e s p e c t r a c a n be e x p e c t e d t o be r e c o r d e d from each component. T h i s v i r t u a l l y e l i m i n a t e s t h e a b i l i t y t o average the measured masses t o improve a c c u r a c y , and, t h e r e f o r e , i t i s n e c e s s a r y t h a t h i g h a c c u r a c y measurements s h o u l d be r e l i a b l y produced f o r each i n d i v i d u a l spectrum. The l a r g e volume o f d a t a g e n e r a t e d from a GC/HRMS a n a l y s i s a l s o demands a h i g h degree o f r e l i a b i l i t y as d e t a i l e d i n v e s t i g a t i o n s i n t o anomalous f e a t u r e s a r e e x t r e m e l y time-consuming. I n a d d i t i o n t o t h e g e n e r a t i o n o f e l e m e n t a l com­ p o s i t i o n l i s t i n g s f o r measured a c c u r a t e masses, a d e t a i l e d knowledge o f a t t a i n a b l e mass measurement a c c u r a c y i s a l s o i m p o r t a n t f o r GC/HRMS s t u d i e s i n o r d e r t o g e n e r a t e a c c u r a t e mass chromatograms ( o r e l e m e n t a l c o m p o s i t i o n chromatograms) t o l o c a t e t h e e i u t i o n times o f s p e c i f i c components o r compound c l a s s e s f o r f u r t h e r d e t a i l e d s t u d y (£7). I n t h i s c a s e , the u s e r s e l e c t s the e l e m e n t a l c o m p o s i t i o n o f i n t e r e s t and t h e c o r ­ r e s p o n d i n g a c c u r a t e mass i s c a l c u l a t e d . An a p p r o p r i a t e mass window (δ) i s s p e c i f i e d and, f o r each spectrum, the i n t e n s i t y o f t h e a c c u r a t e mass which i s l o c a t e d w i t h i n t h i s s p e c i f i e d mass window around t h e c a l c u l a t e d mass, i s saved. The i n t e n s i t i e s p l o t t e d as a f u n c t i o n o f s c a n number c o n s t i t u t e t h e e l e m e n t a l c o m p o s i t i o n o r a c c u r a t e mass chromatogram. Here a g a i n , s e l e c t i o n o f t h e s i z e o f the mass window depends on knowledge o f t h e

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

7.

KIMBLE

Gas Chromatography/High

Resolution Mass Spectrometry

133

mass measurement a c c u r a c y ; t h e c h o i c e i s c r i t i c a l t o ensure t h a t t h e c o r r e c t masses a r e l o c a t e d b u t t h a t " e x t r a n e o u s " masses a r e e x c l u d e d as f a r as p o s s i b l e . M e n t i o n s h o u l d a l s o be made o f t h e g e n e r a t i o n o f nomin a l mass s p e c t r a and chromatograms from a c c u r a t e mass data. Here t h e i n t e n s i t i e s o f a l l a c c u r a t e masses t h a t f a l l w i t h i n t h e mass range between (X.0000-0.4000) amu and (X.0000+0.6000) amu a r e summed t o g i v e t h e i n t e n s i t y o f n o m i n a l mass X. The mass measurement a c c u r a c y becomes i m p o r t a n t f o r t h e a c c u r a t e masses t h a t may l i e c l o s e t o t h e l i m i t s o f t h i s r a n g e , and cons i d e r a t i o n s h o u l d be g i v e n t o t h e c o n v e n t i o n s used f o r d e f i n i n g t h e n o m i n a l mass o f an i o n ( 6 9 ) . In v i e w o f a l l t h e s e b a s i c c o n s i d e r a t i o n s , i t i s e s s e n t i a l t h a t a d e t a i l e d e v a l u a t i o n o f a c c u r a t e mass measurement c a p a b i l i t y s h o u l d be u n d e r t a k e n f o r a g i v e n s e t o f o p e r a t i n g parameters t o ensure r e l i a b l e s i n g l e scan s p e c t r a and a c c u r a t e mass chromatograms. The p r a c t i c a l d e t e r m i n a t i o n o f mass measurement accuracy i s undertaken f o r a p a r t i c u l a r s e t o f i n s t r u ment o p e r a t i n g p a r a m e t e r s by r e c o r d i n g a number o f s p e c t r a o f a s e l e c t e d compound whose p r i n c i p a l masses are u n i q u e l y known. Because o f t h e c o n t i n u o u s v a r i a t i o n i n sample f l o w r a t e w h i c h r e s u l t s from samples i n t r o d u c e d v i a a gas chromatograph, t h e b a s i c e v a l u a t i o n i s made under GC/HRMS o p e r a t i n g c o n d i t i o n s ( i . e . , w i t h normal c a r r i e r gas f l o w r a t e , column temp e r a t u r e , e t c . ) , but w i t h i n t r o d u c t i o n o f the e v a l u a t i o n compound v i a a b a t c h i n l e t system a t c o n s t a n t sample f l o w r a t e . A c t u a l GC/HRMS e v a l u a t i o n c a n t h e n be checked by i n t r o d u c i n g a known compound v i a t h e gas c h r o m a t o g r a p h i c i n l e t and v e r i f y i n g t h a t t h e r e s u l t i n g mass measurements a r e c o n s i s t e n t w i t h t h e b a s i c e v a l u a t i o n f o r s i m i l a r masses o f s i m i l a r i n t e n s i t i e s . The compound s e l e c t e d f o r e v a l u a t i o n o f mass measurement a c c u r a c y s h o u l d produce i o n masses t h a t a r e s i n g l e t peaks w e l l - s e p a r a t e d from o t h e r masses a t t h e o p e r a t i n g mass r e s o l u t i o n . I d e a l l y , t h e y s h o u l d a l s o a d e q u a t e l y c o v e r t h e mass range o f i n t e r e s t , and s h o u l d be o f a p p r o x i m a t e l y t h e same r e l a t i v e i n t e n s i t i e s t o p e r m i t e v a l u a t i o n o f mass measurement a c c u r a c y as a f u n c t i o n o f b o t h mass and i n t e n s i t y . In p r a c t i c e , a compromise has t o be made w i t h r e s p e c t t o t h e s e l a t t e r r e q u i r e m e n t s , and a v a r i e t y o f compounds f o r t h i s purpose have been r e p o r t e d i n t h e l i t e r a t u r e ( e . g . , p e r c h l o r o b u t a d i e n e , £1, and h e p t a c o s a f l u o r o t r i b u t y l amine, 48,49). E v a l u a t i o n o f t h e measurements o b t a i n e d f o r t h e s e l e c t e d masses from s e v e r a l scans can be u n d e r t a k e n by a v a r i e t y o f r e l a t e d methods. One approach (61)

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

134

HIGH

PERFORMANCE

MASS

SPECTROMETRY

described the production o f a histogram which p l o t s the p e r c e n t a g e o f t h e t o t a l number o f mass measurements as a f u n c t i o n o f t h e i r mass measurement e r r o r s (the d i f ­ f e r e n c e between t h e measured mass and t h e t r u e mass). T h i s method, however, s u f f e r s from t h e drawback t h a t o n l y a l i m i t e d number o f scans were e v a l u a t e d , and t h e r e s u l t i n g h i s t o g r a m was g e n e r a t e d from c o m p o s i t e e r r o r measurements from i o n s o f d i f f e r i n g masses and a l s o differing relative intensities. As GC/HRMS a n a l y s e s n e c e s s a r i l y i n v o l v e t h e p r o ­ d u c t i o n o f l a r g e numbers o f s p e c t r a and r e q u i r e a c o r r e s p o n d i n g computer c a p a b i l i t y , a more d e t a i l e d s t a t i s t i c a l e v a l u a t i o n c a n be u n d e r t a k e n i f a l a r g e number ( e . g . , > 100) o f s p e c t r a a r e r e c o r d e d and e v a l ­ uated automatically. I n t h i s approach (7£), f o r each s e l e c t e d a c c u r a t e mass, M , t o be e v a l u a t e d , t h e mea­ s u r e d mass i s l o c a t e d i n each spectrum w i t h i n an e s ­ t i m a t e d mass window around t h e t r u e mass, Mt. F o r each v a l u e o f M , s e v e r a l p a r a m e t e r s a r e c a l c u l a t e d from a l l of the recorded s p e c t r a : a) The number o f s p e c t r a (N) f o r w h i c h t h e measured mass was found w i t h i n t h e mass window. (The e s t i m a t e d mass window s h o u l d be chosen so t h a t i t r e p r e s e n t s t h e a b s o l u t e maximum mass measure ment e r r o r t h a n c a n be t o l e r a t e d f o r s p e c t r a l interpretation e.g., ±20 ppm. Thus, f o r a l l v a l u e s o f Μ^, Ν s h o u l d c o r r e s p o n d t o t h e number o f s p e c t r a r e c o r d e d ; i . e . , a l l o f t h e measure ments w i l l be w i t h i n 20 ppm o f t h e i r t r u e v a l ­ ue) . b) The mean mass e r r o r , E. ( T h i s may be p o s i t i v e or n e g a t i v e w i t h r e s p e c t t o M t ) . c) The s t a n d a r d d e v i a t i o n o f t h e mass measurement e r r o r s (σ ppm). d) The s t a n d a r d d e v i a t i o n o f t h e mean mass e r r o r (o = σ//Ν). e) Mean peak i n t e n s i t y . f ) S t a n d a r d d e v i a t i o n o f t h e i n t e n s i t y measure­ ments. (For a d d i t i o n a l e v a l u a t i o n o f i n s t r u m e n t p e r f o r m a n c e , mean and s t a n d a r d d e v i a t i o n v a l u e s a r e a l s o c a l c u l a t e d f o r a v a r i e t y o f o t h e r p a r a m e t e r s a s s o c i a t e d w i t h each s e l e c t e d mass; t h e s e i n c l u d e τ, W. , W., , R, as ex­ p l a i n e d below). * These v a l u e s p e r m i t a more d e t a i l e d e v a l u a t i o n o f the r e l a t i v e e f f e c t s o f t h e s y s t e m a t i c and random e r r o r s a s s o c i a t e d w i t h mass measurement a c c u r a c y . I n the absence o f s y s t e m a t i c e r r o r s , t h e mean e r r o r Ε s h o u l d approach zero ( i . e . , t h e mean measured mass s h o u l d e q u a l t h e t r u e mass), and t h e r e i s a 99.78% t

t

m

0

b

z

n

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

7.

KIMBLE

Gas Chromatography/High

Resolution Mass Spectrometry

135

chance t h a t t h e mean mass w i l l be w i t h i n 3 o o f t h e t r u e v a l u e . A l s o , f o r a normal d i s t r i b u t i o n , 99.78% o f t h e measurements f o r each mass s h o u l d f a l l w i t h i n 3σ o f the mean measured v a l u e , i . e . , v i r t u a l l y a l l o f t h e measurements s h o u l d f a l l w i t h i n a s p r e a d o f 6σ ppm. A s u i t a b l e c h o i c e f o r d e t e r m i n i n g t h e mass window (2δ) f o r e l e m e n t a l c o m p o s i t i o n l i s t i n g s and chromatograms would r e s u l t , t h e r e f o r e , from u s i n g a δ v a l u e e q u a l t o the sum o f t h e maximum v a l u e o f 3σ f o r t h e masses c o n s i d e r e d , and t h e maximum a b s o l u t e v a l u e o f Ε f o r t h e same masses (see F i g u r e 7 ) . The use o f t h e 3σ v a l u e s ( c o r r e s p o n d i n g t o 99.78% of t h e measurements f o r a normal d i s t r i b u t i o n ) r a t h e r t h a n 2σ v a l u e s (95% o f t h e measurements) becomes im­ p o r t a n t f o r GC/HRMS a n a l y s e s because t h e l a r g e number of s p e c t r a ( s e v e r a l hundred, each p o s s i b l y c o n t a i n i n g s e v e r a l hundred a c c u r a t e m a s s e s ) , t h a t a r e g e n e r a l l y r e c o r d e d n e c e s s i t a t e s a h i g h degree o f r e l i a b i l i t y as w e l l as a c c u r a c y . I n g e n e r a l , t h e number o f e l e m e n t a l c o m p o s i t i o n s computed f o r a t y p i c a l measured mass (M) becomes unmanageable f o r a mass window l a r g e r t h a n about M ± 15 ppm, p a r t i c u l a r l y f o r more complex mole­ c u l e s t h a t may c o n t a i n many t y p e s o f atoms ( e . g . , C, C , H, N, 0, S i , F ) . Large mass measurement e r r o r s are a l s o p r o b l e m a t i c f o r the g e n e r a t i o n o f elemental c o m p o s i t i o n chromatograms s i n c e t h e mass measurement d i s t r i b u t i o n (spread) may o v e r l a p w i t h t h e d i s t r i b u t i o n of measured masses f o r a n o t h e r e l e m e n t a l c o m p o s i t i o n p r e s e n t i n some o f t h e s p e c t r a . Thus, i n t e n s i t i e s o f e x t r a n e o u s masses may be i n c l u d e d i n t h e f i n a l o u t p u t even though t h e " c o r r e c t " mass window has been s e l e c ­ ted, and t h i s would r e s u l t i n one o r more a r t i f a c t peaks i n t h e e l e m e n t a l c o m p o s i t i o n chromatogram. I n p r a c t i c a l terms f o r s p e c t r a l i n t e r p r e t a t i o n , i t i s a l s o i m p o r t a n t t o know t h e minimum a b s o l u t e mass i n t e n s i t y v a l u e f o r w h i c h t h e d e s i r e d mass measurement a c c u r a c y can be a s s u r e d ; d a t a o u t p u t c o n t a i n i n g l o w e r i n t e n s i t y v a l u e s c a n t h e n be e v a l u a t e d w i t h a p p r o p r i a t e c a u t i o n . F i n a l l y , i t i s i m p o r t a n t t o remember t h a t t h e c o n s i d e r a t i o n o f mass measurement a c c u r a c y r e l a t e s o n l y to w e l l - d e f i n e d normal peak shapes. Any s i g n i f i c a n t d i s t o r t i o n o f such peak shapes, such as u n r e s o l v e d d o u b l e t s , s h o u l d be r e c o g n i z e d and t h e e f f e c t on mass measurement a c c u r a c y t a k e n i n t o a c c o u n t .

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

m

1 3

Sensitivity. I n GC/HRMS, an e v a l u a t i o n o f o v e r a l l s y s ­ tem s e n s i t i v i t y must c o n s i d e r n o t o n l y t h e d e t e c t i o n o f s p e c i f i e d masses from a g i v e n q u a n t i t y o f a component i n j e c t e d i n t o t h e gas chromatograph (as f o r GC/LRMS), but a l s o t h e mass measurement a c c u r a c y t h a t c a n be

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

HIGH

PERFORMANCE

MASS

SPECTROMETRY

Mass Chromatoçram

30 NUMBER

Figure 6. Representation of an accurate mass chromatogram for equal GC peak shapes; scan cycle time equals one-half of the GC peak eiution time

Figure 7. The evaluation of mass measurement accuracy; M = true mass, M = mean measured mass, Ε = mean error, σ = standard deviation of the measured masses. t

m

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

7.

KIMBLE

Gas Chromatography/High

Resolution Mass Spectrometry

137

o b t a i n e d f o r t h e s e masses. T h i s more s t r i n g e n t c r i ­ t e r i o n r e s u l t s i n somewhat l e s s s e n s i t i v i t y compared t o d e t e c t i n g t h e p r e s e n c e o f a p a r t i c u l a r mass, s i n c e t h e peak p r o f i l e s must be s u f f i c i e n t l y w e l l - d e f i n e d t h a t the peak c e n t e r - o f - g r a v i t y o r c e n t r o i d can be a c c u ­ r a t e l y and r e l i a b l y d e t e r m i n e d . S e v e r a l d i s c u s s i o n s have appeared i n t h e l i t e r a ­ t u r e c o n c e r n i n g the t h e o r e t i c a l a s p e c t s o f s e n s i t i v i t y and mass measurement a c c u r a c y (57_, 7 1 ) . B a s i c a l l y , t h e l i m i t i n g f a c t o r concerns the s t a t i s t i c s a s s o c i a t e d w i t h the i o n a r r i v a l times a t the d e t e c t o r , and t h i s d e t e r ­ mines how w e l l the r e s u l t i n g d i g i t i z e d peakshape i s d e f i n e d ; t h e f r e q u e n c y o f d i g i t i z a t i o n o r the number o f d a t a p o i n t s / m a s s peak i s a l s o a c o n s i d e r a t i o n here ( 7 2 ) . I t has been p r e d i c t e d (71) t h a t f o r a mass r e s o l u t i o n o f 10,000, mass measurement a c c u r a c i e s w i t h i n 10 ppm ( = 3σ, o r 99.78% c o n f i d e n c e l e v e l ) s h o u l d be a c h i e v e d w i t h 30 i o n s / p e a k , and w i t h i n 17 ppm (=3σ) f o r 10 i o n s / p e a k . E s t i m a t e s made from a c t u a l mass measure­ ments (73) i n d i c a t e t h a t 10-15 i o n s / p e a k a r e r e q u i r e d t o g i v e a mass measurement a c c u r a c y o f 30 ppm (=3σ). The r e l a t i o n s h i p between t h e a b s o l u t e peak i n t e n s i t y , I (the sum o f t h e d i g i t a l v a l u e s f o r a peak p r o f i l e ) , and the number o f i o n s , N, c o m p r i s i n g t h a t peak may be d e t e r m i n e d (61) from the e q u a t i o n I . Ν "

r

ÎRef

where G i s t h e g a i n o f t h e m u l t i p l i e r the primary v a r i a b l e under normal o p e r a t i n g c o n d i t i o n s . (the other parameters a r e : R = input r e s i s t a n c e of the m u l t i p l i e r a m p l i f i e r i n ohms, e = charge on an e l e c t r o n i n cou­ lombs, f = f r e q u e n c y o f d i g i t i z a t i o n i n s e c " , ν = v o l t a g e i n c r e m e n t r e p r e s e n t e d by one b i n a r y " b i t " on the A/D c o n v e r t e r i n v o l t s ) . As w i t h GC/LRMS, i t i s i m p o r t a n t t h a t t h e o v e r a l l s e n s i t i v i t y i s d e t e r m i n e d f o r a s e l e c t e d component i n t r o d u c e d t h r o u g h t h e gas chromatograph, p a r t i c u l a r l y t o t a k e i n t o a c c o u n t any l o s s e s t h a t may o c c u r when using a molecular separator i n t e r f a c e . I t i s also n e c e s s a r y f o r GC/HRMS t h a t one o r more i o n masses ( e . g . , basepeak and/or m o l e c u l a r i o n , e t c . ) a r e s e ­ l e c t e d i n o r d e r t o s p e c i f y the mass measurement ac­ c u r a c y t h a t can be o b t a i n e d from an i n j e c t i o n o f a g i v e n amount o f the compound. In a d d i t i o n , the l i m i t e d number o f h i g h r e s o l u t i o n s p e c t r a t h a t can be r e c o r d e d f o r any p a r t i c u l a r GC peak under GC/HRMS c o n d i t i o n s a l s o has t o be c o n s i d e r e d . In t h e l i m i t i n g c a s e , when 1

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

138

HIGH

PERFORMANCE

MASS SPECTROMETRY

the scan c y c l e time ( e . g . , -10 seconds) i s about oneh a l f o f t h e GC peak e i u t i o n t i m e , t h e maximum r e c o r d e d i n t e n s i t y f o r any mass may be e x p e c t e d t o v a r y by a f a c t o r o f about two (see F i g u r e 6 ) , depending on t h e time o f s t a r t i n g a scan i n r e l a t i o n t o t h e time when the GC peak b e g i n s t o e l u t e a r e l a t i o n s h i p which i s unknown i n p r a c t i c e . F o r an i n j e c t i o n o f Ν ng o f t h e s e l e c t e d component, t h e maximum sample f l o w r a t e a t t h e top o f t h e GC peak c o r r e s p o n d s t o about N/10 ng/sec f o r a GC peak e i u t i o n time o f 20 seconds. Measured mass i n t e n s i t i e s , t h e r e f o r e , w i l l be p r o p o r t i o n a l t o sample f l o w r a t e s between about N/20 and N/10 ng/sec. I f the v a r i a t i o n o f mass measurement a c c u r a c y w i t h r e s p e c t t o a range o f measured i n t e n s i t i e s has been d e t e r m i n e d under t h e same c o n d i t i o n s , t h e n an assessment can be made f o r t h e mass measurement a c c u r a c y e x p e c t e d f o r s e l e c t e d masses r e c o r d e d from an i n j e c t i o n o f Ν ng under a g i v e n s e t o f e x p e r i m e n t a l c o n d i t i o n s ( i . e . , s c a n r a t e , mass r e s o l u t i o n , m u l t i p l i e r g a i n , e t c . ) . Dynamic mass r e s o l u t i o n . A knowledge o f t h e a c t u a l mass r e s o l u t i o n o f each r e c o r d e d peak i s an i m p o r t a n t measure o f t h e o v e r a l l p e r f o r m a n c e o f a f a s t - s c a n n i n g h i g h r e s o l u t i o n mass s p e c t r o m e t e r , and d i r e c t l y r e l a t e s t o t h e a b i l i t y t o a c c u r a t e l y measure masses. A l s o , i t i s f r e q u e n t l y n e c e s s a r y t o be a b l e t o d e t e r m i n e whether o r n o t c e r t a i n mass d o u b l e t s would be e x p e c t e d t o be r e s o l v e d under t h e i n s t r u m e n t c o n d i t i o n s used. As d i s c u s s e d i n t h e s e c t i o n above on mass r e ­ s o l u t i o n , t h e mass r e s o l u t i o n (10% v a l l e y d e f i n i t i o n ) o f any peak c a n be d e t e r m i n e d from i t s w i d t h a t 5% maximum peak h e i g h t (W51) and τ ( e q u a t i o n 6 ) , where b o t h W51 and τ a r e measured i n t h e same u n i t s ( e . g . , seconds o r number o f d a t a p o i n t s ) . The a c t u a l v a r i a ­ t i o n o f τ t h r o u g h o u t t h e mass range (see F i g u r e 4) means t h a t t h e r e s o l u t i o n c a l c u l a t i o n f o r a p a r t i c u l a r peak s h o u l d i n c o r p o r a t e t h e a p p r o p r i a t e v a l u e o f τ f o r t h e mass peak c o n s i d e r e d ; t h i s v a l u e i s i n t e r p o l a t e d f o r each peak d u r i n g t h e mass assignment p r o c e s s based on t h e v a l u e s c a l c u l a t e d f o r t h e s u r r o u n d i n g c a l i ­ b r a t i o n masses. The d e t e r m i n a t i o n o f t h e a c t u a l peak w i d t h ¥5% f o r any peak i s somewhat more i n v o l v e d as i t cannot be d i r e c t l y measured from t h e s e t o f d i g i t a l v a l u e s t h a t c o n s t i t u t e a peak p r o f i l e . F o r i d e a l (Gaussian) peakshapes, however, i t i s p o s s i b l e t o c a l c u l a t e in terms o f t h e peak a r e a , A ( t h e sum o f t h e d i g i t a l v a l u e s f o r t h a t peak p r o f i l e ) , and t h e maximum peak h e i g h t , Η ( t h e maximum d i g i t a l v a l u e f o r t h e peak profile). From t h e g e n e r a l e q u a t i o n f o r a G a u s s i a n

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

7.

Gas Chromatography/High

KIMBLE

Resolution Mass Spectrometry

f u n c t i o n , t h e w i d t h a t 5% o f t h e maximum peak ( i . e . , a t H/20) c a n be shown t o be g i v e n by W

height

= 2σ y/1 log 2Ô = 4.8955 σ

5%

139

(7)

e

where σ i s t h e s t a n d a r d d e v i a t i o n o f t h e f u n c t i o n . a r e a A under t h i s c u r v e i s g i v e n by

The

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

A = Ησ/27 where Η i s t h e maximum peak h e i g h t , so t h a t , e l i m i n a ­ t i n g σ gives W

5I

ïïj

=

ï

l o

Se

2 0

1

- '

9 5 3

ff

( c f . W51 = 1.90 A/H from c o n s i d e r a t i o n o f a t r i a n g u l a r peakshape). Therefore, the r e s o l u t i o n ( i . e . , 10% v a l l e y d e f i n i t i o n ) i s g i v e n by R

5%

=

i t

=

=

? *

( 9 )

(where τ i s measured i n number o f d a t a p o i n t s ) . Preliminary evaluation of this c a l c u l a t i o n using a c t u a l d a t a (70) i n d i c a t e s t h a t f o r w e l l - d e f i n e d normal peak shapes, t F e v a l u e s c a l c u l a t e d f o r W51 a r e a p p r o x i ­ m a t e l y c o n s t a n t , as would be e x p e c t e d , and a l s o c o r r e s ­ pond t o v a l u e s measured d i r e c t l y from p l o t s o f i n d i v i ­ d u a l peak p r o f i l e s . In p r a c t i c e , t h e u t i l i t y o f t h e c a l c u l a t i o n o f R5^ i s l i m i t e d t o t h e e v a l u a t i o n o f peak p r o f i l e s . T h i s i s because each peak i s r e c o r d e d as a s e r i e s o f d i g i t a l v a l u e s t h a t exceed a c o n s t a n t p r e s e t t h r e s h o l d w h i c h i s chosen t o e l i m i n a t e " n o i s e " b u t t o maximize the o v e r a l l dynamic range. I f t h e d i g i t a l v a l u e s f o r two c l o s e mass peaks do n o t c u t t h e t h r e s h o l d v a l u e a t the v a l l e y ( F i g u r e 8 a ) , t h e n t h e p r o f i l e w i l l be r e c o g ­ n i z e d as t h e p r o f i l e o f a s i n g l e peak and t h e r e s u l t i n g c a l c u l a t i o n s w i l l be i n e r r o r . I n o r d e r t h a t t h e p r o f i l e be r e c o g n i s e d as two d i s t i n c t p e a k s , t h e maxima f o r e q u a l - s i z e d peaks must be s e p a r a t e d by W^h "the w i d t h o f each peak measured a t t h e t h r e s h o l d ( F i g u r e 8b). This t h r e s h o l d peakwidth i s e a s i l y determined from t h e number o f d a t a p o i n t s r e c o r d e d f o r each peak, and t h i s number c a n be used t o c a l c u l a t e a " t h r e s h o l d r e s o l u t i o n " , R , f o r each mass peak from t h e e q u a t i o n tV|

R = th

τ

R

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

(10)

PERFORMANCE

MASS

SPECTROMETRY

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

HIGH

Figure 8. (a) Peak profile for doublet separated with resolution R = t/W (10% valley definition); (b) Peak profiles for peaks resolved at threshold, R< = T / W . 5 %

5%

A

Î A

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

7.

KIMBLE

Gas Chromatography/High

141

Resolution Mass Spectrometry

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

In terms o f t h e i n t e r p r e t a t i o n o f a c t u a l d a t a , t h e t h r e s h o l d o r " e f f e c t i v e " r e s o l u t i o n w i l l more a c c u ­ r a t e l y r e f l e c t the o v e r a l l instrumental a b i l i t y to r e s o l v e c l o s e l y p o s i t i o n e d mass peaks and thus t o s u b s e q u e n t l y d e t e r m i n e t h e i r a c c u r a t e masses and e l e ­ mental c o m p o s i t i o n s . The d e c r e a s e i n e f f e c t i v e r e s o l u t i o n due t o t h e use o f t h e t h r e s h o l d p e a k w i d t h f o r t h e c a l c u l a t i o n r a t h e r than Ws%, can be i l l u s t r a t e d by assuming t h a t the t h r e s h o l d p e a k w i d t h f o r a G a u s s i a n peakshape i s ap­ p r o x i m a t e d by W

« 6σ

th

(11)

where 6σ i s t h e base w i d t h w h i c h d e f i n e s 99.781 o f t h e peak a r e a . T h e r e f o r e , from e q u a t i o n s (7) and ( 1 1 ) , W , i s g i v e n by W

th

• ;nw5T 5* - · * w

1

2

W

w

5%

C a l c u l a t e d v a l u e s f o r Rs%, W^-h and R^h a r e shown i n T a b l e 2 f o r t h e case o f a n o m i n a l s c a n r a t e o f 6 seconds/decade and a n o m i n a l r e s o l u t i o n (Rs%) o f 10,000; c o r r e s p o n d i n g v a l u e s a r e a l s o g i v e n f o r t h e range o f τ e n c o u n t e r e d f o r t h i s n o m i n a l scan r a t e . These c a l c u l a t i o n s demonstrate a s i g n i f i c a n t d e c r e a s e i n e f f e c t i v e r e s o l u t i o n f o r W^h 6σ, a d e c r e a s e o f 18.41 compared t o t h e r e s o l u t i o n a t 5% maximum peak h e i g h t , and a d e c r e a s e o f up t o 25% compared t o t h e supposed r e s o l u t i o n o f 10,000. F u r t h e r d e c r e a s e s i n e f f e c t i v e r e s o l u t i o n a r e t o be e x p e c t e d f o r l a r g e peaks s i n c e a p e a k w i d t h o f 6σ f o r a G a u s s i a n peakshape c o r ­ responds t o t h e w i d t h a t 1.11% o f t h e maximum peak h e i g h t ; f o r l a r g e peaks, t h e a c t u a l t h r e s h o l d w i l l be s i g n i f i c a n t l y below 1.11% o f maximum peak h e i g h t , and the t h r e s h o l d p e a k w i d t h w i l l thus be l a r g e r t h a n 6σ. =

T a b l e 2.

Scanrate, τ

1 0 >

Comparison o f r e s o l u t i o n v a l u e s c a l c u l a t e d from p e a k w i d t h a t 5% o f maximum p e a k h e i g h t (10% v a l l e y d e f i n i t i o n ) and p e a k w i d t h a t 1.11% o f maximum p e a k h e i g h t . τ, sec.

sec/decade

W

W

th 5% =4.8955σ, =6σ, psec ysec

R

5%

R

th

5.5

2. 389

260.6

319.4

9,167

7,479

6.0

2. 606 2. 823

260.6 260.6

319.4 319.4

10,000 10,833

8,159 8,838

6. 5

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

142

HIGH

PERFORMANCE

MASS

SPECTROMETRY

In a d d i t i o n t o t h e a c t u a l d e t e r m i n a t i o n o f t h e e f f e c t i v e r e s o l u t i o n f o r each r e c o r d e d peak, t h e s e c a l c u l a t i o n s c a n be u t i l i z e d t o i d e n t i f y "abnormal" peakshapes t h a t c a n o c c u r when o p e r a t i n g a h i g h r e s o l u t i o n mass s p e c t r o m e t e r under GC/HRMS c o n d i t i o n s (60, 7 4 ) . A v a r i e t y o f such peak shapes c a n be r a p i d l y i d e n t i f i e d by comparison o f t h e c a l c u l a t e d p e a k w i d t h a t 5% h e i g h t (W51) and t h e measured t h r e s h o l d p e a k w i d t h (W h); abnormal peakshapes i n c l u d e : s m a l l " n o i s y " peaks, f l a t - t o p p e d ( " s a t u r a t e d " ) p e a k s , t a i l i n g p e a k s , and u n r e s o l v e d d o u b l e t s o r m u l t i p l e t s . A l l o f t h e s e peakshapes w i l l a d v e r s e l y a f f e c t t h e a c c u r a t e d e t e r m i n a t i o n o f t h e peak c e n t e r - o f - g r a v i t y and hence the measurement o f a c c u r a t e mass. The e f f e c t o f abnormal peak shapes on t h e q u a l i t y o f a c t u a l d a t a o u t p u t i s i l l u s t r a t e d i n F i g u r e 9. The p l o t shows t h e a c c u r a t e mass chromatogram f o r m/e 119.0861 ( = C H ) from a GC/HRMS a n a l y s i s o f t h e neut r a l f r a c t i o n o f an e x t r a c t o f p e t r o l e u m r e f i n e r y w a s t e w a t e r ( 7 5 ) . The c o m p l e x i t y o f t h i s f r a c t i o n i s e v i d e n c e d by t h e u n r e s o l v e d "hump" w h i c h i s a l s o p r e s e n t i n the f l a m e i o n i z a t i o n gas chromatogram and many o f t h e o t h e r mass chromatograms g e n e r a t e d from t h e GC/HRMS d a t a . N o t a b l e i n t h e chromatogram shown a r e the two a b r u p t zero i n t e n s i t y v a l u e s l o c a t e d a t scan numbers 96 and 143, i n d i c a t i n g t h a t no a c c u r a t e masses were l o c a t e d i n t h e s e scans w i t h i n the mass range m/e 119.0861 ± 20ppm, i . e . , c o r r e s p o n d i n g t o t h e e l e m e n t a l composition C 9 H 1 1 . D e t a i l e d i n v e s t i g a t i o n o f t h e s e two scans r e v e a l e d t h a t C 9 H 1 1 i o n s were i n d e e d p r e s e n t i n the s p e c t r a and t h a t t h e a b s o l u t e i n t e n s i t i e s were c o n s i s t e n t w i t h the o v e r a l l p r o f i l e observed i n t h e a c c u r a t e mass chromatogram. P l o t s o f t h e a p p r o p r i a t e peak p r o f i l e s , a l s o shown i n F i g u r e 9, i l l u s t r a t e t h e abnormal peak p r o f i l e s t h a t were a c t u a l l y r e c o r d e d ; t h e v e r t i c a l l i n e s denote the p o s i t i o n s o f t h e c a l c u l a t e d c e n t e r s - o f - g r a v i t y f o r t h e two p r o f i l e s . I n b o t h cases the c a l c u l a t e d c e n t e r - o f - g r a v i t y was s h i f t e d s u f f i c i e n t l y so t h a t t h e c o r r e s p o n d i n g a c c u r a t e mass was o u t s i d e the mass window used t o g e n e r a t e t h e chromatogram. Both o f t h e s e peak, p r o f i l e s would be e a s i l y r e c o g n i z e d as b e i n g abnormal by comparison o f t h e i r area/maximum h e i g h t r a t i o s ( g i v i n g t h e c a l c u l a t e d W51 v a l u e s ) and the measured t h r e s h o l d p e a k w i d t h s , Wth. In b o t h c a s e s , t h e a v a i l a b i l i t y o f s o f t w a r e a l g o r i t h m s f o r d e t e c t i n g p r o f i l e minima and r e t h r e s h o l d i n g would e f f e c t i v e l y overcome t h e e r r o r s i n t r o d u c e d by t h e s e u n r e s o l v e d peak p r o f i l e s .

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

t

9

n

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

7.

Gas Chromatography/High

KIMBLE

τι·

12993.

0

10

sun η/ε»

20

30

143

Resolution Mass Spectrometry

us.i

40

90

t0

70

80

90

100

110

120

130

140

190

190

C,H 0 T

C.H„â

2754B9.5 24591 113.06 817 60

10

275934.9 10231 119. OB 520 60

10

SCAN 143

SCAN 96

Identification and Analysis of Organic Pollutants in Water

Figure 9. Accurate mass chromatogram for m/e 119.0861 (=C H ). ted from scans 96 and 143. 9

tl

Peak profiles plot-

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

144

HIGH

PERFORMANCE

MASS

SPECTROMETRY

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

Conclusions I t has been t h e i n t e n t i o n o f t h i s c h a p t e r t o summarize f o r the chemist/user the primary aspects o f GC/HRMS which need t o be c o n s i d e r e d when u n d e r t a k i n g e v a l u a t i o n and i n t e r p r e t a t i o n o f such d a t a . The degree o f d a t a e v a l u a t i o n n e c e s s a r y i n h i g h r e s o l u t i o n mass s p e c t r o m e t r y i s s i g n i f i c a n t l y g r e a t e r than f o r l o w r e s o l u t i o n s t u d i e s . Any e v a l u a t i o n must i n c l u d e mass measurement a c c u r a c y and i t s dependency on mass and peak i n t e n s i t y , dynamic r e s o l u t i o n f o r each mass peak, and t h e many p o s s i b l e e l e m e n t a l c o m p o s i t i o n s g e n e r a t e d f o r each mass peak. The d i f f i c u l t y i s compounded i n GC/HRMS because o f t h e l a r g e amounts o f d a t a t h a t a r e g e n e r a t e d d u r i n g each a n a l y s i s ( e . g . , 15-25 d a t a p o i n t s / mass peak, 500-1500 mass peaks/spectrum, 300-600 spectra/analysis). F o r t h e s e r e a s o n s , the p r i m a r y u t i l i t y o f GC/HRMS i s f o r complex samples whose components cannot be d e t e r m i n e d by i n t e r p r e t a t i o n o f t h e i r nominal mass s p e c t r a . Even w i t h t h e p r o d u c t i o n o f guaranteed h i g h q u a l i t y d a t a , a f l e x i b l e i n t e r a c t i v e and u s e r - o r i e n t e d s o f t w a r e system i s e s s e n t i a l i n o r d e r t o f u l l y u t i l i z e the a v a i l a b l e i n f o r m a t i o n w i t h i n a r e a s o n a b l e t i m e frame. Such s o f t w a r e c o n s i d e r a t i o n s i n c l u d e t h e a b i l i ty to r a p i d l y review elemental composition l i s t i n g s t h a t a r e l i m i t e d by u s e r - s p e c i f i e d c r i t e r i a , such as l i s t i n g s f o r s i n g l e masses, mass d i f f e r e n c e s , l i m i t e d mass r a n g e s , and f o r masses h a v i n g i n t e n s i t i e s above a s p e c i f i e d a b s o l u t e o r r e l a t i v e v a l u e . The a b i l i t y t o i n c l u d e f u n c t i o n a l groups o f e l e m e n t a l c o m p o s i t i o n s ( e . g . , C H , C O 2 C H 3 , O S 1 C 3 H 9 , e t c . ) as i n p u t f o r generating elemental composition l i s t i n g s i s also a s i g n i f i c a n t a s s i s t a n c e i n data i n t e r p r e t a t i o n (76). In p a r t i c u l a r , s o f t w a r e a l g o r i t h m s which u t i l i z e c h e m i c a l c o n c e p t s t o l i m i t t h e number o f c o m p o s i t i o n a l poss i b i l i t i e s g e n e r a t e d f o r each mass (26, 77-79) a r e n e c e s s a r y t o speed-up t h e i n t e r p r e t a t i o n p r o c e s s and a s s i s t i n the generation of a s e l f - c o n s i s t e n t set o f e l e m e n t a l c o m p o s i t i o n s f o r each h i g h r e s o l u t i o n spectrum o f i n t e r e s t . The u s e o f e l e m e n t a l c o m p o s i t i o n s g e n e r a t e d f o r a c c u r a t e mass d i f f e r e n c e s i s a l s o u s e f u l i n t h i s context, s i n c e the elemental compositional p o s s i b i l i t i e s f o r a r e l a t i v e l y s m a l l mass d i f f e r e n c e a r e s u b s t a n t i a l l y fewer than f o r t h e a c c u r a t e masses themselves. As f o r GC/LRMS, t h e a u t o m a t i c i d e n t i f i c a t i o n o f t h e s p e c t r a o f i n t e r e s t would a l s o s i g n i f i c a n t l y speed-up t h e o v e r a l l d a t a i n t e r p r e t a t i o n p r o c e s s . A l g o r i t h m s such as t h a t d e s c r i b e d by B i l l e r and Biemann (15) s h o u l d be implementable f o r r e a s o n a b l y 6

5

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

7.

KIMBLE

Gas Chromatography/ High Resolution Mass Spectrometry

145

i n t e n s e , a c c u r a t e l y measured masses; however, more complex a l g o r i t h m s (17) would r e q u i r e t h e a b i l i t y t o r e c o r d a s u b s t a n t i a l number o f s p e c t r a t h r o u g h o u t t h e t i m e o f e i u t i o n o f a gas c h r o m a t o g r a p h i c peak. In e s s e n c e , t h e r e f o r e , t h e r o u t i n e u t i l i t y o f t h e GC/HRMS t e c h n i q u e demands an e x t e n s i v e s o f t w a r e capa­ b i l i t y f o r the r a p i d e v a l u a t i o n of instrument p e r f o r ­ mance, f o r t h e p r o d u c t i o n o f r e l i a b l e h i g h - q u a l i t y d a t a , and f o r t h e e f f i c i e n t h a n d l i n g o f t h e d e t a i l e d information contained i n the elemental composition s p e c t r a r e c o r d e d o f gas c h r o m a t o g r a p h i c e f f l u e n t s . I n p a r t i c u l a r , t h e r o u t i n e use o f such s o f t w a r e f o r i n ­ strument e v a l u a t i o n and performance m o n i t o r i n g i s v i t a l i f t h e p o t e n t i a l o f t h e GC/HRMS t e c h n i q u e i s t o be e x p l o i t e d i n a m e a n i n g f u l way.

REFERENCES 1.

Novotny, Μ., and Zlatkis, Α., Chromatographic Reviews, (1971), 14, 1. 2. Grob, Κ., and Grob, K., J r . , J . Chromatog., (1974), 94, 53, and references therein. 3. Grob, K., and Grob, G., p. 75 in "Identification and Analysis of Organic Pollutants in Water", ed. L.H. Keith; Ann Arbor Science Publishers, Ann Arbor, Michigan, 1976. 4. Henderson, W., and Steel, G., Anal. Chem., (1972), 44, 2302. 5. Grob, K., and Jaeggi, Η., Anal. Chem., (1973), 45, 1788. 6. Leferink, J. G., and Leclercq, P. Α., J. Chroma­ tog., (1974), 91, 385. 7. Henneberg, D., Henrichs, U . , and Schomburg, G., Chromatographia, (1975), 8, 449. 8. Schoengold, D. Μ., and Munson, B., Anal. Chem., (1970), 42, 1811. 9. Arsenault, G. P., Dolhun, J. J., and Biemann, K., Anal. Chem., (1971), 43, 1720. 10. Arsenault, G. P., p. 817 in "Biochemical Appli­ cations of Mass Spectrometry", ed. G. R. Waller; Wiley-Interscience, 1972. 11. Blum, W., and Richter, W. J., Tetrahedron Letters, (1973), 835. 12. Fentiman, A. F., Foltz, R. L . , and Kinzer, G. W., Anal. Chem., (1973), 45, 580. 13. Jelus, B., Munson, Β., and Fenselau, C., Anal. Chem., (1974), 46, 729. 14. Ryhage, R., Anal. Chem. (1976), 48, 1829. 15. Biller, J. E., and Biemann, Κ., Anal. Letters, (1974), 7, 515.

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

146

HIGH

PERFORMANCE

MASS

SPECTROMETRY

16. Nau, Η., and Biemann, Κ., Anal. Chem., (1974), 46, 426. 17. Dromey, R. G., Stefik, M. J., Rindfleisch, T. C., and Duffield, Α. Μ., Anal. Chem., (1976), 48, 1368. 18. Mathews, R. J., and Morrison, J . D., Aust. J. Chem., (1974), 27, 2167, and references therein. 19. Sweeley, C. C., Young, N. D., Holland, J. F., and Gates, S. C., J . Chromatog., (1974), 99, 507. 20. Abramson, F. P., Anal. Chem., (1975), 47, 45. 21. Mellon, F. Α., p. 117 in "Mass Spectrometry, Volume 3", ed. R. A. W. Johnstone; Specialist Periodical Reports, The Chemical Society, London, 1975. 22. Pesyna, G. M., Venkataraghavan, R., Dayringer, H. Ε., and McLafferty, F. W., Anal. Chem., (1976), 48, 1362. 23. Smith, D. H., Yeager, W. J., Anderson, P. J., Fitch, W. L . , Rindfleisch, T. C., and Achenbach, M., Anal. Chem., (1977), 49, 1623. 24. Lederberg, J., p. 193 in "Biochemical Applications of Mass Spectrometry", ed. G. R. Waller; Wiley­ -Inter science, 1972. 25. Kwok, K.-S., Venkataraghavan, R., and McLafferty, F. W., J . Am. Chem. Soc., (1973), 95, 4185. 26. Dromey, R. G., Buchanan, B. G., Smith, D. H., Lederberg, J., and Djerassi, C., J. Org. Chem., (1975), 40, 770. 27. Beynon, J . Η., in Adv. Mass Spectrom., Volume 1, ed. J . D. Waldron; Pergamon Press, NY, 1959. 28. Millington, D. S., J. Steroid Biochem., (1975), 6, 239. 29. Millington, D. S., Buoy, Μ. Ε., Brooks, G., Harper, M. E., and Griffiths, Κ., Biomed. Mass Spectrom., (1975), 2,219. 30. Telling, G. M., Bruce, Τ. Α., and Althorpe, J., J. Agr. Food Chem., (1971), 19, 937. 31. Gough, Τ. Α., and Webb, K. S., J. Chromatog., (1972), 64, 201, and (1973), 79, 57. 32. Crathorne, B., Edwards, M. W., Jones, N. R., Walters, C. L . , and Woolford, G., J . Chromatog., (1975), 115, 213. 33. Sen, N. P., Miles, W. F., Seaman, S., and Law­ rence, J. F., J . Chromatog., (1976), 128, 169. 34. Gallegos, E. J., Anal. Chem., (1975), 47, 1150. 35. Evans, K. P., Mathias, Α., Mellor, Ν., Silvester, R., and Williams, Α. Ε., Anal. Chem., (1975), 47, 821.

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

7.

KIMBLE

Gas Chromatography/High

Resolution Mass Spectrometry

147

36. Prater, T. J., Harvey, Τ. Μ., and Schuetzle, D., Twenty-Fourth Annual Conference on Mass Spec­ trometry and Allied Topics, San Diego, 1976, p. 625. 37. Hammar, C.-G., and Hessling, R., Anal. Chem., (1971), 43, 299. 38. Haddon, W. F., and Lukens, H. C., Twenty-Second Annual Conference on Mass Spectrometry and Allied Topics, Philadelphia, 1974, p. 436. 39. Barber, Μ., Chapman, J. R., Green, Β. N . , Merren, T. O., and Riddoch, Α., Eighteenth Annual Con­ ference on Mass Spectrometry and Allied Topics, San Francisco, 1970, p. B299. 40. Chapman, J . R., Merren, T. O., and Limming, H. J., Nineteenth Annual Conference on Mass Spectrometry and Allied Topics, Atlanta, 1971, p. 218. 41. Wolstenholme, W. Α., and E l l i o t t , R. Μ., American Laboratory, (1975), Nov., 68. 42. Hunt, D. F., Stafford G. C., Shabanowitz, J., and Crow, F. W., Anal. Chem., (1977), 49, 1884; see also chapter by D. F. Hunt, this volume. 43. Watson, J. D., and Biemann, Κ., Anal. Chem., (1965), 37, 844. 44. Habfast, Κ., Maurer, Κ. Η., and Hoffmann, G., Twentieth Annual Conference on Mass Spectrometry and Allied Topics, Dallas, 1972, p. 414. 45. Habfast, K., Maurer, Κ. H., and Hoffmann, G., p. 408 in "Techniques of Combined Gas Chromatogra­ phy/Mass Spectrometry," ed. W. H. McFadden; John Wiley and Sons, N.Y., 1973. 46. McMurray, W. J., Green, Β. Ν., and Lipsky, S. R., Anal. Chem., (1966), 38, 1194. 47. Kimble, B. J., Cox, R. E., McPherron, R. V., Olsen, R. W., Roitman, Ε., Walls, F. C., and Burlingame, A. L . , J . Chromatog. S c i . , (1974), 12, 647. 48. Kimble, B. J., Walls, F. C., Olsen, R. W., and Burlingame, A. L . , Twenty-Third Annual Conference on Mass Spectrometry and Allied Topics, Houston, 1975, p. 503. 49. Kimble, B. J., McPherron, R. V., Olsen, R. W., Walls, F. C., and Burlingame, A. L . , Adv. Mass Spectrom., Volume 7, in press; Proceedings of the Seventh International Mass Spectrometry Confer­ ence, Florence, Italy, August 1976. 50. Rapp, U . , Schröder, U . , Meier, S., and Elmenhorst, H., Chromatographia, (1975), 8, 474.

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

148

51. 52. 53.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

54. 55. 56. 57. 58. 59. 60. 61.

62. 63. 64. 65. 66.

HIGH PERFORMANCE MASS SPECTROMETRY

Dobberstein, P., Zune, Α., and Wolstenholme, W. A., Twenty-Fourth Annual Conference on Mass Spec­ trometry and Allied Topics, San Diego, 1976, p. 234. Chapman, J. R., Evans, S., and Holmes, J. M., Sixteenth Annual Conference on Mass Spectrometry and Allied Topics, Pittsburgh, 1968, p. 313. Burlingame, A. L . , Olsen, R. W., and McPherron, R. V., p. 1053 in Adv. Mass Spectrom., Volume 6, ed. A. R. West; Applied Science, 1974. Smith, D. H., Olsen, R. W., Walls, F. C., and Burlingame, A. L . , Anal. Chem., (1971), 43, 1796. Burlingame, A. L . , Smith, D. Η., and Olsen, R. W., Anal. Chem., (1968), 40, 13. Burlingame, A. L . , p. 15 in Adv. Mass Spectrom., Volume 4, ed. E. Kendrick; The Institute of Petro­ leum, London, 1968. McMurray, M. J., p. 43 in "Mass Spectrometry: Techniques and Applications", ed. G. W. Milne; Wiley-Interscience, 1971. Klimowski, R. J., Venkataraghavan, R., and McLaf­ ferty, F. W., Org. Mass Spectrom., (1970), 4, 17. Boettger, H. G., and Kelly, Α. Μ., Seventeenth Annual Conference on Mass Spectrometry and Allied Topics, Dallas, 1969, p. 337. Banner, Α. Ε., Thirteenth Annual Conference on Mass Spectrometry and Allied Topics, St. Louis, 1965, p. 193. Burlingame, A. L . , Smith, D. H., Merren, T. O., and Olsen, R. W., p. 17 in "Computers in Analy­ tical Chemistry", ed. C. H. Orr and J. A. Norris; Progress in Analytical Chemistry, Vol. 4, Plenum Press, N.Y., 1969. Venkataraghavan, R., Klimowski, R. J., and McLaf­ ferty, F. W., Accounts Chem. Res., (1970), 3, 158. Merritt, C., Issenberg, P., Bazinet, M. L . , Green, Β. N . , Merren, T. O., and Murray, J. G., Anal. Chem., (1965), 37, 1037. Habfast, K., p. 3 in Adv. Mass Spectrom., Volume 4, ed. E. Kendrick; The Institute of Petroleum, London, 1968. McMurray, M. J., Lipsky, S. R., and Green, Β. N . , p. 77 in Adv. Mass Spectrom., Volume 4, ed. E. Kendrick; The Institute of Petroleum, London, 1968. Bowen, H. C., Clayton, E., Shields, D. J., and Stanier, Η. Μ., p. 257 in Adv. Mass Spectrom., Volume 4, ed. E. Kendrick; The Institute of Petro­ leum, London, 1968.

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF PITTSBURGH on August 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0070.ch007

7.

KIMBLE

Gas Chromatography/ High Resolution Mass Spectrometry 149

67. Hilmer, R. Μ., and Taylor, J. W., Anal. Chem., (1973), 45, 1031. 68. McFadden, W. Η., "Techniques of Combined Gas Chromatography/Mass Spectrometry"; Wiley-Inter­ -science, Ν.Υ., 1973. 69. Fales, Η. Μ., Heller, S. R., Milne, G. W. Α., and Sun, T., Biomed. Mass Spectrom., (1974), 1, 295. 70. Kimble, B. J., and McPherron, R. V., unpublished work. 71. Campbell, A. J., and Halliday, J. S., Thirteenth Annual Conference on Mass Spectrometry and Allied Topics, St. Louis, 1965, p. 200. 72. Halliday, J . S., p. 239 in Adv. Mass Spectrom., Volume 4, ed. E. Kendrick; The Institute of Petro­ leum, London, 1968. 73. Green, Β. Ν., Merren, T. O., and Murray, J. G., Thirteenth Annual Conference on Mass Spectrometry and Allied Topics, St. Louis, 1965, p. 204. 74. Barber, M., Green, Β. Ν., McMurray, W. J., and Lipsky, S. R . , Sixteenth Annual Conference on Mass Spectrometry and Allied Topics, Pittsburgh, 1968, p. 91. 75. Burlingame, A. L . , Kimble, B. J., Scott, E. S., Wilson, D. M., and Stasch, M. J., p. 587 in "Iden­ tification and Analysis of Organic Pollutants in Water", ed. L. H. Keith; Ann Arbor Science Pub­ lishers, Ann Arbor, Michigan, 1976. 76. Kundred, Α., Spencer, R. B., and Budde, W. L . , Anal. Chem., (1971), 43, 1086. 77. Biemann, K., and McMurray, W., Tetrahedron Let­ ters, (1965), 647. 78. Hilmer, R. Μ., and Taylor, J . W., Anal. Chem., (1974), 46, 1038. 79. Venkataraghavan, R . , McLafferty, F. W., and Van Lear, G. E., Org. Mass Spectrom., (1969), 2, 1. RECEIVED December 30, 1977

In High Performance Mass Spectrometry: Chemical Applications; Gross, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.