16 Recent Advances in Organic Materials
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: May 14, 1985 | doi: 10.1021/bk-1985-0278.ch016
FRED WUDL Department of Physics, Institute for Polymers and Organic Solids, University of California, Santa Barbara, C A 93106
Organic conductors can naturally be subdivided into two types: single crystals and polymers. The former have experienced a rapid development from semiconductors (1950's - I960's) (1) to metals (1970's) (2) to superconductors (1980's) (3). Highly conducting organic polymers (except "pyropolymers" and composites) have had a shorter history. Whereas the mechanisms responsible for metallic conductivity as well as the loss of conductivity at lower temperatures in single crystals are now understood (4), the same cannot be said for poly meric conductors because there is s t i l l some controversy centered around the nature of the transport process and change carriers (5) For that reason and due to spatial requirements, this article will deal only with polymeric conductors and will emphasize poly(heterocycles), particularly poly(thiophene). The only certainty, insofar as requirements to observe high conductivities in polymers is concerned, is that the polymers must be partially oxidized or reduced ("p-doped" or "n-doped", respect ively). It is therefore not an unreasonable assumption that any polymer with an extended π system will be a good candidate for the achievement of activated (semiconductor) or non-activated (metal) conductivity upon doping (6). Clearly, the simplest π-conjugated polymer is poly(acetylene) (Figure 1) and has therefore been the most extensively studied. The reasons for popularity of a polymer in this highly specialized area of research are ease of preparation and "form" (7) (film, fiber, or powder). The l a t t e r can be o v e r whelming; f o r example, p o l y a c e t y l e n e has e x i s t e d f o r decades as b l a c k , amorphous powder and was, i n f a c t , doped i n t h e I 9 6 0 ' s ( 8 ) but a t t r a c t e d l i t t l e a t t e n t i o n because n o t much c o u l d be done w i t h an i n t r a c t a b l e ( n o n - f i b r i c a b l e ) " b r i c k d u s t " . When Shirakawa d i s c o v e r e d t h e p r o c e s s t o produce t h e same polymer i n f i l m f o r m , t h e a t t e n t i o n i t a t t r a c t e d was phenomenal. 0097-6156/85/0278-0257$06.00/0
© 1985 American Chemical Society
In Organic Phototransformations in Nonhomogeneous Media; Fox, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: May 14, 1985 | doi: 10.1021/bk-1985-0278.ch016
ORGANIC PHOTOTRANSFORMATIONS IN NONHOMOGENEOUS MEDIA
*=(·),(-),(+)
X = NH , NMe
,S,0
F i g u r e 1. Examples o f c o n d u c t i n g polymers and s p e c i e s r e s p o n s i b l e f o r charge s t o r a g e . T o p , p o l y ( a c e t y l e n e ) and s o l H o n : 2 n d , p o l y - p - p h e n y l e n e and b i p o l a r o n : 3 r d , poly-rj»-phenylene s u l f i d e ; 4 t h , p o l y ( h e t e r o c y c l e s ) and b i p o l a r o n . Bipolarons in poly(furan) have n o t y e t been e s t a b l i s h e d .
In Organic Phototransformations in Nonhomogeneous Media; Fox, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
16.
WUDL
Recent Advances
in Organic
Materials
259
S i n c e p o l y ( p y r r o l e ) and p o l y ( t h i o p h e n e ) (PT) can be p r e p a r e d i n f i l m form by a s i m p l e p r o c e d u r e , t h e y a l s o f u l f i l l the above r e quirements f o r p o p u l a r i t y . However, i t i s c l e a r , p a r t i c u l a r l y from s p e c t r o s c o p i c i n v e s t i g a t i o n s , t h a t t h e n a t u r e o f the charge s t o r a g e (and c a r r i e r s ) i n the p o l y ( h e t e r o c y c l e s ) i s d i f f e r e n t from p o l y (acetylene) (9).
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: May 14, 1985 | doi: 10.1021/bk-1985-0278.ch016
The t o p i c s t o be c o v e r e d i n t h i s a r t i c l e a r e : (a) b r i e f review of p o l y ( h e t e r o c y c l e s ) , ( b ) d e s c r i p t i o n o f the l a t e s t r e s u l t s on poly(thiophene), and (c) description of poly(isothianaphthene), (PITN). Brief
Review o f
Poly(heterocycles)
These polymers, particularly poly(pyrrole), are most con v e n i e n t l y p r e p a r e d from the p a r e n t m o l e c u l e v i a e l e c t r o l y s i s . So f a r , f u r a n , p y r r o l e , t h i o p h e n e , and v a r i o u s m e t h y l a t e d d e r i v a t i v e s have been p o l y m e r i z e d by t h i s p r o c e d u r e ( 1 0 ) . The a n o d i c p o l y merization apparently also works for relatively electron rich a r o m a t i c compounds such as a n i l i n e and a z u l e n e ( 1 1 ) . In the c a s e o f the five-membered h e t e r o c y c l e s , p o l y m e r i z a t i o n o c c u r s p r e d o m i n a n t l y t h r o u g h t h e 2,5 p o s i t i o n s and when t h e 3 , 4 p o s i t i o n s o f p y r r o l e are b l o c k e d by methyl g r o u p s , number average m o l e c u l a r w e i g h t s on the o r d e r o f 1000 have been o b t a i n e d ( 1 2 ) . Of a l l the heterocycles, unsubstituted pyrcole y i e l d s the most highly c o n d u c t i n g polymer [= 200 S/cm (S = Ω ) ] . S i n c e the p o l y m e r i z a t i o n i s performed under o x i d a t i v e c o n d i t i o n s , the a s - f o r m e d polymer i s p-doped w i t h the c o u n t e r i o n c o r r e s p o n d i n g t o the a n i o n o f the supporting e l e c t r o l y t e . These doped f i l m s a r e c o n s i d e r a b l y more s t a b l e t o the atmosphere than t h e i r p o l y ( a c e t y l e n e ) counterparts. However, when t h e y are c o n n e c t e d t o the cathode o f a b a t t e r y , t h e y can be "dedoped" ( b r o u g h t t o a n e u t r a l s t a t e ) and c o n v e r t e d t o an u n s t a b l e form. This conversion u s u a l l y occurs with a concomitant change i n c o l o r ( f r o m b l u e - b l a c k t o brown o r o r a n g e - r e d ) , i n d i c a t i n g t h a t t h e s e polymers are a l s o e l e c t r o c h r o m i c ( 1 3 ) . The bandgap f o r p o l y ( p y r r o l e ) i s = 3eV (= 410nm), f o r p o l y ( t h i o p h e n e ) i t i s = 2eV (= 620nm) and f o r p o l y ( a c e t y l e n e ) i t i s = 1.6eV (= 780nm). From t h e s e numbers one c o u l d imagine t h a t p o l y ( a c e t y l e n e ) and PT would be w e l l s u i t e d f o r s o l a r energy c o n v e r s i o n devices. However, w h i l e the bandgap o f p o l y ( a c e t y l e n e ) i s the b e s t of the three polymers to match the solar spectrum, from a t h e o r e t i c a l p o i n t o f v i e w , i t appears as though t h i s m a t e r i a l may be doomed t o have v e r y low s o l a r energy c o n v e r s i o n e f f i c i e n c y because the p h o t o g e n e r a t e d c a r r i e r s can form i n t r i n s i c l o c a l i z e d gap s t a t e s ( s o l i t o n - a n t i s o l i t o n p a i r ) a t a c a l c u l a t e d r a t e o f = 1013 sec . In fact, the observed efficiency of a liquid junction poly( a c e t y l e n e ) s o l a r c e l l i s v e r y low ( 1 4 ) . At the m o l e c u l a r l e v e l , s t u d i e s o f t h e doping mechanism i n the poly(heterocycles) reveal that very short lived radical cations ("polarons") i m m e d i a t e l y decay (combine) t o form d i c a t i o n s ("bi-
In Organic Phototransformations in Nonhomogeneous Media; Fox, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
260
ORGANIC PHOTOTRANSFORMATIONS IN NONHOMOGENEOUS MEDIA
p o l a r o n s " ) ; i . e . , charge s t o r a g e appears t o i n v o l v e d i c a t i o n s r a t h e r than r a d i c a l c a t i o n s ( 9 , 1 5 ) . Whether b i p o l a r o n s w i l l be as d e t r i mental t o t h e e f f i c i e n c y o f s o l a r c e l l s based on p o l y ( h e t e r o c y c l e s ) as a r e s o l i t o n s t o s o l a r energy c o n v e r s i o n d e v i c e s based on p o l y ( a c e t y l e n e ) remains t o be e s t a b l i s h e d .
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: May 14, 1985 | doi: 10.1021/bk-1985-0278.ch016
Recent R e s u l t s
on P o l y ( t h i o p h e n e )
U n l i k e p y r r o l e , t h i o p h e n e can be c o u p l e d through the 2,5 p o s i t i o n s by a n o n - e l e c t r o c h e m i c a l approach i n v o l v i n g G r i g n a r d i n t e r mediates ( 1 6 ) . Careful p u r i f i c a t i o n of s t a r t i n g materials ( i n t h i s case 2 , 5 - d i i o d o t h i o p h e n e ) a l l o w e d t h e i s o l a t i o n o f an e l e c t r i c a l l y i n s u l a t i n g sample o f PT w i t h a m o l e c u l a r weight o f c a 4000 and c l e a n i r and u v - v i s s p e c t r a as w e l l as e l e m e n t a l a n a l y s i s c o r r e s p o n d i n g t o the e m p i r i c a l f o r m u l a CiogHg-jIS/.g. This composition indicates t h a t , on t h e a v e r a g e , f o r e v e r y 4b t h i o p h e n e u n i t s t h e r e i s one b u t a d i e n e (17). Electronic and i n f r a r e d spectroscopy revealed that the " c h e m i c a l l y c o u p l e d " PT was c l e a n e r ( p r a t i c a l l y no a b s o r p t i o n below t h e bandgap) than a sample o f dedoped e l e c t r o c h e m i c a l l y p o l y m e r i z e d thiophene. Since the i o n i z a t i o n p o t e n t i a l of thiophene i s r e l a t i v e l y h i g h , the e l e c t r i c fields required f o r i t s anodic polymerization are r a t h e r s t e e p (= 20V vs S C E ) . In a d d i t i o n , t h e s i m p l e s t s u p p o r t i n g e l e c t r o l y t e f o r t h i s o p e r a t i o n i s L i B F . and d e p o s i t i o n o f L i a t the cathode ( u s u a l l y P t ) i s a l s o e n e r g e t i c a l l y u n f a v o r a b l e . Recently, Druy (13) r e p o r t e d t h a t s u b s t i t u t i o n o f 2 , 2 ' - b i t h i o p h e n e f o r t h i o phene gave b e t t e r q u a l i t y f i l m s , p r o b a b l y due t o t h e lower i o n i z a t i o n p o t e n t i a l o f t h e dimer r e l a t i v e t o t h i o p h e n e . An a d d i t i o n a l improvement c o n s i s t e d i n r e p l a c i n g t h e Pt c o u n t e r e l e c t r o d e by A l (9). S p e c t r o s c o p y r e v e a l e d t h a t dedoped PT f i l m s produced w i t h t h e above improvements were indistinguishable in quality from the c h e m i c a l l y c o u p l e d PT. With t h e s e e x c e l l e n t f i l m s on hand we were a b l e t o do h i g h l y sophisticated experiments of i n s i t u d o p i n g and dedoping w h i l e p e r f o r m i n g a n o t h e r measurement such as e l e c t r o n i c s p e c t r o s c o p y ( 9 ) . The r e s u l t s o f such experiments showed t h a t c h a r g e s , i n PT, a r e s t o r e d as d i c a t i o n s ; a f i n d i n g t h a t p a r a l l e l s o b s e r v a t i o n s on p o l y (pyrrole (15). E l e c t r o n s p i n resonance experiments r e v a l e d t h a t samples o f t h e c h e m i c a l l y c o u p l e d polymer had v e r y few s p i n d e f e c t s (= 65 ppm p e r carbon). P r e l i m i n a r y r e s u l t s o f e p r experiments d u r i n g i n s i t u d o p i n g seem t o c o r r o b o r a t e t h e p r o p o s a l o f charge storage~~in t h e form o f weakly c o n f i n e d b i p o l a r o n s because d o p i n g , p a r t i c u l a r l y a t h i g h dopant c o n c e n t r a t i o n s , shows almost no paramagnetism ( s p i n l e s s c a r r i e r s ) (18). S o l i d State
Photoeffects
The t e c h n i q u e o f p h o t o i n d u c e d s p e c t r o s c o p y has been used v e r y e f f e c t i v e l y t o probe t h e l i f e t i m e and n a t u r e o f s t a t e s i n t h e gap o f
In Organic Phototransformations in Nonhomogeneous Media; Fox, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: May 14, 1985 | doi: 10.1021/bk-1985-0278.ch016
16.
WUDL
Recent Advances
in Organic
261
Materials
polyacetylene (19"25_); i . e . , both the l a t t i c e d i s t o r t i o n and the a s s o c i a t e d e l e c t r o n i c s t r u c t u r e o f t h e s e p h o t o g e n e r a t e d s p e c i e s were i n v e s t i g a t e d by r e c o r d i n g the small changes i n s p e c t r o s c o p y (ir, epr) that occur during p h o t o e x c i t a t i o n ( 1 9 - 2 5 J . Frequency depen dence o f the p h o t o g e n e r a t e d s i g n a l s r e v e a l e d t h a t s o l i t o n s c o u l d be g e n e r a t e d by photons w i t h ηω < Ε (Ε i s the s e m i c o n d u c t o r energy gap). S i m i l a r l y , e l e c t r o n s p i n reSonaSce measurements d u r i n g p h o t o excitation revealed the spinless nature of the photogenerated species (25). Because the c h a r a c t e r i s t i c f e a t u r e s o f the i n f r a r e d spectrum o f the c h a r g e d p h o t o g e n e r a t e d s p e c i e s were found t o be i n a o n e - t o - o n e c o r r e s p o n d e n c e w i t h the s p e c t r a l f e a t u r e s o f an i n d e p e n d e n t l y doped sample o f t r a n s - ( C H ) , a p r i n c i p a l c o n c l u s i o n was t h a t i n both c a s e s the charge was s x o r e d i n the form o f s p i n l e s s charged s o l i t o n s . Coupling of e l e c t r o n i c e x c i t a t i o n s to nonlinear conformational changes can be an intrinsic feature of conducting polymers. G e n e r a l i z a t i o n o f t h i s i d e a and a p p l i c a t i o n t o the l a r g e r f a m i l y o f non d e g e n e r a t e g r o u n d - s t a g e , c o n j u g a t e d polymers was done f o r t h e f i r s t time w i t h p o l y ( t h i o p h e n e ) ( 2 6 ) . The p h o t o i n d u c e d a b s o r p t i o n experiments on a 0 . 3 wt.% p o l y ( t h i o p h e n e ) on KBr were c a r r i e d out by H. S c h a f f e r u s i n g an IBM Instruments IR/98 vacuum F o u r i e r - t r a n s f o r m i n t e r f e r o m e t e r m o d i f i e d t o a l l o w an e x t e r n a l beam o f an Ar laser (ηω = 2.41 eV) t o i r r a d i a t e the sample s i m u l t a n e o u s l y w i t h t h e p r o b i n g i n f r a r e d beam. The o b s e r v e d s p e c t r u m , which i s a d i f f e r e n c e spectrum ( s p e c t r u m due to laser irradiation minus dark spectrum), consists Of four r e l a t i v e l y narrow l i n e s a t 1020, 1120, 1200, and 1320 cm plus a v e r y broad band p e a k i n g a t ^3600 cm . The c l o s e c o r r e s p o n d e n c e o f the f o u r narrow peaks w i t h t h o s e - , r e p o r t e d by H o t t a (27) (1330-1310, 1200, 1120-1080, 1030-1020 cm" ), is strong evidence that the e l e c t r o n i c s t r u c t u r e o f t h e p h o t o i n d u c e d s p e c i e s i s the same as t h a t o f the doped m a t e r i a l . R e s u l t s o f s i m i l a r e x p e r i m e n t s c a r r i e d out by M o r a e s on the same KBr s u s p e n s i o n o f n e u t r a l p o l y ( t h i o p h e n e ) u s i n g e l e c t r o n s p i n resonance as a p r o b e , r e v e a l e d t h a t c o n t r a r y t o the c a s e o f (CH) , a s p i n b e a r i n g s p e c i e s was g e n e r a t e d ; s t r o n g l y i m p l y i n g the f o r m a t i o n o f radical cations (polarons). In t h i s c o n t e x t , the broad band w i t h a maximum a t 0.45 eV (3600 cm ) can be a s s i g n e d t o the l o w e s t - e n e r g y e l e c t r o n i c t r a n s i t i o n o f t h e s e p h o t o generated, d e l o c a l i z e d radical cations (polarons) (26). 2 7
1
2 6
S i n c e we had shown e a r l i e r t h a t the s p e c i e s g e n e r a t e d upon ( d a r k ) d o p i n g were d e l o c a l i z e d c a t i o n s ( p o l a r o n s ) , one can c o n c l u d e from the above experiments that in poly(thiophene) irradiation g e n e r a t e s both c a t i o n s and c a t i o n r a d i c a l s ; i n sharp c o n t r a s t t o what i s o b s e r v e d i n ( Ε Η ) . 1 8
χ
Finally, a n o t h e r s e t o f p r e l i m i n a r y experimetns sowed t h a t S c h o t t k y b a r r i e r s and d i o d e s c o u l d be p r e p a r e d from PT f i l m s o r pressed p e l l e t s . Efficiency o f photoenergy c o n v e r s i o n by t h e s e d e v i c e s i s c u r r e n t l y under i n t e n s e i n v e s t i g a t i o n by M. I s o g a i (28) i n our group.
In Organic Phototransformations in Nonhomogeneous Media; Fox, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
262
ORGANIC PHOTOTRANSFORMATIONS IN NONHOMOGENEOUS MEDIA
Recent R e s u l t s
on P o l y ( i s o t h i a n a p h t h e n e )
PITN has r e c e n t l y been prepared i n our group by c h e m i c a l and e l e c t r o c h e m i c a l p r o c e d u r e s ( 2 9 ) . The reason c r e a t i o n i s b e s t e x p l a i n e d w i t h Scheme I , below.
several for its
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: May 14, 1985 | doi: 10.1021/bk-1985-0278.ch016
Scheme I I f both resonance forms l a and l b were i s o e n e r g e t i c , then t h e r e would be no bond a l t e r n a t i o n " ™ the hydrocarbon backbone o f PT and the polymer would p r o b a b l y e x h i b i t m e t a l l i c c o n d u c t i v i t y w i t h o u t t h e need t o dope. In r e a l i t y , as shown i n Scheme I , t h e two forms a r e not i s o e n e r g e t i c and t h e r e s u l t i n g bond a l t e r n a t i o n i n resonance form l a o f PT, g i v e s r i s e t o t h e o b s e r v e d bandgap o f c a 2eV. On t h e o t h e r hand, b e n z a n n u l a t i o n i n t h e 3 , 4 p o s i t i o n s o f PT, would produce t h e n e a r l y d e g e n e r a t e s t r u c t u r e s 2a and 2b (Scheme I ) because t h e g a i n i n a r o m a t i c i t y o f t h e benzene r i n g T n 2b i s exp e c t e d t o outweigh the l o s s o f t h i o p h e n e a r o m a t i c i t y i n 2a. The r e s u l t would be a m e l i o r a t i o n o f bond a l t e r n a t i o n ( " P e i e r l s distortion" o f the backbone) w i t h a c o n c o m i t a n t d e c r e a s e i n bandgap. Recent r e s u l t s o f i n s i t u d o p i n g s p e c t r o s c o p y ( F i g u r e 2) as w e l l as c y c l i c voltammetry by N. C o l a n e r i and M. Kobayashi i n o u r l a b o r a t o r y showed t h a t indeed t h e bandgap o f PITN i s c a one eV lower than t h a t o f PT. An i n t e r e s t i n g " f a l l o u t " o f t h i s r e s u l t i s t h a t upon d o p i n g , t h e a b s o r p t i o n moves i n t o t h e i n f r a r e d r e g i o n and t h e material becomes a t r a n s p a r e n t ( d e p e n d i n g on sample t h i c k n e s s ) , yellow conductor; i.e., PITN i s a h i g h c o n t r a s t electrochromic material. The energy gap i s now low enough so t h a t S c h o t t k y b a r r i e r experiments showed Ohmic, r a t h e r than d i o d e b e h a v i o r , as was obs e r v e d w i t h PT. E l e c t r o n m i c r o s c o p y r e v e a l e d t h a t t h e morphology o f 6% CI doped PITN depends on t h e s u b s t r a t e on which i t i s d e p o s i t e d and t h a t i t i s a r e l a t i v e l y "open" s t r u c t u r e , a l t h o u g h not as open as poly(acetylene). S e l e c t e d a r e a e l e c t r o n d i f f r a c t i o n on t h e same sample showed t h e m a t e r i a l t o be p a r t i a l l y c r y s t a l l i n e ( t h r e e d i f f r a c t i o n r i n g s c o u l d be s e e n ) . C o n t r a r y t o PT, the f u l l y dedoped s e m i c o n d u c t o r ; an o b s e r v a t i o n which i s energy gap o f t h i s new polymer. Conclusions
PITN i s b l u e - b l a c k and i s a i n agreement w i t h t h e small
and O u t l o o k
We have p r e s e n t e d e v i d e n c e t o prove t h e s t r u c t u r e o f e l e c t r o c h e m i c a l l y g e n e r a l l y p o l y ( t h i o p h e n e ) from d i t h i o p h e n e both by i n d e pendent s y n t h e s i s and s p e c t r o s c o p y . Diodes and p h o t o d i o d e s were fabricated from lightly doped chemically and electrochemically s y n t h e s i z e d PT.
In Organic Phototransformations in Nonhomogeneous Media; Fox, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: May 14, 1985 | doi: 10.1021/bk-1985-0278.ch016
16.
WUDL
Recent Advances
in Organic
la
lb
ΔΕ l b > ΔΕ
la
ΔΕ 2 a s 2 b ;
263
Materials
ΔΕ 2 a > 2b ?
Scheme I
τ
ι
1
1
1
1
1
1
1
1
1
1
1
1
1
1
r
ENERGY (eV)
F i g u r e 2. In s i t u e l e c t r o n i c s p e c t r o s c o p y o f PITN. Solid line a t 2.5V i s a 6% C T doped sample and the 3.5V l i n e c o r r e s p o n d s to the same sample, f u l l y doped. V o l t a g e s a r e \is_ L i .
In Organic Phototransformations in Nonhomogeneous Media; Fox, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
ORGANIC PHOTOTRANSFORMATIONS IN NONHOMOGENEOUS MEDIA
264
U s i n g p h y s i c a l o r g a n i c c h e m i c a l r a t i o n a l i z a t i o n s , we were a b l e t o modify t h e e l e c t r o n i c s t r u c t u r e o f a p o l y ( h e t e r o c y c l e ) . The r e s u l t was p o l y ( i s o t h i a n a p h t h e n e ) ; a polymer which i s a l r e a d y a s e m i c o n d u c t o r i n t h e n e u t r a l (undoped) s t a t e . In t h e f u l l y doped s t a t e , PITN i s a t r a n s p a r e n t c o n d u c t i n g polymer.
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: May 14, 1985 | doi: 10.1021/bk-1985-0278.ch016
Our r e s u l t s w i t h PITN a r e v e r y e n c o u r a g i n g t o t h e development o f an o r g a n i c semimetal ( z e r o gap s e m i c o n d u c t o r ) s i n c e a r e l a t i v e l y minor m o d i f i c a t i o n a l l o w e d t o reduce t h e energy gap w i t h i n a f a m i l y o f p o l y ( h e t e r o c y c l e s ) by 1 eV (23 K c a l ) . F u r t h e r m o d i f i c a t i o n s by a n n u l a t i o n and s u b s t i t u t i o n ( e l e c t r o n donor o r a c c e p t o r ) a r e e x p e c t e d t o f u r t h e r reduce t h e energy gap o f a PT-based p o l y m e r i c conductor. We a r e c u r r e n t l y a c t i v e l y engaged i n t h e p r e p a r a t i o n o f such n e u t r a l o r g a n i c c o n d u c t o r s .
Acknowledgments We a r e i n d e b t e d t o Showa Denko Κ. K. and t h e O f f i c e o f Naval Research through g r a n t N00014-83-K-0450 f o r support o f t h i s work.
Literature Cited 1. 2. 3. 4. 5. 6.
7.
8. 9.
Lyons, L.E., Gutmann, F. "Organic Semiconductors," John Wiley and Sons, New York, 1967. Bryce, M.R. and Murphy, L.C. Nature, 1984, 309, 119. "Proceedings of the International Conference on the Physics and Chemistry of Synthetic and Organic Metals," J . de Physique Colloque, 1983, C3. Wudl, F. Accounts of Chem. Res. 1984, 17, 227. "Proceedings of the International Conference on the Physics and Chemistry of Conducting Polymers," J . de Physique Colloque, 1983, C3. It is unfortunate that the word "doping" has crept into the language of polymeric organic conductors. This is a misnomer since i t does not mean lattice substitution as it applies to current semiconductors science but oxidation or reduction of an electron-rich or electron-deficient chain of atoms. That the atom-chain does not need to consist of π-bonded elements was shown recently by West. West, R.; David, L . D . , Djurovich, P . I . , Sterley, K . L . , Srinivasan, K.S.V., Yu, H.J. Amer. Chem. Soc. 1981, 103, 7352. The word "form" is used here for lack of a better term. The proper word would have been morphology but it has recently assumed a different connotation in polymer science; it usually refers to the microstructure as observed through an electron microscope. The "traditional" concern about fabricability of poly(acetylene) may no longer be a factor i f the work of Aldissi and Liepins (Aldissi, M., Liepins, R. Chem. Commun. 1984, 255. Labes, M.M., Love, P., Nichols, L . F . Chem. Rev., 1979, 79, 1. Chung, T . - C . , Kaufman, J . H . , Heeger, A.J., Wudl, F. Phys. Rev. B, 1984, 30, 702.
In Organic Phototransformations in Nonhomogeneous Media; Fox, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.
Downloaded by UNIV OF SYDNEY on May 3, 2015 | http://pubs.acs.org Publication Date: May 14, 1985 | doi: 10.1021/bk-1985-0278.ch016
16.
WUDL
Recent Advances
in Organic
Materials
265
10. Diaz, A. Chemica Scripta, 1981, 17, 145. 11. Bargon, J., Mohmand, S., Waltman, R.J. IBM J. of Res. and Dev., 1983, 27, 330. 12. Nazzal, Α., Street, G.B. Chem. Commun. 1984, 83. 13. Druy, M.A., Seymour, R.J. Reference 5, p. 395. 14. MacDiarmid, A.G., Heeger, A.J. In "The Physics and Chemistry of Low Dimensional Solids," Alcacer, L., Ed., D. Reidel, Holland, 1981, p. 393. 15. Bredas, J.L., Scott, J.C., Pfluger, P., Krounbi, M.T., Street, G.B. Phys. Rev. B, 1983, 28, 2140. 16. Kobayashi, M., Chen, J., Chung, T.C., Moraes, F., Heeger, A.J., Wudl, F. Synethetic Metals, 1984, 9, 77. 17. Wenkert, E., Leftin, M.H., Michelotti, E.L. Chem. Commun. 1984, 617. These authors exploited this side reaction for the formation of butadienes. 18. Chung, T.-C., Kaufman, J.H., Heeger, A.J., Wudl, F. Phys. Rev. B, in press. 19. Orenstein, J., Baker, G.L., Phys. Rev. Letter, 1982, 49, 1043. 20. Vardeny, Z., Straight, J., Moses, D., Chung, T.-C., Heeger, A.J., Phys. Rev. Lett. 1982, 49, 1657. 21. Shank, V., Yen, R., Fork, R.L., Orenstein, J., Baker, G.L., Phys. Rev. Lett, 1982, 49, 1660. 22. Blanchet, G.B., Fincher, C.R., Chung, T.-C., Heeger, A.J., Phys. Rev. Lett, 1983, 50, 1938. 23. Vardeny, Z., Orenstein, J., Baker, G.L., Phys. Rev. Lett, 1983, 50, 2032. 24. Blanchet, G.B., Fincher, C.R., Heeger, A.J., Phys. Rev. Lett, 1983, 51, 2132. 25. Flood, J.D., Heeger, A.J., Phys. Rev. B, 1983, 28, 2356. 26. Moraes, F., Schaffer, H., Kobayashi, M., Heeger, A.J., Wudl, F., Phys. Rev. B, 1984, 30, in press. 27. Hotta, S., Shimotsuma, W., Taketani, M. unpublished, preprint, 1984. 28. Isogai, M., Kobayashi, M., unpublished results. 29. Wudl, F., Kobayashi, M., Heeger, A.J. , J. Org. Chem., 1984, 49, 3382. RECEIVED February 6, 1985
In Organic Phototransformations in Nonhomogeneous Media; Fox, M.; ACS Symposium Series; American Chemical Society: Washington, DC, 1985.