10 Block Size and Glass-Transition Temperatures of the Polystyrene Phase in Different Block Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 4, 2013 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch010
Copolymers Containing Styrene Blocks as the Hard Phase S. K R A U S E and M . ISKANDAR Department of Chemistry, Rensselaer Polytechnic Institute, Troy NY 12181
Glass-transition temperatures of the styrene microphases in diblock copolymers of styrene and dimethyl siloxane have been obtained as a function of the molecular weights of the styrene blocks using DSC and DTA techniques.
The mag-
nitudes of the glass-transition temperatures of the styrene microphases in these systems were, within
experimental
error, exactly the same as the glass-transition
temperatures
taken from the literature of the styrene microphases in styrene-isoprene
diblock and triblock copolymers and in
styrene-ethylene
oxide diblock and triblock copolymers in
which the styrene blocks had comparable molecular weights. It appears, therefore, that the chemical nature of the other blocks which are attached to the styrene blocks has no effect on the glass-transition temperature
of the styrene micro-
phase; some implications of this observation are discussed.
|^|ften, w h e n T
g
d a t a h a v e b e e n o b t a i n e d o n b l o c k c o p o l y m e r samples
c o n t a i n i n g s m a l l , l o w - m o l e c u l a r - w e i g h t b l o c k s , a systematic
varia-
t i o n of T w i t h b l o c k l e n g t h has b e e n o b s e r v e d . I f w e c o n s i d e r o n l y b l o c k g
copolymers i n w h i c h microphase separation has been demonstrated b y the o b s e r v a t i o n o f t w o different glass-transition t e m p e r a t u r e s , w e
find
t h a t t h e h i g h e r T , t o b e r e f e r r e d t o h e n c e f o r t h as t h e g l a s s - t r a n s i t i o n g
0-8412-0457-8/79/33-176-205$05.00/0 © 1979 American Chemical Society
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
206
MULTIPHASE POLYMERS
t e m p e r a t u r e of the glassy phase, varies q u i t e d i f f e r e n t l y w i t h c h a n g e s i n m o l e c u l a r w e i g h t of the r e l e v a n t b l o c k s t h a n does the l o w e r T , t o b e g
r e f e r r e d to h e n c e f o r t h as the g l a s s - t r a n s i t i o n t e m p e r a t u r e of t h e r u b b e r y phase. I n this c h a p t e r , w e s h a l l d e a l m a i n l y w i t h the T
of the glassy phase,
g
w h i c h , i n a l m o s t a l l cases t h a t h a v e b e e n i n v e s t i g a t e d , has b e e n p o l y s t y rene.
I n one of the earliest i n v e s t i g a t i o n s of this t y p e , K r a u s , C h i l d e r s ,
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 4, 2013 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch010
a n d G r u v e r ( I ) n o t i c e d that the t e m p e r a t u r e of the loss p e a k a t t r i b u t e d t o the styrene b l o c k s i n d y n a m i c m e c h a n i c a l m e a s u r e m e n t s of s t y r e n e butadiene block copolymers decreased
f r o m 104°
t o 60 ° C w h e n
the
styrene b l o c k l e n g t h d e c r e a s e d b y a f a c t o r of a b o u t f o u r ( exact m o l e c u l a r w e i g h t s of the samples w e r e n o t k n o w n ) . I n a m o r e r e c e n t w o r k , Kraus and R o l l m a n n (2)
s t u d i e d t r i b l o c k c o p o l y m e r s of styrene
isoprene over a copolymer-molecular-weight range f r o m 2 χ
with
10 to about 4
10 , a g a i n u s i n g d y n a m i c m e c h a n i c a l t e c h n i q u e s . T h e t e m p e r a t u r e of t h e 5
upper (polystyrene)
loss m a x i m u m v a r i e d f r o m 1 2 0 °
to 2 0 ° C
m o l e c u l a r w e i g h t of the styrene b l o c k s d e c r e a s e d f r o m 2 Χ 5000.
Differential scanning calorimetry ( D S C )
as
the
10 to a b o u t 4
was used b y Robinson
a n d W h i t e (3) to study glass-transition temperatures i n triblock copoly mers of styrene a n d i s o p r e n e a n d b y O ' M a l l e y et a l . (4)
to s t u d y t h e
m e l t i n g t r a n s i t i o n of the e t h y l e n e o x i d e a n d the glass t r a n s i t i o n of the styrene p h a s e i n d i b l o c k a n d t r i b l o c k c o p o l y m e r s of styrene a n d e t h y l e n e oxide.
The T
g
of the p o l y s t y r e n e m i c r o p h a s e s i n b o t h D S C studies d e
c r e a s e d w i t h d e c r e a s i n g p o l y s t y r e n e b l o c k lengths as u s u a l . Additional T
g
diblock
data on very l o w molecular weight
a n d triblock copolymers were
R o o v e r s ( 5 ) , also u s i n g D S C t e c h n i q u e s .
obtained
by
O n l y the T
e
m i c r o p h a s e s w a s g i v e n i n those cases i n w h i c h the T
g
styrene-isoprene Toporowski and
of the p o l y s t y r e n e of b o t h phases w a s
o b t a i n e d , i.e., w h e r e m i c r o p h a s e s e p a r a t i o n d e f i n i t e l y o c c u r r e d , a n d t h i s T
g
also d e c r e a s e d w i t h d e c r e a s i n g size of the styrene b l o c k s ; h o w e v e r , i t
i n c r e a s e d s l i g h t l y as the size of the i s o p r e n e b l o c k s w a s i n c r e a s e d w h i l e h o l d i n g constant the sizes of the styrene b l o c k s . T h i s is i n s h a r p contrast t o t h e d a t a of K r a u s a n d R o l l m a n n ( 2 ) , w h i c h i n d i c a t e d t h a t the T
e
of
the p o l y s t y r e n e m i c r o p h a s e d e p e n d e d o n l y o n the m o l e c u l a r w e i g h t of the styrene b l o c k s , w h e t h e r the other p h a s e w a s p o l y b u t a d i e n e or p o l y i s o p r e n e . It is of interest to n o t e that the d a t a of K r a u s a n d R o l l m a n n ( 2 ) w e r e o b t a i n e d o n b l o c k c o p o l y m e r s of m u c h h i g h e r m o l e c u l a r w e i g h t t h a n w e r e those of T o p o r o w s k i a n d R o o v e r s ( 5 ) ;
the latter a u t h o r s , as
a m a t t e r of fact, s t u d i e d b l o c k c o p o l y m e r s of m o l e c u l a r w e i g h t o n l y s l i g h t l y greater t h a n t h a t occurs.
at w h i c h m i c r o p h a s e
T h e y s t u d i e d , i n a d d i t i o n to t h e
copolymer
samples,
many
separation no
microphase-separated
lower-molecular-weight samples
in
microphase separation d i d not occur.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
longer block which
10.
207
Styrene Blocks
KRAUSE AND i S K A N D A R
A n u m b e r o f e x p l a n a t i o n s exist f o r t h e decrease i n g l a s s - t r a n s i t i o n t e m p e r a t u r e of t h e glassy m i c r o p h a s e w i t h d e c r e a s i n g b l o c k l e n g t h o f t h e glassy b l o c k s . C h i l d e r s a n d K r a u s (6) s p e c u l a t e d t h a t this T
lowering
g
m i g h t p o s s i b l y b e a t t r i b u t e d t o some m i x i n g of t h e b l o c k segments i n styrene-butadiene
block copolymers, that is, they postulated
c o m p a t i b i l i t y of the b l o c k s as t h e b l o c k lengths d e c r e a s e d .
increased
M a n y investi-
gators h a v e p o s t u l a t e d that m i x i n g o f t h e c h e m i c a l l y d i f f e r e n t b l o c k seg-
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 4, 2013 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch010
ments occurs i n a n i n t e r l a y e r w i t h finite v o l u m e b e t w e e n
microphases;
t h e v o l u m e o f this m i x e d i n t e r l a y e r w o u l d p r e s u m a b l y d e p e n d o n t h e m o l e c u l a r w e i g h t s of the b l o c k s a n d o n t h e i r m u t u a l c o m p a t i b i l i t y . K r a u s a n d R o l l m a n n (2) a s s u m e d a n i n t e r l a y e r i n t h e i r s t y r e n e - b u t a d i e n e styrene-isoprene styrene,
and
block copolymers that w a s disproportionately r i c h i n
a n d they presented
calculations w h i c h
showed that
such a n
i n t e r p r e t a t i o n w a s consistent w i t h t h e i r d a t a w h i l e a n i n t e r p r e t a t i o n t h a t r e l i e d s o l e l y o n t h e free v o l u m e p r o v i d e d b y p o l y m e r c h a i n ends, w h o s e c o n c e n t r a t i o n increases w i t h d e c r e a s i n g m o l e c u l a r w e i g h t , p r e d i c t e d a v a r i a t i o n of T w i t h m o l e c u l a r w e i g h t that w a s m u c h s m a l l e r t h a n t h a t g
w h i c h was observed. T h e presence of a more u n i f o r m l y m i x e d interlayer h a d been postulated earlier b y F e s k o a n d Tschoegl ( 7 ) to account for the d y n a m i c m e c h a n i c a l p r o p e r t i e s o f some s t y r e n e - b u t a d i e n e - s t y r e n e
tri-
block copolymers. T h e o b s e r v e d T s of t h e p o l y s t y r e n e m i c r o p h a s e s i n a l l o f t h e w o r k g
quoted above
(1,2,3,4,5)
w e r e l o w e r t h a n those e x p e c t e d
for poly-
styrene h o m o p o l y m e r s h a v i n g t h e same m o l e c u l a r w e i g h t s as t h e b l o c k s in the block copolymers.
W e present
a d e t a i l e d c o m p a r i s o n of s u c h
data below. E v e n i f t h e r e is n o m i x e d i n t e r l a y e r w i t h
finite
volume
between
m i c r o p h a s e s , i t is o b v i o u s t h a t contacts b e t w e e n t h e c h e m i c a l l y d i f f e r e n t b l o c k s o c c u r a t t h e surfaces b e t w e e n m i c r o p h a s e s a n d t h a t t h e n u m b e r of these contacts m u s t increase as t h e size o f t h e m i c r o p h a s e s decreases, t h a t i s , as t h e s u r f a c e a r e a b e t w e e n m i c r o p h a s e s Pegoraro
( 8 ) analyzed the observed
ethylene-propylene
increases.
glass-transition
Bares a n d
temperatures i n
c o p o l y m e r s w i t h v i n y l - c h l o r i d e grafts i n terms o f
s u c h surface m i x i n g . T h i s t y p e o f m i x i n g p r o v i d e s a n o t i c e a b l e decrease i n T o n l y w h e n the m i c r o p h a s e s are e x t r e m e l y s m a l l ; B a r e s a n d P e g o r a r o g
( 8 ) c a l c u l a t e d t h a t effects w o u l d o n l y b e o b s e r v e d w h e n s p h e r i c a l m i c r o phases w e r e less t h a n 2 5 m o n o m e r u n i t s i n d i a m e t e r o r w h e n c y l i n d r i c a l m i c r o p h a s e s w e r e less t h a n 10 m o n o m e r u n i t s i n d i a m e t e r .
I n a later
p u b l i c a t i o n , B a r e s ( 9 ) d e v i s e d a less r e s t r i c t i v e a r g u m e n t f o r c a l c u l a t i n g the T
g
o f t h e glassy m i c r o p h a s e s as t h e m o l e c u l a r w e i g h t of t h e b l o c k s
c o m p r i s i n g these- m i c r o p h a s e s
decreased
a n d as t h e s u r f a c e - t o - v o l u m e
r a t i o o f these m i c r o p h a s e s s i m u l t a n e o u s l y i n c r e a s e d . t h e F o x - F l o r y (10)
equation f o r T
g
H e essentially u s e d
l o w e r i n g caused b y l o w molecular
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
208
MULTIPHASE POLYMERS
w e i g h t i n homopolymers a n d i n r a n d o m copolymers a n d a d d e d another t e r m w h i c h p r o v i d e d f o r a n a d d i t i o n a l l o w e r i n g of T
g
u m e r a t i o of a p a r t i c u l a r m i c r o p h a s e i n c r e a s e d .
as the s u r f a c e : v o l -
Since the surface:volume
r a t i o of m i c r o p h a s e s w i t h d i f f e r e n t m o r p h o l o g y is n o t the same, the l o w e r i n g w o u l d be expected to vary w i t h morphology. Bares (9)
T
g
found
q u a l i t a t i v e a g r e e m e n t b e t w e e n his p r e d i c t i o n s a n d some of the d a t a of Robinson and White
(3).
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 4, 2013 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch010
C o u c h m a n a n d K a r a s z (11 ) r e c e n t l y h a v e m a d e some i n d i c a t i n g that
spherical microphases
transition temperatures
calculations
should exhibit increased
b e c a u s e of a n i n c r e a s e d
pressure
glass-
inside such
m i c r o p h a s e s a t t r i b u t e d to t h e surface t e n s i o n b e t w e e n m i c r o p h a s e s .
Since
t h e r e is some d o u b t a b o u t the existence of a surface of t e n s i o n i n t h e G i b b s ' sense
between
(12)
chemically l i n k e d microphases,
we
shall
s i m p l y n o t e t h a t these c a l c u l a t i o n s are the o n l y ones i n existence t h a t i n d i c a t e a p o s s i b l e reason f o r a n increase i n the T
g
of a glassy m i c r o p h a s e
a n d , i n a d d i t i o n , t h a t these c a l c u l a t i o n s also p o s t u l a t e differences i n w i t h differences
in morphology.
F o r e x a m p l e , this
p e n d e n t effect w o u l d n o t b e e x p e c t e d
T
g
surface-tension-de-
i n samples w i t h l a m e l l a r m o r -
p h o l o g y , n o m a t t e r h o w s m a l l the w i d t h of e a c h l a m e l l a . T o s u m m a r i z e the observations m a d e i n t h e p r e c e d i n g p a r a g r a p h s , w e c a n say that there is n o d o u b t a b o u t the f a c t t h a t t h e T
g
microphases
i n phase-separated
of the glassy
b l o c k c o p o l y m e r s decreases w h e n
the
lengths of the glassy b l o c k s decrease, a n d f u r t h e r m o r e , t h a t the T s g
of
s u c h m i c r o p h a s e s are g e n e r a l l y l o w e r t h a n are those of the c o r r e s p o n d i n g homopolymers
of c o m p a r a b l e
molecular
weight.
We
have
discussed
m o s t l y b l o c k c o p o l y m e r s i n w h i c h styrene c o m p r i s e s the glassy b l o c k s ; however, similar data have been obtained for the glass-transition temperatures of the p o l y c a r b o n a t e b l o c k s i n a l t e r n a t i n g m u l t i b l o c k c o p o l y mers of d i m e t h y l s i l o x a n e a n d b i s p h e n o l - A c a r b o n a t e b y K a m b o u r that
include:
a n e x p l a n a t i o n s i m i l a r to t h e m o l e c u l a r w e i g h t effect i n
( 1)
homopolymers, (2)
have
been
a d v a n c e d f o r this
general
(13).
Explanations
T
g
lowering
m i x i n g of segments f r o m c h e m i c a l l y d i f f e r e n t b l o c k s
b y surface c o n t a c t b e t w e e n m i c r o p h a s e s , a n d ( 3 )
m i x i n g of segments
f r o m c h e m i c a l l y d i f f e r e n t b l o c k s i n i n t e r l a y e r s of finite v o l u m e . T h e decrease i n h o m o p o l y m e r T
w i t h decreasing molecular weight
g
has g e n e r a l l y b e e n
a t t r i b u t e d to a n increase
of free v o l u m e i n l o w -
m o l e c u l a r - w e i g h t b u l k p o l y m e r s c a u s e d b y the i n c r e a s e d of c h a i n ends.
concentration
H o w e v e r , end blocks i n block copolymer molecules have
only a single-chain e n d w h i l e center blocks have no free-chain O n e w o u l d t h e r e f o r e expect t h a t the T
g
ends.
of a m i c r o p h a s e c o m p r i s e d of e n d
b l o c k s w o u l d b e l o w e r t h a n t h a t of a m i c r o p h a s e c o m p r i s e d of c e n t e r b l o c k s of c o m p a r a b l e m o l e c u l a r w e i g h t .
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
10.
KRAUSE AND isKANDAR The
209
Styrene Blocks
v o l u m e of a m i x e d i n t e r l a y e r b e t w e e n
microphases
should
d e p e n d o n c o m p a t i b i l i t y b e t w e e n t h e b l o c k s as m e a s u r e d b y t h e d i f f e r ence between their solubility parameters or b y their interaction parameter. S u r f a c e contacts b e t w e e n m i c r o p h a s e s , o n t h e o t h e r h a n d , s h o u l d b e affected o n l y b y m i c r o p h a s e size a n d m o r p h o l o g y . T o d i s e n t a n g l e t h e v a r i o u s p o s s i b l e effects o n t h e g l a s s - t r a n s i t i o n t e m p e r a t u r e s of glassy m i c r o p h a s e s , w e h a v e b e g u n studies o n a b l o c k
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 4, 2013 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch010
copolymer system i n w h i c h the blocks are expected to b e
extremely
i n c o m p a t i b l e so t h a t t h e f o r m a t i o n of a m i x e d i n t e r l a y e r w i t h finite v o l u m e is m u c h less p r o b a b l e t h a n i t is i n a s y s t e m l i k e
styrene-isoprene.
T h e s l i g h t b u t s i g n i f i c a n t c o m p a t i b i l i t y of styrene b l o c k s w i t h i s o p r e n e b l o c k s is s h o w n d i r e c t l y i n t h e d a t a of T o p o r o w s k i a n d R o o v e r s ( 5 ) , w h o w e r e a b l e t o observe c o m p l e t e m i x i n g b e t w e e n
styrene a n d i s o p r e n e
blocks i n their block copolymers w h e n molecular weights were very l o w . T h i s c o m p a t i b i l i t y m a k e s t h e p r e s e n c e of a m i x e d i n t e r l a y e r m i c r o p h a s e s reasonable.
between
S o m e e x p e r i m e n t a l studies of p o s s i b l e d i m e n -
sions of this i n t e r l a y e r u s i n g s m a l l a n g l e x-ray s c a t t e r i n g b e g i n n i n g t o a p p e a r i n t h e l i t e r a t u r e (14),
( S A X S ) are
a l t h o u g h o l d e r studies u s i n g
S A X S i n d i c a t e d a sharp b o u n d a r y between microsphases
(15,16).
T h e s y s t e m w i t h w h i c h w e h a v e b e g u n o u r i n v e s t i g a t i o n s is t h e s t y r e n e - d i m e t h y l s i l o x a n e system. T h e d i m e t h y l s i l o x a n e b l o c k s s h o u l d b e c o n s i d e r a b l y less c o m p a t i b l e w i t h p o l y s t y r e n e b l o c k s t h a n either p o l y b u t a d i e n e o r p o l y i s o p r e n e since t h e s o l u b i l i t y p a r a m e t e r
of d i m e t h y l -
siloxane is m u c h f a r t h e r f r o m t h a t of p o l y s t y r e n e t h a n are t h e s o l u b i l i t y parameters of p o l y b u t a d i e n e s o r of p o l y i s o p r e n e s ( 1 7 ) , n o m a t t e r w h a t t h e i r m i c r o s t r u c t u r e . F u r t h e r m o r e , e v e n hexamers of p o l y s t y r e n e a n d of polydimethylsiloxane are i m m i s c i b l e at r o o m temperature a n d have a n upper critical-solution temperature above 3 5 ° C
(18).
I n addition, the
m i c r o p h a s e s i n this s y s t e m c a n b e o b s e r v e d w i t h o u t s t a i n i n g a n d w i t h n o a m b i g u i t y a b o u t t h e i d e n t i t y of t h e phases i n t h e t r a n s m i s s i o n e l e c t r o n m i c r o s c o p e ( T E M ) ; s i l i c o n has a m u c h h i g h e r a t o m i c n u m b e r t h a n carb o n or oxygen, m a k i n g the polydimethylsiloxane microphases the dark phases i n T E M (19,
20).
Experimental P o l y m e r s . T h e p o l y s t y r e n e s t a n d a r d s u s e d i n this w o r k w e r e A r r o L a b o r a t o r i e s * " M o n o d i s p e r s e . " O n e g r o u p of s t y r e n e - d i m e t h y l s i l o x a n e d i b l o c k c o p o l y m e r s w e r e those p r e p a r e d a n d c h a r a c t e r i z e d b y Z i l l i o x , R o o v e r s , a n d B y w a t e r (21), k i n d l y sent t o us b y J . E . L . R o o v e r s . T h e s e polymers have been given the designation R i n Table II below; molecul a r w e i g h t s of t h e b l o c k s w e r e c a l c u l a t e d f r o m t h e e x p e r i m e n t a l l y determ i n e d w e i g h t - a v e r a g e m o l e c u l a r w e i g h t s a n d c o m p o s i t i o n s of t h e c o p o l y mers (21 ) e x c e p t f o r s a m p l e R 1 3 , f o r w h i c h o n l y t h e n u m b e r - a v e r a g e
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
MULTIPHASE POLYMERS
210
molecular weight was available. G e l permeation chromatograms were o b t a i n e d i n t o l u e n e s o l u t i o n o n a W a t e r s Associate's A n a p r e p G P C r u n i n t h e a n a l y t i c a l m o d e u s i n g five c o l u m n s r a n g i n g f r o m 2 Χ 10 to 7 Χ 1 0 A i n exclusion limit and were compared w i t h chromatograms supplied t o us b y R o o v e r s . T h e c h r o m a t o g r a m s w e r e v i r t u a l l y i d e n t i c a l . A s e c o n d g r o u p of d i b l o c k c o p o l y m e r s w a s k i n d l y s u p p l i e d t o us b y J . W . D e a n of the S i l i c o n e P r o d u c t s D e p a r t m e n t of the G e n e r a l E l e c t r i c C o . T h e s e samples are d e s i g n a t e d D i n T a b l e I I ; m o l e c u l a r w e i g h t s of the b l o c k s w e r e c a l c u l a t e d f r o m w e i g h t - a v e r a g e m o l e c u l a r w e i g h t s o b t a i n e d u s i n g G P C i n o u r l a b o r a t o r y a n d c o m p o s i t i o n s of the c o p o l y m e r s as d e t e r m i n e d b y D e a n ( 2 2 ) . Weight-average molecular w e i g h t s o b t a i n e d f r o m G P C i n o u r l a b o r a t o r y w e r e c a l c u l a t e d as f o l l o w s : the set of five c o l u m n s d e s c r i b e d a b o v e w e r e c a l i b r a t e d u s i n g A r r o Laboratories' " M o n o d i s p e r s e " polystyrenes, a n d then w e assumed that the b l o c k c o p o l y m e r s f o l l o w e d the same c a l i b r a t i o n c u r v e as p o l y s t y r e n e . T h e v a l i d i t y of this p r o c e d u r e is p r e s e n t l y u n d e r e x a m i n a t i o n i n o u r laboratory. Thermal A n a l y s i s . D i f f e r e n t i a l t h e r m a l analysis ( D T A ) d a t a w e r e o b t a i n e d u s i n g a F i s h e r T h e r m a l y z e r M o d e l 300 Q D T A w i t h a h e a t i n g r a t e of 2 0 ° C / m i n a n d static a i r i n the s a m p l e h o l d e r , w h i l e d i f f e r e n t i a l scanning calorimetry ( D S C ) data were obtained using a P e r k i n - E l m e r D S C - 1 B w i t h a h e a t i n g rate of 1 0 ° C / m i n a n d a steady flow of n i t r o g e n . T h e c o o l i n g rate w a s also c o n t r o l l e d at 1 0 ° C / m i n b e t w e e n runs o n the same s a m p l e i n the D S C e x p e r i m e n t s ; c o o l i n g rates v a r i e d i n t h e D T A r u n s . T h e t e m p e r a t u r e scales o n b o t h i n s t r u m e n t s w e r e c a l i b r a t e d u s i n g the m e l t i n g transitions of p - n i t r o t o l u e n e a n d n a p h t h a l e n e b e l o w 1 0 0 ° C a n d those of l e a d , t i n , i n d i u m , a n d b e n z o i c a c i d a b o v e 1 0 0 ° C . O n b o t h i n s t r u m e n t s , the average e r r o r of the t e m p e r a t u r e scale f o r a l l these t r a n sitions w a s ± 1 . 0 % ( ° C ) . A l l g l a s s - t r a n s i t i o n t e m p e r a t u r e s r e c o r d e d i n T a b l e s I a n d I I are i n the m i d d l e of the t r a n s i t i o n r a n g e of the heat c a p a c i t i e s . W e are a w a r e t h a t some w o r k e r s (23) f e e l that the t e m p e r a t u r e at w h i c h t h e h e a t c a p a c i t y just b e g i n s to c h a n g e d u r i n g h e a t i n g is s o m e w h a t m o r e r e p r o d u c i b l e , t h o u g h p r o b a b l y less m e a n i n g f u l t h a n the m i d d l e of t h e t r a n s i t i o n range. R e c o r d e d t e m p e r a t u r e s are t h e averages of m a n y r u n s f o r e a c h s a m p l e ; i f the T w a s n o t c o m p l e t e l y r e p r o d u c i b l e , the r a n g e of v a l u e s o b t a i n e d is s h o w n i n the tables. T h e r e w a s one s a m p l e , R 1 4 , f o r w h i c h t w o Tg-like t r a n s i t i o n s sometimes a p p e a r e d o n first h e a t i n g t h e
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 4, 2013 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch010
3
K
Table I.
Glass-Transition Temperatures of Standard Polystyrene Samples Obtained in This Laboratory
Mol Wt (X 10~4) 0.20 LOO 2.00 5.00 9.72 180
T
g
DSC
DTA 63 95 ± 100.5 ± 101.5 ± 101 ± 104 ±
(°C)
55
1 0.5 0.5 1 2
95 db 2 99 ± 2 104 106 105
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
5
10.
KRAUSE
AND
211
Styrene Blocks
ISKANDAR
Table II. Glass-Transition Temperatures of Styrene-Dimethyl siloxane Diblock Copolymers Obtained in This Laboratory
Sample
Wtfo Styrene
R13 R14
9,100 19,300
53.5 56.8
1.06 1.10
D2 Dl
20,300
89.7 91.9 47.1 59.6 73.5 66.5 58.3
1.26 1.30 1.14 1.16 1.19 1.15 1.13
23,900 47,100 121,000 136,000 327,000 362,000
R15
R8 R5 R25 R26
T,
n
w
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 4, 2013 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch010
MJM (Whole Sample)
M ( Styrene Block)
(°C) DSC
DTA
77
75±2 98 ± 3 e
— —
103 ± 101.5 ± 102 rb 98.5 103 ±
ft
3 0.5 1 2
79 db 72 ± 102 ± 96 95 ± 104 ± 108 ± 107 ± : 104 109
4 V 2
b
1 2 1 1
° The lower T appeared on the first heating of the sample only, sometimes i n conjunction with the higher T . The higher Ί\ sometimes appeared in conjunction with the lower T on the first heating of the sample ; when a transition appeared on subsequent heating of the sample, it was always the higher T . g
g
b
K
g
s a m p l e ; b o t h of these are s h o w n e v e n t h o u g h the l o w e r t r a n s i t i o n d i s a p p e a r e d o n subsequent h e a t i n g . W h e n a large e n d o t h e r m or, i n one case, a n e x o t h e r m , a p p e a r e d i n the glass-transition r a n g e of a s a m p l e o n first h e a t i n g , n o a t t e m p t w a s m a d e to d e d u c e a T f r o m it. Transmission Electron Microscopy. F i l m s of a l l samples d e s i g n a t e d R w e r e o b t a i n e d b y e v a p o r a t i o n of t o l u e n e f r o m solutions of the b l o c k copolymers and were observed without staining using a H i t a c h i Hu-125 o r a J E O L J E M 100 S e l e c t r o n m i c r o s c o p e . M e t h o d s of p r e p a r i n g t h e films h a v e b e e n d e s c r i b e d p r e v i o u s l y (24). So far, w e h a v e o b t a i n e d e v i d e n c e f o r m i c r o p h a s e s e p a r a t i o n i n o n l y the f o u r h i g h e s t m o l e c u l a r w e i g h t samples b y T E M . W e h a v e not o b t a i n e d c o n t i n u o u s films of t h e l o w e r m o l e c u l a r - w e i g h t s a m p l e s ; w e p l a n to e x a m i n e sections of these samples later. B e c a u s e of the v e r y s m a l l c o m p a t i b i l i t y of styrene a n d p o l y d i m e t h y l s i l o x a n e , h o w e v e r , w e expect phase s e p a r a t i o n i n a l l of these samples. g
Results and
Discussion
T a b l e I shows the T
g
values o b t a i n e d i n this w o r k o n s t a n d a r d p o l y
styrene samples; i n most cases, the values o b t a i n e d f r o m D T A d a t a are s l i g h t l y h i g h e r t h a n those o b t a i n e d b y D S C . Since these d a t a w e r e to b e u s e d f o r d e t a i l e d c o m p a r i s o n s w i t h d a t a o b t a i n e d b y others as w e l l as b y ourselves o n styrene b l o c k c o p o l y m e r s , w e first c o m p a r e d o u r d a t a o n a n i o n i c a l l y p o l y m e r i z e d s t a n d a r d p o l y s t y r e n e s w i t h those o b t a i n e d o n other a n i o n i c a l l y p o l y m e r i z e d p o l y s t y r e n e s b y other w o r k e r s also u s i n g DTA
a n d D S C techniques.
T h i s c o m p a r i s o n is s h o w n g r a p h i c a l l y i n
F i g u r e 1. I n F i g u r e 1, the s o l i d c u r v e is d r a w n t h r o u g h a c o m b i n a t i o n of o u r d a t a w i t h that o b t a i n e d b y W a l l et a l . (25)
u s i n g a D u p o n t 900
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
Figure 1. Glass-transition temperatures of anionically polymerized polystyrenes as determined by DTA or DSC. The solid curve is drawn through a combination of our data and that of Wall et al. (25); the dashed line is drawn through the data of Toporowski and Roovers (5).
r4
MOLECULAR WEIGHT x 10"
THIS WORK DSC THIS WORK DTA WALL (25) DTA TOPOROWSKI {5}DCS RIETSCH (26) DSC COWIE (27) DSC
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 4, 2013 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch010
10.
KRAUSE AND ISKANDAR
213
Styrene Blocks
D i f f e r e n t i a l T h e r m a l A n a l y z e r at a h e a t i n g rate of 2 0 ° C / m i n .
This curve
w i l l be considered our standard curve for polystyrene h o m o p o l y m e r a n d is r e d r a w n o n F i g u r e 2. O n F i g u r e 1, the d a s h e d c u r v e is d r a w n t h r o u g h the d a t a of T o p o r o w s k i a n d R o o v e r s ( 5 ) ;
only their lowest molecular-
w e i g h t sample falls on our standard curve.
T h e discrepancy
between
the t w o curves m a y p o s s i b l y b e c a u s e d b y s o m e p o l y d i s p e r s i t y i n T o p o r o w s k i a n d Roovers* s a m p l e s ; t h e y r e p o r t e d o n l y M „ v a l u e s f o r t h e i r
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 4, 2013 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch010
homopolymers.
T h e d a t a of R i e t s c h et a l . (26),
w h i c h were
obtained
u s i n g a P e r k i n - E l m e r D S C - 2 at v a r i o u s h e a t i n g rates a n d e x t r a p o l a t i n g t h e c a l c u l a t e d T s to v e r y l o w h e a t i n g rate, f a l l w e l l b e l o w o u r s t a n d a r d g
c u r v e ; this is to b e e x p e c t e d b e c a u s e of the e x t r a p o l a t i o n to l o w h e a t i n g rate. T h e d a t a of C o w i e (27),
o b t a i n e d u s i n g a D u P o n t 900 D S C m o d u l e
at a h e a t i n g rate of 2 0 ° C / m i n ,
cannot be explained simply b y noting
t h a t C o w i e r e p o r t e d the i n i t i a l c h a n g e of h e a t c a p a c i t y o n h e a t i n g as h i s glass-transition temperature.
, V Δ Ο • Ο χ -f
,
,—_
,
,
THIS WORK D T A , S - D M S , T O N E O F T W O T g ' s O B S E R V E D THIS WORK D S C , S - D M S , • ONE O F T W O Tg's O B S E R V E D TOPOROWSKI (5)S- I , PHASE SEPARATED TOPOROWSKI ( 5 ) S - I - S , PHASE SEPARATED ROBINSON (3) S - l - S , φ I - S - I O'MALLEY O'MALLEY
ON SAME SAMPLE ON SAME S A M P L E
P O L Y S T Y R E N E HOMOPOLYMER STANDARD C U R V E (FROM FIGURE I)
50-
B
4oLMOL. WT. EACH STYRENE BLOCK x 10"
Figure 2. Class-transition temperatures of the glassy microphases of various block copolymers containing styrene blocks vs. the molecular weights of the styrene blocks as determined by DTA or DSC.
S-DMS refers to styrene-dimethylsiloxane diblock copolymers; S—I refers to styrene-isoprene diblock copolymers; S-I-S and I-S-I refer to styrene-isoprenestyrene and to isoprene-styrene-isoprene triblock copolymers, respectively; an S-EO and EO-S-EO refer to styrene-ethylene oxide diblock copolymers and to ethylene oxide—styrene-ethylene oxide triblock copolymers, respectively.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
214
MULTIPHASE POLYMERS
T a b l e I I shows the T
g
values o b t a i n e d f o r the glassy p h a s e of the
s t y r e n e - d i m e t h y l s i l o x a n e b l o c k c o p o l y m e r s u s e d i n this w o r k ; i n the case of the b l o c k c o p o l y m e r s , n e i t h e r D S C n o r D T A gave a consistently h i g h e r v a l u e of T .
T h e o n l y p e c u l i a r s a m p l e i n the t a b l e is s a m p l e R 1 4 , w h i c h
g
e x h i b i t e d t w o T s o n b o t h i n s t r u m e n t s at least o c c a s i o n a l l y d u r i n g the g
first h e a t i n g c y c l e .
A l t h o u g h the p r e s e n c e of t w o T s i m p l i e s some k i n d g
of p h a s e s e p a r a t i o n , p o s s i b l y i n a d d i t i o n to m i c r o p h a s e s e p a r a t i o n ,
the
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 4, 2013 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch010
G P C of this s a m p l e shows n o d o u b l e peak, s h o u l d e r , or other p e c u l i a r i t y w h i c h m i g h t e x p l a i n its p e c u l i a r p h a s e
behavior.
This sample
is a n
a n o m a l y unless one w i s h e s to d i smi ss a l l first h e a t i n g d a t a . F i g u r e 2 shows o u r p o l y s t y r e n e s t a n d a r d c u r v e , the d a t a f r o m T a b l e I I , a n d d a t a o b t a i n e d f o r the T
g
of the glassy m i c r o p h a s e i n v a r i o u s
s t y r e n e - r u b b e r b l o c k c o p o l y m e r s b y other investigators u s i n g D T A a n d D S C techniques.
It is r e m a r k a b l e that the d a t a f o r a l l b u t a f e w samples
f a l l i n a n a r r o w b a n d of the o r d e r of 10 ° C b e l o w the s t a n d a r d p o l y s t y r e n e homopolymer curve.
T h e l o w e s t m o l e c u l a r - w e i g h t styrene b l o c k s
have
T s that are s o m e w h a t f a r t h e r t h a n 10 ° C b e l o w the s t a n d a r d c u r v e . g
It
s h o u l d be n o t e d that some of the b l o c k c o p o l y m e r s f o r w h i c h d a t a a p p e a r o n F i g u r e 2 h a v e styrene as one of the b l o c k s of a d i b l o c k c o p o l y m e r , some h a v e styrene as the c e n t e r b l o c k i n a t r i b l o c k c o p o l y m e r , a n d h a v e styrene as the t w o e n d b l o c k s i n a t r i b l o c k c o p o l y m e r .
others
F o r those
samples i n w h i c h styrene appears as the t w o e n d b l o c k s i n a t r i b l o c k c o p o l y m e r , the m o l e c u l a r w e i g h t of o n l y one of the styrene b l o c k s has b e e n u s e d i n the
figure.
O n e c a n note that, i n the case of these samples,
t h e d a t a w o u l d n o l o n g e r be i n a b a n d w i t h most of the other d a t a if the c o m b i n e d m o l e c u l a r w e i g h t of the t w o styrene b l o c k s h a d b e e n u s e d i n the
figure.
between
O n e also s h o u l d note that there are n o systematic the
data
for
styrene-dimethylsiloxane
styrene-isoprene,
styrene-ethylene
block copolymers.
and
molecular weight
of
e a c h styrene b l o c k a p pe a rs to be the m a j o r v a r i a b l e that c o n t r o l s
its
glass-transition temperature,
The
differences oxide,
not its c o m p a t i b i l i t y w i t h its
a n d not its p o s i t i o n i n the b l o c k c o p o l y m e r m o l e c u l e .
comonomer
It is n o t o b v i o u s
f r o m F i g u r e 2, t h o u g h it m a y be d e d u c e d f r o m T a b l e II a n d f r o m a p e r u s a l of the p e r c e n t a g e c o m p o s i t i o n d a t a f o r a l l the b l o c k c o p o l y m e r s s h o w n i n the figure, t h a t the glass-transition t e m p e r a t u r e s of the
styrene
m i c r o p h a s e s d o not d e p e n d , i n a n y systematic w a y , o n the p e r c e n t a g e c o m p o s i t i o n s of the b l o c k c o p o l y m e r s w h i c h c o m p o s e t h e m ; this i m p l i e s t h a t the m o r p h o l o g y of the b l o c k c o p o l y m e r s , w h i c h at least at e q u i l i b r i u m is c o n t r o l l e d b y p e r c e n t a g e c o m p o s i t i o n , has n o major effect o n the g l a s s - t r a n s i t i o n t e m p e r a t u r e of the glassy m i c r o p h a s e . T h e " m a v e r i c k " p o i n t s o n F i g u r e 2 c a n b e r a t i o n a l i z e d . O n e set of t h e m belongs to our anomalous sample, R14, that exhibited t w o T s . g
If
o n e desires to di smi ss a l l " f i r s t - h e a t i n g " d a t a , the l o w e r t w o p o i n t s w i l l
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
10.
KRAUSE AND ISKANDAR
disappear.
215
Styrene Blocks
T h e other f o u r p o i n t s b e l o n g t o some o f T o p o r o w s k i a n d
Roovers' styrene-isoprene-styrene
block copolymers i n w h i c h the mo
l e c u l a r w e i g h t s of t h e i s o p r e n e b l o c k s w e r e n o t v e r y m u c h a b o v e t h e m o l e c u l a r w e i g h t a t w h i c h m i c r o p h a s e s e p a r a t i o n occurs i n b l o c k c o polymers w i t h styrene-block
m o l e c u l a r w e i g h t s e q u a l t o those i n t h e
b l o c k c o p o l y m e r s f o r w h i c h d a t a are s h o w n i n F i g u r e 2. T h i s i m p l i e s t h a t these p a r t i c u l a r b l o c k c o p o l y m e r s o f T o p o r o w s k i a n d R o o v e r s
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 4, 2013 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch010
ones i n w h i c h
segment m i x i n g o f t h e c h e m i c a l l y d i f f e r e n t
( 5 ) are b l o c k s is
e x t r e m e l y l i k e l y . W e w o u l d guess t h a t the l o w T s o f the styrene m i c r o g
phases i n these f o u r b l o c k - c o p o l y m e r samples a r e c o n n e c t e d compositions
o f these m i c r o p h a s e s ;
considerable
with the
i s o p r e n e is p r o b a b l y
a d m i x e d w i t h i n these m i c r o p h a s e s . W e p l a n t o c o n t i n u e studies o n t h e g l a s s - t r a n s i t i o n t e m p e r a t u r e s o f the glassy m i c r o p h a s e s i n b l o c k c o p o l y m e r s a n d , i n t h e f u t u r e , w e also shall
investigate
t h e glass-transition
temperatures
of the
rubbery
microphases. Conclusion
T h e g l a s s - t r a n s i t i o n t e m p e r a t u r e of the glassy m i c r o p h a s e i n a g l a s s rubber block copolymer depends almost entirely on the molecular weights of the glassy b l o c k s a n d n o t o n the c h e m i c a l n a t u r e o f the r u b b e r y b l o c k s , the p o s i t i o n o f t h e glassy b l o c k o r b l o c k s w i t h i n t h e b l o c k c o p o l y m e r molecule, o r the percentage composition of t h e block copolymer. T h e c h e m i c a l n a t u r e a n d / o r m o l e c u l a r w e i g h t of the r u b b e r y b l o c k influences the g l a s s - t r a n s i t i o n t e m p e r a t u r e of t h e glassy m i c r o p h a s e o n l y w h e n t h e m o l e c u l a r w e i g h t a n d c o m p o s i t i o n o f the b l o c k c o p o l y m e r is n e a r t h a t a t w h i c h m i c r o p h a s e s e p a r a t i o n n o l o n g e r takes p l a c e . Acknowledgment M a n y thanks to J . E . L . Roovers a n d to J . W . D e a n for p r o v i d i n g us with
the styrene-dimethylsiloxane
block
copolymers;
thanks
N a t i o n a l Science F o u n d a t i o n , Contract N o . D M R 7 6 - 1 9 4 8 8 , us w i t h this w o r k ; a n d t h a n k s t o t h e N a t i o n a l Institutes
to the
for helping
of H e a l t h f o r
p r o v i d i n g one of us ( S . K . ) w i t h a R e s e a r c h C a r e e r A w a r d .
Literature
Cited
1. Kraus, G . , Childers, C . W., Gruver, J. T., J. Appl. Polym. Sci., (1967) 11, 1581. 2. Kraus, G . , Rollmann, K. W . , J. Polym. Sci., Polym. Phys. Ed. (1976) 14, 1133. 3. Robinson, R. Α., White, E . F. T., "Block Polymers," S. L. Aggarwal, E d . , p. 123, Plenum, New York, 1970.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.
MULTIPHASE POLYMERS
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on June 4, 2013 | http://pubs.acs.org Publication Date: June 1, 1979 | doi: 10.1021/ba-1979-0176.ch010
216
4. O'Malley, J. J., Crystal R. G . , Erhardt, P. F., "Block Polymers," S. L . Aggarwal, E d . , p. 163, Plenum, New York, 1970. 5. Toporowski, P. M . , Roovers, J. E . L . , J. Polym. Sci., Polym. Chem. Ed. (1976) 14, 2233. 6. Childers, C . W., Kraus, G., Rubber Chem. Technol. (1967) 40, 1183. 7. Fesko, D . G., Tschoegl, N . W . , Int. J. Polym. Mater. (1974) 3, 51. 8. Bares, J., Pegoraro, M . , J. Polym. Sci., Polym. Phys. Ed. (1971) 9, 1287. 9. Bares, J., Macromolecules (1975) 8, 244. 10. Fox, T .G.,Flory, P. ., J. Appl. Phys. (1950) 21, 581. 11. Couchman, P. R., Karasz, F. E . , J. Polym. Sci., Polym. Phys. Ed. (1977) 15, 1037. 12. Gibbs, J. W . , "The Scientific Papers, Vol. I, Thermodynamics," Dover, New York, 1961. 13. Kambour, R. P., "Block Polymers," S. L . Aggarwal, E d . , p. 263, Plenum, New York, 1970. 14. Hashimoto, T . , Todo, Α., Itoi, H., Kawai, H., Macromolecules (1977) 10, 377. 15. Kim, H., Macromolecules (1972) 5, 594. 16. Skoulios, A. E . , "Block and Graft Copolymers," J. J. Burke, V . Weiss, Eds., p. 121, Syracuse University, 1973. 17. Burrell, H., "Polymer Handbook," J. Brandrup, Ε . H . Immergut, Eds., 2nd ed., IV-337, Wiley, New York, 1975. 18. Okazawa, T . , Macromolecules (1975) 8, 371. 19. Saam, J. C., Fearon, F . W . G., Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. (1970) 11, 455. 20. Morton, M . , Kesten, Y., Fetters, L . J., Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. (1974) 15(2), 175. 21. Zilliox, J. G., Roovers, J. E . L., Bywater, S., Macromolecules (1975) 8, 573. 22. Dean, J. W., Private communication. 23. Griffiths, M . D . , Maisey, L . J., Polymer (1976) 17, 869. 24. Krause, S., Iskandar, M . , "Polymer Alloys, Blends, Blocks, Grafts, and IPNS's," D . Klempner, K. C . Frisch, Eds., p. 231, Plenum, New York, 1977. 25. Wall, L . Α., Roestamsjah, Aldridge, M . H., J. Res. Natl. Bur. Stand., Sect. A (1974) 78A, 447. 26. Rietsch, F., Daveloose, D . , Froelich, D . , Polymer (1976) 17, 859. 27. Cowie, J. M .G.,Eur. Polym. J. (1975) 11, 297. RECEIVED April 14, 1978.
In Multiphase Polymers; Cooper, S., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1979.