Boiling Points of n-Alkyl Acids

Additional calculations forexpanded coordinates follow: Hypotenuse (solution line) passes through points such as. 0.00 per cent wax, 100.00 per cent k...
2 downloads 0 Views 238KB Size
Vol. 34, No. 9

INDUSTRIAL AND ENGINEERING CHEMISTRY

1104

but obviously cannot be applied to two lines of different orientation (unless distances are measured in units of the scales). Additional calculations for expanded coordinates follow: Hypotenuse (solution line) passes through points such as 0.00 per cent wax, 100.00 per cent kerosene and 5.00 per cent wax, 95.00 per cent kerosene. Equation from feed solids and rich solvent:

70n a x

=

25.00

Baker (1). A second expansion of part of Figure 3 could have been carried out if necessary. This sample calculation was selected because it represents a condition for which graphical methods have been thought unsuitable, and because the answer is available for comparison. In general, expanded coordinates extend the range of the graphical method to cases like this where extraction is nearly complete. This seems to be particularly useful in connection with studies on continuous countercurrent extraction of solids, where ordinarily the solid produced contains very little extractable material. There is also a possibility that these same expanded coordinates might piove useful in calculations of liquid-liquid extraction.

- 0.2125 (% kerosene)

Equation from exhausted dried solids and fresh solvent:

yo wax

=

0.20

- 0.0015 (70kerosene)

Literature Cited

Solving simultaneously gives point K as the imaginary composition 0.02 per cent wax, 117.53 per cent kerosene. The answer to the problem can be seen in Figure 3. Three are rlightly more than are not sufficient, and four adequate. This is in agreement with the algebraic solution of

(1) Baker, E. M., Trans. Am. Inst. Chem. Engm., 32, 6 2 (1936).

(2) J. c.3 32, 451 (1936). (3) Evans, T. W., IND.ENG.CHnM., 26, 860 (1934). (4) H u n t e r , T. G., and Nash, -4.W., J . Soc. Chem. I n d . , 53, 95T (1934).

oints of n-A W. 0. POOL AND A. W. RALSTON Armour and Company, Chicago, Ill.

their next lower homologs. Each acid vas purified by one or more of the following methods: crystallization from suitable solvents, fractionation under vacuum in a Stedman packed column, and fractional crystallization without a solvent. The purity of a given acid n-as considered sufficient when the freezing point was in satisfactory agreement with, or was higher than, the best value reported in the literature. During the boiling point determinations the samples were

HE purpose of this paper is to report the boiling points a t various pressures of saturated n-alkyl acids containing from six to eighteen carbon atoms, inclusive. The apparatus and procedure were described in a previous paper (45). The acids were obtained from the following sources: Armour and Company, Carbide and Carbon Chemicals Corporation, and Eastman Kodak Company. Tridecylic, pentadecylic, and heptadecylic acids were synthesized from

I 50

I 100

I

I 150

I

I

I

200 TEMPERATURE,

CURVESOF FIGURE 1. VAPORPRIWSTJRE

I

I

250 OC.

n-ALmL ACIDS Numbers on curves refer to number of oarbon atoms in the molecule

I 300

I

I 350

1105

INDUSTRIAL AND ENGINEERING CHEMISTRY

September, 1942

in Table I1 and may be compared with similar data in Table 111 which contains previously reported values. The curves in Figure 1 were constructed from results given in Table 11.

maintained in an atmosphere of dry nitrogen to minimize decomposition, but despite this precaution a slight formation of water occurred a t high temperatures. All boiling points above 325" C. were estimated by extrapolation of the curves obtained by plotting the reciprocals of the absolute temperatures against the logarithms of the pressures. The freezing points of the acids, before and after the boiling point determinations, are given in Table I. The boiling points a t pressures of 1, 2, 4,8 . . . . . 512, and 760 mm. are presented

Literature Cited (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21)

POINTS O F n-ALKYL ACIDSBEFORE AND TABLE I. FREEZING AFTER USE IN BOILING POINT DETERMINATIONS

c

No. of Atoms

Acid

6 7 8 9

Caproic Heptoic C a rylic PePargonio Capric Hendecanoio Laurio Trideoanoic Myristic Pentadecanoic Palmitic Margaric Stearic

10 11

12 13 14 15 16 17 18

Freezing Point, C. Before After -4.02 -3.24 -7.00 -6.26 16.23 16.30 12.26 12.24 30.71 30.92 27.26 28.13 42.32 43.86 39.86 41.76 51.36 54.01 49.53 52.49 60.10 62.41 58.80 60.94 66.75 69.20

Adams and Marvel, J . Am. Chem. SOC.,42, 310 (1920). Bagard, Bull. SOD. chim., [4] 1, 348 (1907). Bhide and Sudborough, J . Indian Inst. Sei., SA, 89 (1925). Bilterys and Gisseleire, Bull. soc. chim. Belg., 44, 567 (1935) Braun, von, and Sobecki, Ber.,44, 1464 (1911). Carnelley and Williams, Ibid., 12, 1360 (1879). Caspari, Am. Chem. J., 27, 304 (1902). Deffet, Bull. SOC. chim. Belg., 40, 385 (1931). Dippy, J. Chem. SOC.,1938, 1222. Eisenlohr, 2. physik. Chem., 75, 590 (1911). Fierz-David and Kuster, Helv. Chim. Acta, 22, 82 (1939). Fischer and Harries, Ber., 35, 2162 (1902). Fittig, Ann., 200, 49 (1880). Fournier, Bull. SOC. chim., [4] 5, 921 (1909). Gartenmeister, Ann., 233, 277 (1886). Grimm, Ibid., 157, 268 (1871). Guerbet, Bull. SOC. chim., [4] 11, 283 (1912). €Taller and Lassieur, Compt. rend., 150, 1016 (1910). IIouben, Ber., 35, 3592 (1902). Kahlbaum, 2. physilc. Chem., 13, 14 (1894). Ibid., 26, 577 (1898).

OF ALKYL ACIDS TABLE 11. BOILINGPOINTS

No. of c Atoms

4

1

2

4

71.9 85.3 97.9 109.6 121.1 131.1 141.8 151.5 161.1 169.7 179.0 187.6 195.9

82.8 96.3 109.1 121.2 132.7 143.3 154.1 164.2 173.9 182.8 192.2 200.8 209.2

C. at Following 32 120.8 107.3 135.2 121.1 149.2 134.6 162.4 147.5 174.6 159.4 186.1 170.8 197.4 181.8 207.9 192.2 218.3 202.4 228.1 212.0 238.4 221.5 247.9 230.7 257.1 240.0

Boiling Points in 8 16 94.6 108.3 121.3 134.0 145.5 156.5 167.4 177.8 187.6 196.8 206.1 214.9 224.1

O

Pressures in Mm.: 64 128 136.0 152.5 150.8 168.2 165.3 183.3 178.8 196.9 191.3 209.8 203.1 222.2 214.6 234.3 225.8 245.9 236.3 257.3 246.4 268.0 257.1 278.7 266.6 288.4 276.8 299.7

256 171.5 187.5 203.0 217.4 230.6 243.8 266.6 268.6 281.5 292.7 303.6 314.3 324.8

512 192.5 209.3 225.6 240.9 254.9 268.7 282.5 295.4 309.0 321.2 332.6" 343.8" 355.2a

760 205.8 223,0

239.7 255.6 270.0 284.0 298.9 312.4 326.2" 339.10 351.5" 363.80 376.14

Values obtained by extrapolation.

BOILING POINTS TABLE 111. PREVIOUSLY REPORTED n-ALKYL ACIDS

OF

c

No. of Atoms Boiling Points in C . and Pressures 6 200-5 ( 1 ) . 198-9 685 mm. (3)' 101 16 mm. (10). 204-5 ( 1 3 ) ; 204.2 (16)' 20i.7 cor. 760 mm. (BO)! 205 746 mm'. (36)' 204.65.6, 759 m'm. ( 3 6 ) ; 264.5-205, 738.6 mm: (37); 2 0 5 . 3 5 ' t 0.02, 760 mm. (48); 202-202.5, 761 mm. (68); 204.5-205.0, 760 mm. (66)

7

8

9 10

11 12 13 14 15 16 17 18

223.01. 760 mm. ( 4 ) ; 222.45, 760 mm. (8); 118-9, 17 mm. (IO); 124-5.5 18 mm. (0) 114-6 13 mm. (14) 222-4 ( 1 7 ) ; 221 8 cor 76b mm. (BO 8i). 115-b 11 mm (Bi). 222.4 743.4 mm. (S6j'. 223 (98)' 621 5'cor ( 3 b ) ' 130-1, 27'mm. ($8); 121-2, 18 Am. (48, 4.4); 22'1-3, i 6 0 m m , , 117-9, 15 mm. ( 6 5 ) ; 2233.5 (66) 239.3 760 mm (8)' 237.5 cor., 760 mm. ( $ 0 ) ; 237 (38); 236-7, 76i.7 mm. (27); '123.5-4.3, 10 mm (48);225 (66) 245-6, 685 mm. ( 3 ) ; 254.4, 760 mm. (8)' 253 4 cor 760 mm. (80);253-4 cor., 760 mm.; 186, 100'mm. '(87):"250 (38); 252-3, 759 mm. (64) 170, 25 mm. ($); 148-50, 9 mm. (3): 266-8 cor., ( 6 ) ; 268.7, 760 mm. (8). 268-70 (16): 160-4, 12 mm. ( 18) ; 148-51, 11 mm. ( 1 0 ) ; 268.4 cor., 760 mm. ( 8 0 ) ; 161-4, 12 mm. (88); 200, 100 mm. (87); 153-4, 13 mm. (48); 267-9, 753 mm.; 169-71, 18 mm. (60) 168, 11 mm. ( 8 ) ; 158, 11 mm. (11); 212.5, 100 mm. (f6);228, 160 mm. (84); 164, 15 mm. ( 3 3 ) ; 179, 28 mm. (41); 122-2.5 1.5 mm. (61) 166 10-11 mm (7)' 225 100 mm ( 8 6 ) ' 176 15 mm ($9). 141-2 0:6-0.7 mm. \33): 177: 16 mm.'(40);' 100,'0.058 mm. (46); 180: 16 mm. (48) 236. 100 mm. (86); 199-200, 24 mm. (84) 250.5 cor., 100 mm: 196 5 15 mm ($8)' 185-7, 0.8-0.9 mm. (3s); 199, 16 mm. (40) 100: 6.033 mm. (48) 257, 100 mm. ( 8 6 ) ; 193-5, 13 mm. (Sf,82) 339-56 6 ) ; .271.5 oor., 100 mm.; 215 oor., 15 mm. (88); 265, 60 mm. {SO), 219, 20 mm. (40) 175.7. 10 mm. ( 1 1 ) ; 277, 100 mm. ($6) 359-83 ( 6 ) ; 158-60, 0.25 mm. (fa); 291 cor., 100 mm.; 232, 15 mm. (88); 270,60 mm. (SO); 238, 17 mm. (40)

I

Kao, C. H., and Ma, 8.-Y., J . Chem. SOC.,1931, 2046. Kirrmann, Ann. chim., [lo] 11, 223 (1929). Krafft, Ber., 11, 2219 (1878). Ibid., 12, 1669 (1879). Ibid., 13, 1415 (1880). Ibid., 15, 1692 (1882). Ibid., 16, 1719 (1883). Krafft and Weilandt, Ibid., 29, 1324 (1896). Krebs, Teer u. Bitumen, 28, 421 (1930). Landa, BUZZ. SOC. chim., 43, 1086 (1928). Landa, Chimie & zndustrie, Special No. 524 (Feb., 1929). Levene and West, J. Biol. Chem., 18, 465 (1914). Levene, West, Allen, and van der Soheer, Ibid., 23, 73 (1915). Lieben, Ann., 170, 92 (1873). Lieben and Janeoek, Ibid., 187, 128 (1877). Lieben and Rossi, Ibid., 159, 75 (1871). Luke&,Collection Czechoslov. Chem. Comm., 1, 119 (1929). Parnas, Biochem. Z.,28, 291 (1910). Partheil and Ferie, Arch. Pharm., 241, 545 (1903). Piokard and Kenyon, J . Chem. SOC.,103, 1947 (1913). Przheval'skii, J . prakt. Chem., [2] 88, 495 (1913). Przheval'skii, J. Russ. Phys. Chem. SOC.,43, 1003 (1911). Ibid., 45, 892 (1913). Ralston, Selby, Pool, and Potts, IND.ENG.CREM.,32, 1093 (1940). (46) Reilly and Hickinbottom, Sci. Proc. Roy. Dublin SOC.,16, 131 (1920). (47) Renesse, van, Ann., 171, 380 (1874). (48) Scheij, Rec. truv. chim., 18, 184 (1899). (49) Simon, Bull. SOC. chim. Belg., 38, 47 (1929). (50) Stephan, J. prukt. Chem., [2] 62, 525 (1900). (51) Strating, Backer, Lolkema, and Benninga, Rec. trav. chim.. 55, 903 (1936). (52) Thomas and Sudborough, J . Chem. SOC.,101, 327 (1912). (53) Truchet, Ann. chim., 16, 309 (1931). (54) Walbaum and Stephan, Ber., 33, 2304 (1900). (55) Weizmann and Garrard, J . Chem. SOC.,117, 324 (1920). (56) Zander, Ann., 224, 67 (1884).

(22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) (44) (45)