Bond Dissociation Energies and Radical ... - ACS Publications

Reactions of Benzene and 3-Methylpyrrole with theOH andOOH Radicals: An Assessment of Contemporary Density Functional Theory Methods. Geoffrey P. F. ...
3 downloads 0 Views 27KB Size
5554

J. Phys. Chem. A 2008, 112, 5554

ADDITIONS AND CORRECTIONS 2007, Volume 111A Ambili S. Menon, Geoffrey P. F. Wood, Damian Moran, and Leo Radom*: Bond Dissociation Energies and Radical Stabilization Energies: An Assessment of Contemporary Theoretical Procedures Page 13638. As a consequence of using an incorrect value for the B3-LYP/6-31G(d) C-H bond length in methane, the bond dissociation energies (BDEs) for methane, and hence all the radical stabilization energies (RSEs), obtained with density functional theory (DFT) procedures and listed respectively in Tables 1 (page 13640) and 2 (page 13642), are incorrect. However, none of our qualitative conclusions are affected. The corrected BDEs for methane are presented in Table 1, and the corrected RSEs are compared with W1 and experimental values in Table 2. TABLE 1: Bond Dissociation Energies of Methane (0 K, kJ mol-1) method

BDE

method

BDE

UBMK RBMK UMPWB1K RMPWB1K UM05

430.6 434.7 430.4 434.3 425.4

UM05-2X UB2-PLYP RB2-PLYP UMPW2-PLYP RMPW2-PLYP

427.8 423.3 427.1 423.8 427.7

TABLE 2: Comparison of Calculated Radical Stabilization Energies with W1 and Experimental Values (0 K, kJ mol-1) UB2- RB2- UMPW2- RMPW2radical (•CH2X) UBMK RBMK UMPWB1K RMPWB1K UM05 UM05-2X PLYP PLYP PLYP PLYP •CH NH 2 2 •CH OH 2 •CH OCH 2 3 •CH F 2 •CH CH 2 3 •CH CH CH 2 2 3 •CH CF 2 3 •CH CF CF 2 2 3 •CH PH 2 2 •CH SH 2 •CH Cl 2 •CH Br 2 •CH BH 2 2 •CH CHdCH 2 2 •CH CtCH 2 •CH C H 2 6 5 •CH CHO 2 •CH COOH 2 •CH COOCH 2 3 •CH OCOCH 2 3 •CH CN 2 •CH NO 2 2

MD (W1) MAD (W1) LD (W1) MD (expt) MAD (expt) LD (expt)

54.1 39.1 39.4 16.4 17.5 14.5 -5.9 -2.4 30.9 37.9 20.7 17.8 47.8 74.6 59.2 62.3 40.7 25.4 25.7 25.4 36.7 18.0 3.0 3.6 -3.5 0.8 3.3 -8.2

54.4 39.4 39.8 16.8 17.1 14.2 -6.1 -2.6 30.2 37.4 20.2 17.2 48.8 66.6 53.0 56.8 35.8 24.0 24.4 25.7 31.3 16.9 1.5 3.1 -4.0 -1.1 3.2 -8.7

54.5 39.3 37.4 17.5 19.1 15.1 -5.4 -2.8 30.8 43.4 26.4 20.5 44.3 77.2 61.8 63.5 43.0 26.6 26.8 25.4 40.2 17.0 4.1 4.1 8.2 3.0 4.0 8.9

54.3 39.1 38.8 17.7 18.8 15.2 -4.4 -1.2 29.6 42.2 25.6 19.7 45.7 67.3 54.3 57.0 36.8 25.4 25.9 25.7 33.2 15.4 2.3 2.8 8.2 0.5 2.7 8.7

51.5 36.6 36.6 14.9 22.5 19.0 -0.4 2.6 33.7 44.0 27.1 22.8 43.7 85.2 67.7 72.1 43.0 30.1 30.8 26.6 43.8 20.9 6.5 6.5 14.9 5.6 5.9 16.3

51.6 35.4 35.0 13.5 17.5 14.2 -5.6 -2.6 28.1 40.5 22.9 13.9 42.8 76.6 58.9 62.0 41.8 26.3 26.5 21.1 36.0 15.0 1.9 2.1 6.3 0.4 3.5 -8.2

51.6 36.6 36.9 15.6 17.4 14.2 -4.1 -1.2 28.7 40.8 23.2 17.0 42.8 71.8 55.9 54.5 36.8 25.3 25.8 23.1 34.4 15.2 1.4 1.9 5.6 -0.3 3.0 -7.1

51.9 36.9 37.3 15.8 17.2 14.2 -4.1 -1.2 28.1 40.5 22.9 16.8 43.9 70.5 56.5 58.3 38.1 25.6 26.2 23.4 36.1 15.6 1.8 1.9 5.9 0.1 2.8 6.3

51.1 36.1 36.2 15.1 17.2 13.9 -4.6 -1.7 28.5 40.3 22.8 16.6 42.7 72.2 55.9 55.1 37.1 25.0 25.5 22.5 34.5 14.7 1.1 1.7 -4.1 -0.5 2.9 -6.6

Supporting Information Available: Table S1 contains the revised total energies that lead to the revised BDEs and RSEs given in Tables 1 and 2 above, and in more detail in Tables S2 and S3 of the Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org. 10.1021/jp803933d Published on Web 05/28/2008

51.2 36.2 36.4 15.3 17.0 13.8 -4.7 -1.7 27.6 39.7 22.4 16.3 43.8 69.0 55.0 57.1 37.2 25.0 25.6 22.6 34.7 14.8 1.0 1.6 5.2 -0.7 2.6 -5.8

W1

expt

49.3 35.3 35.2 14.8 15.8 12.7 -6.1

45.6 ( 8.4 36.5 ( 0.63 36.6 15.0 ( 4.2 19.3 ( 1.3 17.6 ( 2.1 -6.9 ( 4.5

27.0 41.4 23.0 40.9 70.3 53.6 59.1 36.6 23.7 23.3 17.5 33.1 13.5

-0.8 2.1 -4.9

46.1 ( 8.4 20.5 ( 2.3 22.1 ( 2.4 68.9 ( 3 54.7 ( 4.2 61.6 ( 5.0 39.8 24.7 ( 3.3 31.3 ( 10.5 34.0 32.8 ( 4.2 22.7