C Spins at Cryogenic Temperature

Department of Physics, The University of Texas at Dallas, 800 West Campbell Road,. Richardson, Texas 75080, United States. Corresponding Author...
27 downloads 0 Views 3MB Size
Article pubs.acs.org/JPCB

Cite This: J. Phys. Chem. B 2018, 122, 1898−1904

Magnetic-Field-Dependent Lifetimes of Hyperpolarized Cryogenic Temperature

13

C Spins at

Peter Niedbalski, Qing Wang, Christopher Parish, Fatemeh Khashami, Andhika Kiswandhi, and Lloyd Lumata* Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States ABSTRACT: Using a home-built cryogen-free dynamic nuclear polarization (DNP) system with a variable magnetic field capability, 13C spin−lattice T1 relaxation times of hyperpolarized [1-13C] carboxylates (sodium acetate, glycine, sodium pyruvate, and pyruvic acid) doped with trityl OX063 free radical were systematically measured for the first time at different field strengths up to 9 T at T = 1.8 K. Our data reveal that the 13C T1 values of these frozen hyperpolarized 13C samples vary drastically with the applied magnetic field B according to an apparent empirical power-law dependence (13C T1 ∝ Bα, 2.3 < α < 3.1), with relaxation values ranging from a few hundred seconds at 1 T to over 200,000 s at fields close to 9 T. This low temperature relaxation behavior can be ascribed approximately to a model that accounts for the combined effect of 13C−1H intramolecular dipolar interaction and the relaxation contribution from the paramagnetic impurities present in the DNP sample. Since the lifetime or T1 storage of the hyperpolarized state is intimately linked to DNP efficiency, these 13C relaxation data at cryogenic temperature have important theoretical and experimental implications as the DNP of higher magnetic fields.

1. INTRODUCTION Dynamic nuclear polarization (DNP) has recently undergone a resurgence through a combination of technological advances in microwave-driven signal amplification in high resolution solidstate NMR via magic angle spinning (MAS) DNP and in the liquid state with the invention of dissolution DNP.1,2 Dissolution DNP in particular has revolutionized metabolic imaging, allowing for the production of highly polarized liquid samples with >10,000-fold NMR or imaging (MRI) signal enhancements of endogenous metabolic probes.3 In this technique, a sample with target nuclear spins is doped with free radical, placed in a relatively strong magnetic field at cryogenic temperature (3.35 T) leads to higher polarization enhancement when polarizing in the low temperature region (T ∼ 1−2 K).13,16,41,42 Our relaxation data appears to be in agreement with this trend of increasing DNP efficiency with magnetic field. When the magnetic field increases, nuclear spins relax toward thermal equilibrium progressively more slowly, increasing the polarization level at which the microwave-driven transfer of polarization from electrons to nuclei is in equilibrium with the relaxation of nuclei. These field-dependent relaxation data of 13C DNP samples also have a direct implication on our ability to store hyperpolarized state for transport of hyperpolarized 13C substrates.43 As dissolution DNP progresses toward higher magnetic fields, the methods and results described herein could be essential to our experimental and theoretical understanding of optimal DNP storage and efficiency.

Figure 5. Magnetic field dependence of 13C T1 for (a) sodium pyruvate, (b) pyruvic acid, (c) sodium acetate, and (d) glycine. Solid lines are power law fits, while dashed lines are a linear combination of dipolar and paramagnetic relaxation components. The top panel in each graph shows a measure of the goodness of fit ([T1measured − T1fit]/ [T1measured]) with filled symbols corresponding to the power law fittings and empty symbols denoting the linear combination fittings.



AUTHOR INFORMATION

Corresponding Author

magnetic relaxation results in the observed B3 dependence. Of note is that pyruvic acid, being much more strongly concentrated than sodium pyruvate (14.4 M vs 1.4 M), has much greater interaction between 13C spins given the comparatively small distance between molecules. This allows for a greater rate of spin diffusion which in turn results in shortened T1. The contribution of dipolar relaxation is increased for acetate. The 13C label in acetate is only two bond lengths from the methyl 1H spins, making the strength of the interaction between the nuclei much greater than in the case of pyruvate. This brings the field dependence closer to the B2 dependence of the 1H−13C dipolar relaxation. Similarly, the

*E-mail: [email protected]. ORCID

Lloyd Lumata: 0000-0002-3647-3753 Notes

The authors declare no competing financial interest.



ACKNOWLEDGMENTS This research work was supported by the UT Dallas startup research funding, the Welch Foundation grant number AT1877, and the U.S. Department of Defense grant number W81XWH-17-1-0303. The authors would like to thank Prof. 1902

DOI: 10.1021/acs.jpcb.8b00630 J. Phys. Chem. B 2018, 122, 1898−1904

Article

The Journal of Physical Chemistry B

(20) Keshari, K. R.; Wilson, D. M.; Chen, A. P.; Bok, R.; Larson, P. E. Z.; Hu, S.; Van Criekinge, M.; Macdonald, J. M.; Vigneron, D. B.; Kurhanewicz, J. Hyperpolarized [2-13C]-Fructose: A Hemiketal DNP Substrate for in Vivo Metabolic Imaging. J. Am. Chem. Soc. 2009, 131, 17591−17596. (21) Friesen-Waldner, L.; Chen, A.; Mander, W.; Scholl, T. J.; McKenzie, C. A. Optimisation of Dynamic Nuclear Polarisation of [1-13C] Pyruvate by Addition of Gadolinium-Based Contrast Agents. J. Magn. Reson. 2012, 223, 85−89. (22) Niedbalski, P.; Parish, C.; Kiswandhi, A.; Kovacs, Z.; Lumata, L. Influence of 13C Isotopic Labeling Location on Dynamic Nuclear Polarization of Acetate. J. Phys. Chem. A 2017, 121, 3227−3233. (23) Hovav, Y.; Shimon, D.; Kaminker, I.; Feintuch, A.; Goldfarb, D.; Vega, S. Effects of the Electron Polarization on Dynamic Nuclear Polarization in Solids. Phys. Chem. Chem. Phys. 2015, 17, 6053−6065. (24) Smith, A. A.; Corzilius, B.; Barnes, A. B.; Maly, T.; Griffin, R. G. Solid Effect Dynamic Nuclear Polarization and Polarization Pathways. J. Chem. Phys. 2012, 136, 015101. (25) Bakhmutov, V. I. Relaxation by Chemical Shift Anisotropy, Spin−Rotation Relaxation, Scalar Relaxation of the Second Kind and Cross-Mechanisms. In Practical NMR Relaxation for Chemists; John Wiley & Sons, Ltd: West Sussex, England, 2004; pp 59−68. (26) Bakhmutov, V. I. NMR Relaxation by Dipole−Dipole and Quadrupole Interactions. In Practical NMR Relaxation for Chemists; John Wiley & Sons, Ltd: West Sussex, England, 2004; pp 43−58. (27) Donovan, K. J.; Lupulescu, A.; Frydman, L. Heteronuclear Cross-Relaxation Effects in the NMR Spectroscopy of Hyperpolarized Targets. ChemPhysChem 2014, 15, 436−443. (28) Goldman, M. Interference Effects in the Relaxation of a Pair of Unlike Spin-12 Nuclei. J. Magn. Reson. 1984, 60, 437−452. (29) Morimoto, K. Spin-Lattice Relaxation of Protons in Polystyrene Containing a Paramagnetic Impurity. J. Phys. Soc. Jpn. 1973, 35, 1054− 1059. (30) Schmugge, T. J.; Jeffries, C. D. High Dynamic Polarization of Protons. Phys. Rev. 1965, 138, A1785−A1801. (31) Lumata, L.; Kovacs, Z.; Sherry, A. D.; Malloy, C.; Hill, S.; Tol, J.; van; Yu, L.; Song, L.; Merritt, M. E. Electron Spin Resonance Studies of Trityl OX063 at a Concentration Optimal for DNP. Phys. Chem. Chem. Phys. 2013, 15, 9800−9807. (32) Kiswandhi, A.; Niedbalski, P.; Parish, C.; Kaur, P.; Martins, A.; Fidelino, L.; Khemtong, C.; Song, L.; Sherry, A. D.; Lumata, L. Impact of Ho3+-Doping on 13C Dynamic Nuclear Polarization Using Trityl OX063 Free Radical. Phys. Chem. Chem. Phys. 2016, 18, 21351−21359. (33) Niedbalski, P.; Parish, C.; Kiswandhi, A.; Fidelino, L.; Khemtong, C.; Hayati, Z.; Song, L.; Martins, A.; Sherry, A. D.; Lumata, L. Influence of Dy3+ and Tb3+ Doping on 13C Dynamic Nuclear Polarization. J. Chem. Phys. 2017, 146, 014303. (34) Niedbalski, P.; Parish, C.; Wang, Q.; Kiswandhi, A.; Hayati, Z.; Song, L.; Lumata, L. 13C Dynamic Nuclear Polarization Using a Trimeric Gd3+ Complex as an Additive. J. Phys. Chem. A 2017, 121, 5127−5135. (35) Niedbalski, P.; Parish, C. R.; Wang, Q.; Hayati, Z.; Song, L.; Cleveland, Z. I.; Lumata, L. Enhanced Efficiency of 13C Dynamic Nuclear Polarization by Superparamagnetic Iron Oxide Nanoparticle Doping. J. Phys. Chem. C 2017, 121, 19505−19511. (36) Chen, H.; Maryasov, A. G.; Rogozhnikova, O. Y.; Trukhin, D. V.; Tormyshev, V. M.; Bowman, M. K. Electron Spin Dynamics and Spin−lattice Relaxation of Trityl Radicals in Frozen Solutions. Phys. Chem. Chem. Phys. 2016, 18, 24954−24965. (37) Weil, J. A.; Bolton, J. R. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications; John Wiley & Sons: Hoboken, New Jersey, 2007. (38) Abragam, A.; Bleaney, B. Electron Paramagnetic Resonance of Transition Ions; Oxford University Press: Oxford, U.K., 2012. (39) Blumberg, W. E. Nuclear Spin-Lattice Relaxation Caused by Paramagnetic Impurities. Phys. Rev. 1960, 119, 79−84. (40) Liegl, B.; Bradl, S.; Schätz, T.; Lang, E. W. High-Pressure NMR Relaxation Study of the Solute and Solvent Dynamics of Undercooled

Mark Lee for access to the cryogen-free superconducting magnet at the UT Dallas Department of Physics.



REFERENCES

(1) Griffin, R. G.; Prisner, T. F. High Field Dynamic Nuclear Polarizationthe Renaissance. Phys. Chem. Chem. Phys. 2010, 12, 5737−5740. (2) Ardenkjaer-Larsen, J. H. On the Present and Future of Dissolution-DNP. J. Magn. Reson. 2016, 264, 3−12. (3) Ardenkjær-Larsen, J. H.; Fridlund, B.; Gram, A.; Hansson, G.; Hansson, L.; Lerche, M. H.; Servin, R.; Mikkel Thaning; Golman, K. Increase in Signal-to-Noise Ratio of > 10,000 Times in Liquid-State NMR. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 10158−10163. (4) Abragam, A.; Goldman, M. Principles of Dynamic Nuclear Polarisation. Rep. Prog. Phys. 1978, 41, 395. (5) Crabb, D. G.; Meyer, W. Solid Polarized Targets for Nuclear and Particle Physics Experiments. Annu. Rev. Nucl. Part. Sci. 1997, 47, 67− 109. (6) Günther, U. L. Dynamic Nuclear Hyperpolarization in Liquids. In Modern NMR Methodology; Heise, H., Matthews, S., Eds.; Topics in Current Chemistry; Springer: Berlin, Heidelberg, 2011; pp 23−69. (7) Wolber, J.; Ellner, F.; Fridlund, B.; Gram, A.; Jóhannesson, H.; Hansson, G.; Hansson, L. H.; Lerche, M. H.; Månsson, S.; Servin, R.; et al. Generating Highly Polarized Nuclear Spins in Solution Using Dynamic Nuclear Polarization. Nucl. Instrum. Methods Phys. Res., Sect. A 2004, 526, 173−181. (8) Comment, A. Dissolution DNP for in Vivo Preclinical Studies. J. Magn. Reson. 2016, 264, 39−48. (9) Brindle, K. M.; Bohndiek, S. E.; Gallagher, F. A.; Kettunen, M. I. Tumor Imaging Using Hyperpolarized 13C Magnetic Resonance Spectroscopy. Magn. Reson. Med. 2011, 66, 505−519. (10) Kurhanewicz, J.; Vigneron, D. B.; Brindle, K.; Chekmenev, E. Y.; Comment, A.; Cunningham, C. H.; DeBerardinis, R. J.; Green, G. G.; Leach, M. O.; Rajan, S. S.; et al. Analysis of Cancer Metabolism by Imaging Hyperpolarized Nuclei: Prospects for Translation to Clinical Research. Neoplasia 2011, 13, 81−97. (11) Gallagher, F. A.; Kettunen, M. I.; Brindle, K. M. Biomedical Applications of Hyperpolarized 13C Magnetic Resonance Imaging. Prog. Nucl. Magn. Reson. Spectrosc. 2009, 55, 285−295. (12) Day, S. E.; Kettunen, M. I.; Gallagher, F. A.; Hu, D.-E.; Lerche, M.; Wolber, J.; Golman, K.; Ardenkjaer-Larsen, J. H.; Brindle, K. M. Detecting Tumor Response to Treatment Using Hyperpolarized 13C Magnetic Resonance Imaging and Spectroscopy. Nat. Med. 2007, 13, 1382−1387. (13) Yoshihara, H. A. I.; Can, E.; Karlsson, M.; Lerche, M. H.; Schwitter, J.; Comment, A. High-Field Dissolution Dynamic Nuclear Polarization of [1-13C]Pyruvic Acid. Phys. Chem. Chem. Phys. 2016, 18, 12409−12413. (14) Ardenkjaer-Larsen, J. H.; Leach, A. M.; Clarke, N.; Urbahn, J.; Anderson, D.; Skloss, T. W. Dynamic Nuclear Polarization Polarizer for Sterile Use Intent. NMR Biomed. 2011, 24, 927−932. (15) Kiswandhi, A.; Niedbalski, P.; Parish, C.; Wang, Q.; Lumata, L. Assembly and Performance of a 6.4 T Cryogen-Free Dynamic Nuclear Polarization System. Magn. Reson. Chem. 2017, 55, 846−852. (16) Kiswandhi, A.; Niedbalski, P.; Parish, C.; Ferguson, S.; Taylor, D.; McDonald, G.; Lumata, L. Construction and 13C Hyperpolarization Efficiency of a 180 GHz Dissolution Dynamic Nuclear Polarization System. Magn. Reson. Chem. 2017, 55, 828−836. (17) Hirsch, M. L.; Kalechofsky, N.; Belzer, A.; Rosay, M.; Kempf, J. G. Brute-Force Hyperpolarization for NMR and MRI. J. Am. Chem. Soc. 2015, 137, 8428−8434. (18) Day, I. J.; Mitchell, J. C.; Snowden, M. J.; Davis, A. L. Applications of DNP-NMR for the Measurement of Heteronuclear T1 Relaxation Times. J. Magn. Reson. 2007, 187, 216−224. (19) Keshari, K. R.; Wilson, D. M. Chemistry and Biochemistry of 13 C Hyperpolarized Magnetic Resonance Using Dynamic Nuclear Polarization. Chem. Soc. Rev. 2014, 43, 1627−1659. 1903

DOI: 10.1021/acs.jpcb.8b00630 J. Phys. Chem. B 2018, 122, 1898−1904

Article

The Journal of Physical Chemistry B Aqueous Tetraethylammonium Bromide Solutions. J. Phys. Chem. 1996, 100, 897−904. (41) Jannin, S.; Comment, A.; Kurdzesau, F.; Konter, J. A.; Hautle, P.; Brandt, B.; van den; Klink, J. J.; van der. A 140 GHz Prepolarizer for Dissolution Dynamic Nuclear Polarization. J. Chem. Phys. 2008, 128, 241102. (42) Jannin, S.; Bornet, A.; Melzi, R.; Bodenhausen, G. High Field Dynamic Nuclear Polarization at 6.7 T: Carbon-13 Polarization above 70% within 20 min. Chem. Phys. Lett. 2012, 549, 99−102. (43) Ji, X.; Bornet, A.; Vuichoud, B.; Milani, J.; Gajan, D.; Rossini, A. J.; Emsley, L.; Bodenhausen, G.; Jannin, S. Transportable Hyperpolarized Metabolites. Nat. Commun. 2017, 8, 13975.

1904

DOI: 10.1021/acs.jpcb.8b00630 J. Phys. Chem. B 2018, 122, 1898−1904