20 Aromatic Gasoline From Hydrogen/Carbon Monoxide Over Ruthenium/Zeolite Catalysts T. J. HUANG and W. O. HAAG
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
Mobil Research and Development Corporation, P.O. Box 1025, Princeton, N J 08540
A new c l a s s o f s y n t h e s i s g a s c o n v e r s i o n c a t a l y s t s c o m p r i s i n g a c a r b o n m o n o x i d e r e d u c t i o n c a t a l y s t combined w i t h a ZSM-5 c l a s s z e o l i t e h a s b e e n r e c e n t l y r e p o r t e d b y Chang, L a n g a n d S i l v e s t r i (1). I n e l a b o r a t i n g o n t h i s f i n d i n g , C a e s a r , e t . a l . , h a v e demon s t r a t e d t h a t g a s o l i n e c a n be produced i n a y i e l d o f over 60% o f t o t a l h y d r o c a r b o n , c o n s t i t u t i n g e s s e n t i a l l y 100% o f t h e l i q u i d p r o d u c t , by combining an i r o n F i s c h e r - T r o p s c h c a t a l y s t w i t h an e x c e s s v o l u m e o f a ZSM-5 c l a s s z e o l i t e ( 2 ) . These z e o l i t e s a r e members o f t h e g r o u p o f M o b i l shape s e l e c t i v e medium p o r e z e o l i t e s w h i c h a r e a c t i v e f o r t h e c o n v e r s i o n o f methanol and o t h e r oxygen a t e s t o h y d r o c a r b o n s (1,3^,4) o r F i s c h e r - T r o p s c h r e a c t i o n i n t e r mediates t o aromatics ( 1 ) . Ruthenium has been used a s a F i s c h e r - T r o p s c h c a t a l y s t t o c o n v e r t s y n t h e s i s g a s i n t o p a r a f f i n wax u n d e r h i g h p r e s s u r e a n d a t l o w t e m p e r a t u r e ( 5 ) . However, a t h i g h e r t e m p e r a t u r e a n d l o w e r p r e s s u r e , o n l y methane i s formed ( 6 ) . S u p p o r t e d r u t h e n i u m s u c h as R u / a l u m i n a a n d R u / s i l i c a h a s a l s o b e e n u s e d f o r s y n g a s c o n v e r s i o n t o p r o d u c e g a s e o u s , l i q u i d and s o l i d h y d r o c a r b o n s ( 7 - 1 3 ) ; b u t , i t gave a p o o r s e l e c t i v i t y f o r l i q u i d h y d r o c a r b o n a n d , a g a i n , methane becomes t h e m a j o r p r o d u c t a t t e m p e r a t u r e s h i g h e r t h a n 250°C. F u t h e r e m o r e , no a r o m a t i c s w e r e p r o d u c e d u s i n g b o t h r u t h e n i u m d i o x i d e and s u p p o r t e d r u t h e n i u m c a t a l y s t . In the F i s c h e r - T r o p s c h s y n t h e s i s w i t h ruthenium as c a t a l y s t , normal p a r a f f i n s a r e the major p r o d u c t s . I n M o b i l ' s D i s t i l l a t e Dewaxing p r o c e s s , ZSM-5 c l a s s c a t a l y s t s c o n v e r t s e l e c t i v e l y h i g h m o l e c u l a r w e i g h t η-paraffins i n t o g a s o l i n e r a n g e m a t e r i a l s ( 1 4 ) . Thus, ruthenium-ZSM-5 c l a s s z e o l i t e s a p p e a r t o b e good c o m b i n a t i o n f o r g a s o l i n e p r o d u c t i o n from s y n t h e s i s gas. I n a d d i t i o n , these c o m b i n a t i o n c a t a l y s t s may p r o v i d e a " n o n t r i v i a l p o l y s t e p " r e a c t i o n (15) i n w h i c h F i s c h e r - T r o p s c h i n t e r m e d i a t e s c o u l d b e t r a p p e d a n d c o n v e r t e d i n t o a r o m a t i c s b y t h e z e o l i t e component, t h u s p r o d u c i n g h i g h o c t a n e a r o m a t i c g a s o l i n e d i r e c t l y f r o m s y n t h e s i s g a s . The s u c c e s s f u l u s e o f t h e z e o l i t e s mentioned i s a r e s u l t o f t h e unique p r o p e r t i e s o f t h i s c l a s s o f intermediate pore z e o l i t e s , o f w h i c h ZSM-5 i s a p r o m i n e n t menber. I t was c h o s e n a s a r e p r e s e n t a t i v e o f t h i s c l a s s i n the present study. 0097-6156/81/0152-0307$05.00/0 © 1981 American Chemical Society In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
CATALYTIC
308
ACTIVATION
OF CARBON
MONOXIDE
Experimental 5% R u ( a s Ru0 )/ZSM-5 was p r e p a r e d b y g r i n d i n g t o g e t h e r t h e a p p r o p r i a t e amounts o f RuO^ a n d ZSM-5 z e o l i t e , f o l l o w e d b y p e l l e t i n g a n d s c r e e n i n g t o 30-60 mesh. I m p r e g n a t e d Ru/ZSM-5 was p r e p a r e d by vacuum i m p r e g n a t i o n o f ZSM-5 z e o l i t e ( i n NH^ form) w i t h R u C l ^ * 3 H 2 O i n aqueous s o l u t i o n . A f t e r d r y i n g i n vacuum, t h e c a t a l y s t was c a l c i n e d i n a n o v e n a t 538°C f o r two h o u r s . Ru/A^O^//ZSM-5 was a p h y s i c a l m i x t u r e o f e q u a l amounts o f s u p p o r t e d Ru - o n a l u m i n a and ZSM-5 z e o l i t e . S u p p o r t e d Ru - o n - a l u m i n a was p r e p a r e d b y vacuum i m p r e g n a t i o n o f y - a l u m i n a w i t h R u C l ^ ^ H ^ O i n aqueous s o l u t i o n , f o l l o w e d b y d r y i n g i n a r o t a r y e v a p o r a t o r a t a b o u t 100°C and i n a vacuum o v e n a t 102°C f o r two h o u r s . P r i o r t o syngas c o n v e r s i o n , a l l ruthenium c o n t a i n i n g c a t a l y s t s were reduced w i t h hydrogen. Syngas c o n v e r s i o n was c o n d u c t e d i n a down f l o w f a s h i o n i n a f i x e d - b e d c o n t i n u o u s f l o w m i c r o - r e a c t o r . The p r e h e a t e r a n d r e a c t i o n zone w e r e made o f 1.42 cm i . d . t y p e 321 s t a i n l e s s - s t e e l tubing enclosed i n a three-zone e l e c t r i c a l r e s i s t a n c e block heater. Gas f l o w was c o n t r o l l e d u s i n g a B r o o k s I n s t r u m e n t f l o w c o n t r o l l e r . L i q u i d p r o d u c t was c o l l e c t e d d i r e c t l y i n a p r e s s u r e d J e r g u s o n s i g h t g l a s s a t ambient temperature. The e x i t g a s p a s s e d t h r o u g h a c o n d e n s e r and a G r o v e b a c k - p r e s s u r e r e g u l a t o r t o a wet t e s t m e t e r w h e r e t h e e x i t g a s f l o w r a t e was m e a s u r e d . The c o n d e n s e d h y d r o c a r b o n i n t h e h i g h p r e s s u r e J e r g u s o n s i g h t g l a s s was f u r t h e r weathered t o atmospheric p r e s s u r e . P r o d u c t a n a l y s e s w e r e c a r r i e s o u t b y gas c h r o m a t o g r a p h y .
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
2
R e s u l t s and D u s c u s s i o n s G e n e r a l l y s p e a k i n g , hydrogénation o f Co o n r u t h e n i u m i s s i m i l a r t o s y n t h e s i s r e a c t i o n s on c o b a l t and n i c k e l i n so f a r as t h e o x y g e n o f CO i s r e j e c t e d e s s e n t i a l l y a s w a t e r . However, s u p p o r t m a t e r i a l s may i n d u c e a s h i f t r e a c t i o n a n d may l e a d t o p r o d u c t i o n o f some C 0 . As shown i n T a b l e I I I , t h e m o l e r a t i o s o f H 0 t o C 0 i n t h e r e a c t o r e f f l u e n t w e r e 29,54,and 5 f o r Ruu«, I m p r e g n a t e d Ru/ ZSM-5, and s u p p o r t e d R u / A l 0 ~ , r e s p e c i t v e l y . This i scontrary to i r o n F i s c h e r - T r o p s c h c a t a l y s t which g i v e s C 0 as the major oxygen c o n t a i n i n g p r o d u c t . F o r example, t h e mole r a t i o o f H 0 t o C 0 i n t h e p r o d u c t f r o m s y n g a s c o n v e r s i o n o v e r i r o n c a t a l y s t s (1,5,15) i s g e n e r a l l y l e s s t h a n 0.1. T h i s d i f f e r e n c e a r i s e s from t h e f a c t t h a t i r o n i s a c t i v e f o r water-gas s h i f t r e a c t i o n (Equation I I ) w h i l e ruthenium i s not. 2 H + CO ^ (-CH -) + H 0 (I) 2
2
2
2
2
2
2
H 0 + CO 2
2
C0
2
+ H
2
2
(II)
2
For ruthenium c a t a l y s t s without s h i f t a c t i v i t y , t h e s t o i c h i o m e t r i c r e q u i r e m e n t f o r s y n g a s c o n v e r s i o n i s two m o l e s o f H p e r m o l e o f CO, a c c o r d i n g t o E q u a t i o n ( I ) . However, t h e H /C0 u s a g e r a t i o c a n be l e s s t h a n 2 when t h e c a t a l y s t h a s s h i f t a c t i v i t y ( E q u a t i o n I I ) . 2
2
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Aromatic
H U A N G A N D HAAG
20.
Gasoline
Using
Ru/Zeolites
309
E f f e c t of Z e o l i t e R e s u l t s w i t h composite c a t a l y s t s c o n s i s t i n g o f a s u p p o r t e d R u / A ^ O ^ and a z e o l i t e a r e g i v e n i n T a b l e I . A l t h o u g h t h e z e o l i t e s t h e m s e l f h a v e no e f f e c t on t h e s y n g a s c o n v e r s i o n , t h e h y d r o c a r b o n p r o d u c t d i s t r i b u t i o n i s a f f e c t e d by t h e p r e s e n c e o f a z e o l i t e , p a r t i c u l a r l y o f t h e ZSM-5 c l a s s . The i n c o r p o r a t i o n o f ZSM-5 i n t h e c a t a l y s t n o t o n l y promoted a r o m a t i c s f o r m a t i o n , b u t a l s o s i g n i f i c a n t l y r e d u c e d t h e end p o i n t o f t h e hydrocarbons. The t o t a l h y d r o c a r b o n f r a c t i o n c o n t a i n e d 66 w t % o f , w h i c h was e s s e n t i a l l y an a r o m a t i c g a s o l i n e ( 3 4 % a r o m a t i c s , 204°C b o i l i n g p o i n t a t 9 0 % o v e r h e a d ) . I t must be n o t e d t h a t , w i t h r u t h e n i u m a l o n e ( E x . Ι Α ) , no a r o m a t i c s w e r e p r o d u c e d and the b o i l i n g point of C a t 90% o v e r h e a d was 322°C. The p r e s e n c e o£ a l a r g e p o r e z e o l i t e , H - m o r d e n i t e , r e d u c e d t h e end p o i n t o f o n l y s l i g h t l y . M o r e u n i t e i n i t i a l l y gave a r o m a t i c s w i t h s u b s t a n t i a l amount o f C ^ Q a r o m a t i c s , b u t i t d e activated very rapidly.
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
5
E f f e c t o f Ruthenium L o a d i n g Two r u t h e n i u m c o n c e n t r a t i o n s ( 0 . 5 % and 1.5%) w e r e u s e d t o s t u d y t h e e f f e c t o f r u t h e n i u m l o a d i n g on s y n g a s c o n v e r s i o n o v e r p h y s i c a l l y m i x e d Ru/Al^O^/ZSM-S catalysts. The r e s u l t s a r e shown i n T a b l e I I . The f o r m a t i o n o f l 2 S y r e d u c e d f r o m 4 0 % w t h 1.5% Ru t o 25% w i t h 0.£% Ru. On t h e o t h e r h a n d , t h e h i g h e r r u t h e n i u m l o a d i n g gave a π p r o d u c t o f r e d u c e d end p o i n t ( E x . 2A and 2 B ) . As e x p e c t e d , no d i f f e r e n c e i n a r o m a t i c s p r o d u c t i o n was o b s e r v e d . The same e f f e c t was s e e n w i t h i m p r e g n a t e d Ru/ZSM-5 c a t a l y s t s o f 1% and 5% R u - c o n t e n t (Ex.2C and 2D). C
+
C
w a s
r e a t l
E f f e c t o f Method Of C a t a l y s t P r e p a r a t i o n T h r e e c a t a l y s t s w i t h d i f f e r e n t methods o f p r e p a r a t i o n w e r e u s e d i n t h i s s t u d y and t h e r e s u l t s a r e g i v e n i n T a b l e I I I . A l t h o u g h they have the same r u t h e n i u m l o a d i n g ( 5 % ) , t h e d e g r e e o f i n t i m a c y b e t w e e n r u t h e n i u m s i t e s and a c t i v e s i t e s o f ZSM-5 i n c r e a s e d w i t h t h e f o l l o w i n g o r d e r : I m p r e g n a t e d Ru/ZSM-5 > Ru0 /zsM-5 ( g r o u n d t o g e t h e r ) > P h y s i c a l M i x t u r e o f Ru/Al^O^ and zSlji-5. The most s t r i k i n g f e a t u r e was t h a t t h e f o r m a t i o n o f heavy a r o m a t i c s i n c r e a s e d w i t h i n c r e a s i n g degree o f i n t i m a c y between Ru and ZSM-5, a s shown i n T a b l e I V . T h i s may i n d i c a t e t h a t i f r u t h e n i u m s i t e s and a c i d s i t e s o f ZSM-5 a r e l o c a t e d c l o s e l y t o g e t h e r as i n t h e c a s e o f t h e i m p r e g n a t e d c a t a l y s t , t h e a r o m a t i c s formed a s z e o l i t e s i t e s may be f u r t h e r a l k y l a t e d w i t h t h e r e a c t i o n i n t e r m e d i a t e s produced a t the n e i g h b o r i n g ruthenium s i t e s , c o n s e q u e n t l y making heavy a r o m a t i c s . The v a r i a t i o n s i n s y n g a s c o n v e r s i o n and C^^K^ selectively c o u l d be due t o t h e d i f f e r e n c e i n r u t h e n i u m s u r f a c e a r e a s as a result of d i f f e r e n t preparations. A f i n e l y ground p h y s i c a l m i x t u r e o f 5% Ru ( a s Ru0 )/ZSM-5 w h i c h was s u b s e q u e n t l y p e l l e t i z e d was u s e d i n t h e s t u d y o f t h e e f f e c t s o f p r o c e s s v a r i a b l e s on s y n t h e s i s gas c o n v e r s i o n . 2
2
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
CATALYTIC
310
ACTIVATION
OF CARBON
MONOXIDE
Table I SYNGAS CONVERSION OVER RUTHENIUM/ZEOLITE CATALYSTS AT 51 atm, 294°C, GHSV = 4 8 0 , AND H /C0 = 2/1. 2
E x p e r i m e n t No.
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
Catalyst
0.5% R u / A l 0 / / 2
3
Quartz Chips "Mixed" Syngas C o n v e r s i o n , mole %
1C
IB
1A
0.5% R u / A l 0 / / 2
ZSM-5 "Mixed"
3
0.5% R u / A l ^ / / H-Mordenite "Mixed"
94
98
95
37
38
36
0
0
1
11
1
6
2
6
12
8
H 0
46
49
49
33
25
29
8
9
7
59
66
63
0
34
< 5
90% Overhead
322
204
275
95% Overhead
377
224
322
Reactor E f f l u e n t , wt% Hydrocarbons H
2
CO C0 2
Hydrocarbon Composition, wt% C
l
+
C
3
+
C
C
2 C
+
4
5
A r o m a t i c s i n C,. , w t %
B o i l i n g Range o f C
+ 5
,
°C
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
20.
Aromatic
H U A N G A N D HAAG
Gasoline
Using
Ru/Zeolites
311
Table I I EFFECT OF RUTHENIUM LOADING ON SYNGAS CONVERSION (51 atm, GHSV = 4 8 0 , AND H /CO - 2/1) 2
2A
E x p e r i m e n t No.
1.5% Ru/Al.O // ZSM-5
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
Catalyst
"Mixed" Temp.
294
2D
2C
2B 0.5% R u / A l 0 ZSM-5 2
"Mixed"
//
1% Ru/ ZSM-5
5% Ru/ ZSM-5
"Impregnated"
"Impregnated" 304
294 304
Syngas C o n v e r s i o n , mole % 99
83
98 86
Reactor wt%
Effluent,
Hydrocarbons H
2
32
39
38
38
0
0
1
2
CO
0
1
15
18
C0
17
12
2
3
44
49
44
45
40
25
38
20
12
9
16
29
48
66
46
51
32
43
25
27
2
H 0 2
Hydrocarbon Composition, wt% C
C
l
+
C
2
+ C
3 4 C + 5 C
Arom; iatics in wt% B o i l i n g Range o f
c5+,
°C
90%
Overhead
174
204
95%
Overhead
186
224
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
312
CATALYTIC ACTIVATION OF CARBON MONOXIDE
Table I I I
EFFECT OF METHOD OF CATALYST PREPARATION ON SYNGAS CONVERSION OVER Ru/ZSM-5 CLASS ZEOLITE.
E x p e r i m e n t No.
9
3A
Catalyst
Impregnation
P a r t i c l e S i z e , mesh
( B a s e d on T o t a l
Ru0 Plus zài-5 9
Ground T o g e t h e r
Ru/Al 0 ZSM-5
30 - 60
5%
5%
5%
304
294
294
93
99
36
40
0
0
12
0
4
20
48
40
38
30
43
16
17
14
46
53
43
25
28
24
79
90
97
21
10
3
Syngas C o n v e r s i o n , mole %
86
Reactor E f f l u e n t , wt% Hydrocarbons H
38 1
2
CO C0
15 2
2
H 0
44
2
Hydrocarbon Composition, wt% C
l
c C
+
3 +
5
C
c
2 4
+
Aromatics i n C
c
wt%
Aromatics D i s t r i b u t i o n wt% A
A
6" 10 "11
J
Physical Mixture
Solid)
Temp., °C
Plus
9
30 - 60
30 - 60
Ruthenium L o a d i n g , wt%
3C
3B
Ru/ZSM-5
Method o f Preparation Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
( 5 1 a t m , GHSV = 4 8 0 , AND H /C0 = 2/1)
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
20.
H U A N G A N D HAAG
Aromatic
Gasoline
Using
Ru/Zeolites
313
Table IV EFFECT OF PRESSURE ON SYNGAS CONVERSION OVER 5% Ru (AS R u 0 > / 2
ZSM-5 AT 294°C, H /CO = 2/1, AND GHSV = 4 8 0 . 2
P r e s s u r e , atm.
13.6
27.2
51
75
CO
63
78
86
90
H,
77
92
96
98
29.8
35.2
35.5
37.4
H,
2.9
1.4
0.5
0.2
CO
32.6
20.8
11.8
8.8
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
Conversion, wt%
T o t a l Product, wt% Hydrocarbon
co
2
H 0 2
1.8
3.1
3.6
3.8
32.9
39.5
48.6
49.8
52.8
44.5
26.0
26.1
5.9
5.0
4.3
3.4
7.7
7.1
5.1
3.0
-
-
0.7
0.2
10.3
10.5
5.6
3.5
5.0
6.1
4.5
3.6
-
-
0.9
-
6.3
6.1
5.4
4.1
1.5
2.3
3.5
4.0
2.0
7.8
29.5
40.8
8.5
10.6
14.7
11.5
18.3
26.8
53.1
60.4
46.2
39.4
27.7
19.1
98.0
96.3
97.4
97.0
Hydrocarbon Composition, wt% C
l
V V i-c
4
n-C
4
V i-c
5
n-C
5
non-aromatics Aromatics C + 5
i n T o t a l H.C., w t %
Aromatics
i n C^+, w t %
Hydrocarbon wt%
Selectivity,
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
314
C A T A L Y T I C ACTIVATION
OF CARBON
MONOXIDE
Effect of Pressure The r e s u l t s a r e l i s t e d i n T a b l e I V . The e f f e c t o f p r e s s u r e o n c o n v e r s i o n s and s e l e c t i v i t i e s a r e shown i n F i g u r e 1. The CO c o n v e r s i o n i n c r e a s e d f r o m 6 3 % a t 13.6 atm (200psig) t o 9 0 % a t 75 atm ( l l O O p s i g ) . The h y d r o c a r b o n selectivi t y , d e f i n e d as ( t o t a l carbon converted - t o t a l carbon i n C 0 ) f t o t a l c a r b o n c o n v e r t e d , r e m a i n e d s t e a d y a t 97%. t h e r e s t o f 3% b e i n g c o n v e r t e d t o CO^. The s e l e c t i v i t y o f C r + i n c r e a s e d w i t h i n c r e a s i n g pressure while t h e aromatics i n decreased. The C^+C^ make was s u b s t a n t i a l l y r e d u c e d b y h i g h e r p r e s s u r e , f o r e x a m p l e , f r o m 5 9 % a t 13.6 atm t o 2 9 % a t 74 atm.
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
2
E f f e c t o f Temperature Three temperatures i n t h e range o f 264 t o 328°C (507 t o 613°F) w e r e u s e d f o r t h e s t u d y o f t h e e f f e c t of temperature. The d e t a i l e d c o n d i t i o n s and r e s u l t s a r e i n c l u d e d i n T a b l e V. The p l o t s o f c o n v e r s i o n a n d s e l e c t i v i t i e s v e r s u s t e m p e r a t u r e a r e shown i n F i g u r e 2. B o t h h y d r o c a r b o n selectivity and H a n d CO c o n v e r s i o n s w e r e h i g h i n t h i s r a n g e . The s l i g h t l y l o w e r CO c o n v e r s i o n a t h i g h e r t e m p e r a t u r e c o u l d b e due t o t h e g r e a t e r y i e l d o f C ^ K ^ . The two k e y f e a t u r e s e m e r g i n g f r o m t h i s s t u d y a r e t h e s h a r p i n c r e a s e i n C^ and t h e s h a r p d e c r e a s e i n C]+C f u n c t i o n o f decreasing temperature. A t 264°C, t h e C^+C« make was r e d u c e d t o 1 1 % . No t e m p e r a t u r e l o w e r t h a n 264 *C was i n v e s t i g a t e d i n t h i s s t u d y a l t h o u g h C~ y i e l d c o u l d p o s s i b l y be i n c r e a s e d a b o v e t h e 8 9 % o b t a i n e d a t 264°C. The a r o m a t i c s i n t o t a l h y d r o c a r b o n went t h r o u g h a maximum a t 294°C. The l o w e r a r o m a t i c s s e l e c t i v i t y a t 264°C was p r o b a b l y d u e t o t h e p o o r a r o m a t i z a t i o n a c t i v i t y o f ZSM-5 a t s u c h a l o w t e m p e r a t u r e , w h i l e a t h i g h e r t e m p e r a t u r e methane f o r m a t i o n c o m p e t e s . 2
a
s
a
2
E f f e c t o f Space V e l o c i t y The d a t a a r e g i v e n i n T a b l e V I , and t h e c o n v e r s i o n a n d s e l e c t i v i t i e s a r e p l o t t e d a g a i n s t 1/WHSV i n F i g u r e 3. C l e a r l y , a t l o n g e r c o n t a c t t i m e ( o r l o w e r s p a c e v e l o c i t y ) , C^ d e c r e a s e d a n d C^+Co i n c r e a s e d . Thus t h e l a t t e r appear t o be formed as a s e q u e n t a i l r e a c t i o n p r o d u c t . +
E f f e c t o f H /C0 R a t i o T h r e e d i f f e r e n t H / C 0 r a t i o ( 1 / 2 , 1/1, and 2/1) w e r e employed i n t h i s s t u d y . The d e t a i l e d r e s u l t s a r e l i s t e d i n T a b l e V I I . As shown i n F i g u r e 4, t h e CO c o n v e r s i o n i n c r e a s e d ( f r o m 20 t o 78%) w i t h i n c r e a s i n g H /C0 r a t i o . Since CO c o n v e r s i o n i s s t o i c h i o m e t r i c a l l y l i m i t e d b y t h e amount o f hydrogen a v a i l a b l e i n t h e feed i n view o f t h e absence o f watergas s h i f t r e a c t i o n , t h e l o w e r t h e H /C0 r a t i o , t h e l o w e r t h e maximum a t t a i n a b l e CO c o n v e r s i o n . F o r e x a m p l e , w i t h t h e H /C0 r a t i o o f 1/2, t h e maximum a t t a i n a b l e CO c o n v e r s i o n , b a s e d o n t h e s t o i c h i o m e t r y o f syngas c o n v e r s i o n over ruthenium c a t a l y s t s o f 2 H / 1 C 0 ( E q u a t i o n I ) , w o u l d b e 25%. T h e r e f o r e , t h e 20% apparent CO c o n v e r s i o n a t t h e H /C0 r a t i o o f 1/2 r e f l e c t e d 8 0 % o f t h e maximum a t t a i n a b l e CO c o n v e r s i o n . I n t h e r a n g e o f H /C0 r a t i o employed h e r e , t h e p o s s i b l e CO c o n v e r s i o n was a l l h i g h , a m o u n t i n g t o a b o u t 8 0 % o f t h e maximum a t t a i n a b l e CO c o n v e r s i o n , a s r e p r e s e n t e d b y t h e d o t t e d l i n e i n F i g u r e 4. ?
2
2
9
2
2
2
2
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
Figure 1.
Effect of pressure on syngas conversion over 5% Ru(as (294°C, GHSV = 480, and H J CO = 2/1)
Ru0 )/ZSM-5
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
2
316
CATALYTIC
ACTIVATION
OF CARBON
MONOXIDE
Table V
EFFECT OF TEMPERATURE ON SYNGAS CONVERSION OVER 5% Ru (AS R u 0 ) / 2
ZSM-5 AT 51 a t m , GHSV = 4 8 0 , AND H /C0 = 2/1. 2
Temp., °C
264
294
328
CO
93
86
78
H
98
96
97
40.0
35.5
35.8
H,
0.2
0.5
0.4
CO
6.3
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
Conversion, wt%
2
T o t a l Product, wt% Hydrocarbon
co
1.0
2
H 0 Hydrocarbon Composition, wt%
11.8 3.6
18.9 4.5
52.6
48.6
40.0
10.3
26.0
61.3
1.0
4.3
6.5
-
-
-
1.2
5.1
4.5
V
0.1
0.7
-
i-c
1.9
5.6
5.3
4.2
4.5
3.4
0.2
0.9
-
3.1
5.4
3.9
4.7
3.5
1.4
65/8
29.5
8.2
7.7
14.7
8.2
81.3
53.1
19.1
9.4
27.7
43.1
99.2
97.4
95.8
2
C
l
V V C
3°
n-C
4
4
V i-c
5
n-C C^
non-aromatics
Aromatics +
C i n T o t a l H.C., w t %
+ A r o m a t i c s i n C^ , w t % Hydrocarbon S e l e c t i v i t y ,
%
B r o m i n e No. o f L i q . P r o d u c t
90
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
H U A N G AND HAAG
Aromatic
Gasoline
Όsing
317
Ru/Zeolites
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
20.
Figure 2.
Effect of Temperature on syngas conversion over 5% Ru(as ZSM-5 (294°C, GHSV = 480, and HJCO = 2/1)
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Ru0 )/ 2
318
CATALYTIC ACTIVATION OF CARBON MONOXIDE
Table V I EFFECT OF SPACE VELOCITY ON SYNGAS CONVERSION OVER 5% Ru(AS Ru0 > 2
ZSM-5 AT 294°C, 75 atm, AND H /CO = 2 / 1 . 2
GHSV
180
480
1428
CO
91
90
93
H,
98
98
98
37.0
37.4
34.9
H,
0.2
0.2
0.2
CO
7.6
8.8
5.8
9.2
3.8
0.9
46.0
49.8
58.1
34.4
26.1
13.4
5.1
3.4
1.6
2=
-
-
-
V
5.0
3.0
1.8
0.1
0.2
0.1
5.9
3.5
1.8
4.1
3.6
2.6
-
-
0.1
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
Conversion, wt%
T o t a l P r o d u c t , wt% Hydrocarbon
co
2
H0 2
Hydrocarbon Composition, wt% l
C
V C
C
3=
n-C C
4
4-
i-c
5
4.6
4.1
3.0
n-C
5
3.3
4.0
3.7
23.7
40.8
58.7
14.0
11.5
13.3
45.6
60.4
78.7
30.7
19.1
16.9
92.7
97.0
99.3
C^
non-aromatics
Aromatics C
5
+
i n T o t a l H . C . , wt%
+ Aromatics i n C^ , wt% Hydrocarbon S e l e c t i v i t y , wt%
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
HUANG
AND HAAG
Aromatic
Gasoline
Using
319
Ru/Zeolites
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
20.
Figure 3.
Effect of space velocity on syngas conversion over 5% ZSM-5 (294°C, 75 aim, and H CO = 2/1)
Ru(as
2
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Ru0 )/ 2
320
CATALYTIC ACTIVATION OF
CARBON
MONOXIDE
Table V I I EFFECT OF H /C0 RATIO ON SYNGAS CONVERSION OVER 5% Ru (AS R u 0 > / 2
2
ZSM-5 AT 294°C, 27 a t m , AND GHSV = 4 8 0 . H /CO, m o l e r a t i o
1/2
1/1
2/1
CO
20
38
78
H
74
85
92
10.9
19.5
35.2
0.9
1.0
1.4
77.7
58.3
20.8
2.4
3.6
3.1
8.3
17.6
39.5
17.7
24.4
44.5
3.3
2.6
5.0
-
-
2
Conversion, wt%
2
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
T o t a l P r o d u c t , wt% Hydrocarbon H
2
CO
co
2
H 0 2
Hydrocarbon C
Composition, wt%
l
V
-
V
15.7 1.5
n-C. 4
V i-c n-C
-
-
20.5
19.9
10.5
10.5
10.1
6.1
-
-
5
8.9
9.9
6.1
5
2.8
1.4
2.3
1.2
3.5
7.8
18.1
15.8
10.6
30.9
30.6
26.8
58.4
51.5
39.4
92
93.5
86.3
C^ non-aromatics Aromatics +
7.1
-
+
C
12.4
i n T o t a l H.C.,
wt%
+ A r o m a t i c s i n C^ , w t % Hydrocarbon S e l e c t i v i t y , O c t a n e No. (R+O) o f L i q u i d Product B o i l i n g Range o f C * 90% O v e r h e a d
%
104
102
94
212
201
182
°C
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Aromatic
H U A N G AND HAAG
Gasoline
Using
Ru/Zeolites
321
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
20.
Figure 4.
Effect of H /CO ratio on syngas conversion over 5% ZSM-5 (294°C, 27 atm, and GHSV = 480) 2
Ru(as
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
Ru0 )/ 2
CATALYTIC ACTIVATION
322
O F CARBON
MONOXIDE
The y i e l d was r a t h e r i n s e n s i t i v e ^ t o t h e H^/CO r a t i o i n t h i s range. However, t h e a r o m a t i c s i n C increased sharply with d e c r e a s i n g H /CO r a t i o , r e a c h i n g 9 4 % a t t h e H /CO r a t i o o f 1/2; t h e a r o m a t i c s i n t o t a l h y d r o c a r b o n i n c r e a s e d f r o m 1 1 % a t 2/1 r a t i o t o 1 8 % a t 1/2 r a t i o . More i m p o r t a n t l y , C^+C,^ f o r m a t i o n decreased s h a r p l y w i t h d e c r e a s i n g H /C0 r a t i o . The b o i l i n g range o f was s h i f t e d t o w a r d h i g h e r b o i l i n g p o i n t a s t h e H /CO r a t i o was d e c r e a s e d , a l t h o u g h more a r o m a t i c s a n d l e s s methane w e r e p r o d u c e d w^.th l o w e r Hp/CO r a t i o . Furthermore, t h e o c t a n e number o f t h e C,. f r a c t i o n i n c r e a s e d w i t h d e c r e a s i n g H /CO r a t i o a s shown b e l o w i n agreement w i t h t h e h i g h e r a r o m a t i c s content. fi
2
2
2
2
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
2
H /CO R a t i o
1/2
1/1
2/1
O c t a n e No. (R+0)
104
102
94
2
Conclusion The i n c o r p o r a t i o n o f a ZSM-5 c l a s s z e o l i t e i n t o a r u t h e n i u m F i s c h e r - T r o p s c h c a t a l y s t promotes a r o m a t i c s f o r m a t i o n and reduces the molecular weight o f the hydrocarbons produced. These composite c a t a l y s t s can produce a h i g h octane aromatic g a s o l i n e i n good y i e l d i n a s i n g l e s t e p d i r e c t l y f r o m s y n t h e s i s g a s . The s t u d y o f t h e e f f e c t s o f p r o c e s s p a r a m e t e r s r e v e a l s t h a t (1) methane c a n b e s u b s t a n t i a l l y r e d u c e d b y h i g h e r p r e s s u r e , s h o r t e r c o n t a c t t i m e , l o w e r t e m p e r a t u r e , and l o w e r H^/CO r a t i o ; and (2) t h e a r o m a t i c s p r o d u c t i o n i s g r e a t l y f a v o r e d b y l o w e r H /C0 r a t i o a t moderate temperature. 2
Abstract Ruthenium is known to be a good catalyst for producing high molecular weight paraffin wax from H / C O at high pressure and low temperature, or making methane at low pressure and moderate temperature. However, the present study reveals that aromatic gasoline of high quality with good y i e l d can be produced directly from synthesis gas under proper conditions in the presence of dual-functional ruthenium-containing ZSM-5 class zeolite catalysts. The nature of the product depends upon the dual-functionality of the catalyst system. The effects of method of catalyst preparation and ruthenium loading, as well as process variables such as temperature, pressure, space velocity and H /CO ratio on the product distribution are discussed. 2
2
Acknowledgement We w i s h t o t h a n k Mr. C. L . T a t s c h a n d M r . R. M. W a l l a c e their excellent technical assistance.
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.
for
20.
H U A N G AND HAAG
Downloaded by UNIV OF PITTSBURGH on May 4, 2015 | http://pubs.acs.org Publication Date: May 5, 1981 | doi: 10.1021/bk-1981-0152.ch020
Literature
Aromatic
Gasoline
Using
Ru/Zeolites
323
Cited
1. Chang, C. D.; Lang, W. H.; Silvestri, A. J. J. Catal., 1979, 56, 268. 2. Caesar, P. D.; Brennan, J. Α.; Garwood, W. E.; Ciric, J. J. Catal., 1979, 56, 274. 3. Meisel, S. L.; McCullough, J. P.; Lechthaler, C. H.: Weisz, P. B. Chemtech 1976, 6, 86. 4. Chang, C. D.; Silvestri, A. J. J. Catal., 1977, 47,249. 5. Storch, H. H.; Golumbic, N.; Anderson, R. B. "The FischerTropsch and Related Syntheses", Wiley, New York, 1951, p. 309. 6. Pichler, H. Adv. Cat., Vol. IV, 1952, 271. 7. Karn, F. S.; Schultz, J. F.; Anderson, R. Β. I & Ε C Product Research and Development, 1956, 4, 265. 8. Ekerdt, J. G.; Bell, A. T. J. Catal, 1979, 58, 170. 9. Ollis, D. F.; Vannice, M. A. J. Catal., 1975, 37, 449. 10. King, D. L. J. Catal., 1978, 51, 386. 11. Everson, R. C.; Woodburn, E. T.; Kirk, A. R. J. Catal., 1978, 53, 186. 12. Dalla Betta, R. Α.; Shelef, M. J. Catal., 1977, 49, 383. 13. Jacobs, P. Α.; Nijs, H. H.; Verdonck, J. J.; Uytterhoven, J. B. Preprint. Petroleum Chem. Div., Am. Chem. Soc., March 12-17, 1978, p. 469. 14. Meisel, S. L.; McCullough, J. P.; Lechthaler, C. H.; Weisz, P. B. Leo Friend Symposium, Am. Chem. Soc., Chicago, Illinois, Aug. 30, 1977. 15. Weisz, P. B. Adv. Catal., 1962, 13, 137. 16. Huang, T. J.; Haag, W. O. Unpublished data. RECEIVED December 8, 1980.
In Catalytic Activation of Carbon Monoxide; Ford, P.; ACS Symposium Series; American Chemical Society: Washington, DC, 1981.