This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
Article Cite This: ACS Omega 2019, 4, 6637−6646
http://pubs.acs.org/journal/acsodf
Cascade Reaction of 1,1-Enediamines with 2‑Benzylidene‑1H‑indene-1,3(2H)‑diones: Selective Synthesis of Indenodihydropyridine and Indenopyridine Compounds Qin Luo,† Rong Huang,† Qiang Xiao, Ling-Bin Kong, Jun Lin,* and Sheng-Jiao Yan* Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
Downloaded via 95.85.69.248 on April 11, 2019 at 21:39:25 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.
S Supporting Information *
ABSTRACT: A concise and environmentally friendly route for the synthesis of diverse indenodihydropyridines (3) via a cascade reaction of 1,1-eneamines (1) with benzylidene-1Hindene-1,3(2H)-diones (BIDs) (2) in ethanol media was developed. The targeted compounds were efficiently obtained by only filtration without any further post-treatment. In the one-step cascade reaction, C−C and C−N bonds were constructed. In addition, when 1,4-dioxane was used as a solvent and the mixture of 1,1-eneamines (1) was refluxed with benzylidene-1H-indene-1,3(2H)-diones (BIDs) (2) for about 12 h, indenopyridine compounds (4) were produced. Two kinds of indenopyridine derivatives 3−4 resulted from alternative solvents and temperatures. The reaction had the following features: mild temperature, atom economy, high yields, and potential biological activity of the product.
■
constructed;25−32 these compounds (Figure 2) are important pharmaceuticals and bioactive natural products. They have wide-spectrum biological activities and are mainly used as antitumor or antiproliferative drugs25−29 (Figure 2; TAS-103,25 6-aryl-indeno[1,2-c]quinolones,26 compounds A28 and B29). However, the molecules of 1,4-dihydropyridines combined with indenones are not extensively used. Therefore, the development of effective methods for the rapid preparation of the indenodihydropyridine (IDDP) library is urgent. 1,1-Enediamines (EDAMs) are fascinating and versatile building blocks that are widely used to synthesize various fused heterocyclic compounds.33−50 We have used EDAMs as bisnucleophilic reagents to react with isatins via a cascade reaction for the synthesis of indenopyridine derivatives33,34 (Scheme 1).33 Other researchers have used a diversity of enamines as substrates for the synthesis of various indenopyridine derivatives through cascade reactions.35−38 Based on the importance of indenopyridine derivatives, we explored the cascade of EDAMs for synthesis of indenopyridine derivatives including indenopyridines and IDDPs. In this article, we describe a cascade strategy for the convergent synthesis of a kind of IDDPs (3) and a type of indenopyridines (4) through alternative solvents and temperatures. We realize that one protocol for synthesis of two kinds of heterocycles kills two birds with one stone. The reaction is particularly attractive due to the following features: ecofriendliness (EtOH as a solvent and without column
INTRODUCTION Group-assisted purification1,2 allows for the synthesis of diverse compounds without using traditional purification technologies such as column chromatography. The focus of this technology is the search for eco-friendly reagents and reactions to reduce the waste generated from silica and solvents, particularly toxic solvents. The aim is the development of an environmentally friendly and efficient method to construct C−C and C−N bonds for the synthesis of N-containing heterocyclic compounds.3−5 Pyridine derivatives are vital N-containing heterocyclic compounds that are widely found in natural products and synthetic drugs.6−22 Consequently, more pyridine derivatives have been designed and synthesized.6−22 Among them, 1,4dihydropyridines and pyridine compounds have interesting biological activity. For example, 1,4-dihdropyridines have various biological activities and are widely used as drugs including calcium channel blockers (for example, nifedipine, nimodipine, mebudipine, and felodipine, Figure 1),6−8 mineralocorticoid receptor antagonists,8 sirtuin activators and inhibitors,9 transforming growth factor-β signaling inhibitors,10 CB2 receptor agonists,11 cardiodepressant activators,12 and Alzheimer’s disease medications.13,14 Similarly, the pyridines have broad-spectrum biological activity such as anti-human immunodeficiency virus,15 antitumor,16−18 anti-inflammatory,19 antifungal,20 antihistamine,21 antidepressant, antiarthritic, antidiabetic, antiglaucoma,22 and antiprion. The indenonucleolus is a core unit of various natural alkaloids like onychnine and polyfothine (Figure 2).23,24 Combining the structure of pyridines or 1,4-dihydropyridines with indenones in one molecule is especially important for novel pharmaceutical molecules. Consequently, various indenopyridines have been © 2019 American Chemical Society
Received: February 12, 2019 Accepted: March 4, 2019 Published: April 11, 2019 6637
DOI: 10.1021/acsomega.9b00407 ACS Omega 2019, 4, 6637−6646
ACS Omega
Article
Figure 1. Biological activity of dihydropyridines.
Figure 2. Biological activity of indenopyridine derivatives and the targeted compounds 3−4.
Scheme 1. Methods for the Construction of Indenopyridine Derivatives
for about 12 h resulted in the target compound 4a with 90% yield (Table 1, entry 6). Different bases such as Cs2CO3, tBuOK, and Et3N, and acid promoter HOAc were added to the reaction mixture. The results showed that the three bases could not promote the yield of the cascade reaction. Among them, Cs2CO3 and t-BuOK made the reaction more complicated due to their stronger alkalinities (Table 1, entries 7 and 8). The promoters Et3N and HOAc slightly decreased the yield of the reaction (Table 1, entry 5 vs 9 and 10). Different promoters including Cs2CO3, t-BuOK, and Et3N and HOAc were added to 1,4-dioxane and refluxed for 12 h. The promoters Cs2CO3, tBuOK, and Et3N also slightly decreased the yield of the reaction (Table 1, entry 5 vs 11−13). When HOAc was used as a promoter, the reaction produced the indenopyridine 4a with 60% yield (Table 1, entry 14). Finally, the reaction time was screened and it was revealed that the cascade reaction for synthesis of 3a in ethanol and refluxing for about 6 h led to the
chromatography for compound 3; air as an oxidant to obtain compound 4), mild temperature, atom economy, high yields, and potential biological activity of the product.
■
RESULTS AND DISCUSSION To obtain the indenopyridine derivatives, we searched for the optimal reaction conditions that were based on the model reaction of the reaction of EDAM 1a with benzylidene-1Hindene-1,3(2H)-dione (BID) 2a. Solvents including acetone, ethanol, and 1,4-dioxane (Table 1, entries 1−3) were screened. The results showed that the reaction could proceed in ethanol at room temperature (r.t.) without any promoters (Table 1, entry 2) and give the target compound 3a with 50% yield. With the same solvent (ethanol) and increased reflux temperature, the reaction produced compound 3a with a good yield (91%) (Table 1, entry 5). Using 1,4-dioxane as a solvent and refluxing 6638
DOI: 10.1021/acsomega.9b00407 ACS Omega 2019, 4, 6637−6646
ACS Omega
Article
Table 1. Optimization of the Reaction Conditionsa
entry
solvent
catalyst
T (°C)
time (h)
3a/yield (%)b
4a/yield (%)b
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
acetone EtOH 1,4-dioxane acetone EtOH 1,4-dioxane EtOH EtOH EtOH EtOH 1,4-dioxane 1,4-dioxane 1,4-dioxane 1,4-dioxane EtOH 1,4-dioxane
− − − − − − Cs2CO3 t-BuOK Et3N HOAc Cs2CO3 t-BuOK Et3N HOAc − −
r.t. r.t. r.t. reflux reflux reflux reflux reflux reflux reflux reflux reflux reflux reflux reflux reflux
12 12 12 12 12 12 12 12 12 12 12 12 12 12 6 6
− 50 − complex 91 − complex complex 85 80 complex complex 88 trace 93 trace
− − − complex − 90 complex complex trace trace complex complex trace 60 − 82
a
Reaction conditions: EDAM 1a (1.1 mmol) and BID 2a (1.0 mmol) were dissolved in a solvent (20 mL). bIsolated yield based on BID 2a.
Table 2. Synthesis of Indenodihydropyridines (IDDPs) 3a
best yield (Table 1, entry 5 vs 15). The results showed that the optimal reaction for synthesis of IDDP 3a is the mixture in an environmentally friendly solvent and refluxing for about 6 h without any promoter. The optimal reaction for production of the indenopyridine 4a was 1,4-dioxane used as a solvent and refluxing for 12 h without any promoter (Table 1, entry 6 vs 16). Based on the optimal reaction conditions, we further investigated the scope and generality of the cascade reaction of the EDAMs 1 with BIDs 2. Different substituted EDAMs 1 and other BIDs 2 were used in this protocol (Table 2, entries 1− 21). The results revealed that the substituted group on EDAMs 1 has only a slight influence on the yield. Similarly, the substituted groups of BIDs 2 also had slight effects on the yields of the reaction. We concluded that different EDAMs 1 and a variety of BIDs 2 are good substrates for this cascade reaction and produce the target compounds 3a−u with excellent yields (90−98%). To obtain the indenopyridine compound library, we further explored the universality of the cascade reaction for synthesis of compounds 4. A variety of EDAMs 1 and BIDs 2 were combined in this reaction under the optimal conditions (Table 3, entries 1−13). The results showed that the substituted EDAMs 1 had only a slight effect on the yields of compounds 4. In addition, the different substituents (H, F, Cl, Me, and OMe) at the 4 and 4′ positions of BIDs 2 also had a slight effect on the yield of compounds 4. In general, the yield of the electron-withdrawinggroup-substituted BIDs 2 was higher than that of the electrondonating-group-substituted compound (Table 3, entry 1 vs 7−8 vs 9). In summary, all of EDAMs 1 and BIDs 2 can be used as substrates to produce high yields of the target compounds 4. Products 3−4 were characterized by proton nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), Fourier transform infrared (FTIR) spectroscopy, and
entry
R
R′
3
yield (%)b
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
p-FC6H4CH2 p-FC6H4CH2 p-FC6H4CH2 p-ClC6H4CH2 p-ClC6H4 p-ClC6H4CH2 p-ClC6H4CH2 p-ClC6H4 p-ClC6H4CH2CH2 C6H5CH2CH2 C6H5 C6H5CH2 C6H5CH2CH2 C6H5CH2CH2 C6H5CH2 C6H5 C6H5CH2CH2 p-OMeC6H4CH2CH2 p-OMeC6H4CH2CH2 p-OMeC6H4CH2CH2 p-OMeC6H4CH2CH2
F Cl Me Cl H H Me OMe OMe F Cl Cl Cl H Me OMe OMe F Cl H Me
3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 3k 3l 3m 3n 3o 3p 3q 3r 3s 3t 3u
93 93 97 98 97 96 92 94 95 93 91 92 92 94 96 90 95 93 93 90 93
a Reaction conditions: EDAMs 1 (1.1 mmol), BIDs 2 (1.0 mmol), and EtOH (20 mL). bIsolated yields based on BIDs 2.
high-resolution mass spectrometry (HRMS). The results were all in agreement with the proposed structures. To further testify 6639
DOI: 10.1021/acsomega.9b00407 ACS Omega 2019, 4, 6637−6646
ACS Omega
Article
Table 3. Synthesis of Indenopyridine Compounds 4a
entry
R
R′
4
yield (%)b
1 2 3 4 5 6 7 8 9 10 11 12 13
p-FC6H4CH2 p-FC6H4CH2 p-ClC6H4CH2 p-ClC6H4CH2 CH2 p-ClC6H4CH2 C6H5CH2 C6H5CH2CH2 C6H5CH2CH2 C6H5CH2CH2 p-OMeC6H4CH2CH2 p-OMeC6H4CH2CH2 p-OMeC6H4CH2CH2 p-OMeC6H4CH2CH2
F Me F H Me OMe F Cl OMe F H Me OMe
4a 4b 4c 4d 4e 4f 4g 4h 4i 4j 4k 4l 4m
90 89 85 89 84 89 88 88 83 87 86 89 82
intramolecular cyclization of the intermediates 7 where the amino group attacks the carbonyl of intermediates 7. Finally, the intermediate 8 loses one molecule of water to produce the target compounds 3. The target compounds 3 can be easily oxidized by oxygen of air at high temperature (by refluxing 1,4-dioxane). This oxidation reaction can also proceed at room temperature for 1−2 weeks. For example, when we cultivate the single crystal of compound 3m (for about 2 weeks), the only result is the structure of 4h rather than that of the compound 3m. We believe that the target compounds 3 produce compounds 4 via oxidation reactions.
■
CONCLUSIONS We report a concise and environmentally friendly route for the synthesis of diverse IDDPs (3) via a cascade reaction of 1,1eneamines (1) with benzylidene-1H-indene-1,3(2H)-diones (BIDs) (2) in ethanol media without any promoters. The targeted compounds were efficiently obtained by only filtration without any further post-treatment. Indenopyridine compounds (4) were constructed by the cascade reaction of EDAMs 1 with BIDs 2 in 1,4-dioxane and refluxing for 12 h without any promoters. The result was two kinds of indenopyridine derivatives 3−4 through alternative solvents and temperatures. The reaction had the following features: mild temperature, atom economy, high yields, and potential biological activity of the product.
a Reaction conditions: EDAMs 1 (1.1 mmol), BIDs 2 (1.0 mmol), and 1,4-dioxane (20 mL). bIsolated yields based on BIDs 2.
the structure of the highly functionalized indenopyridine derivatives, compound 4h was selected as the representative compound and characterized by X-ray crystallography, as shown in Scheme 2 (CCDC 1885549) (ellipsoids are drawn at the 30% probability level). A proposed mechanism for this cascade reaction is shown in Scheme 2. First, the α-C of EDAMs 1 attacks the CC bond of the BIDs 1 to generate the intermediates 5 via a Michael reaction promoted by the base (EDAMs 1); high site-selectivity of this step is vital. Second, the intermediates 5 form the intermediates 6 via imine−enamine tautomerization. Next, the intermediates 7 are obtained through the enol−keto tautomerization of intermediate 6. Then, the intermediates 8 are produced by the
■
EXPERIMENTAL SECTION General Methods. All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a Bruker DRX500 or DRX600. Chemical shifts (δ) are expressed in parts per million, J values are given in hertz, and deuterated dimethyl sulfoxide (DMSO)-d6 or CDCl3 was used as a solvent. IR spectra were recorded on an FTIR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin-
Scheme 2. Mechanism for the Synthesis of Target Compounds 3−4
6640
DOI: 10.1021/acsomega.9b00407 ACS Omega 2019, 4, 6637−6646
ACS Omega
Article
1H, ArH), 5.04−5.10 (m, 2H, CH2), 7.29−7.37 (m, 6H, ArH), 7.47−7.53 (m, 5H, ArH), 7.78−7.82 (m, 1H, ArH), 10.27 (s, 1H, NH), 11.59 (s, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 37.8 45.3, 110.6, 121.1, 121.8, 121.8, 128.5, 129.3, 129.3, 129.8, 129.8, 129.9, 129.9, 130.9, 131.5, 132.9, 136.4, 142.6, 151.8, 152.2, 190.7. HRMS (TOF ES+): m/z calcd for C25H17Cl2N3O3 [M + H]+, 478.0720; found, 478.0718. 2-((4-Chlorophenyl)amino)-3-nitro-4-phenyl-1,4-dihydro9H-indeno[2,1-b]pyridin-9-one (3e). Red solid; mp: 251.4− 252.3 °C; IR (KBr): 3059, 1698, 1616, 1520, 1351, 1329 cm−1; 1 H NMR (600 MHz, DMSO-d6): δ = 5.16 (s, 1H, ArH), 7.15− 7.21 (m, 1H, ArH), 7.25−7.30 (m, 6H, ArH), 7.32−7.44 (m, 1H, ArH), 7.48−7.58 (m, 1H, ArH), 7.59−7.64 (m, 2H, ArH), 7.72−7.80 (m, 2H, ArH), 10.73 (s, 1H, NH), 12.05 (s, 1H, NH); 13C NMR (150 MHz, DMSO-d6): δ = 38.4, 112.5, 112.9, 121.1, 121.6, 125.0, 126.9, 127.1, 128.0, 128.3, 128.7, 128.9, 129.8, 130.7, 131.3, 132.7, 135.8, 136.4, 143.6, 190.8. HRMS (TOF ES+): m/z calcd for C24H17ClN3O3 [M + H]+, 430.0953; found, 430.0955. 4-(4-Methoxyphenyl)-3-nitro-2-(phenethylamino)-1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3f). Red solid; mp: 220.7−221.6 °C; IR (KBr): 3443, 1699, 1633, 1510, 1324, 1071 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 3.03 (t, J = 7.0 Hz, 2H, CH2), 3.68 (s, 1H, OCH3), 3.96−4,03 (m, 2H, NCH2), 4.93 (s, 1H, ArH), 6.78 (d, J = 8.5 Hz, 2H, ArH), 7.09 (d, J = 8.5 Hz, 2H, ArH), 7.20−7.29 (m, 2H, ArH), 7.32−7.37 (m, 5H, ArH), 7.46−7.50 (m, 1H, ArH), 7.82 (d, J = 7.5 Hz, 1H, ArH), 9.98 (s, 1H, NH), 11.36−11.43 (m, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 35.3, 37.2, 44.1, 55.5, 110.7 112.7, 113.9, 121.1, 121.6, 127.1, 128.9, 129.0, 129.0, 129.4, 130.6, 132.7, 135.8, 136.5, 138.6, 151.7, 151.9, 158.3, 190.9. HRMS (TOF ES+): m/z calcd for C27H24N3O4 [M + H]+, 454.1761; found, 454.1761. 2-((4-Chlorobenzyl)amino)-3-nitro-4-(p-tolyl)-1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3g). Red solid; mp: 206.5−207.4 °C; IR (KBr): 3438, 1701, 1631, 1520, 1331, 1320 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 2.22 (s, 3H, CH3), 4.91−4.99 (m, 1H, ArH), 5.00 (s, 1H, CH2), 5.02−5.10 (m, 1H, CH2), 7.05 (d, J = 8.0 Hz, 2H, ArH), 7.12 (d, J = 7.5 Hz, 2H, ArH), 7.26−7.31 (m, 1H, ArH), 7.31−7.38 (m, 1H, ArH), 7.47−7.52 (m, 5H, ArH), 7.76 (d, J = 7.0 Hz, 1H, ArH), 10.22 (s, 1H, NH), 11.53−11.60 (m, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 21.1, 37.7, 45.3, 111.0, 112.9, 120.9, 121.7, 127.8, 129.1, 129.3, 130.1, 130.7, 132.7, 132.8, 132.9, 136.0, 136.4, 136.5, 140.7, 151.8, 151.9, 190.8. HRMS (TOF ES+): m/ z calcd for C26H21ClN3O3 [M + H]+, 458.1266; found, 458.1264. 2-((4-Chlorophenyl)amino)-4-(4-methoxyphenyl)-3-nitro1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3h). Red solid; mp: 229.2−230.1 °C; IR (KBr): 3060, 1699, 1617, 1510, 1351, 1258 cm−1; 1H NMR (600 MHz, DMSO-d6): δ = 3.70−3.77 (m, 3H, OCH3), 5.10 (s, 1H, ArH), 6.85 (d, J = 8.4 Hz, 2H, ArH), 7.22 (d, J = 8.4 Hz, 2H, ArH), 7.28−7.37 (m, 2H, ArH), 7.38− 7.45 (m, 1H, ArH), 7.49−7.62 (m, 1H, ArH), 10.69 (s, 1H, NH), 12.02 (s, 1H, NH); 13C NMR (150 MHz, DMSO-d6): δ = 37.4, 55.5, 112.8, 113.2, 114.1, 114.1, 121.0, 121.5, 126.8, 129.0, 129.0, 130.0, 130.6, 131.2, 132.7, 132.9, 135.7, 136.5, 149.3, 158.5, 190.9. HRMS (TOF ES+): m/z calcd for C25H19ClN3O4 [M + H]+, 460.1059; found, 460.1061. 2-((4-Chlorophenethyl)amino)-4-(4-methoxyphenyl)-3nitro-1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3i). Red solid; mp: 233.0−233.9 °C; IR (KBr): 3229, 1693, 1633, 1508, 1313, 1268 cm−1; 1H NMR (500 MHz, DMSO-d6): δ =
layer chromatography (TLC) using silica gel GF254. The melting points were determined on an XT-4A melting point apparatus and were uncorrected. HRMS were performed on an Agilent LC/MSD TOF instrument. X-ray diffraction was carried out by APEX DUO. All chemicals and solvents were used as received without further purification unless otherwise stated. All chemicals were purchased from Adamas-β. Column chromatography was performed on silica gel (Qingdao, 200−300 mesh). Compounds 1 were prepared according to the literature.50,51 General Procedure for the Synthesis of Compounds 3a−u. EDAMs 1 (1.1 mmol) were dissolved in ethanol (20 mL), and then, BIDs 2 (1.0 mmol) were added to the mixture. The mixture was stirred by refluxing for about 6 h until full consumption of BIDs 2, which was observed by thin-layer chromatography (TLC). The formed precipitate was then filtered and washed with ethanol and a mixture of petroleum ether and ethyl acetate (petro/AcOEt = 1/1) solution to produce the pure products 3a−u. The products were further identified by NMR spectroscopy, FTIR spectroscopy, and HRMS. 2-((4-Fluorobenzyl)amino)-4-(4-fluorophenyl)-3-nitro-1,4dihydro-9H-indeno[2,1-b]pyridin-9-one (3a). Red solid; mp: 156.6−157.5 °C; IR (KBr): 3069, 1701, 1625, 1508, 1343, 1228 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 4.90−4.98 (m, 1H, ArH), 5.02−5.09 (m, 2H, CH2), 7.08 (t, J = 8.8 Hz, 2H, ArH), 7.26−7.30 (m, 5H, ArH), 7.31−7.38 (m, 1H, ArH), 7.47−7.55 (m, 3H, ArH), 7.81 (d, J = 7.5 Hz, 1H, ArH), 10.27 (s, 1H, NH), 11.55−11.62 (m, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 37.5, 45.4, 110.8, 112.4, 115.2 (d, J = 20.0 Hz), 116.2 (d, J = 21.0 Hz), 121.1, 121.7, 129.8, 130.2, 130.8, 132.7, 132.8, 133.5, 139.8, 151.7, 152.1, 161.4 (d, J = 240.0 Hz), 162.2 (d, J = 242.5 Hz), 190.8. HRMS (TOF ES+): m/z calcd for C25H18F2N3O3 [M + H]+, 446.1311; found, 446.1309. 4-(4-Chlorophenyl)-2-((4-fluorobenzyl)amino)-3-nitro1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3b). Red solid; mp: 222.6−223.5 °C; IR (KBr): 3442, 1689, 1631, 1511, 1342, 1070 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 4.82−5.01 (m, 3H, 1CH2, 1ArH), 7.17−7.38 (m, 8H, CH2), 7.47−7.55 (m, 3H, ArH), 7.78−7.87 (m, 1H, ArH), 10.28 (s, 1H, NH), 11.56− 11.60 (m, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 37.8, 45.4, 110.6, 112.0, 116.2 (d, J = 21.3 Hz), 121.1, 121.7, 128.5, 129.8, 130.1, 130.2, 130.3, 130.5, 130.9, 132.6, 132.9, 133.5, 142.6, 151.7, 152.2, 162.2 (d, J = 242.5 Hz), 190.7. HRMS (TOF ES+): m/z calcd for C25H18ClFN3O3 [M + H]+, 462.1015; found, 462.1014. 2-((4-Fluorobenzyl)amino)-3-nitro-4-(p-tolyl)-1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3c). Red solid; mp: 187.8−188.7 °C; IR (KBr): 3442, 1688, 1631, 1511, 1342, 1069 cm−1; 1H NMR (600 MHz, DMSO-d6): δ = 2.22 (s, 3H, CH3), 4.92−5.06 (m, 3H, 1CH2, 1ArH), 7.05 (d, J = 7.9 Hz, 2H, ArH), 7.13 (d, J = 8.0 Hz, 2H, ArH), 7.26−7.29 (m, 3H, ArH), 7.30−7.37 (m, 1H, ArH), 7.46−7.54 (m, 3H, ArH), 7.78 (d, J = 7.3 Hz, 1H, ArH), 10.23 (s, 1H, NH), 11.54−11.59 (m, 1H, NH); 13C NMR (150 MHz, DMSO-d6): δ = 21.0, 37.7, 45.3, 111.0, 112.9, 116.2 (d, J = 21.0 Hz), 120.9, 121.7, 127.8, 129.1, 130.2, 130.4, 130.7, 132.8, 133.6, 136.0, 136.4, 140.7, 151.7, 151.9, 162.2 (d, J = 241.5 Hz), 190.8. HRMS (TOF ES+): m/z calcd for C26H21FN3O3 [M + H]+, 442.1561; found, 442.1565. 2-((4-Chlorobenzyl)amino)-4-(4-chlorophenyl)-3-nitro1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3d). Red solid; mp: 215.2−216.1 °C; IR (KBr): 3309, 1688, 1627, 1341, 1092, 1070 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 4.95−4.97 (m, 6641
DOI: 10.1021/acsomega.9b00407 ACS Omega 2019, 4, 6637−6646
ACS Omega
Article
3.04 (t, J = 7.0 Hz, 2H, CH2), 3.68 (s, 3H, OCH3), 3.96−4.03 (m, 2H, NCH2), 6.79 (d, J = 8.5 Hz, 2H, ArH), 7.09 (d, J = 8.5 Hz, 2H, ArH), 7.24−7.30 (m, 1H, ArH), 7.30−7. 37 (m, 1H, ArH), 7.38 (s, 4H, ArH), 7.44−7.51 (m, 1H, ArH), 7.81 (d, J = 7.5 Hz, 1H, ArH), 9.97 (s, 1H, NH), 11.36−11.42 (m, 1H, NH); 13 C NMR (125 MHz, DMSO-d6): δ = 34.6, 37.1, 43.8, 55.5, 110.7, 112.7, 113.9, 121.1, 121.5, 128.7, 128.9, 130.6, 131.3, 131.8, 132.7, 132.8, 135.8, 136.5, 137.7, 151.8, 151.9, 158.3, 190.8. HRMS (TOF ES+): m/z calcd for C27H23ClN3O4 [M + H]+, 488.1372; found, 488.1373. 4-(4-Fluorophenyl)-3-nitro-2-(phenethylamino)-1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3j). Red solid; mp: 209.2−210.1 °C; IR (KBr): 3436, 1697, 1632, 1505, 1356, 1068 cm−1; 1H NMR (600 MHz, DMSO-d6): δ = 3.04 (t, J = 7.1 Hz, 2H, CH2), 3.97−4.03 (m, 2H, NCH2), 4.98 (s, 1H, ArH), 7.02−7.08 (m, 2H, ArH), 7.21−7.24 (m, 3H, ArH), 7.25−7.30 (m, 1H, ArH), 7.32−7.37 (m, 5H, ArH), 7.45−7.51 (m, 1H, ArH), 7.84 (d, J = 7.2 Hz, 1H, ArH), 10.01 (s, 1H, NH), 11.39− 11.43 (m, 1H, NH); 13C NMR (150 MHz, DMSO-d6): δ = 35.3, 37.5, 44.1, 110.3, 112.1, 115.2 (d, J = 21.0 Hz), 121.3, 121.6, 127.1, 129.0, 129.4, 129.7, 129.8, 130.7, 132.7, 136.4, 138.6, 139.9, 151.8, 152.2, 161.3 (d, J = 240.0 Hz), 190.8. HRMS (TOF ES+): m/z calcd for C26H21FN3O3 [M + H]+, 442.1561; found, 442.1563. 4-(4-Methoxyphenyl)-3-nitro-2-(phenylamino)-1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3k). Red solid; mp: 226.5−227.4 °C; IR (KBr): 3048, 2928, 1698, 1657, 1619, 1512 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 3.70 (s, 3H, OCH3), 5.10 (s, 1H, ArH), 6.85 (d, J = 8.5 Hz, 2H, ArH), 7.22 (d, J = 8.5 Hz, 2H, ArH), 7.28−7.43 (m, 3H, ArH), 7.46−7.50 (m, 1H, ArH), 7.51−7.59 (m, 5H, ArH), 10.80 (s, 1H, NH), 12.18 (s, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 37.4, 55.5, 112.8, 113.0, 114.1, 121.0, 121.5, 124.7, 127.0, 129.0, 130.2, 130.6, 132.7, 132.9, 135.7, 136.5, 136.6, 149.3, 152.2, 158.5, 190.9. HRMS (TOF ES+): m/z calcd for C25H20N3O4 [M + H]+, 426.1448; found, 426.1451. 2-(Benzylamino)-4-(4-chlorophenyl)-3-nitro-1,4-dihydro9H-indeno[2,1-b]pyridin-9-one (3l). Red solid; mp: 230.2− 231.1 °C; IR (KBr): 3442, 1689, 1631, 1511, 1342, 1070 cm−1; 1 H NMR (500 MHz, DMSO-d6): δ = 4.92−5.00 (m, 1H, ArH), 5.03−5.09 (m, 2H, CH2), 7.27−7.39 (m, 7H, ArH), 7.43−7.52 (m, 5H, ArH), 7.82 (d, J = 7.0 Hz, 1H, ArH), 10.31 (s, 1H, NH), 11.60−11.66 (m, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 37.8, 46.1, 110.5, 112.0, 121.2, 121.7, 128.0, 128.4, 128.5, 128.8, 129.8, 130.9, 131.5, 132.6, 132.9, 136.3, 137.3, 142.6, 151.8, 152.3, 190.8. HRMS (TOF ES+): m/z calcd for C25H19ClN3O3 [M + H]+, 444.1109; found, 444.1114. 4-(4-Chlorophenyl)-3-nitro-2-(phenethylamino)-1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3m). Red solid; mp: 164.9−165.8 °C; IR (KBr): 3442, 1630, 1513, 1347, 1087, 1068 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 3.01−3.08 (m, 2H, CH2), 3.98−4.03 (m, 2H, NCH2), 4.97 (s, 1H, ArH), 7.21− 7.38 (m, 12H, ArH), 7.44−7.51 (m, 1H, ArH), 7.85 (d, J = 7.0 Hz, 1H, ArH), 10.01 (s, 1H, NH), 11.42 (s, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 35.2, 37.8, 44.1, 110.1, 111.8, 121.3, 121.6, 127.1, 128.4, 129.0, 129.4, 129.4, 129.8, 130.8, 131.4, 132.7, 136.3, 138.6, 142.7, 151.8, 152.3, 190.7. HRMS (TOF ES+): m/z calcd for C26H21ClN3O3 [M + H]+, 458.1266; found, 458.1268. 3-Nitro-2-(phenethylamino)-4-phenyl-1,4-dihydro-9Hindeno[2,1-b]pyridin-9-one (3n). Red solid; mp: 223.5−224.4 °C; IR (KBr): 3442, 1702, 1630, 1519, 1314, 1070 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 3.02−3.08 (m, 2H, CH2),
3.98−4.03 (m, 2H, NCH2), 4.98 (s, 1H, ArH), 7.13−7.49 (m, 13H, ArH), 7.80−7.86 (m, 1H, ArH), 10.00 (s, 1H, NH), 11.40−11.45 (m, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 35.3, 38.1, 44.1, 110.4 112.4, 121.2 121.6, 126.9, 127.1, 127.9, 128.5, 129.0, 129.4, 130.7, 132.7, 132.7, 136.4, 138.6, 143.7, 151.8, 152.2, 190.8. HRMS (TOF ES+): m/z calcd for C26H21N3O3 [M + H]+, 424.1656; found, 424.1656. 2-(Benzylamino)-3-nitro-4-(p-tolyl)-1,4-dihydro-9Hindeno[2,1-b]pyridin-9-one (3o). Red solid; mp: 234.1−235.0 °C; IR (KBr): 3441, 1670, 1631, 1359, 1158, 1065 cm−1; 1H NMR (600 MHz, DMSO-d6): δ = 2.22 (s, 3H, CH3), 4.98−5.05 (m, 3H, 1CH2, 1ArH), 7.05 (d, J = 7.9 Hz, 2H, ArH), 7.14 (d, J = 8.0 Hz, 2H, ArH), 7.21−7.26 (m, 1H, ArH), 7.27−7.30 (m, 1H, ArH), 7.32−7.36 (m, 2H, ArH), 7.42−7.48 (m, 4H, ArH), 7.79 (d, J = 7.2 Hz, 1H, ArH), 10.24 (s, 1H, NH), 11.58−11.65 (m, 1H, NH); 13C NMR (150 MHz, DMSO-d6): δ = 21.0, 37.7, 46.1, 111.0 112.9, 120.9, 121.7, 127.8, 128.0, 128.2, 128.3, 129.1, 129.4, 130.7, 132.8, 136.0, 136.4, 137.3, 140.7, 151.8, 151.9, 190.8. HRMS (TOF ES+): m/z calcd for C26H22N3O3 [M + H]+, 424.1656; found, 424.1657. 4-(4-Methoxyphenyl)-3-nitro-2-(phenylamino)-1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3p). Red solid; mp: 226.5−227.4 °C; IR (KBr): 3048, 2928, 1698, 1657, 1619, 1512 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 3.70 (s, 3H, OCH3), 5.10 (s, 1H, ArH), 6.85 (d, J = 8.5 Hz, 2H, ArH), 7.22 (d, J = 8.5 Hz, 2H, ArH), 7.28−7.43 (m, 3H, ArH), 7.46−7.50 (m, 1H, ArH), 7.51−7.59 (m, 5H, ArH), 10.80 (s, 1H, NH), 12.18 (s, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 37.4, 55.5, 112.8, 113.0, 114.1, 121.0, 121.5, 124.7, 127.0, 129.0, 130.2, 130.6, 132.7, 132.9, 135.7, 136.5, 136.6, 149.3, 152.2, 158.5, 190.9. HRMS (TOF ES+): m/z calcd for C25H20N3O4 [M + H]+, 426.1448; found, 426.1451. 4-(4-Methoxyphenyl)-3-nitro-2-(phenethylamino)-1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3q). Red solid; mp: 220.7−221.6 °C; IR (KBr): 3443, 1699, 1633, 1510, 1324, 1071 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 3.03 (t, J = 7.0 Hz, 2H, CH2), 3.68 (s, 1H, OCH3), 3.96−4,03 (m, 2H, NCH2), 4.93 (s, 1H, ArH), 6.78 (d, J = 8.5 Hz, 2H, ArH), 7.09 (d, J = 8.5 Hz, 2H, ArH), 7.20−7.29 (m, 2H, ArH), 7.32−7.37 (m, 5H, ArH), 7.46−7.50 (m, 1H, ArH), 7.82 (d, J = 7.5 Hz, 1H, ArH), 9.98 (s, 1H, NH), 11.36−11.43 (m, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 35.3, 37.2, 44.1, 55.5, 110.7 112.7, 113.9, 121.1, 121.6, 127.1, 128.9, 129.0, 129.0, 129.4, 130.6, 132.7, 135.8, 136.5, 138.6, 151.7, 151.9, 158.3, 190.9. HRMS (TOF ES+): m/ z calcd for C27H24N3O4 [M + H]+, 454.1761; found, 454.1761. 4-(4-Fluorophenyl)-2-((4-methoxyphenethyl)amino)-3nitro-1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3r). Red solid; mp: 173.7−174.6 °C; IR (KBr): 3453, 1630, 1512, 1353, 1247, 1070 cm−1; 1H NMR (600 MHz, DMSO-d6): δ = 2.93−2.99 (m, 2H, CH2), 3.66 (s, 3H, OCH3), 3.93−4.01 (m, 2H, NCH2), 4.98 (s, 1H, ArH), 6.86−6.89 (m, 2H, ArH), 7.03− 7.06 (m, 2H, ArH), 7.21−7.28 (m, 5H, ArH), 7.30−7.37 (m, 1H, ArH), 7.45−7.50 (m, 1H, ArH), 7.82 (d, J = 7.3 Hz, 1H, ArH), 9.98 (s, 1H, NH), 11.35−11.41 (m, 1H, NH); 13C NMR (150 MHz, DMSO-d6): δ = 34.5, 37.5, 44.3, 55.4, 110.3, 112.1, 114.5, 115.2 (d, J = 21.0 Hz), 121.3, 121.6, 129.7, 129.7, 130.4, 130.4, 130.7, 132.7, 136.4, 139.9, 151.8, 152.2, 158.5, 161.3 (d, J = 240.0 Hz), 190.8. HRMS (TOF ES+): m/z calcd for C27H23FN3O4 [M + H]+, 472.1667; found, 472.1667. 4-(4-Chlorophenyl)-2-((4-methoxyphenethyl)amino)-3nitro-1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3s). Red solid; mp: 213.2−214.1 °C; IR (KBr): 3394, 1702, 1656, 1616, 1593, 1339 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 6642
DOI: 10.1021/acsomega.9b00407 ACS Omega 2019, 4, 6637−6646
ACS Omega
Article
2-((4-Fluorobenzyl)amino)-3-nitro-4-(p-tolyl)-9H-indeno[2,1-b]pyridin-9-one (4b). Yellow solid; mp: 203.4−204.3 °C; IR (KBr): 3444, 2924, 1707, 1587, 1522, 1273 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 2.38 (s, 3H, CH3), 4.79 (d, J = 6.0 Hz, 2H, CH2), 7.16−7.25 (m, 6H, ArH), 7.52−7.57 (m, 4H, ArH), 7.67−7.70 (m, 1H, ArH), 7.82 (d, J = 7.5 Hz, 1H, ArH), 8.76−8.79 (m, 1H, 1NH); 13C NMR (125 MHz, DMSO-d6): δ = 21.4, 44.5, 113.7, 115.5 (d, J = 21.3 Hz), 121.5, 123.3, 128.2, 128.5, 129.1, 130.5, 131.2, 132.7, 135.1, 135.8, 137.1, 139.1, 140.5, 143.8, 153.4, 161.8 (d, J = 241.3 Hz), 167.22, 188.1. HRMS (TOF ES+): m/z calcd for C26H19FN3O3 [M + H]+, 440.1405; found, 440.1406. 2-((4-Chlorobenzyl)amino)-4-(4-fluorophenyl)-3-nitro-9Hindeno[2,1-b]pyridin-9-one (4c). Yellow solid; mp: 191.6− 192.5 °C; IR (KBr): 3402, 1710, 1571, 1531, 1520, 1269 cm−1; 1 H NMR (500 MHz, DMSO-d6): δ = 4.81 (d, J = 5.5 Hz, 2H, CH2), 7.26−7.30 (m, 2H, ArH), 7.38−7.42 (m, 4H, ArH), 7.51−7.59 (m, 4H, ArH), 7.68−7.72 (m, 1H, ArH), 7.81 (d, J = 7.0 Hz, 1H, ArH), 8.90−8.92 (m, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 44.6, 114.0, 115.5 (d, J = 21.3 Hz), 121.6, 123.4, 128.0, 128.7, 130.3, 130.6, 130.8, 132.1, 134.2, 132.9, 135.2, 137.1, 138.6, 140.4, 143.1, 153.6, 163.0 (d, J = 243.8 Hz), 167.3, 188.1. HRMS (TOF ES+): m/z calcd for C25H16ClFN3O3 [M + H]+, 460.0859; found, 460.0861. 2-((4-Chlorophenethyl)amino)-3-nitro-4-phenyl-9Hindeno[2,1-b]pyridin-9-one (4d). Yellow solid; mp: 253.0− 253.9 °C; IR (KBr): 3379, 1705, 1611, 1589, 1522, 1276 cm−1; 1 H NMR (500 MHz, DMSO-d6 + CDCl3): δ = 2.98−3.01 (m, 2H, CH2), 3.86−3.90 (m, 2H, NCH2), 7.30−7.32 (m, 6H, ArH), 7.43−7.45 (m, 3H, ArH), 7.54−7.56 (m, 2H, ArH), 7.67−7.70 (m, 1H, NH), 7.82 (d, J = 7.0 Hz, 1H, ArH), 8.27− 8.29 (m, 1H, ArH); 13C NMR (125 MHz, DMSO-d6 + CDCl3): δ = 34.8, 43.3, 113.4, 121.4, 123.1, 128.0, 128.3, 128.7, 129.2, 130.7, 130.9, 131.5, 131.9, 132.5, 134.8, 137.2, 138.5, 140.6, 144.0, 153.9, 167.5, 188.0. HRMS (TOF ES+): m/z calcd for C26H19ClN3O3 [M + H]+, 456.1109; found, 456.1106. 2-((4-Chlorobenzyl)amino)-3-nitro-4-(p-tolyl)-9H-indeno[2,1-b]pyridin-9-one (4e). Yellow solid; mp: 202.9−203.8 °C; IR (KBr): 3414, 1708, 1617, 1589, 1271, 624 cm−1; 1H NMR (600 MHz, DMSO-d6): δ = 2.38, (s, 3H, CH3),4.79 (d, J = 5.2 Hz, 2H, CH2), 7.20−7.25 (m, 4H, ArH), 7.41 (d, J = 8.2 Hz, 2H, ArH), 7.50−7.57 (m, 4H, ArH), 7.67−7.69 (m, 1H, ArH), 7.79 (d, J = 7.4 Hz, 1H, ArH), 8.77−8.79 (m, 1H, NH); 13C NMR (150 MHz, DMSO-d6): δ = 21.4, 44.6, 113.8, 121.5, 123.3, 128.2, 128.5, 128.7, 129.1, 130.3, 131.3, 132.0, 132.7, 135.1, 137.0, 138.7, 139.1, 140.5, 143.9, 153.4, 167.2, 188.1. HRMS (TOF ES+): m/z calcd for C26H19ClN3O3 [M + H]+, 456.1109; found, 456.1114. 2-(Benzylamino)-4-(4-methoxyphenyl)-3-nitro-9Hindeno[2,1-b]pyridin-9-one (4f). Yellow solid; mp: 227.2− 228.1 °C; IR (KBr): 3408, 1706, 1584, 1521, 1507, 1276 cm−1; 1 H NMR (600 MHz, DMSO-d6): δ = 3.83 (s, 3H, OCH2), 4.79−4.84 (m, 2H, CH2), 6.96−7.02 (m, 2H, ArH), 7.21−7.30 (m, 3H, ArH), 7.32−7.38 (m, 2H, ArH), 7.46−7.51 (m, 2H, ArH), 7.50−7.57 (m, 2H, ArH), 7.63−7.69 (m, 1H, ArH), 7.74−7.79 (m, 1H, ArH), 8.71−8.76 (m, 1H, NH); 13C NMR (150 MHz, DMSO-d6): δ = 45.1, 55.7, 113.6, 114.0, 121.4, 123.2, 123.3, 127.4, 128.4, 128.8, 129.9, 131.3, 132.6, 135.0, 137.1, 139.7, 140.5, 143.5, 153.4, 160.5, 167.2, 188.2. HRMS (TOF ES+): m/z calcd for C26H20N3O4 [M + H]+, 438.1448; found, 438.1452.
2.96 (t, J = 7.0 Hz, 2H, CH2), 3.66 (s, 1H, OCH3), 3.94−4.01 (m, 2H, NCH2), 4.97 (s, 1H, ArH), 6.88 (d, J = 8.5 Hz, 2H, ArH), 7.21 (d, J = 8.5 Hz, 2H, ArH), 7.23−7.31 (m, 5H, ArH), 7.32−7.39 (m, 1H, ArH), 7.46−7.53 (m, 1H, ArH), 7.84 (d, J = 7.5 Hz, 1H, ArH), 10.00 (s, 1H, NH), 11.36−11.42 (m, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 34.5, 37.7, 44.4, 55.4, 110.1, 111.7, 114.4, 121.4, 121.6, 128.4, 129.8, 130.4, 130.5, 130.5, 130.8, 131.4, 132.7, 136.3, 142.7, 151.8, 152.4, 158.5, 190.8. HRMS (TOF ES+): m/z calcd for C27H23ClN3O4 [M + H]+, 488.1372; found, 488.1371. 2-((4-Methoxyphenethyl)amino)-3-nitro-4-phenyl-1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3t). Red solid; mp: 164.0−164.9 °C; IR (KBr): 3062, 1702, 1625, 1492, 1349,1267 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 2.94−3.00 (m, 2H, CH2), 3.67 (s, 3H, OCH3), 3.94−4.01 (m, 2H, NCH2), 4.99 (s, 1H, ArH), 6.88 (d, J = 8.5 Hz, 2H, ArH), 7.11−7.18 (m, 1H, ArH), 7.19−7.28 (m, 7H, ArH), 7.31−7.38 (m, 1H, ArH), 7.45−7.52 (m, 1H, ArH), 7.82 (d, J = 7.0 Hz, 1H, ArH), 9.98 (s, 1H, NH), 11.37−11.43 (m, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 34.5, 38.1, 44.3, 55.4, 110.4, 112.3, 114.4, 121.2, 121.6, 126.9, 127.9, 128.5, 130.4, 130.4, 130.7, 132.7, 136.4, 143.7, 151.9, 152.2, 158.5, 190.8. HRMS (TOF ES+): m/z calcd for C27H24N3O4 [M + H]+, 454.1761; found, 454.1758. 2-((4-Methoxyphenethyl)amino)-3-nitro-4-(p-tolyl)-1,4-dihydro-9H-indeno[2,1-b]pyridin-9-one (3u). Red solid; mp: 217.2−218.1 °C; IR (KBr): 3455, 1640, 1512, 1342, 1247, 1070 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 2.19−2.29 (m, 3H, CH3), 2.93−2.99 (m, 2H, CH2), 3.64−3.73 (m, 3H, OCH3), 3.93−3.99 (m, 2H, NCH2), 4.94 (s, 1H, ArH), 6.84−6.92 (m, 2H, ArH), 6.99−7.08 (m, 4H, ArH), 7.25−7.34 (m, 4H, ArH), 7.43−7.50 (m, 1H, ArH), 7.80 (d, J = 7.5 Hz, 1H, ArH), 9.93 (s, 1H, NH), 11.39 (d, J = 5.5 Hz, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 21.0, 34.5, 37.6, 44.3, 55.4, 110.5, 112.5, 114.4, 121.1, 121.5, 127.8, 129.1, 130.4, 132.6, 132.6, 132.6, 132.8, 135.9, 136.4, 140.8, 151.8, 152.0, 158.5, 190.8. HRMS (TOF ES+): m/z calcd for C28H26N3O4 [M + H]+, 468.1918; found, 468.1919. General Procedure for the Synthesis of Compounds 4a−m. EDAMs 1 (1.1 mmol) were dissolved in 1,4-dioxane (20 mL), and then, BIDs 2 (1.0 mmol) were added to the mixture. The mixture was stirred by refluxing for about 12 h until full consumption of BIDs 2, which was observed by thin-layer chromatography (TLC). The reaction solution was poured into 30 mL of water and extracted with an appropriate amount of ethyl acetate. The combined organic phases were dried with anhydrous Na2SO4 and then separated by column chromatography (petro/AcOEt = 30/1) to obtain pure target products 4a−m with 82−90% yield. The products were further identified by NMR spectroscopy, FTIR spectroscopy, and HRMS. 2-((4-Fluorobenzyl)amino)-4-(4-fluorophenyl)-3-nitro-9Hindeno[2,1-b]pyridin-9-one (4a). Yellow solid; mp: 193.3− 194.2 °C; IR (KBr): 3409, 1713, 1571, 1508, 1267, 1222 cm−1; 1 H NMR (600 MHz, DMSO-d6): δ = 4.78−4.83 (m, 2H, CH2), 7.18 (t, J = 7.4 Hz, 2H, ArH), 7.24−7.31 (m, 2H, ArH), 7.38− 7.41 (m, 2H, ArH), 7.53−7.59 (m, 4H, ArH), 7.69−7.73 (m, 1H, ArH), 7.81−7.86 (m, 1H, ArH), 8.86−8.92 (m, 1H, NH); 13 C NMR (150 MHz, DMSO-d6): δ = 44.5, 113.9, 115.5 (d, J = 21.0 Hz), 115.5 (d, J = 21.0 Hz), 121.6, 123.4, 128.0, 130.5, 130.6, 130.8, 132.9, 135.2, 135.7, 137.2, 140.5, 143.1, 153.6, 161.8 (d, J = 241.5 Hz), 163.0 (d, J = 243.0 Hz), 167.3, 188.1. HRMS (TOF ES+): m/z calcd for C25H16F2N3O3 [M + H]+, 444.1154; found, 444.1158. 6643
DOI: 10.1021/acsomega.9b00407 ACS Omega 2019, 4, 6637−6646
ACS Omega
Article
144.0, 153.9, 158.3, 167.4, 188.0. HRMS (TOF ES+): m/z calcd for C27H22N3O4 [M + H]+, 452.1605; found, 452.1605. 2-((4-Methoxyphenethyl)amino)-3-nitro-4-(p-tolyl)-9Hindeno[2,1-b]pyridin-9-one (4l). Yellow solid; mp: 200.2− 201.0 °C; IR (KBr): 3418, 2933, 1715, 1580, 1509, 1272 cm−1; 1 H NMR (500 MHz, DMSO-d6 + CDCl3): δ = 2.40 (s, 3H, CH3), 2.92 (t, J = 7.3 Hz, 2H, CH2), 3.72 (s, 3H, OCH3), 3.83− 3.86 (m, 2H, NCH2), 6.86 (d, J = 8.0 Hz, 2H, ArH), 7.18−7.24 (m, 6H, ArH), 7.52−7.53 (m, 2H, ArH), 7.66−7.68 (m, 1H, ArH), 7.82 (d, J = 7.0 Hz, 1H, ArH), 8.18 (m, 1H, NH); 13C NMR (125 MHz, DMSO-d6 + CDCl3): δ = 21.4, 34.6, 43.8, 55.3, 113.3, 114.2, 121.3, 123.0, 128.0, 128.9, 128.9, 130.1, 130.8, 131.4, 132.3, 134.7, 137.3, 138.8, 140.7, 144.1, 153.9, 158.2, 167.5, 188.0. HRMS (TOF ES+): m/z calcd for C28H24N3O4 [M + H]+, 466.1761; found, 466.1761. 2-((4-Methoxyphenethyl)amino)-4-(4-methoxyphenyl)-3nitro-9H-indeno[2,1-b]pyridin-9-one (4m). Yellow solid; mp: 217.5−218.4 °C; IR (KBr): 3418, 1709, 1586, 1510, 1467, 1247 cm−1; 1H NMR (500 MHz, DMSO-d6 + CDCl3): δ = 2.87−2.94 (m, 2H, CH2), 3.71 (s, 3H, OCH3), 3.78−3.85 (m, 5H, 1CH2, 1OCH3), 6.89 (d, J = 8.5 Hz, 2H, ArH), 7.00 (d, J = 8.7 Hz, 2H, ArH), 7.21−7.29 (m, 4H, ArH), 7.55−7.60 (m, 2H, ArH), 7.71−7.74 (m, 1H, NH), 7.81−7.86 (m, 1H, ArH), 8.18−8.24 (m, 1H, ArH); 13C NMR (125 MHz, DMSO-d6 + CDCl3): δ = 34.7, 43.8, 55.3, 55.5, 113.3, 113.8, 114.2, 121.3, 123.0, 123.6, 129.7, 130.1, 130.9, 131.4, 132.3, 134.6, 137.3, 140.7, 143.9, 153.9, 158.2, 160.4, 167.5, 188.1. HRMS (TOF ES+): m/z calcd for C28H24N3O5 [M + H]+, 482.1710; found, 482.1710.
4-(4-Fluorophenyl)-3-nitro-2-(phenethylamino)-9Hindeno[2,1-b]pyridin-9-one (4g). Yellow solid; mp: 208.7− 209.6 °C; IR (KBr): 3364, 1714, 1608, 1536, 1502, 1271 cm−1; 1 H NMR (600 MHz, DMSO-d6): δ = 2.98 (t, J = 7.6 Hz, 2H, CH2), 3.85−3.88 (m, 2H, NCH2), 7.22−7.24 (m, 1H, ArH), 7.26−7.29 (m, 2H, ArH), 7.33−7.34 (m, 4H, ArH), 7.35−7.39 (m, 3H, ArH), 7.53−7.58 (m, 2H, ArH), 7.69−7.72 (m, 1H, ArH), 7.82 (d, J = 7.3 Hz, 1H, ArH), 8.40−8.42 (m, 1H, 1NH); 13 C NMR (150 MHz, DMSO-d6): δ = 35.4, 43.6, 113.5, 115.5 (d, J = 21.0 Hz), 121.5, 123.3, 126.7, 128.2, 128.9, 129.2, 130.5, 130.5, 132.8, 135.1, 137.2, 139.6, 140.5, 143.3, 153.9, 162.9 (d, J = 244.5 Hz), 167.5, 188.0. HRMS (TOF ES+): m/z calcd for C26H19FN3O3 [M + H]+, 440.1405; found, 440.1407. 4-(4-Chlorophenyl)-3-nitro-2-(phenethylamino)-9Hindeno[2,1-b]pyridin-9-one (4h). Yellow solid; mp: 206.2− 207.1 °C; IR (KBr): 3414, 1712, 1575, 1521, 1270, 77 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 2.97−3.00 (m, 2H, CH2), 3.86−3.90 (m, 2H, CH2), 7.21−7.24 (m, 1H, ArH), 7.33−7.36 (m, 6H, ArH), 7.50−7.60 (m, 4H, ArH), 7.73 (t, J = 6.8 Hz, 1H, ArH), 7.85 (d, J = 7.5 Hz, 1H, ArH), 8.47−8.49 (m, 1H, 1NH); 13 C NMR (125 MHz, DMSO-d6): δ = 35.4, 43.7, 113.5, 121.6, 123.4, 126.7, 128.6, 128.9, 129.3, 130.1, 131.0, 132.9, 134.2, 135.2, 137.3, 139.6, 140.5, 143.2, 154.1, 167.5, 188.0. HRMS (TOF ES+): m/z calcd for C26H19ClN3O3 [M + H]+, 456.1109; found, 456.1111. 4-(4-Methoxyphenyl)-3-nitro-2-(phenethylamino)-9Hindeno[2,1-b]pyridin-9-one (4i). Yellow solid; mp: 182.7− 183.6 °C; IR (KBr): 3393, 1707, 1582, 1508, 1257, 1178 cm−1; 1 H NMR (500 MHz, DMSO-d6): δ = 2.97 (t, J = 7.5 Hz, 2H, CH2), 3.83−3.87 (m, 5H, NCH2, OCH3), 6.99 (d, J = 8.5 Hz, 2H, ArH), 7.21−7.27 (m, 3H, ArH), 7.32−7.35 (m, 4H, ArH), 7.53−7.57 (m, 2H, ArH), 7.68−7.71 (m, 1H, ArH), 7.81 (d, J = 7.0 Hz, 1H, ArH), 8.23−8.25 (m, 1H, NH); 13C NMR (125 MHz, DMSO-d6): δ = 35.4, 43.6, 55.7, 113.3, 114.0, 121.4, 123.2, 123.5, 126.7, 128.9, 129.2, 129.9, 131.1, 132.6, 135.0, 137.2, 139.7, 140.6, 143.7, 153.7, 160.4, 167.4, 188.2. HRMS (TOF ES+): m/z calcd for C27H22N3O4 [M + H]+, 452.1605; found, 452.1607. 4-(4-Fluorophenyl)-2-((4-methoxyphenethyl)amino)-3nitro-9H-indeno[2,1-b]pyridin-9-one (4j). Yellow solid; mp: 229.1−231.0 °C; IR (KBr): 3369, 2941, 1716, 1581, 1536, 1272 cm−1; 1H NMR (500 MHz, DMSO-d6 + CDCl3): δ = 2.92−2.95 (m, 2H, CH2), 3.32 (s, 1H, OCH3), 3.86−3.87 (m, 2H, CH2), 6.85−6.87 (m, 2H, ArH), 7.20−7.24 (m, 4H, ArH), 7.32−7.36 (m, 2H, ArH), 7.52−7.57 (m, 2H, ArH), 7.68−7.72 (m, 1H, ArH), 7.82−7.86 (m, 2H, ArH), 8.30−8.34 (m, 1H, NH); 13C NMR (125 MHz, DMSO-d6 + CDCl3): δ = 34.6, 43.8, 55.3, 113.5, 114.2, 115.3 (d, J = 21.3 Hz), 121.5, 123.1, 128.2, 130.1, 130.2, 131.3, 132.5, 134.8, 137.3, 140.6, 143.3, 154.1, 158.2, 162.9 (d, J = 245.0 Hz), 167.5, 188.0. HRMS (TOF ES+): m/z calcd for C27H21FN3O4 [M + H]+, 470.1511; found, 470.1513. 2-((4-Methoxyphenethyl)amino)-3-nitro-4-phenyl-9Hindeno[2,1-b]pyridin-9-one (4k). Yellow solid; mp: 185.0− 186.0 °C; IR (KBr): 3415, 1716, 1637, 1617, 1582, 1272 cm−1; 1 H NMR (600 MHz, DMSO-d6): δ = 2.91 (t, J = 7.5 Hz, 2H, CH2), δ = 3.70 (s, 3H, OCH3), 3.80−3.83 (m, 2H, CH2), 6.88 (d, J = 8.5 Hz, 2H, ArH), 7.23 (d, J = 8.5 Hz, 2H, ArH), 7.30− 7.31 (m, 2H, ArH), 7.42−7.47 (m, 3H, ArH), 7.52−7.57 (m, 2H, ArH); 7.68−7.70 (m, 1H, ArH), 7.80 (d, J = 7.4 Hz, 1H, ArH), 8.30−8.32 (m, 1H, NH); 13C NMR (150 MHz, DMSOd6): δ = 34.6, 43.8, 55.5, 113.3, 114.4, 121.5, 123.2, 128.1, 128.4, 129.4, 130.2, 130.6, 131.5, 131.9, 132.7, 135.0, 137.2, 140.5,
■
ASSOCIATED CONTENT
S Supporting Information *
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.9b00407. Spectroscopic and analytical data as well as the original copy of 1H and 13C NMR spectra of all new compounds (PDF) X-ray crystallographic data (CIF file) of compound 4h (CCDC 1885549) (CIF)
■
AUTHOR INFORMATION
Corresponding Authors
*E-mail:
[email protected]. Tel/fax: +86 87165031633 (J.L.). *E-mail:
[email protected]. Tel/fax: +86 87165031633 (S.J.Y.). ORCID
Jun Lin: 0000-0002-2087-6013 Sheng-Jiao Yan: 0000-0002-7430-4096 Author Contributions †
Q.L. and R.H. contributed equally to this paper.
Notes
The authors declare no competing financial interest.
■
ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (Nos. 21662042, 81760621, 21362042, and U1202221), the Program for Changjiang Scholars and Innovative Research Team in University (IRT17R94), and the Natural Science Foundation of Yunnan Province (2017FA003). 6644
DOI: 10.1021/acsomega.9b00407 ACS Omega 2019, 4, 6637−6646
ACS Omega
■
Article
(16) Basit, S.; Asharf, Z.; Lee, K.; Latif, M. First macrocyclic 3rdgeneration ALK inhibitor for treatment of ALK/ROS1 cancer: Clinical and designing strategy update of lorlatinib. Eur. J. Org. Chem. 2017, 134, 348−356. (17) Schoepfer, J.; Jahnke, W.; Berellini, G.; Buonamici, S.; Cotesta, S.; et al. Discovery of Asciminib (ABL001), an Allosteric Inhibitor of the Tyrosine Kinase Activity of BCR-ABL1. J. Med. Chem. 2018, 61, 8120−8135. (18) Wei, M.; Peng, X.; Xing, L.; Dai, Y.; Huang, R.; et al. Design, synthesis and biological evaluation of a series of novel 2-benzamide-4(6-oxy-N-methyl-1-naphthamide)-pyridine derivatives as potent fibroblast growth factor receptor (FGFR) inhibitors. Eur. J. Med. Chem. 2018, 154, 9−28. (19) Girgis, A. S.; Tala, S. R.; Oliferenko, P. V.; Oliferenko, A. A.; Katritzky, A. R. Computer-assisted rational design, synthesis, and bioassay of non-steroidal anti-inflammatory agents. Eur. J. Med. Chem. 2012, 50, 1−8. (20) Liu, N.; Tu, J.; Dong, G.; Wang, Y.; Sheng, C. Emerging New Targets for the Treatment of Resistant Fungal Infections. J. Med. Chem. 2018, 61, 5484−5511. (21) Tardioli, S.; Gooijer, C.; van der Zwan, G. Anomalous Photophysics of H1 Antihistamines in Aqueous Solution. J. Phys. Chem. B 2009, 113, 6949−6957. (22) Iwamura, R.; Tanaka, M.; Okanari, E.; Kirihara, T.; OdaniKawabata, N.; Shams, N.; Yoneda, K. Identification of a Selective, NonProstanoid EP2 Receptor Agonist for the Treatment of Glaucoma: Omidenepag and its Prodrug Omidenepag Isopropyl. J. Med. Chem. 2018, 61, 6869−6891. (23) Li, Y.; Fan, W.; Xu, H. W.; Jiang, B.; Wang, S. L.; Tu, S. J. A novel three-component [5 + 1] heterocyclization leading to 2-azafluorenone synthesis and its polyfunctionalization. Org. Biomol. Chem. 2013, 11, 2417−2420. (24) Manpadi, M.; Uglinskii, P. Y.; Rastogi, S. K.; Cotter, K. M.; Wong, Y. S. C.; Anderson, L. A.; Ortega, A. J.; Van slambrouck, S.; Steelant, W. F. A.; Rogeli, S.; Tongwa, P.; Antipin, M. Y.; Magedov, I. V.; Kornienko, A. Three-component synthesis and anticancer evaluation of polycyclic indenopyrimidines lead to the discovery of a novel indenoheterocycles with potent apoptosis inducing properties. Org. Biomol. Chem. 2007, 5, 3865−3872. (25) Padget, K.; Stewart, A.; Charlton, P.; Tilby, M. J.; Austin, C. A. An investigation into the formation of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA) and 6-[2-(dimethylamino)ethylamino]-3-hydroxy-7H-indeno[2,1-C]quinolin-7-one dihydrochloride (TAS-103) stabilised DNA topoisomerase I and II cleavable complexes in human leukaemia cells. Biochem. Pharmacol. 2000, 60, 817−821. (26) Tseng, C. H.; Chen, Y. L.; Lu, P. J.; Yang, C. N.; Tzeng, C. C. Synthesis and antiproliferative evaluation of certain indeno[1,2c]quinoline derivatives. Bioorg. Med. Chem. 2008, 16, 3153−3162. (27) Tseng, C. H.; Tzeng, C. C.; Yang, C. L.; Lu, P. J.; Chen, H. L.; Li, H. Y.; Chuang, Y. C.; Yang, C. N.; Chen, Y. L. Synthesis and Antiproliferative Evaluation of Certain Indeno[1,2-c]quinoline Derivatives. Part 2. J. Med. Chem. 2010, 53, 6164−6179. (28) Chen, L.; Conda-Sheridan, M.; Narasimha Reddy, P. V.; Morrell, A.; Park, E. J.; Kondratyuk, T. P.; Pezzuto, J. M.; van Breemen, R. B.; Cushman, M. Identification, Synthesis, and Biological Evaluation of the Metabolites of 3-Amino-6-(3′-aminopropyl)-5H-indeno[1,2-c]isoquinoline-5,11-(6H)dione (AM6−36), a Promising Rexinoid Lead Compound for the Development of Cancer Chemotherapeutic and Chemopreventive Agents. J. Med. Chem. 2012, 55, 5965−5981. (29) Evdokimov, N. M.; Van slambrouck, S.; Heffeter, P.; Tu, L.; Le Calvé, B.; Lamoral-Theys, D.; Hooten, C. J.; Uglinskii, P. Y.; Rogelj, S.; Kiss, R.; Steelant, W. F. A.; Berger, W.; Yang, J. J.; Bologa, C. G.; Kornienko, A.; Magedov, I. V. Structural Simplification of Bioactive Natural Products with Multicomponent Synthesis. 3. Fused UracilContaining Heterocycles as Novel Topoisomerase-Targeting Agents. J. Med. Chem. 2011, 54, 2012−2021. (30) Feng, X.; Wang, J.-J.; Xun, Z.; Huang, Z.-B.; Shi, D.-Q. Multicomponent Strategy to Indeno[2,1-c]pyridine and Hydro-
REFERENCES
(1) An, G.; Seifert, C.; Li, G. N-Phosphonyl/phosphinyl imines and group-assisted purification (GAP) chemistry/technology. Org. Biomol. Chem. 2015, 13, 1600−1617. (2) Yu, F.-C.; Chen, Z.-Q.; Hao, X.-P.; Yan, S.-J.; Huang, R.; Lin, J. Regioselective synthesis of 9,10-dihydro-6H-chromeno[4,3-d]imidazo[1,2-a]pyridin-6-one derivatives. RSC Adv. 2014, 4, 6110−6115. (3) Jiang, Y.; Xu, K.; Zeng, C. Use of Electrochemistry in the Synthesis of Heterocyclic Structures. Chem. Rev. 2018, 118, 4485−4540. (4) Song, Q.-W.; Zhou, Z.-H.; He, L.-N. Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem. 2017, 19, 3707− 3728. (5) Biemolt, J.; Ruijter, E. Advances in Palladium-Catalyzed Cascade Cyclizations. Adv. Synth. Catal. 2018, 360, 3821−3871. (6) Safak, C.; Simsek, R. Fused 1,4-dihydropyridines as potential calcium modulatory compounds. Mini-Rev. Med. Chem. 2006, 6, 747− 755. (7) Buendia, I.; Tenti, G.; Michalska, P.; Méndez-López, I.; Luengo, E.; Sariani, M.; Padín-Nogueira, F.; López, M. G.; Ramos, M. T.; García, A. G.; Menéndez, J. C.; León, R. ITH14001, a CGP37157-Nimodipine Hybrid Designed to Regulate Calcium Homeostasis and Oxidative Stress, Exerts Neuroprotection in Cerebral Ischemia. ACS Chem. Neurosci. 2017, 8, 67−81. (8) Mai, A.; Valente, S.; Meade, S.; Carafa, V.; Tardugno, M.; Nebbioso, A.; Galmozzi, A.; Mitro, N.; Fabiani, E. D.; Altucci, L.; Kazantsev, A. Study of 1,4-Dihydropyridine Structural Scaffold: Discovery of Novel Sirtuin Activators and Inhibitors. J. Med. Chem. 2009, 52, 5496−5504. (9) Arhancet, G. B.; Woodard, S. S.; Iyanar, K.; Case, B. L.; Woerndle, R.; Dietz, J. D.; Garland, D. J.; Collins, J. T.; Payne, M. A.; Blinn, J. R.; Pomposiello, S. I.; Hu, X.; Heron, M. I.; Huang, H. C.; Lee, L. F. Discovery of Novel Cyanodihydropyridines as Potent Mineralocorticoid Receptor Antagonists. J. Med. Chem. 2010, 53, 5970−5978. (10) Schade, D.; Lanier, M.; Willems, E.; Okolotowicz, K.; Bushway, P.; Wahlquist, C.; Gilley, C.; Mercola, M.; Cashman, J. R. Synthesis and SAR of b-Annulated 1,4-Dihydropyridines Define Cardiomyogenic Compounds as Novel Inhibitors of TGFβ Signaling. J. Med. Chem. 2012, 55, 9946−9957. (11) El Bakali, J.; Gilleron, P.; Body-Malapel, M.; Mansouri, R.; Muccioli, G. G.; Djouina, M.; Barczyk, A.; Klupsch, F.; Andrzejak, V.; Lipka, E.; Furman, C.; Lambert, D. M.; Chavatte, P.; Desreumaux, P.; Millet, R. 4-Oxo-1,4-dihydropyridines as Selective CB2 Cannabinoid Receptor Ligands Part 2: Discovery of New Agonists Endowed with Protective Effect Against Experimental Colitis. J. Med. Chem. 2012, 55, 8948−8952. (12) Budriesi, R.; Ioan, P.; Locatelli, A.; Cosconati, S.; Leoni, A.; Ugenti, M. P.; Andreani, A.; Di Toro, R.; Bedini, A.; Spampinato, S.; Marinelli, L.; Novellino, E.; Chiarini, A. Imidazo[2,1-b]thiazole System: A Scaffold Endowing Dihydropyridines with Selective Cardiodepressant Activity. J. Med. Chem. 2008, 51, 1592−1600. (13) Fernández-Morales, J.-C.; Arranz-Tagarro, J.-A.; Calvo-Gallardo, E.; Maroto, M.; Padín, J.-F.; García, A. G. Stabilizers of Neuronal and Mitochondrial Calcium Cycling as a Strategy for Developing a Medicine for Alzheimer’s Disease. ACS Chem. Neurosci. 2012, 3, 873−883. (14) Marco-Contelles, J.; León, R.; Ríos, C.; Samadi, A.; Bartolini, M.; Andrisano, V.; Huertas, O.; Barril, X.; Javier Luque, F.; RodríguezFranco, M. I.; Lόpez, B.; Lόpez, M. G.; García, A. G.; Carreiras, M. C.; Villarroya, M. Tacripyrines, the First Tacrine-Dihydropyridine Hybrids, as Multitarget-Directed Ligands for the Treatment of Alzheimer’s Disease. J. Med. Chem. 2009, 52, 2724−2732. (15) Bold, G.; Fässler, A.; Capraro, H.-G.; Cozens, R.; Klimkait, T.; Lazdins, J.; Mestan, J.; Poncioni, B.; Rösel, J.; Stover, D.; TintelnotBlomley, M.; Acemoglu, F.; Beck, W.; Boss, E.; Eschbach, M.; Hürlimann, T.; Masso, E.; Roussel, S.; Ucci-Stoll, K.; Wyss, D.; Lang, M. New Aza-Dipeptide Analogues as Potent and Orally Absorbed HIV1 Protease Inhibitors: Candidates for Clinical Development. J. Med. Chem. 1998, 41, 3387−3401. 6645
DOI: 10.1021/acsomega.9b00407 ACS Omega 2019, 4, 6637−6646
ACS Omega
Article
isoquinoline Derivatives through Cleavage of Carbon−Carbon Bond. J. Org. Chem. 2015, 80, 1025−1033. (31) Ye, F.; Tran, C.; Jullien, L.; Saux, T. L.; Haddad, M.; Michelet, V.; Ratovelomanana-Vidal, V. Synthesis of Fluorescent Azafluorenones and Derivatives via a Ruthenium-Catalyzed [2 + 2 + 2] Cycloaddition. Org. Lett. 2018, 20, 4950−4953. (32) Zi, Q.-X.; Yan, S.-J.; Yang, C.-L.; Li, K.; Lin, J. Three-Component Cascade Reaction of 1,1-Enediamines, N,N-Dimethylformamide Dimethyl Acetal, and 1,3-Dicarbonyl Compounds: Selective Synthesis of Diverse 2-Aminopyridine Derivatives. ACS Omega 2019, 4, 2863− 2873. (33) Yu, F.; Yan, S.; Hu, L.; Wang, Y.; Lin, J. Cascade Reaction of Isatins with Heterocyclic Ketene Aminals: Synthesis of Imidazopyrroloquinoline Derivatives. Org. Lett. 2011, 13, 4782−4785. (34) Wang, B.-Q.; Zhang, C.-H.; Tian, X.-X.; Lin, J.; Yan, S.-J. Cascade Reaction of Isatins with 1,1-Enediamines: Synthesis of Multisubstituted Quinoline-4-carboxamides. Org. Lett. 2018, 20, 660−663. (35) Wang, H.; Li, L.; Lin, W.; Xu, P.; Huang, Z.; Shi, D. An Efficient Synthesis of Pyrrolo[2,3,4-kl]acridin-1-one Derivatives Catalyzed by lProline. Org. Lett. 2012, 14, 4598−4601. (36) Jiang, B.; Wang, X.; Li, M.-Y.; Wu, Q.; Ye, Q.; Xu, H.-W.; Tu, S.-J. A domino synthetic strategy leading to two-carbon-tethered fused acridine/indole pairs and fused acridine derivatives. Org. Biomol. Chem. 2012, 10, 8533−8538. (37) Xu, H.; Zhou, B.; Zhou, P.; Zhou, J.; Shen, Y.-H.; Yu, F.-C.; Lu, L.-L. Insights into the unexpected chemoselectivity in Brønsted acid catalyzed cyclization of isatins with enaminones: convenient synthesis of pyrrolo[3,4-c]quinolin-1-ones and spirooxindoles. Chem. Commun. 2016, 52, 8002−8005. (38) Xu, H.; Zhou, P.; Zhou, B.; Zhou, J.; Shen, Y.-H.; Lu, L.-L.; Yu, F.-C. Convenient one-step synthesis of pyrrolo[3,4-c]quinolin-1-ones via TMSCl-catalyzed cascade reactions of isatins and b-enamino ketones. RSC Adv. 2016, 6, 73760−73768. (39) Reviews see: Wang, K.-M.; Yan, S.-J.; Lin, J. Heterocyclic Ketene Aminals: Scaffolds for Heterocycle Molecular Diversity. Eur. J. Org. Chem. 2014, 1129−1145. (40) Huang, C.; Yan, S.-J.; Zeng, X.-H.; Dai, X.-Y.; Zhang, Y.; Qing, C.; Lin, J. Biological evaluation of polyhalo 1,3-diazaheterocycle fused isoquinolin-1(2H)-imine derivatives. Eur. J. Med. Chem. 2011, 46, 1172−1180. (41) Bao, H.; Shao, X.; Zhang, Y.; Deng, Y.; Xu, X.; Liu, Z.; Li, Z. Specific Synergist for Neonicotinoid Insecticides: IPPA08, a cisNeonicotinoid Compound with a Unique Oxabridged Substructure. J. Agric. Food Chem. 2016, 64, 5148−5155. (42) Chen, N.; Meng, X.; Zhu, F.; Cheng, J.; Shao, X.; Li, Z. Tetrahydroindeno-[1′,2′:4,5]pyrrolo[1,2-a]imidazol-5(1H)-ones as Novel Neonicotinoid Insecticides: Reaction Selectivity and Substituent Effects on the Activity Level. J. Agric. Food Chem. 2015, 63, 1360−1369. (43) (a) Yu, F.-C.; Lin, X.-R.; Liu, Z. C.; Zhang, J.-H.; Liu, F.-F.; Wu, W.; Ma, Y.-L.; Qu, W.-W.; Yan, S.-J.; Lin, J. Beyond the Antagonism: Self-Labeled Xanthone Inhibitors as Modeled “Two-in-One” Drugs in Cancer Therapy. ACS Omega 2017, 2, 873−889. (44) Suryawanshi, S. N.; Pandey, S.; Rashmirathi; Bhatt, B. A.; Gupta, S. Chemotherapy of leishmaniasis Part VI: Synthesis and bioevaluation of some novel terpenyl S,N- and N,N-acetals. Eur. J. Med. Chem. 2007, 42, 511−516. (45) Mertens, H.; Troschuetz, R. Nitroketenaminale, 5. Mitt*: Synthese von N2-substituierten 2-Amino-3-nitropyridinen als Vorstufen von Pyrido[2,3-b]pyrazinen (3-Desazapteridinen). Arch. Pharm. 1987, 320, 1143−1149. (46) Du, X.-X.; Huang, R.; Yang, C.-L.; Lin, J.; Yan, S.-J. Synthesis and evaluation of the antitumor activity of highly functionalised pyridin-2ones and pyrimidin-4-ones. RSC Adv. 2017, 7, 40067−40073. (47) Li, M.; Shao, P.; Wang, S.-W.; Kong, W.; Wen, L.-R. FourComponent Cascade Heteroannulation of Heterocyclic Ketene Aminals: Synthesis of Functionalized Tetrahydroimidazo[1,2-a]pyridine Derivatives. J. Org. Chem. 2012, 77, 8956−8967. (48) Ma, Y.-L.; Wang, K.-M.; Huang, R.; Lin, J.; Yan, S.-J. An environmentally benign double Michael addition reaction of hetero-
cyclic ketene aminals with quinone monoketals for diastereoselective synthesis of highly functionalized morphan derivatives in water. Green Chem. 2017, 19, 3574−3584. (49) Chen, L.; Huang, R.; Du, X.-X.; Yan, S.-J.; Lin, J. One-Pot Synthesis of Highly Functionalized Bicyclic Imidazopyridinium Derivatives in Ethanol. ACS Sustainable Chem. Eng. 2017, 5, 1899− 1905. (50) Hu, X.-M.; Zhou, B.; Yang, C.-L.; Lin, J.; Yan, S.-J. Site-Selective Reaction of Enaminones and Enamine Esters for the Synthesis of Novel Diverse Morphan Derivatives. ACS Omega 2018, 3, 5994−6005. (51) Zhang, C.-H.; Huang, R.; Hu, X.-M.; Lin, J.; Yan, S.-J. ThreeComponent Site-Selective Synthesis of Highly Substituted 5HChromeno-[4,3-b]pyridines. J. Org. Chem. 2018, 83, 4981−4989.
6646
DOI: 10.1021/acsomega.9b00407 ACS Omega 2019, 4, 6637−6646