Catalyst Deactivation - ACS Symposium Series (ACS Publications)

Jan 19, 1978 - Happily, much of this has consisted of experimental information as well as analysis. The present effort makes no attempt to match in sc...
1 downloads 0 Views 3MB Size
9

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

Catalyst Deactivation JOHN B. BUTT and RUSTOM M. BILLIMORIA Department of Chemical Engineering and Ipatieff Catalytic Laboratory, Northwestern University, Evanston, IL 60201

In the years since the First International Symposium on Chemical Reaction Engineering, where a first review on catalyst deactivation was presented (1), there has been considerable activity in this area. In particular, there have been appreciable advances in the understanding of sintering processes, and of intraparticle and fixed bed reactor behavior under conditions of catalyst deactivation. Happily, much of this has consisted of experimental information as well as analysis. The present effort makes no attempt to match in scope the previous review; we shall confine ourselves to work concerning chemical poisoning and coking as the primary mechanism of deactivation but retain the classification according to scale — individual kinetics and mechanism, intraparticle problems, and chemical reactor problems. Sintering has been admirably covered in a recent review (2), and the subject of automotive exhaust catalysis (which is almost wholly an exercise in catalyst mortality) w i l l be treated in one forthcoming (3). Mechanisms and Kinetics Kinetic networks used to depict the processes of catalyst deactivation have typically been based on models which are simultaneous, parallel, or sequential. Both Carberry (4) and Khang and Levenspiel (5) have enlarged on these to include two additional cases, independent deactivation (characteristic of sintering) and simultaneous-consecutive deactivation (characteristic of coking via participation of both reactants and products). As w i l l be seen from the examples to be given here, deactivation kinetics have almost universally been correlated in terms of separable (6) rate factors. More detailed analysis, however, indicates that such assumptions are questionable for surfaces other than those ideal in the Langmuir sense (7). The argument can be developed along the lines employed to derive adsorption isotherms for nonideal surfaces starting with the concept of a subassembly of ideal surfaces distributed according to the heat of chemisorption. The differences in separable and nonseparable 0-8412-0432-2/78/47-072-288$08.75/0 © 1978 American Chemical Society In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

9.

BUTT A N D

BiLLiMORiA

Catalyst Deactivation

k i n e t i c s a r i s e because o f d i f f e r e n c e s

(O^c V

=

T'NS

for nonseparable

Y L

s η r q q q kinetics,

=

Γ

m

J

289

in:

(D

η s r dq q q q

and: (2)

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

Ο

(3)

f o r the separable c a s e . I t i s i n t e r e s t i n g t h a t t h e a n a l y s i s (7^) r e v e a l s an extreme s e n s i t i v i t y o f the v a l i d i t y o f the s e p a r a b l e a p p r o x i m a t i o n t o p r e s s u r e b u t o n l y a modest e f f e c t o f t e m p e r a t u r e . The r e a s o n t h a t s e p a r a b l e f o r m u l a t i o n s seem t o work i s p r o b a b l y t h e same t h a t L a n g m u i r - H i n s h e l w o o d r a t e e q u a t i o n s w o r k : t h e q u a l ­ i t a t i v e r e s u l t s a r e o f s i m i l a r form f o r i d e a l and n o n i d e a l s u r ­ faces but p h y s i c a l i n t e r p r e t a t i o n o f the parameters i s i n c o r r e c t . A s f a r a s mechanism o f d e a c t i v a t i o n — c o n s i d e r i n g o n l y chem­ i c a l p o i s o n i n g and c o k i n g — t h e s i t u a t i o n r e m a i n s much t h e same a s o u t l i n e d p r e v i o u s l y (1). S p e c i f i c c a s e s o f c h e m i c a l p o i s o n i n g t e n d t o be r e l a t i v e l y w e l l u n d e r s t o o d a s f a r a s d e t a i l i n g s u b ­ s t a n c e s r e s p o n s i b l e f o r p o i s o n i n g and the n a t u r e o f the d e a c t i v a ­ ted surfaces. A u g e r e l e c t r o n s p e c t r o s c o p y h a s become a n i m p o r t a n t t o o l f o r the i n v e s t i g a t i o n o f poisoned s u r f a c e s s i n c e the charac­ t e r i s t i c energies i n that spectroscopy are s u f f i c i e n t l y low to i n ­ v o l v e o n l y the s u r f a c e and i m m e d i a t e l y a d j a c e n t l a y e r s . Progress h a s a l s o b e e n made i n u n d e r s t a n d i n g t h e p o i s o n i n g o f b i f u n c t i o n a l catalysts; n i c e e x p e r i m e n t a l e x a m p l e s a r e p r o v i d e d b y Webb a n d Macnab (8) a n d B u r n e t t a n d Hughes ( 9 ) . The f o r m e r i n v e s t i g a t e d t h e h y d r o i s o m e r i z a t i o n o f b u t è n e o n a Rh/Si02 c a t a l y s t a n d demons t r a t e d the s e l e c t i v e d e a c t i v a t i o n o f the hydrogénation f u n c t i o n b y s m a l l amounts o f m e r c u r y i n t r o d u c e d i n t o t h e s y s t e m . T h i s type o f b i f u n c t i o n a l r e a c t i o n m i g h t be t e r m e d a " p a r a l l e l " o n e : (I) η

(Si0 ) 2

where t h e p o i s o n i n g d r a s t i c a l l y a f f e c t s one r e a c t i o n b u t n o t t h e other. The r e a c t i o n s t u d i e d b y B u r n e t t a n d H u g h e s , on t h e o t h e r h a n d , was a " s e r i e s " b i f u n c t i o n a l r e a c t i o n , d i s p r o p o r t i o n a t i o n o f b u t a n e o v e r a m e c h a n i c a l m i x t u r e o f P t / A l 0 « a n d W0« , w h e r e : 9

Pt

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

(ID

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

290

CHEMICAL REACTION ENGINEERING REVIEWS—HOUSTON

They showed t h a t c o k i n g o r w a t e r p o i s o n i n g o f t h e P t f u n c t i o n s h u t t h e e n t i r e r e a c t i o n down, c h a r a c t e r i s t i c o f t h e s e q u e n t i a l n a t u r e of the steps i n v o l v e d . The d e s c r i p t i o n o f t h e m e c h a n i s m ( s ) o f c o k e f o r m a t i o n r e m a i n e s s e n t i a l l y t h e same a s d e s c r i b e d b e f o r e . With increasing experim e n t a l i n f o r m a t i o n on c o k i n g i n t h e l i t e r a t u r e t h e r e a p p e a r s now t o be a t l e a s t t a c i t a g r e e m e n t t h a t i t i s n o t p a r t i c u l a r l y r e w a r d i n g t o l o o k f o r a mechanism o f coke f o r m a t i o n when t h e r e a r e p r o b a b l y a s many mechanisms a s t h e r e a r e r e a c t i o n s a n d c a t a l y s t s . In t h i s s e n s e , s i m p l e r e a c t i o n schemes may p r o v i d e a s t a r t i n g p o i n t f o r a n a l y s i s b u t may a l s o f a l l f a r s h o r t o f t h e mark i n c o n f r o n t a t i o n w i t h experiment. Individual

Particles

An i n t e r e s t i n g p r o b l e m , n o t much commented u p o n i n t h e o l d e r l i t e r a t u r e , i s the r e l a t i o n s h i p between coke d e p o s i t i o n and the p h y s i c a l p r o p e r t i e s o f the c a t a l y s t . P o r e b l o c k a g e by coke depos i t i o n has been demonstrated i n s p e c i f i c i n s t a n c e s , b u t has been ignored i n e a r l i e r a n a l y t i c a l studies of coking (10,11). Swabb a n d G a t e s (12) i n v e s t i g a t e d m e t h a n o l d e h y d r a t i o n on H - m o r d e n i t e (1 a t m . , 1 0 0 - 2 4 0 ° C ) w i t h t h e o b j e c t i v e o f i n v e s t i g a t i n g t h e i n f l u e n c e o f i n t r a c r y s t a l l i n e mass t r a n s p o r t o n i n i t i a l a c t i v i t y and d e a c t i v a t i o n r a t e s . M a s s t r a n s p o r t p r o p e r t i e s were v a r i e d b y u s i n g t h r e e d i f f e r e n t s a m p l e s o f d i f f e r i n g mean p o r e length; s i g n i f i c a n t i n f l u e n c e s were f o u n d o n l y above 2 0 0 ° C . T h e r e w e r e no e f f e c t s of p o r e d i m e n s i o n on t h e d e a c t i v a t i o n r a t e s (due t o c o k e f o r m a t i o n ) o f f r e s h c a t a l y s t o v e r t h e r a n g e i n v e s t i gated. F u r t h e r s t u d i e s o f d e a c t i v a t i o n r a t e s a f t e r one and two h o u r s o f u t i l i z a t i o n a t 205°C a l s o r e v e a l e d no i n f l u e n c e on p o r e structure. T h i s w o u l d r u l e o u t i n t r a p a r t i c l e mass t r a n s p o r t a s c o n t r o l l i n g d e a c t i v a t i o n r a t e s a s w e l l a s t h e o c c u r r e n c e o f any pore blockage r e s u l t i n g from c o k i n g i n t h i s r e a c t i o n . E x p e r i m e n t s on l a r g e r s i z e p a r t i c l e s have a l s o i n v o l v e d H-mord e n i t e , b u t w i t h cumene c r a c k i n g a s t h e r e a c t i o n ( 1 3 ) . Relations b e t w e e n coke c o n t e n t , a c t i v i t y , a n d i n t r a p a r t i c l e d i f f u s i v i t y were i n v e s t i g a t e d on 1/16 i n . N o r t o n Z e o l o n e x t r u d a t e s f o r 2 3 0 - 2 5 0 ° C and s p a c e v e l o c i t i e s f r o m 0 . 2 t o 0 . 6 5 w t / w t - h r . E f f e c t i v e d i f f u s i v i t i e s w e r e d e t e r m i n e d ( w i t h SF$ v i a c h r o m a t o g r a p h y ) a s a f u n c t i o n o f r e a c t i o n t i m e and coke c o n t e n t w i t h t h e r e s u l t s shown i n Figure 1. D i f f u s i v i t y decreased t w o f o l d f o r r e a c t i o n times o f 2 hours o r l o n g e r , but remained e s s e n t i a l l y constant a f t e r t h a t . The e f f e c t i v e n e s s f a c t o r v a r i e d i n t h e r a n g e 0 . 3 - 0 . 7 d u r i n g t h e s e experiments; e r r o r i n e s t i m a t i o n o f t h i s f a c t o r u s i n g the e f f e c t i v e d i f f u s i v i t y o f t h e f r e s h c a t a l y s t was 20 t o 30% a t l o n g e r reaction times. SEM e x a m i n a t i o n o f c o k e d p a r t i c l e s r e v e a l e d t h e f o r m a t i o n o f a g l a s s y - l i k e c o a t i n g on t h e e x t e r n a l s u r f a c e , p e n e t r a t i n g a p p r o x i m a t e l y 0 . 1 t h e r a d i u s i n t o t h e i n t e r i o r , so i t was c o n c l u d e d t h a t p o r e b l o c k i n g was r e s p o n s i b l e f o r t h e d e c r e a s e in diffusivity.

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

9.

BUTT A N D BILLIMORIA

Catalyst Deactivation

291

A d d i t i o n a l r e s u l t s on coke d e p o s i t i o n and pore b l o c k i n g a r e p r o v i d e d by T o e i , e t a l . (14) a n d R i c h a r d s o n ( 1 5 ) . Toei, et a l . f o u n d no e f f e c t o f c o k i n g on i n t r a p a r t i c l e d i f f u s i o n f o r d e h y d r o g e n a t i o n o f η - b u t a n e o v e r c h r o m i a - a l u m i n a (80% Y-AI2O3, 5x5 mm p e l l e t s o r 0 . 2 - 2 . 2 mm p a r t i c l e s ) . C a r e f u l e x a m i n a t i o n o f the pore s i z e d i s t r i b u t i o n a t d i f f e r e n t coke l e v e l s r e v e a l e d o n l y m i n o r a l t e r a t i o n s o f t h e m i c r o p o r e s t r u c t u r e , a n d t h e s y s t e m was modeled w i t h the normal i s o t h e r m a l , q u a s i - s t e a d y s t a t e c o n t i n u i t y e q u a t i o n s w i t h good a g r e e m e n t t o t h e e x p e r i m e n t a l d a t a . Richard­ son f o u n d a l i n e a r d e c r e a s e i n e f f e c t i v e d i f f u s i v i t y (Ar/He) w i t h coke c o n t e n t f o r N a l c o 471 c o b a l t m o l y b d e n a (1/8 i n . p e l l e t s ) f o u l e d i n a p i l o t u n i t under h y d r o t r e a t i n g c o n d i t i o n s (700-800°F, 1 0 0 0 - 1 5 0 0 p s i g , 2 wt% N , 0.05% S, no m e t a l s ) . The T h i e l e m o d u l u s h o w e v e r , was e s s e n t i a l l y unchanged up t o a b o u t 15 wt % c o k e on catalyst. S e v e r a l e a r l i e r w o r k e r s have r e p o r t e d d e c r e a s i n g d i f f u s i v i t y on coke f o r m a t i o n , b u t o n l y t h r e e i n v e s t i g a t i o n s ( 1 6 , 1 7 , 1 8 ) gave d i r e c t e x p e r i m e n t a l measurement and none o f t h e s e w e r e f o r z e o ­ lites. R e c e n t s t u d i e s a p p a r e n t l y h a v e p r o v i d e d no more g e n e r a l p i c t u r e c o n c e r n i n g t h e e f f e c t o f c o k i n g on t r a n s p o r t p r o p e r t i e s t h a n was a v a i l a b l e b e f o r e ; however, on w e i g h t o f accumulated e v i d e n c e i t seems r e a s o n a b l e t h a t f o r r e a c t i o n s o f l a r g e m o l e c u l e s i n c a t a l y s t s o f f i n e p o r e s t r u c t u r e s i g n i f i c a n t changes i n d i f f u ­ s i v i t y on c o k i n g can o c c u r . W h e t h e r t h i s i n t u r n w i l l change t h e e f f e c t i v e n e s s f a c t o r w i l l depend on o t h e r c h e m i c a l a n d p h y s i c a l parameters. We a r e unaware o f any s i m i l a r s t u d i e s d e v o t e d t o c o k i n g e f f e c t s on t h e r m a l c o n d u c t i v i t y . Recent t h e o r e t i c a l s t u d i e s o f d e a c t i v a t i o n i n i n d i v i d u a l p a r ­ t i c l e s have f o c u s e d on b i f u n c t i o n a l c a t a l y s t s ( 1 9 , 2 0 ) , on a p p a r e n t o v e r a l l k i n e t i c s of d e a c t i v a t i o n (5), d e a c t i v a t i o n i n nonisothermal p a r t i c l e s ( 2 1 ) , and t h e e f f e c t o f n o n u n i f o r m d i s t r i b u t i o n o f t h e c a t a l y t i c f u n c t i o n w i t h i n t h e p a r t i c l e on d e a c t i v a t i o n ( 2 2 , 2 3 , 24). Some f a c t o r s a s s o c i a t e d w i t h t h e d e a c t i v a t i o n o f b i f u n c t i o n a l c a t a l y s t s have b e e n e x p l o r e d c o m p u t a t i o n a l l y b y S n y d e r a n d M a t t h e w s (19) a n d b y L e e a n d B u t t ( 2 0 ) . These c a t a l y s t s have the a d d i t i o n a l c o m p l i c a t i o n o f t h e r e l a t i v e c o m p o s i t i o n o f t h e two f u n c t i o n s , w h i c h may be e m p l o y e d a s a means t o c o n t r o l s e l e c t i v i t y or d e a c t i v a t i o n r a t e s (20). I n (19) r e a c t i o n n e t w o r k s o f t h e form: 2

Α . . * Β. .-"^ (8)

(III)

$*R(g)

w e r e a n a l y z e d , w i t h coke f o r m a t i o n o c c u r r i n g on t h e X f u n c t i o n and t h e d e s i r e d r e a c t i o n on t h e Y f u n c t i o n . B o t h c o m p o s i t e (mechan­ i c a l m i x t u r e s o f X and Y ) a n d d i s c r e t e f o r m u l a t i o n s were i n v e s t i ­ g a t e d u s i n g a two p h a s e , i s o t h e r m a l , q u a s i - s t e a d y s t a t e m o d e l , assuming a l i n e a r r e l a t i o n between coke c o n t e n t and a c t i v i t y . The major f a c t o r s e x p l o r e d were the e f f e c t s o f the r e l a t i v e magnitudes o f t h e r a t e c o n s t a n t s f o r i n d i v i d u a l s t e p s on t h e o p t i o n a l c a t a l y s t

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

CHEMICAL REACTION ENGINEERING REVIEWS—HOUSTON

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

292

formulation. I n (20) a s i m i l a r p r o b l e m was a d d r e s s e d , b u t w i t h e m p h a s i s on t h e i n t e r a c t i o n o f i n t r a p a r t i c l e d i f f u s i o n , t h e r a t e s o f d e a c t i v a t i o n , a n d c a t a l y s t f o r m u l a t i o n . B i f u n c t i o n a l forms o f t h e s e r i e s (Type I I I ) r e a c t i o n model were i n v e s t i g a t e d i n w h i c h e i t h e r t h e r e a c t a n t and i n t e r m e d i a t e o r t h e i n t e r m e d i a t e a n d p r o d u c t were r e s p o n s i b l e f o r c o k i n g o f t h e two f u n c t i o n s . The most i m p o r t a n t c o n c l u s i o n o f t h i s s t u d y was t h a t i n e i t h e r c a s e , g i v e n a s e t f o r m u l a t i o n , t h e i n c l u s i o n o f some d e g r e e o f d i f f u s i o n a l l i m i t a t i o n c o u l d be u s e d t o enhance b o t h c a t a l y s t e f f i c i e n ­ cy ( y i e l d o f d e s i r e d p r o d u c t ) a n d l i f e — a f a c t n o t e d b e f o r e f o r some t y p e s o f c o k i n g mechanisms i n m o n o f u n c t i o n a l c a t a l y s i s (10). Khang a n d L e v e n s p i e l (5) i n v e s t i g a t e d t h e r e l a t i o n s h i p between the g l o b a l a c t i v i t y o f a p a r t i c l e , a , and the p o i n t a c t i v ­ ity, £. The v a l u e s o f a so d e t e r m i n e d w e r e u s e d t o compute t h e o v e r a l l o r d e r of the d e a c t i v a t i o n r e a c t i o n a c c o r d i n g t o : da dt

« -y k. C ~ d ~A

a

A

d

, (4) / v

s

where : C s r^ dr

(5)

A

3

R C

A

s f o r a s p h e r i c a l p a r t i c l e o f r a d i u s R, p o r o s i t y £ , a n d r e a c t a n t c o n c e n t r a t i o n a t t h e s u r f a c e jC. . A number o f p a r a l l e l , s e r i e s s a n d p o i s o n i n g schemes w e r e s t u d i e d ; i n t h e f i r s t two schemes r e a c t i o n p r o d u c t s w e r e t a k e n t o be coke p r e c u r s o r s . For p a r a l l e l d e a c t i v a t i o n a n d no d i f f u s i o n a l i n f l u e n c e , n e t d e a c t i v a t i o n o r d e r d was c l o s e t o u n i t y ; as the T h i e l e modulus i n c r e a s e d from 1 to 100 t h e n e t o r d e r v a r i e d f r o m 1 t o 3 . For series deactivation d = 1 f o r a l l v a l u e s o f the T h i e l e modulus p r o v i d i n g the r a t i o o f i n t e r m e d i a t e t o r e a c t a n t c o n c e n t r a t i o n a t t h e s u r f a c e was g r e a t e r t h a n one t e n t h t h e v a l u e o f t h e m o d u l u s . F a i l i n g t h i s , d a p ­ proached 3. F o r p o i s o n i n g , p r o v i d i n g t h e r e was no o r s m a l l d i f f u ­ s i o n l i m i t on t h e p o i s o n , d was n e a r u n i t y f o r any s i t u a t i o n w i t h r e g a r d to d i f f u s i o n l i m i t s on the main r e a c t i o n . F o r o t h e r com­ b i n a t i o n s o f d i f f u s i o n a l l i m i t s on m a i n a n d p o i s o n i n g r e a c t i o n s t h e n e t o r d e r was g e n e r a l l y g r e a t e r t h a n u n i t y , up t o a b o u t 3 . The i n t r a p a r t i c l e d e a c t i v a t i o n o f n o n i s o t h e r m a l p e l l e t s h a s b e e n a n a l y z e d b y Ray (21) u s i n g a p o r e mouth p o i s o n i n g , s l a b geometry m o d e l . Heat f l u x a t the boundary o f the a c t i v e and i n ­ a c t i v e p o r t i o n s o f t h e p a r t i c l e ( F i g u r e 2a) was computed v i a B i s c h o f f ' s (25) a s y m p t o t i c s o l u t i o n f o r l a r g e T h i e l e m o d u l u s . A n e f f e c t i v e d i f f u s i o n a l modulus f o r t h i s case can be d e f i n e d a s : A

i

=

Κ

(6s)

=

^

^

h

s

2

(6)

where :

K(6)

[e

6

-

(1 + δ ) ]

%

;

δ = 0

γ ,

6

S

= P

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

s

Y

s

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

9.

BUTT AND ΒΠΧΙΜΟΜΑ

Catalyst Deactivation

293

Time on Stream, hr

Chemical Engineering Science

Figure 1. (a) Voorhies correlation of coke formation, cumene cracking on H-mord 260°-350°C, 0.33 g/hr-g (13); (b) effective diffusivity (SF ) variation with coke co 6

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

294

CHEMICAL REACTION ENGINEERING

f

/ i + B

8

y ' a n d

Y

T

S

.

»

.

ΔΗ

RT

'

Λ

ρ

°s



λ

. (-*H)D c p

s

η

g A L expC-E/RTl 2

f h

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

- y \

0

REVIEWS—HOUSTON

s

Here

»

δ

i s the c a t a l y s t

- } d e n s i t y and A t h e p r e - e x p o n e n t i a l

Now t h e h e a t f l u x f r o m t h e a c t i v e p a r t o f t h e p e l l e t ,

q 1

cQlTis:

factor. at

1

y)

(7)

and a n e f f e c t i v e a c t i v i t y f a c t o r c a n b e d e f i n e d a s t h e r a t i o o f t h i s value to that f o r the undeactivated p a r t i c l e . This r a t i o , 1 f o r some p o r t i o n o f t h e c a t a l y s t l i f e was f o u n d t o b e : 3s

Pp

e* - (1 + 6 )
1 (Case 4 ) , t h e o p p o s i t e h o l d s a n d d e a c t i v a t i o n i s accelerated. A s i n d i c a t e d b y C a s e s 8 a n d 9 , some p a r a m e t e r s e t s r e s u l t i n m u l t i p l e steady s t a t e s . These a r e c h a r a c t e r i z e d b y l a r g e 6 and Y (60 i n t h e s e e x a m p l e s ) a n d (Ps/Pp) < 1 ; s u c h r e s u l t s i n d i c a t e T h a t m u l t i p l i c i t y c a n be i n d u c e d i n a d e a c t i v a t i n g p a r t i c l e even when t h e f r e s h c a t a l y s t shows no s u c h p o s s i b i l i t y . However, (Ps/Pp) < 1 seems p h y s i c a l l y i m p r o b a b l e . I f d e a c t i v a t i o n by cok­ i n g c l o s e s o f f a p o r t i o n o f t h e p o r e s t r u c t u r e , t h e n (Bs/^p) > 1> w h i l e p o i s o n i n g s h o u l d have l i t t l e e f f e c t on t h e r a t i o . This m u l t i p l i c i t y would r e q u i r e a type o f d e a c t i v a t i o n l e a d i n g t o an i n c r e a s e i n p o r o s i t y a s decay p r o c e e d s . I n many i n d u s t r i a l a p p l i c a t i o n s t h e p e r f o r m a n c e o f c a t a l y s t s i n which the a c t i v i t y d i s t r i b u t i o n i s nonuniform w i t h i n the p e l l e t i s s u p e r i o r t o those w i t h a u n i f o r m d i s t r i b u t i o n . Mars and G r o g e l s (26) s t u d i e d t h e performance o f such a c a t a l y s t f o r S

s

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

9.

BUTT AND

BELLIMORIA

295

Catalyst Deactivation

acetylene hydrogénation and F r i e d r i c h s e n (27) r e p o r t s a p p l i c a t i o n s i n o x i d a t i o n of o-xylene to p h t h a l i c anhydride, to c i t e two examples. Recently Shadman-Yazdi and P e t e r s e n (22), Corbett and Luss (23) and Becker and Wei (24) have a l l i n v e s t i g a t e d the d e a c t i v a t i o n of c a t a l y s t s w i t h s p a t i a l d i s t r i b u t i o n o f the c a t a l y t i c f u n c t i o n . These s t u d i e s are s i m i l a r i n method and o b j e c t i v e but d i f f e r considerably i n the types of a c t i v i t y d i s t r i b u t i o n cons i d e r e d ; a summary of the models and d e a c t i v a t i o n mechanisms i n v e s t i g a t e d i s given i n Table 1., I n (22) the s e n s i t i v i t y of the d e a c t i v a t i o n w i t h respect to the d i s t r i b u t i o n parameter a was i n v e s t i g a t e d . I n l i n e w i t h p r i o r r e s u l t s (10), a = 0 gave r i s e to core poisoning a t higher v a l u e s of the T h i e l e modulus; of > 0 l e d to uniform poisoning — the r e s u l t of compensating v a r i a t i o n s i n kg and Cg w i t h i n the p a r t i c l e . An a n a l y t i c a l s o l u t i o n presented Tn terms~of the e f f e c t i v e n e s s f a c t o r f o r 0 was:

η

( θ )

=

Y

(9)

where : 2m-p - Μ 1 k

p=

l/(« 2), +

6

=

h (l-w)%, A

a

m

«

(

π

Γ

7

^ .

)

-p

and I.ρ i s a modified Bessel f u n c t i o n of the f i r s t k i n d of order £. The parameter w appearing i n 6^ was determined as a f u n c t i o n of £ by numerical i n t e g r a t i o n of:

- Σ οη/ρΛ χ + « I

S =

m=0 Figure 3 gives a p l o t of Ή (Θ) vs. θ_ f o r s e v e r a l types o f a c t i v i t y distribution. Clearly, — i n c r e a s i n g # enhances the long-term performance of the c a t a l y s t f o r t h i s s e r i e s r e a c t i o n i n a manner reminiscent of the response of the p a r a l l e l scheme to i n c o r p o r a t i o n of a c e r t a i n amount of d i f f u s i o n a l r e s i s t a n c e (10). In Figure 4 are given some r e s u l t s obtained n u m e r i c a l l y by Corbett and Luss (23) f o r i m p u r i t y poisoning of the s e r i e s reac­ t i o n scheme f o r cases of small and l a r g e d i f f u s i o n a l r e s i s t a n c e . The e f f e c t i v e n e s s f a c t o r i n these p l o t s i s computed w i t h respect to the i n i t i a l volume-averaged r a t e constant, which was the same f o r a l l the d i f f e r e n t d i s t r i b u t i o n s . The d i f f e r e n t i a l s e l e c t i v i t y , £, appearing i n the f i g u r e i s defined as: Α

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.


iΙ·ι··Ι s p e c i e s . k : CS - " Y S . k . j j : YS ~ * C S ; : S cS; K : S * V s . K : S * 2 S .

Wong, e t a l . ( S 3 ) , P r i c e and B u t t (54)

2

Μ»! .» !»!*)

Wojciechowski, (67,68,69,70.

catalytic cracking

UVekaan, et a l . . (62,63,64,65,66) , >

1·butène dehydrogenatIon

2

SIO,,

dehydration of Al 0 2-aethyl-3 butene-2ol to isoprene

Ouatez a n d Froment (50)

(61_)

7.

et a l .

Grecο,

chlorlnation of tetrachloroethane

(60)

Prasad and llorlaswaay

2

M

theoretical Investigation

3

(59)

2

H/g

Sadana a n d Ooriaawaay

3

200

e

497-592 C, 1 a t a K.. 0.32-0.71 a t a

2

Cr 0 /Al 0

ai»

n-butane dchydrogena t Ion

488-560°C, 1 a t a 0 . 6 - 3 . 6 aec ft.T. x „ - 0.14

Uchlda, et a l . (57) Otake, et a l . (58)

(56)

2

( β / 1 0 , 16/32 a n d 40/60 a e s h )

3

550"C, 1 a t a Ρ - 0.11-0.56 4

et a l .

2

Studies ÇataIyat

Cr 0 /Al 0

geactor

n-butane dchyd rogena t i o n

loci,

i-pentane dehydrogenattoi

6.

2.

(55)

Catalyst Deactivation - Integral

Noda, et a l .

Autlior

Table 3.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

1

k

c

r

MBB

Time o u s t r e s a (hyperbolic)

Contact tiae (exp)

'c '

Contact tlae ( l i n e a r , exp)

tlae exp,

* * "

Contact (linear,

'

algebraic)

Forst o f D e a c t i v a t i o n Kinetics

L

-

c

r

r

r

c

4

C

c

• k )fj

• K.. P > \ 4

3

A

B

2

K

2

c

"

B

exp(-E,/rr)C a

4

** Û])

)

( 1 Λ exp(Q/RT)C^)

a

C

-k2*|MC.2*/*1Γ»1Γ*3

1

. » ο - -(k.«k ) sy 2 ' - kjsyj - k *y

B

-skgK (P -

acidity

· Lewis a c i d i t y

"(I

s(k

- .k,C

kj. - B r o n s t e d

k

B

r

r

Forte o f M a l u Reaction Kinetics

(

t

-

(

B

«

s -

c

i

c

exp)

(1 < C t „ ) " " C

y

than

tlae

s - e

unity

unity

(better

s - I - crC

Activity vs. Coke Content

b)

1.1

kcal/aole

430 -U » 0.0259 500*-C - 0.0144

3 6 0 * C •• 0 . 0 8 0 6

Data g i v e n a s f ( T ) ·

V

(C^")

kcal/aole, (dUnc)

3 2 . 8keal/stole, 21.0

a)

kcal/aole

10.6 kcal/aole

-

8.9

12.6 kcal/aole

-

A c t i v a t i o n Energy f o r Coke F o r m a t i o n No,

(345*C) (271-C)

(4aa,

Yes (67) — No ( 6 9 )

Ye*

Yes

aal

Effects

industrial)

No ( 0 . 4 - 0 . 7

No

Yes

aesh

Diffusion

t o r < 16/32

Intraparticle

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

CHEMICAL REACTION ENGINEERING REVIEWS—

Chemical Engineering Science

Figure 11. Experimental and computed temperature profiles for afixedbed reactor, parallel poisoning, (a) Hot spot migration, nonisothermal. Profiles at 60 min intervals (1 = 0 min). 4.3% C H , thiopnenelC = 5.65 X 10' . X T — rnole fractions, B fraction sites remain­ ing (53); (b) active front migration, adiabatic. Profiles at 30 min intervals. 1.4% C H , 0.032% thiophene. Solid lines computed (54). 6

s

B

A

6

6

6

β

6

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

9.

BUTT A N D BILLIMORIA

Catalyst Deactivation

311

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

A Case H i s t o r y : C o k i n g i n C a t a l y t i c C r a c k i n g V a r i o u s members o f t h e M o b i l R e s e a r c h a n d D e v e l o p m e n t C o r p . have t r e a t e d us o v e r t h e y e a r s t o a number o f d i s c u s s i o n s on v a r i o u s a s p e c t s o f t h e i r l u m p i n g , d e a c t i v a t i o n and r e a c t o r models f o r catalytic cracking. Some o f t h i s work was c o n s i d e r e d i n t h e p r e v i o u s r e v i e w ( 1 ) , a n d we have done o u r own t y p e o f l u m p i n g i n t h e f o r m o f e n t r y 8 i n T a b l e 3 f o r work t h r o u g h 1 9 7 1 . The s t a t e o f t h e a r t t o t h a t p o i n t may be s u m m a r i z e d , p e r h a p s t o o c o n c i s e l y , by t h e r e s u l t s g i v e n i n F i g u r e s 12a and b . Good c o r r e l a t i o n o f t h e a c t i v i t y o f a l a r g e range o f c a t l y s t s f o r f e e d s t o c k s v a r y i n g w i d e l y i n c o m p o s i t i o n was o b t a i n e d s i m p l y on t h e b a s i s o f a r o m a t i c t o naphthene w e i g h t r a t i o . G r o s s , e t a l . (75) s u b s e q u e n t l y e x t e n d e d t h i s work i n a t h o r o u g h s t u d y o f t h e c r a c k i n g o f t h r e e d i f f e r e n t f e e d s t o c k s on z e o l i t e c a t a l y s t s i n b o t h f i x e d a n d f l u i d i z e d b e d s . T h e i r r e s u l t s c o n f i r m e d t h a t c a t a l y s t d e c a y was i n d e p e n d e n t o f t h e r e a c t o r t y p e , t h a t g a s o l i n e s e l e c t i v i t y was e s s e n t i a l l y t h e same i n b o t h r e a c t o r s , and t h a t t h e f i x e d b e d was more e f f i c i e n t t h a n the f l u i d b e d . S u c h b e h a v i o r was a l l p r e d i c t e d by t h e a p p r o a c h e s d e v e l o p e d p r e v i o u s l y , so t h e w o r k o f G r o s s , e t a l . s t a n d s a s a r i g o r o u s t e s t o f those r e a c t o r and c a t a l y s t decay m o d e l s . The i n t e r e s t i n g p o i n t i n F i g u r e 12 i s t h e f a i l u r e o f t h e c o r r e l a t i o n f o r t h e two f e e d s i n d i c a t e d a s PC 32 a n d PA 3 7 . These d i f f e r e d from a l l other feeds used i n the c o r r e l a t i o n i n t h a t they were r e c y c l e s t o c k s , a n d f u r t h e r e x p e r i m e n t a t i o n r e v e a l e d t h a t t h e c o r r e l a t i o n f a i l e d as w e l l f o r s t o c k s c o n t a i n i n g p o i s o n s such as b a s i c n i t r o g e n compounds. T h i s was i n v e s t i g a t e d b y V o l t z , e t a l . (76) u s i n g t h e l u m p i n g , d e c a y a n d r e a c t o r m o d e l s o f p r i o r w o r k . MCGO, MCGO p l u s q u i n o l i n e , FCC f r e s h , and FCC w i t h v a r y i n g amounts o f r e c y c l e were s t u d i e d . MCGO p l u s q u i n o l i n e ( 0 . 1 % wt) o n l y s l i g h t l y r e d u c e d t h e c a t a l y s t decay c o n s t a n t a t 9 0 0 ° F b u t r e d u c e d the r a t e c o n s t a n t s f o r o v e r a l l c r a c k i n g and g a s o l i n e f o r m a t i o n by a b o u t 50%; some d e c r e a s e i n g a s o l i n e s e l e c t i v i t y was a l s o n o t e d . The a d d i t i o n o f r e c y c l e s t o c k t o FCC f r e s h f e e d a l s o h a d p r o n o u n c e d e f f e c t s : a t 50% r e c y c l e a d d i t i o n t h e r a t e c o n s t a n t s f o r b o t h o v e r a l l c r a c k i n g and g a s o l i n e f o r m a t i o n decreased s h a r p l y w h i l e t h e g a s o l i n e c r a c k i n g r a t e c o n s t a n t i n c r e a s e d by a f a c t o r o f 10. I n b o t h cases the a l t e r a t i o n o f feed s t o c k s had p r o f o u n d e f f e c t upon the a c t i v a t i o n energy o f the g a s o l i n e c r a c k i n g r e a c t i o n , i n c r e a s i n g f r o m a n o m i n a l v a l u e o f 10 k c a l / m o l e f o r MCGO t o a b o u t 40 k c a l / m o l e f o r MCGO p l u s 0 . 1 % q u i n o l i n e , a n d 2 3 . 5 k c a l / m o l e f o r FCC p l u s 30% r e c y c l e s t o c k . C l e a r l y the a c t i o n o f q u i n o l i n e i s to p o i s o n the a c i d i c s i t e s active for cracking; t h e d e a c t i v a t i o n model a n t i c i p a t e d c o k i n g o n l y a n d i s c l e a r l y n o t c a p a b l e o f c o r r e l a t i n g r e s u l t s due t o i m p u r i t y p o i s o n i n g . Recycle stocks d i f f e r from f r e s h feed p r i m a r i l y i n the f a c t t h a t t h e i r a r o m a t i c content i s h i g h e r ; a l s o these a r o m a t i c s i n g e n e r a l do n o t h a v e s u b s t i t u e n t g r o u p s , w h i c h i n some way may a c c o u n t f o r t h e i r d i f f e r e n t r e a c t i v i t y i n c r a c k i n g .

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

312

CHEMICAL REACTION ENGINEERING REVIEWS—HOUSTON

R e c e n t l y J a c o b s , e t a l . ( 7 7 ) h a v e s e t f o r t h a l u m p i n g scheme w h i c h accounts i n d e t a i l f o r the i n d i v i d u a l reactions of p a r a f f i n s , naphthenes, a r o m a t i c r i n g s , and a r o m a t i c s u b s t i t u e n t groups i n b o t h l i g h t and heavy f r a c t i o n s . T h i s i s shown i n F i g u r e 1 3 . The major a l t e r a t i o n , a s i d e from the i n c r e a s e d c o m p l e x i t y , from the p r i o r t h r e e lump scheme ( T a b l e 3) i s w i t h r e s p e c t t o a r o m a t i c r i n g s w i t h no s u b s t i t u e n t g r o u p s : t h e s e do n o t f o r m g a s o l i n e a n d can c r a c k u l t i m a t e l y o n l y t o the C lump. In addition, a l l reac­ t i o n s a r e t r e a t e d as f i r s t order w i t h an i n h i b i t i o n term f o r the a d s o r p t i o n o f heavy a r o m a t i c r i n g s . The d e a c t i v a t i o n f u n c t i o n i s s t i l l r e t a i n e d a s s e p a r a b l e b u t i s more c o m p l e x : s

=

— (P)

m

* (1 + B t ) Y

(23)

c

where α , β a n d γ a r e d e a c t i v a t i o n p a r a m e t e r s , Ρ i s o i l p a r t i a l p r e s s u r e , and catalyst residence time. The e f f e c t o f n i t r o g e n i s a l s o t r e a t e d as an a d s o r p t i o n i n h i b i t i o n and the r e s u l t a n t f u n c t i o n used a s a s c a l a r m u l t i p l i e r on t h e r a t e c o n s t a n t m a t r i x . The o v e r a l l scheme i s d e m o n s t r a t e d t o p r o v i d e e x c e l l e n t c o r r e l a ­ t i o n o f r e s u l t s w i t h a seemingly e n d l e s s range o f f e e d s t o c k s , c a t a l y s t s , and r e a c t i o n c o n d i t i o n s . A n o t h e r s u b s t a n t i a l body o f w o r k d e a l i n g w i t h c r a c k i n g r e a c ­ t i o n s has been r e p o r t e d o v e r t h e p a s t s e v e r a l y e a r s by Wojciechow­ s k i and coworkers. R e s u l t s w i t h cumene c r a c k i n g o v e r L a - Y z e o l i t e c a t a l y s t a r e summarized i n e n t r y 9 o f T a b l e 3 . Catalyst deactiva­ t i o n i n these s t u d i e s i s a l s o treated as separable, but an hyper­ b o l i c f u n c t i o n o f time on stream i s used f o r c o r r e l a t i o n o f activity. The u s e o f t h i s t y p e o f c o r r e l a t i o n f o r a number o f a p p l i c a t i o n s was s u m m a r i z e d i n a 1974 r e v i e w ( 7 0 ) . Since that t i m e , i n a d d i t i o n t o r e c e n t w o r k o n cumene c r a c k i n g (69) t h e model h a s been a p p l i e d t o a n e x t e n s i v e s e r i e s o f s t u d i e s on t h e c r a c k i n g o f gas o i l d i s t i l l a t e s ( 7 1 , 7 2 , 7 3 , 7 4 ) , a s w e l l as b e i n g employed i n t h e c o r r e l a t i o n o f J a c o b s , e t a l . ( 7 7 ) . A n o t h e r Case H i s t o r y :

Coking o f N i c k e l

Catalysts

The m e c h a n i s m o f c o k e f o r m a t i o n o n v a r i o u s t y p e s o f n i c k e l c a t a l y s t s d u r i n g CO o r CH^ d e c o m p o s i t i o n , o r d u r i n g s t e a m r e f o r m ­ i n g o f h y d r o c a r b o n s , has been a t o p i c o f i n t e n s i v e i n v e s t i g a t i o n d u r i n g t h e p a s t few y e a r s . R o s t r u p - N i e l s e n (78) i n v e s t i g a t e d t h e d e c o m p o s i t i o n r e a c t i o n s i n t h e range 4 5 0 - 7 0 0 ° C ; one would e x p e c t t h a t coke o r i g i n a t i n g from these decompositions c o u l d be con­ t r o l l e d thermodynamically by o p e r a t i n g w i t h excess steam; however t h e r e has been u n c e r t a i n t y o v e r t h e y e a r s c o n c e r n i n g c h e m i c a l e q u i l i b r i u m i n these reactions (79,80,81). H o f e r , e t a l . (82) h a d f o u n d v i a e l e c t r o n m i c r o s c o p y t h a t t h e c o k e d e p o s i t e d on N i was i n the form o f t u b u l a r , w h i s k e r - l i k e t h r e a d s ; subsequent s t u d i e s ( 8 3 , 8 4 ) h a v e r e v e a l e d two s t r u c t u r e s , N i ^ C ( c a r b i d i c ) a n d g r a p h i t e

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

9.

BUTT AND

Catalyst Deactivation

BiLLiMORiA

313

Industrial and Engineering Chemistry Process Design and Development Quarterly

Figure 12. Correlation of cracking kinetics with feed aromatic/naphthene (65). ( Overall gas-oil cracking; (b) gasoline formation.

Pf

- Wt. % paraffinic molecules, {mass spec analysis), 4 3 0 ° - 6 5 0 ° F

Ν/

= Wt. % naphthenic molecules, (mass spec analysis), 4 3 0 ° - 6 5 0 ° F

CΛ , * Wt. % carbon atoms among aromatic rings, (n-d-M method), e

430° - 6 5 0 F A(

= Wt. % aromatic substituent groups ( 4 3 0 ° - 6 5 0 ° F )

P

= Wt. % paraff inic molecules, (mass spec analysis), 6 5 0 ° F

n

N

n

C

A

A

n

+

= Wt. % naphthenic molecules, (mass spec analysis), 6 5 0 ° F h

+

= Wt. % carbon atoms among aromatic rings, n - d - M method, 6 5 0 ° F

+

+

= Wt. % aromatic substituent groups ( 6 5 0 ° F )

G

= G lump ( C - 4 3 0 ° F)

C

= C lump ( C to C

5

1

C

Ai

+

9

c

Ah

+

p

(

+

N

(

N

h + h

+

+

A

A

/ h

=

s

L

H

F

4

0

F

• COKE)


American Institute of Chemical Engineers Journal

Figure 13. A ten lump model for the kinetics of catalytic cracking

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

314

CHEMICAL REACTION ENGINEERING REVIEWS—HOUSTON

( w h i s k e r s ) w i t h t h e g r a p h i t e s t r u c t u r e d e c o m p o s i n g above a b o u t 400°C. R o s t r u p - N i e l s e n (78) f o u n d t h a t e q u i l i b r i u m c o n s t a n t s v a r i e d f r o m c a t a l y s t t o c a t a l y s t , b u t were c o r r e l a t e d w i t h N i crystallite size; f u r t h e r , the dimensions of the t u b u l a r g r a p h i t e s t r u c t u r e s were s i m i l a r t o t h e a s s o c i a t e d c r y s t a l l i t e . Steam r e f o r m i n g o f h y d r o c a r b o n s o n s u p p o r t e d N i i s a n i n t e r e s t i n g and v e r y c o m p l i c a t e d system. The m a j o r r e a c t i o n s t o b e considered a r e : + nH 0

nCO + ( n + j ) H

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

2

CO + H —> 2

CO + 3 H — * 2

C0 + H 2

2

(VI)

2

CH + H 0 4

2

w i t h coke d e p o s i t i o n p o s s i b l y v i a : CH

4

—y

2C0

C + 2H C + 2H

CmHm

2

(VII)

2

p o l y m e r —*

coke

Many w o r k e r s have d e a l t w i t h c a t a l y t i c p r o p e r t i e s a s t h e y a f f e c t VI and V I I . F o r c o k i n g i t i s g e n e r a l l y agreed t h a t b o t h m e t a l and a c i d i c f u n c t i o n s a r e i n v o l v e d ; the i n c o r p o r a t i o n o f a l k a l i o r the use o f l e s s a c i d i c s u p p o r t s r e t a r d s coke f o r m a t i o n ( 8 5 , 8 6 , 8 7 ) . K i n e t i c s o f coke f o r m a t i o n a r e r e p o r t e d t o be n e a r l y f i r s t o r d e r i n hydrocarbon ( f o r n-hexane) (88), and n o r m a l l y decrease w i t h i n c r e a s i n g steam/hydrocarbon r a t i o and i n c r e a s e w i t h i n c r e a s i n g u n saturation (86,89). A maximum i n coke f o r m a t i o n r a t e i n t h e r e g i o n 5 0 0 - 6 0 0 ° C h a s b e e n o b s e r v e d ( 8 6 , 8 8 ) , b u t t h e r e i s some d i s a g r e e m e n t c o n c e r n i n g t h e e f f e c t o f h y d r o g e n p a r t i a l p r e s s u r e on coking rates (86,90). T h e r e a r e some i n t e r e s t i n g a s p e c t s t o coke f o r m a t i o n i n t h e steam r e f o r m i n g r e a c t i o n . F i r s t i s the observation o f an i n d u c t i o n p e r i o d f o r c o k e f o r m a t i o n , shown i n F i g u r e 14a f o r n - h e p t a n e a t 5 0 0 C ( 8 6 ) , s t r o n g l y d e p e n d e n t u p o n steam/C r a t i o . T h i s has been noted f o r o t h e r hydrocarbons as w e l l ( 9 1 ) . Correlation of coke on c a t a l y s t i n t h i s i n s t a n c e can be p r o v i d e d b y : Q

C

c

=

k (t - t ) c

0

(24)

with the i n d u c t i o n time. F i g u r e 14b shows t h e s t r o n g i n h i b i t i o n o f coke f o r m a t i o n w i t h i n c r e a s e i n s t e a m / c a r b o n ( d e c r e a s e i n k ) , w i t h an accompanying i n c r e a s e i n i n d u c t i o n t i m e . An i n c r e a s e i n hydrogen p a r t i a l pressure i n c r e a s e d c o k i n g r a t e (86). The c o r r e l a t i o n o f E q . (24) i s o b v i o u s l y q u i t e d i f f e r e n t f r o m t h e f a m i l i a r V o o r h i e s f o r m , a n d t h e t h e r m a l dependence much g r e a t e r than that observed f o r V o o r h i e s - t y p e systems. Rostrup-Nielsen c

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

9.

B U T T A N D BILLIMORIA

Catalyst

Deactivation

315

(86) r e p o r t s a n a c t i v a t i o n e n e r g y o f 40 k c a l / m o l e compared t o t h e 10 k c a l / m o l e o r l e s s f o r coke f o r m a t i o n o n c r a c k i n g c a t a l y s t s (1^). A second f a c t o r i s the r e l a t i v e l y s m a l l d i m u n i t i o n i n a c t i v i t y o n coke f o r m a t i o n i n t h e s e c a t a l y s t s , d e m o n s t r a t e d b y s p e c i f i c e x p e r i m e n t s i n (86) f o r two c a t a l y s t s c o n t a i n i n g 4 . 5 a n d 1 1 . 0 wt % coke o n c a t a l y s t s . The r e a s o n f o r t h i s i s n o t c l e a r , b u t may r e s i d e i n t h e t e n d e n c y f o r c a r b o n t o s e g r e g a t e on n i c k e l s u r f a c e s ( 9 2 , 9 3 ) o r be due t o t h e f a c t t h a t a c a r b i d i c p h a s e s u c h a s N i ^ C i s the a c t i v e c a t a l y t i c surface under r e a c t i o n c o n d i t i o n s (84). Coke f o r m a t i o n r e a c t i o n s r e p o r t e d above i n V I I may be more c o m p l e x t h a n r e a l i z e d p r e v i o u s l y . I n v e r y r e c e n t work o n s t e a m r e f o r m i n g o f n - h e x a n e , B e t t , e t a l . (94) c o n c l u d e t h a t c a r b o n f o r m a t i o n may r e s u l t f r o m i n t e r a c t i o n o f u n r e a c t e d h e x a n e a n d t h e products of secondary c r a c k i n g r e a c t i o n s , or from unstable i n t e r mediates i n the c r a c k i n g p r o c e s s . A s e l e c t i o n of other thoughts c o n c e r n i n g t h e mechanism o f c o k e f o r m a t i o n i n r e f o r m i n g on N i would i n c l u d e the works o f Whalley, e t a l . (95), P r e s l a n d and W a l k e r ( 9 6 ) , a n d Renshaw, e t a l . (97). Carbon d e p o s i t i o n on n i c k e l c a t a l y s t s f o r r e a c t i o n s o t h e r than steam r e f o r m i n g has a l s o been s t u d i e d e x t e n s i v e l y i n r e c e n t years. The i n t e r a c t i o n o f l i g h t h y d r o c a r b o n s on N i f o i l s a t 4 0 0 6 0 0 ° C h a s b e e n i n v e s t i g a t e d b y L o b o a n d Trimm ( 9 8 ) , and t h e p y r o l y s i s o f o l e f i n s on N i f o i l s a t 4 0 0 - 7 5 0 ° C by R o s t r u p - N i e l s e n a n d Trimm ( 9 9 ) . I n the p y r o l y s i s r e a c t i o n s the c o k i n g r a t e s pass t h r o u g h a maximum, a s w i t h s t e a m r e f o r m i n g , i n t h e r a n g e 5 0 0 - 6 0 0 ° C . The k i n e t i c s o f r e a c t i o n a r e c o m p l e x ; b e l o w a b o u t 500°C t h e a p p a r e n t a c t i v a t i o n e n e r g y i s 32 t 2 k c a l / m o l e f o r a l l o l e f i n s and the r e a c t i o n i s zero o r d e r . Above 600°C t h e a c t i v a t i o n e n e r g y i s c a . -44 k c a l / m o l e and the r e a c t i o n o r d e r i s u n i t y f o r b o t h o l e f i n and h y d r o g e n . S i m i l a r r e s u l t s have b e e n r e p o r t e d b y D e r b y s h i r e a n d Trimm ( 1 0 0 ) . A number o f r e a s o n s i n c l u d i n g r e g a s i f i c a t i o n ( 8 5 , 1 0 1 ) , coke d e a c t i v a t i o n (101), p o i s o n i n g by h y d r i d e f o r m a t i o n , and c o m p e t i t i v e a d s o r p t i o n - s u r f a c e d i f f u s i o n phenomena ( 9 9 , 1 0 0 ) have b e e n s e t f o r t h t o e x p l a i n t h e s e k i n e t i c s . F i n a l l y , there i s a r a t h e r unique type of c o k i n g of supported N i under c e r t a i n c o n d i t i o n s which leads to c a t a s t r o p h i c d e s t r u c t i o n o f the p h y s i c a l s t r u c t u r e ( i . e . , r e d u c t i o n t o d u s t ) . Kiovsky (91) h a s r e p o r t e d t h i s phenomenon i n some d e t a i l f o r l o w s u r f a c e a r e a (~ 10 m /g) s u p p o r t e d N i (10% w t ) , u s e d f o r p r o d u c t i o n o f a n n e a l i n g gas v i a 0^ + C H ^ . I n one t e s t , a c o m m e r c i a l N o r t o n N C - 1 0 0 f o r m u l a t i o n m t h e f o r m o f 1 i n d i a m e t e r r i n g s was comp l e t e l y destroyed w i t h i n e i g h t hours under p a r t i a l o x i d a t i o n cond i t i o n s w i t h i n l e t t e m p e r a t u r e o f 1 0 1 0 ° C , 3/1 a i r / C H ^ mole r a t i o a n d 400 h r " s p a c e v e l o c i t y . O p e r a t i o n a t h i g h e r SV (800 h r " ) r e s u l t e d i n no d e s t r u c t i o n . P h y s i c a l d e g r a d a t i o n was a c c o m p a n i e d by coke f o r m a t i o n , b u t a n i n d u c t i o n p e r i o d was o b s e r v e d i n a l l cases before d e s t r u c t i o n o c c u r r e d ; t h e c a t a l y s t c o u l d be comp l e t e l y r e g e n e r a t e d by a i r o x i d a t i o n i f t i m e on s t r e a m were l e s s t h a n t h e i n d u c t i o n p e r i o d . Some t y p i c a l d a t a a r e shown i n F i g u r e 15a f o r e x p e r i m e n t s a t 730 h r " , 4 9 0 ° C , w i t h a t o l u e n e - s a t u r a t e d 2

1

1

1

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

316

C H E M I C A L REACTION ENGINEERING

REVIEWS—HOUSTON

Journal of Catalysis

Figure 14. (a) Mean coke content of catalyst vs. time on stream, η-heptane reformi 500°C. 1.) H O/C — 1.3, 2.) H O/C — 1.5, 3.) H O/C — 2.0; (b) coke correlation co stants, Equation 24, and steam/carbon ratio. Catalyst: 23.8% Ni on MgO with Al, 0.07% Na, 2 m /g Ni, 20 m? I g BET (W). t

t

t

2

American Chemical Society

Figure 15. Destruction of supported Ni by coke formation during partial oxidatio hydrocarbons, (a) Survivors vs. time at two air/HC ratios; (b) effect of average p ameter upon survival rate (91)

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

9.

Catalyst Deactivation

B U T T A N D BILLIMORIA

317

methane a t two d i f f e r e n t a i r / h y d r o c a r b o n r a t i o s . Survivors are d e f i n e d a s t h e number o f c a t a l y s t p i e c e s i n t h e o r i g i n a l c h a r g e r e t a i n i n g a t l e a s t 80% o f t h e i r o r i g i n a l m a s s ; t y p i c a l coke l e v e l s a r e o n l y on t h e o r d e r o f 3 - 5 wt % w h i l e d e s t r u c t i o n i s o c c u r r i n g and i t i s c l e a r t h a t the k i n e t i c s o f the p r o c e s s a r e relatively rapid. I n i t i a l c r u s h s t r e n g t h was n o t w e l l c o r r e l a t e d w i t h s u r v i v a l r a t e , b u t t h e i n d u c t i o n p e r i o d was i n c r e a s e d a n d r a t e o f d e s t r u c t i o n decreased by r e d u c i n g c a t a l y s t e x t e r n a l s u r ­ f a c e a r e a p e r volume and r e d u c i n g median pore d i a m e t e r . The l a t t e r e f f e c t i s shown i n F i g u r e 15b f o r two c a t a l y s t s ; "new", w i t h p o r e d i a m e t e r 5μ,, a n d " s t a n d a r d " , 1 7 u . The a b i l i t y o f coke f o r m a t i o n to d e s t r o y the p h y s i c a l s t r u c t u r e of the c a t a l y s t i s s u r p r i s i n g , but hardly e q u i v o c a l . Acknowledgments T h i s work was s u p p o r t e d v i a t h e g e n e r o u s h e l p o f t h e C e n t r a l R e s e a r c h D e p a r t m e n t , Dow C h e m i c a l , U . S . A . F i g u r e s 1 , 2 , 3 , 4 , 6, 11 by p e r m i s s i o n o f Pergamon P r e s s , L t d . , F i g u r e s 1 2 , 15 by p e r ­ m i s s i o n o f t h e A m e r i c a n C h e m i c a l S o c i e t y , F i g u r e s 9 , 10 by p e r ­ m i s s i o n o f E l s e v i e r P u b l i s h i n g C o . , F i g u r e 13 b y p e r m i s s i o n o f t h e A m e r i c a n I n s t i t u t e o f C h e m i c a l E n g i n e e r s , a n d F i g u r e 14 by p e r m i s s i o n o f Academic P r e s s , I n c . Appendix Two o c c u p a t i o n a l h a z a r d s a s s o c i a t e d w i t h t h e w r i t i n g o f r e v i e w s such as t h i s a r e the i n a d v e r t e n t o v e r s i g h t o f p a r t i c u l a r l y germane l i t e r a t u r e a n d t h e p u b l i c a t i o n o f r e l e v a n t w o r k i n t h e p e r i o d b e t w e e n c o m p l e t i o n a n d p u b l i c a t i o n o f t h e r e v i e w . We have examples o f b o t h h e r e . I n t h e t e x t we commented upon t h e p o s s i b l e i n a d e q u a c i e s o f the separable form of r e p r e s e n t a t i o n f o r d e a c t i v a t i o n k i n e t i c s . I n f a c t , B a k s h i a n d G a v a l a s (1A) h a v e d e m o n s t r a t e d t h i s e x p e r i ­ m e n t a l l y f o r methanol and e t h a n o l d e h y d r a t i o n on S i 0 2 / A l 2 0 a t 1 5 0 - 2 2 5 ° C , p o i s o n e d by n - b u t y l a m i n e . The k i n e t i c s o f r e a c t i o n were c o r r e l a t e d b y : k

(-r )

-

T

K

A ? A

%

^A;

ι + K C * + A

A

Vw

(1A)

f o r b o t h the f r e s h and d e a c t i v a t e d c a t a l y s t , but the a d s o r p t i o n c o n s t a n t s K . a n d K« v a r i e d w i t h e x t e n t o f d e a c t i v a t i o n w h i c h i s n o t as the s e p a r a b l e f o r m u l a t i o n would have i t . Such c h a n g e s were i n t e r p r e t e d as a m a n i f e s t a t i o n o f the n o n u n i f o r m i t y o f s u r ­ f a c e s i t e s , a s we have s u g g e s t e d i n E q . ( 1 ) . Kam, e t a l . (2A) have a l s o u s e d a r a t e e x p r e s s i o n o f t h e f o r m o f E q . (1A) i n a t h e o r e t i c a l analysis of isothermal, i n t r a p a r t i c l e fouling i n v o l v ­ i n g c o m b i n e d s e r i e s and p a r a l l e l f o u l i n g . The r e s u l t s o f t h e c o m b i n e d mechanism a r e c o n t r a s t e d w i t h t h o s e p e r t a i n i n g t o t h e i n d i v i d u a l steps alone. A

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

318

C H E M I C A L REACTION ENGINEERING

REVIEWS—HOUSTON

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

An example o f s t r u c t u r e s e n s i t i v i t y i n d e a c t i v a t i o n i s f o u n d i n t h e work o f O s t e r m a i e r , e t a l . (3A) f o r 2-15 nm Ρ ί / Α ^ Ο β a n d P t b l a c k i n ammonia o x i d a t i o n a t 3 6 8 - 4 7 3 ° K . The e f f e c t s o f c r y s ­ t a l l i t e s i z e a n d t e m p e r a t u r e i n d e a c t i v a t i o n were i n v e s t i g a t e d ; i t was f o u n d t h a t t h e e x t e n t o f d e a c t i v a t i o n i n c r e a s e d w i t h d e ­ c r e a s i n g t e m p e r a t u r e , a n d t h e r e was a d i f f e r e n c e i n t h e A r r h e n i u s b e h a v i o r between s i n t e r e d and u n s i n t e r e d m a t e r i a l s . Deactivation was more s e v e r e w i t h s m a l l e r c r y s t a l l i t e s , b u t t h e s u r f a c e c o u l d be c o m p l e t e l y r e a c t i v a t e d by at 673°K. I t was s u g g e s t e d t h a t P t O was t h e d e a c t i v a t e d s u r f a c e , a n d a n e x c e l l e n t c o r r e l a t i o n o f a c t i v i t y was p r o v i d e d b y : dN dt W

i

t

h

N

2 i y r

=

l + N °

K

(2A)

p

t

< > 3A

where Ν i s d e n s i t y o f s i t e s , Κ a r a t e c o n s t a n t f o r d e a c t i v a t i o n , and 1^ an i n i t i a l s i t e d e n s i t y . I n r e c e n t w o r k Hegedus a n d Summers (4A) h a v e i n v e s t i g a t e d t h e p o i s o n i n g o f n o b l e m e t a l s s u p p o r t e d on AI2O3 by l e a d and p h o s p h o ­ rous i n the o x i d a t i o n o f c a r b o n monoxide and h y d r o c a r b o n s . The p a r a m e t e r s s t u d i e d were p o r e s t r u c t u r e , s u p p o r t a r e a a n d impregnation depth. C o r r e l a t i o n s are given for poison penetra­ t i o n and e f f e c t i v e n e s s as a f u n c t i o n o f time o f o p e r a t i o n . As i n the case o f c o k i n g v i a the p a r a l l e l mechanism, the o v e r a l l c a t a ­ l y s t l i f e c a n be o p t i m i z e d by m a n i p u l a t i o n o f t h e m a c r o p o r e s t r u c ­ ture. D e s i g n i n g f o r a g i v e n d i f f u s i o n a l l i m i t a t i o n i n the f r e s h c a t a l y s t r e t a r d s the r a t e o f the main r e a c t i o n b u t a l s o r e t a r d s p e n e t r a t i o n o f p o i s o n i n t o t h e c a t a l y s t m a t r i x , h e n c e an optimum may be s o u g h t f o r maximum t i m e - a v e r a g e d effectiveness. F i n a l l y , M i k u s , e t a l . (5A) have r e p o r t e d s t u d i e s o f f i x e d b e d r e a c t o r t r a n s i e n t s f o r CO o x i d a t i o n on Ρ ί / Α ^ Ο β ( 0 . 1 % P t ) w i t h CS2 p o i s o n . Their experimental r e s u l t s are i n q u a l i t a t i v e a g r e e m e n t w i t h t h e c o m p u t a t i o n s o f B l a u m (52) a n d E r v i n and L u s s (6A), b u t no s i m u l a t i o n s a r e r e p o r t e d i n t h e p a p e r . The t e m p e r a ­ t u r e p r o f i l e s r e p o r t e d have a c r u i o u s shape f o r what i s r e p o r t e d t o be a n a d i a b a t i c r e a c t o r . β

Literature Cited 1. Butt, J.B., Adv. Chem., (1972), 109, 259. 2. Wanke, S.E. and Flynn, P.C., Catal. Rev.-Sci. and Eng., (1975), 12, 93. 3. Shelef, M., Otto, K. and Otto, N.C., Adv. Catal., (1978), 27. 4. Carberry, J.J., "Chemical and Catalytic Reaction Engineering", McGraw-Hill, New York, 1976. 5. Khang, S.J. and Levenspiel, O., Ind. Eng. Chem. Fundls., (1973), 12, 185. 6. Szepé, S. and Levenspiel, O., Proc. European Fed., 4th Chem. Reaction Eng., Brussels, 1968; Pergamon Press, 1971.

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

9. BUTT AND BILLIMORIA

Catalyst Deactivation

319

7. Butt, J.B., Wachter, C.K. and Billimoria, R.M., Chem. Eng. S c i . , in press. 8. Webb, G. and Macnab, J.I., J. Catal., (1972), 26, 226. 9. Burnett, R.L. and Hughes, T.R., J. Catal., (1973), 31, 55. 10. Masamune, S. and Smith, J.M., AIChE J1., (1966), 12, 384. 11. Murakami, Y . , Kobayshi, T., Hattori, T. and Masuda, M., Ind. Eng. Chem. Proc. Design Devel., (1968), 7, 72. 12. Swabb, E.A. and Gates, B.C., Ind. Eng. Chem. Fundls., (1972), 11, 540. 13. Butt, J.B., Delgado-Diaz, S. and Muno, W.E., J. Catal., (1975), 37, 155; (1976), 41, 190. 14. Toei, R., Nakanishi, K. and Okazaki, M., J. Chem. Eng. Japan, (1975), 8, 338. 15. Richardson, J.T., Ind. Eng. Chem. Proc. Design Devel., (1972), 11, 12. 16. Ozawa, Y. and Bischoff, K.B., Ind. Eng. Chem. Proc. Design Devel., (1968), 7, 67. 17. Levinter, M.E., Panchekov, G.M. and Tanatarov, M.A., Int. Chem. Engr., (1967), 7, 23. 18. Suga, K., Morita, Y . , Kunugita, E. and Otake, T., Int. Chem. Engr., (1967), 7, 742. 19. Snyder, A.C. and Matthews, J.C., Chem. Eng. S c i . , (1973), 28, 291. 20. Lee, J.W. and Butt, J.B., Chem. Eng. J1., (1973), 6, 111. 21. Ray, W.H., Chem. Eng. Sci., (1972), 27, 489. 22. Shadman-Yazdi, F. and Petersen, E.E., Chem. Eng. Sci., (1972), 27, 227. 23. Corbett, W.E., Jr. and Luss, D., Chem. Eng. Sci., (1974), 29, 1473. 24. Becker, E.R. and Wei, J., J. Catal., (1977), 46, 372. 25. Bischoff, K.B., Chem. Eng. Sci., (1967), 22, 525. 26. Mars, P. and Grogels, M.J., Chem. Eng. Sci. Supplement, 3rd Europ. Symp. Chem. Reaction Eng., Pergamon Press (1964). 27. Friedsichsen, W., Chem. Ing. Tech., (1969), 41, 967. 28. Karanth, N.G. and Luss, D., Chem. Eng. Sci., (1975), 30, 695. 29. Pareja, T.J. and Luss, D., Chem. Eng. Sci., (1975), 30, 1219. 30. Hegedus, L . L . , Ind. Eng. Chem. Fundls., (1974), 13, 190. 31. Balder, J.R. and Petersen, E.E., Chem. Eng. Sci., (1968), 23, 1287. 32. Hegedus, L . L . and Petersen, E.E., Ind. Eng. Chem. Fundls., (1972), 11, 579. 33. Hegedus, L . L . and Petersen, E.E., Chem. Eng. Sci., (1973), 28, 69. 34. Hegedus, L . L . and Petersen, E.E., Chem. Eng. Sci., (1973), 28, 345. 35. Hegedus, L . L . and Petersen, E.E., J. Catal., (1973), 28, 150. 36. Hegedus, L . L . and Petersen, E.E., Catal. Rev.-Sci. and Eng., (1974), 11, 245. 37. Wolf, E. and Petersen, E.E., Chem. Eng. Sci., (1974), 29, 1500.

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

320

CHEMICAL REACTION ENGINEERING REVIEWS—HOUSTON

38. Wolf, E. and Petersen, E.E., J. Catal., (1977), 46, 190. 39. Kehoe, J.P.G. and Butt, J.B., AIChE J1., (1972), 18, 347. 40. Butt, J.B., Downing, D.M. and Lee, J.W., Ind. Eng. Chem. Fundls., (1977), 16, 270. 41. Lee, J.W., Downing, D.M. and Butt, J.B., AIChE J1. (in press). 42. Hughes, R. and Koh, H.P., Chem. Eng. J1., (1970), 1, 186. 43. Hughes, R. and Koh, H.P., AIChE J 1 . , (1974), 20, 395. 44. Benham, C.B. and Denny, V . E . , Chem. Eng. S c i . , (1972), 27, 2163. 45. Trimm, D.L., Corrie, J. and Holton, R.D., Chem. Eng. S c i . , (1974), 29, 2009. 46. Hlavacek, V. and Marek, M., Proc. European Fed., 4th Chem. Reaction Eng., Brussels, 1968; Pergamon Press, 1971. 47. Lee, J.C.M. and Luss, D., AIChE J1., (1970), 16, 620. 48. Lambrecht, G.C., Nussey, C. and Froment, G.F., Proc. 5th European Symp. Chem. Reaction Eng., B-2-19, Elsevier, Amsterdam, 1972. 49. De Pauw, R.P. and Froment, G.F., Chem. Eng. S c i . , (1975), 30, 789. 50. Dumez, F . J . and Froment, G.F., Ind. Eng. Chem. Proc. Design Devel., (1976), 15, 291. 51. Hosten, L.H. and Froment, G.F., Ind. Eng. Chem. Proc. Design Devel., (1971), 10, 280. 52. Blaum, E . , Chem. Eng. S c i . , (1974), 29, 2263. 53. Weng, H-S, Eigenberger, G. and Butt, J.B., Chem. Eng. S c i . , (1975), 30, 1341. 54. Price, T.H. and Butt, J.B., Chem. Eng. S c i . , (1977), 32, 393. 55. Noda, H., Tone, S. and Otake, T., J. Chem. Eng. Japan (1974), 7, 110. 56. Toei, R., Nakanishi, K., Yamada, K. and Okazaki, M., J. Chem. Eng., (1975), 8, 131. 57. Uchida, S., Osuda, S. and Shindo, M., Can. J. Chem. Eng., (1975), 53, 666. 58. Otake, T., Kunugita, E. and Kugo, K., Kogyo Kagaku Zasshi, (1965), 68, 58. 59. Sadana, A. and Doraiswamy, L . K . , J. Catal., (1971), 23, 147. 60. Prasad, K.B.S. and Doraiswamy, L.K., J. Catal., (1974), 32, 384. 61. Greco, G., Jr., Alfani, F. and Gioia, F., J. Catal., (1973), 30, 155. 62. Weekman, V.W., Jr., Ind. Eng. Chem. Proc. Design Devel., (1968), 7, 90. 63. Weekman, V.W., Jr., ibid (1969), 8, 388. 64. Weekman, V.W., Jr. and Nace, D.M., AIChE J1., (1970), 16, 397. 65. Nace, D.M., Voltz, S.E. and Weekman, V.W., Jr., Ind. Eng. Chem. Proc. Design Devel., (1971), 10, 530. 66. Voltz, S.E., Nace, D.M. and Weekman, V.W., Jr., ibid, (1971), 10, 538. 67. Wojciechowski, B.W., Can. J. Chem. Eng., (1968), 46, 48.

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

9. BUTT AND BILLIMORIA

Catalyst Deactivation

321

68. Campbell, D.R. and Wojciechowski, B.W., J. Catal., (1971), 20, 217. 69. Best, D.A. and Wojciechowski, B.W., J. Catal., (1973), 31, 74; (1977), 47, 11; (1977), 47, 343. 70. Wojciechowski, B.W., Catal. Rev.-Sci. and Eng., (1974), 9, 79. 71. John, T.M., Pachovsky, R.A. and Wojciechowski, B.W., Adv. Chem., (1974), 133, 422. 72. John, T.M. and Wojciechowski, B.W., J. Catal., (1975), 37, 240; (1975), 37, 348. 73. Pachovsky, R.A. and Wojciechowski, B.W., J. Catal., (1975), 37, 120. 74. Pachovsky, R.A. and Wojciechowski, B.W., Can. J. Chem. Eng., (1975), 53, 308; (1975), 53, 659. 75. Gross, B., Nace, D.M. and Voltz, S.E., Ind. Eng. Chem. Proc. Design Devel., (1974), 13, 199. 76. Voltz, S.E., Nace, D.M., Jacob, S.M. and Weekman, V.W., Jr., Ind. Eng. Chem. Proc. Design Devel., (1972), 11, 261. 77. Jacob, S.M., Gross, B., Voltz, S.E. and Weekman, V.W., Jr., AIChE J1., (1976), 22, 701. 78. Rostrup-Nielsen, J.R., J. Catal., (1972), 27, 343. 79. Dent, F.J. and Cobb, J.W., J. Chem. Soc. (London), (1929), 2, 1903. 80. Dent, F.J., Moignard, L.A., Eastwood, A.H., Blackburn, W.H. and Hebden, D., (1946), Trans. Inst. Gas Eng., 602. 81. Leidheiser, H., Jr. and Gwathmey, A.J., J. Am. Chem. Soc., (1948), 70, 1206. 82. Hofer, L.J.E., Sterling, E. and McCartney, J.T., J. Phy. Chem., (1955), 59, 1153. 83. Coad, J.P. and Riviere, J.C., Surf. S c i . , (1971), 25, 609. 84. McCarty, J.G., Wendreck, P.R. and Wise, H., Division of Petroleum Chemistry Preprints, Am. Chem. Soc. (1977), 22, 1315. 85. Andrews, S.P.S., Ind. Eng. Chem. Prod. Res., (1969), 8, 321. 86. Rostrup-Nielsen, J.R., J. Catal., (1974), 33, 184. See also J.R.R-N., "Steam Reforming Catalysts," Danish Technical Press, Copenhagen, 1976. 87. Saito, M., Tokuno, M. and Morita, Y., Kogyo Kogaku Zasshi, (1971), 74, 673. 88. Saito, M., Tokuno, M. and Morita, Y., Kogyo Kogazu Zasshi, (1971), 74, 693. 89. Moseley, F., Stephens, R.W., Steward, K.D. and Wood, J., J. Catal., (1972), 24, 18. 90. Bhatia, K.S.M. & Dixon,E.M., Trans.Farad Soc., (1967),63, 2217. 91. Kiovsky, J.R. Division of Petroleum Chemistry Preprints, (1977), 22, 1300. 92. Smith, R.D., Trans. Met. Soc., AIME, (1966), 1224. 93. Blakely, J.M., Kim, J.S. and Poltec, H.C., J. Appl. Phy., (1970), 41, 2693. 94. Bett, J.A.S., Christner, L . G . , Hamilton, R.M. and Olson, A.J., Div. of Petroleum Chemistry Preprints, (1977), 22, 1290.

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF CALIFORNIA SAN DIEGO on December 24, 2015 | http://pubs.acs.org Publication Date: January 19, 1978 | doi: 10.1021/bk-1978-0072.ch009

322

CHEMICAL REACTION ENGINEERING REVIEWS—HOUSTON

95. Whalley, L . , David, B.J. and Moss, R.L., Trans. Farad. Soc., (1970), 66, 3143. 96. Presland, A.E.B. and Walker, P . L . , Jr., Carbon, (1969), 7, 1. 97. Renshaw, G.D., Roscoe, C. and Walker, P.L., Jr., J. Catal., (1971), 22, 374. 98. Lobo, L.S. and Trimm, D.L., J. Catal., (1973), 29, 75. 99. Rostrup-Nielsen, J.R. and Trimm, D.L., J. Catal., (1977), 48, 185. 100. Derbyshire, F.J. and Trimm, D.L., Carbon (1975), 13, 189. 101. Baker, R.Y.K., Barker, M.A., Harris, P.S., Feates, F.S. and Waite, R.J., J. Catal., (1972), 26, 51. Literature Cited - Appendix 1A. Bakshi, K.R. and Gavalas, G.R., AIChE J1., (1975), 21, 494. 2A. Kam, E.K., Ramachandran, P.A. and Hughes, R., J. Catal., (1975), 38, 283. 3A. Ostermaier, J.J., Katzer, J.R. and Manogue, W.H., J. Catal., (1976), 41, 277. 4A. Hegedus, L.L. and Summers, J.C., J. Catal., (1977), 48, 345. 5A. Mikus, O., Pour, V. and Hlavacek, V., J. Catal., (1977), 48, 98. 6A.

Ervin, M.A. and Luss, D., AIChE J 1 . , (1970), 16, 979.

RECEIVED

February 17, 1978

In Chemical Reaction Engineering Reviews—Houston; Luss, Dan, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.