Catalyst Effectiveness Factor in Trickle-Bed Reactors

and P. L. MILLS. Chemical ... factor is a function of the ratio of the maximal kinetic rate and ... kv , obtained from trickle bed data to the rate co...
1 downloads 0 Views 1MB Size
32 Catalyst Effectiveness Factor in Trickle-Bed Reactors

Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 3, 2018 | https://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch032

M . P.

DUDUKOVIĆ

and P. L . M I L L S

Chemical Reaction Engineering Laboratory, Department of Chemical Engineering, Washington University, St. Louis, MO 63130

Observed rates in a number of trickle-bed reactors employed in hydrodesulfurization and hydrotreating of heavy residuals indi­ cate that they operate in the regime free of major gas-liquid mass transfer limitations (1,2,3,4,5). Due to the fact that often the liquid reactants are nonvolatile or dilute at the operating condi­ tions used the reaction is frequently liquid reactant limited and confined to the catalyst effectively wetted by liquid. Since po­ rous packing, typically 1/32" to 1/8" (0.08 cm to 0.318 cm) extru­ dates is most often employed it is clear that reaction rates may be affected both by internal pore fill-up with liquid and by inter­ nal diffusional limitations. Catalyst effectiveness factors from 0.5 to 0.85 have been generally reported (1,3,5,6,7,8,). In order to interpret or predict trickle-bed performance at­ tempts have been made to account for liquid maldistribution, devia­ tion from plug flow and for incomplete wetting of catalyst parti­ cles (4,9,10,11,12). It has been shown that liquid phase d e v i a ­ t i o n from plug flow does not have significant e f f e c t s on conver­ s i o n in commercial and pilot s c a l e t r i c k l e - b e d r e a c t o r s (13). A p p l i c a t i o n of Mears' (14) criterion confirms the i n s i g n i f i c a n c e of d i s p e r s i o n e f f e c t s . Incomplete c a t a l y s t w e t t i n g ( i . e . con­ t a c t i n g e f f i c i e n c y , c a t a l y s t u t i l i z a t i o n ) as a f f e c t e d by the hydrodynamic regime i n the bed was s i n g l e d out as the most important parameter which determines r e a c t o r performance (12). One may d i s ­ t i n g u i s h between r e a c t o r s c a l e incomplete contacting caused p r i ­ m a r i l y by flow m a l d i s t r i b u t i o n and g l o b a l hydrodynamic e f f e c t s , and p a r t i c l e s c a l e incomplete c o n t a c t i n g which i s determined by l o c a l v i s c o u s , i n e r t i a and surface f o r c e s . When transport e f f e c t s c o n t r o l the o v e r a l l r e a c t i o n r a t e r e a c t o r hydrodynamics has a dom­ inant e f f e c t on r e a c t o r performance. When k i n e t i c s masked by i n ­ t e r n a l d i f f u s i o n c o n t r o l s the r a t e s i n g l e p a r t i c l e phenomena deter­ mine r e a c t o r performance to a great degree. The purpose of t h i s paper i s t o summarize previous i n t e r p r e t a ­ t i o n s of the e f f e c t of incomplete c a t a l y s t w e t t i n g on t r i c k l e - b e d performance and to develop a model f o r the e f f e c t i v e n e s s f a c t o r f o r p a r t i a l l y wetted c a t a l y s t p e l l e t s . I n the case of a r e a c t i o n ©

0-8412-0401-2/78/47-065-387$05.00/0

Weekman and Luss; Chemical Reaction Engineering—Houston ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

CHEMICAL

Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 3, 2018 | https://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch032

388

REACTION

ENGINEERING-HOUSTON

confined to the wetted p o r t i o n of the c a t a l y s t only the wetted volume of the p e l l e t c o n t r i b u t e s to r e a c t i o n and the supply of l i q u i d r e a c t a n t occurs only across the wetted, e x t e r n a l surface of the p e l l e t . Under these c o n d i t i o n s the c a t a l y s t e f f e c t i v e n e s s f a c t o r i s a f u n c t i o n of the r a t i o of the maximal k i n e t i c r a t e and maximal r a t e of i n t e r n a l d i f f u s i o n , of the e x t e r n a l c o n t a c t i n g e f f i c i e n c y and of i n t e r n a l pore f i l l - u p . An approximate equation d e s c r i b i n g t h i s r e l a t i o n s h i p and based on the work of A r i s (15) can be incorporated i n the t r i c k l e - b e d r e a c t o r performance equa­ t i o n . S o l u t i o n s to more r i g o r o u s models r e p r e s e n t i n g the e f f e c ­ t i v e n e s s of p a r t i a l l y wetted p e l l e t s were sought a l s o i n order to assess the v a l i d i t y of the approximate models. Review of Previous Models Most of the p r e v i o u s l y used expressions to account f o r incom­ p l e t e c a t a l y s t w e t t i n g i n t r i c k l e - b e d s are summarized i n Table I . A l l of these, w i t h the exception of the l a s t one, are based on the assumptions of a) plug flow of l i q u i d , b) no e x t e r n a l mass t r a n s ­ f e r l i m i t a t i o n s , c) i s o t h e r m a l c o n d i t i o n s , d) f i r s t order i r r e v e r s ­ i b l e r e a c t i o n w i t h respect to the l i q u i d r e a c t a n t , e) n o n v o l a t i l e l i q u i d r e a c t a n t , f ) no n o n c a t a l y t i c homogeneous l i q u i d phase reac­ tion. S a t t e r f i e l d (5) suggested comparing the apparent r a t e constant. k , obtained from t r i c k l e bed data to the r a t e constant, k , de­ termined i n p e r f e c t l y mixed s l u r r y r e a c t o r s , as a measure of t r i c k ­ l e bed e f f e c t i v e n e s s . The r a t i o k / k t c l e s s than u n i t y was i n t e r ­ preted on the b a s i s of l i q u i d d e v i a t i o n s from p l u g flow (10) and of incomplete c a t a l y s t w e t t i n g (8,16). Ross (12) i n t r e a t i n g the data from commercial and p i l o t p l a n t h y d r o d e s u l f u r i z a t i o n r e a c t o r s assumed that l i q u i d space time i s the b a s i c parameter i n r e a c t o r performance. This a s s e r t s that performance and the apparent r a t e constant are p r o p o r t i o n a l to l i q u i d holdup as shown i n equation (1). Bondi (17) developed an e m p i r i c a l expression (2a) i n i n t e r p r e t i n g data f o r the h y d r o d e s u l f u r i z a t i o n of heavy gas o i l . This expres­ s i o n r e l a t e s the space time r e q u i r e d to achieve 50% conversion, τ^, to the analogous space time at complete w e t t i n g , τ^°, and to l i q ­ u i d s u p e r f i c i a l v e l o c i t y , U L « This can a l s o be w r i t t e n as equation (2b) i n terms of p r e v i o u s l y defined constants. Henry and G i l b e r t (11) extended Ross (12) formula by i n c o r p o r a t i n g i n t o i t an a v a i l ­ able c o r r e l a t i o n f o r l i q u i d holdup which r e s u l t e d i n expression (3). F i n a l l y , Mears (4) hypothesized that the apparent r a t e constant, k , i s p r o p o r t i o n a l to the true r a t e constant on completely wetted c a t a l y s t , k^ to the c a t a l y s t e f f e c t i v e n e s s f a c t o r , η^, and to the c o n t a c t i n g e f f i c i e n c y , riçE> i . e . to the f r a c t i o n of the e x t e r ­ n a l c a t a l y s t area contacted by l i q u i d . By i n c o r p o r a t i n g the c o r r e ­ l a t i o n of Puranik and Vogelpohl (18), which was developed f o r i n ­ complete c o n t a c t i n g i n absorbers packed w i t h d i f f e r e n t packing s i z e and shape, Mears (4) a r r i v e d to expression (4). S y l v e s t e r and P i t a y a g u l s a r n (19) reproduced the model of Suzuki and Smith v

t c

v

1

v

C9

Weekman and Luss; Chemical Reaction Engineering—Houston ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

32.

DUDUKovic A N D

Catalyst Effectiveness in Trickle-Bed Reactors 389

MILLS

Table I Suggested Performance Equations f o r T r i c k l e - B e d Reactors

Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 3, 2018 | https://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch032

-

k

1

H

tc TL

-

7"^ν

= T-^-

(2a)

5

+

ν

^

+

; 0.5 < b < 0.7

tc

,

n

(2b)

U L

1 in

krs.. L 1/3 tt cc m m /o (LHSV)2/3 _ 0.32, -0.68, 0.18 -0.05. ,.0.21 L (LHSV) d ν ( τ m ρ c AJ

Œ

:-

1-X 1 In -r-rr 1-X

œ



TtlotrN

σ

/o\

η

w

in J L = Λ ω

(5)

3

where

m

Τ

χτ

Λ

Β = -f-

3

[1 + 4 Λ / Ν 2

- 1]

β

(5a)

Ο Λ

( 5 b )

2 = 1/Α + 1/Ν , 1 st Ί

Λ

ι

=

Ί

[

V

o

t

h

φ

τ ~

1 1

( 5 c )

(20) f o r gas s o l i d c a t a l y t i c r e a c t i o n s and a p p l i e d i t t o three phase systems i n t r i c k l e beds. Incomplete w e t t i n g was accounted f o r by assuming only a p o r t i o n of the r e a c t o r , i . e . an e f f e c t i v e l y smaller volume, to be c o n t r i b u t i n g t o r e a c t a n t conversion. This i s again e q u i v a l e n t t o assuming t h a t a primary parameter i s l i q u i d space time. When the e x t e r n a l mass t r a n s f e r l i m i t a t i o n s and a x i a l d i s p e r s i o n e f f e c t s are neglected the model expressed by equations (5) i s reduced to Ross (12) expression (1) m u l t i p l i e d w i t h c a t a ­ l y s t effectiveness factor. Recently (21) another approximate model f o r the c a t a l y s t s e f f e c t i v e n e s s f a c t o r i n t r i c k l e bed r e a c t o r has been proposed. I n t h i s model the e f f e c t i v e n e s s f a c t o r f o r a p a r t i a l l y wetted c a t a l y s t p e l l e t i n a t r i c k l e - b e d r e a c t o r f o r a r e a c t i o n o c c u r r i n g only i n the l i q u i d f i l l e d pore r e g i o n of the p e l l e t i s defined by: 1

η TB

= ( a c t u a l r a t e on a p a r t i a l l y wetted p e l l e t ) / i d e a l maximum r a t e a t bulk c o n d i t i o n s \ Ion a completely wetted p e l l e t J

=

Weekman and Luss; Chemical Reaction Engineering—Houston ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

CHEMICAL REACTION ENGINEERING-HOUSTON

390

= ( a c t u a l r a t e per u n i t volume of p a r t i a l l y wetted p e l l e t ) i d e a l maximum r a t e per u n i t volume of completely \ wetted p e l l e t )

χ

(

( f r a c t i o n of p e l l e t a c t u a l l y i n t e r n a l l y wetted) f

Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 3, 2018 | https://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch032

Using A r i s (15) d e f i n i t i o n f o r the modulus of i r r e g u l a r the f o l l o w i n g modified modulus was obtained: n Φ

particles

i

=

ΤΒ

(6)

( 7 )

*T

which r e s u l t s i n the expression f o r the e f f e c t i v e n e s s f a c t o r given below: . , , 1 . tanh ( — φ ) CE (8) \B CE η

N

=

n

Expression (8) reduces t o the product of η^ η , as used by Mears (4) under two c o n d i t i o n s . Ε

n Φ

Τ

>

>

1 ;

η

ΤΒ

~

CE 0Ε Τ

=

η

η

τ

( 9 a )

In t h i s case the i n t e r n a l pore d i f f u s i o n a l l i m i t a t i o n s a r e severe and thus r e a c t i o n occurs only i n a narrow zone ( s h e l l ) c l o s e t o the e x t e r i o r s u r f a c e . The u t i l i z a t i o n of the p e l l e t i s d i r e c t l y p r o p o r t i o n a l t o the s i z e of t h i s zone which i n t u r n i s d i r e c t l y r e l a t e d t o the f r a c t i o n of e x t e r n a l area wetted.

n./n

CE

= l;

= n

(9b)

CE

The second case i m p l i e s t h a t the pores i n the c a t a l y s t p e l l e t s a r e not interconnected and that the f r a c t i o n of i n t e r n a l w e t t i n g c o r ­ responds d i r e c t l y t o e x t e r n a l w e t t i n g . This i n general i s not the case when d e a l i n g w i t h r e a l c a t a l y s i s and hydrocarbon feeds which r e a d i l y wet i n t e r n a l pore s t r u c t u r e s (22). For s m a l l m o d u l i i i . e . very slow r e a c t i o n s such as t y p i c a l of h y d r o d e s u l f u r i z e r s expression (12) reduces t o : ^TB

*\

t

1

" i