63
Catalytic Activity and the Nature of Active Centers in Zeolites Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 1, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch063
J O H N T U R K E V I C H and YOSHIO ΟΝΟ Princeton University, Princeton, N . J.
Catalyst
preparations
with
controlled
number
and
of acid sites were used to study the cracking 2,3-dimethylbutane,
and
these cases, the Bronsted responsible
sites to initiate
required the reaction,
tion of a hydride
activity.
a small
acid sites.
equilibration
Introduction
the use of hydrogen cracking
favorably,
carbon
cracking.
of
hydrocarbon. also.
is catalyzed
by the
as the gas carrier
acid abstrac
was studied
of palladium
The
The
affects the chain
hy Lewis
into the catalyst
but represses the branched
all was
of 2,3-
Lewis
caused by
ion from the saturated
drogen—deuterium
In
OH group
The cracking
number
presumably
of 2,3-dimethylbutenes
cumene,
of xylenes.
acid with its surface
for the catalytic
dimethylbutane
cracking
isomerization
nature
of
and
cumene hydro
* T < h e c a t a l y t i c properties of the zeolites are of u n u s u a l interest.
Tech-
n i c a l l y , t h e y are the most i m p o r t a n t catalyst u s e d i n t h e p e t r o l e u m i n d u s t r y . S c i e n t i f i c a l l y , they are specimens " p a r excellence" f o r s t u d y i n g the n a t u r e of active centers o n a l u m i n a s i l i c a catalysts a n d f o r d e t e r m i n i n g t h e m o d e of a c t i v a t i o n of the various molecules w h o s e reactions t h e y accelerate.
T h e y h a v e the advantage over a l u m i n a s i l i c a g e l catalysts
i n that they are c r y s t a l l i n e . T h e m a i n features of their s t r u c t u r a l arrange m e n t c a n b e d e l i n e a t e d f r o m x-ray i n v e s t i g a t i o n . T h i s p e r m i t s the i d e n t i fication
a n d c h a r a c t e r i z a t i o n of a l i m i t e d n u m b e r of discrete sites of
c a t a l y t i c a c t i v i t y . O n the other h a n d , the structure of the a l u m i n a s i l i c a g e l catalyst c a n o n l y b e s u r m i s e d f r o m g e n e r a l t h e o r e t i c a l considerations. T h e x-ray a n d e l e c t r o n d i f f r a c t i o n patterns are too b r o a d to g i v e a n y u s e f u l s t r u c t u r a l i n t e r p r e t a t i o n . F u r t h e r m o r e , i n d i r e c t e v i d e n c e indicates a b r o a d c o n t i n u o u s s p e c t r u m of active sites reflecting t h e a m o r p h o u s state.
T h i s c o m p l i c a t e s c h a r a c t e r i z a t i o n of t h e a c t i v a t i o n process. A n 315
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
316
MOLECULAR
SIEVE
ZEOLITES
II
other c o m p l i c a t i n g feature of the g e l t y p e catalysts is the v a r i a b l e p o r e structure,
m a k i n g the
preparations
irreproducible and
the
catalytic
activity variable. W e present some r e c e n t results o b t a i n e d i n the P r i n c e t o n U n i v e r s i t y C h e m i s t r y D e p a r t m e n t o n the nature of the active center i n catalysts d e r i v e d f r o m s o d i u m t y p e faujasite catalyst (17, 29, 30, 31).
g i v e n b y one of us a n d b y others (1,4,9,
Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 1, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch063
18, 23, 25, 26, 27,
A g e n e r a l s u r v e y of the s t r u c t u r a l characteristics has 25,
28, been
33).
W e s h a l l r e v i e w b r i e f l y those s t r u c t u r a l results w h i c h w i l l b e r e l e v a n t to the d e t e r m i n a t i o n of the n a t u r e of the active site. s o d i u m faujasite
is N a
5 6
( A10 ) 2
5 6
( S i 0 ) i 6 * nH 0. 2
2
3
T h e formula for
T h e water can
r e m o v e d b y heat treatment w i t h o u t d e s t r o y i n g the c r y s t a l structure. n u m b e r of s o d i u m ions is e q u a l to the n u m b e r of a l u m i n u m atoms.
be The In
zeolites, this n u m b e r is at most e q u a l to the n u m b e r of s i l i c o n atoms. T h e a l u m i n u m atoms are n e v e r i n a d j o i n i n g o x y g e n t e t r a h e d r a b u t are separated b y at least 1 s i l i c o n - o x y g e n t e t r a h e d r o n .
The sodium ion can
b e i o n e x c h a n g e d b y m o n o v a l e n t , d i v a l e n t , a n d c e r t a i n t r i v a l e n t ions. I n this i o n exchange, c e r t a i n p r e c a u t i o n s m u s t b e o b s e r v e d .
T h e direct
r e p l a c e m e n t of the s o d i u m i o n b y h y d r o g e n i o n u s i n g a c i d
treatment
m a y result i n the d e s t r u c t i o n of the zeolite c r y s t a l structure, p a r t i c u l a r l y w h e n the s i l i c o n - a l u m i n u m ratio is close to 1.
T h i s is a v o i d e d b y re
p l a c i n g s o d i u m b y a m m o n i u m i o n a n d t h e n d e c o m p o s i n g the a m m o n i u m ion. T h e w a s h i n g of the zeolite m u s t b e c a r r i e d out c a r e f u l l y to a v o i d h y d r o l y s i s a n d r e p l a c e m e n t of the c a t i o n b y the h y d r o g e n i o n . T h i s is p a r t i c u l a r l y true of the d i v a l e n t a n d t r i v a l e n t cations. A n o t h e r c o m p l i c a t i o n m a y arise i n the case of d i v a l e n t a n d t r i v a l e n t cations, i n that o n d e h y d r a t i o n of a h y d r o x y salt c a t i o n m a y b e f o r m e d s u c h as [ M ( O H ) ] , +
[ M ( III ) ( O H ) ] , 2
+
[ M ( III ) ( O H ) ] . 2 +
Since the c a t a l y t i c a c t i v i t y of the
a c i d f o r m of the zeolite is v e r y h i g h , the h y d r o l y s i s processes m a y m a s k the a c t i o n of the m u l t i v a l e n t ions a n d be a s c r i b e d to t h e m .
Sodium and
h y d r o g e n n u c l e a r m a g n e t i c studies i n d i c a t e that the s o d i u m ions
are
h y d r a t e d b y 6 w a t e r m o l e c u l e s i n a n o c t a h e d r a l a r r a y a n d are free to m o v e i n the zeolite c a v i t y w h e n the zeolite is h y d r a t e d . O n d e h y d r a t i o n , w h e n there are less t h a n 6 w a t e r m o l e c u l e s a r o u n d the s o d i u m i o n , it becomes l o c a l i z e d near 1 of the o x y g e n ions next to the a l u m i n u m . I n the faujasite t y p e zeolite, the s i l i c a - a l u m i n a tetrahedra are l i n k e d t h r o u g h s h a r i n g of o x y g e n i n t o 2 p r i m a r y cages: the h e x a g o n a l p r i s m a n d the t r u n c a t e d o c t a h e d r o n ( s o d a l i t e ) .
T h e s e p r i m a r y cages c o m b i n e
to f o r m a superstructure of cages b y h a v i n g 4 of the h e x a g o n a l faces of the sodalite l i n k e d i n a t e t r a h e d r a l m a n n e r via " v i r t u a l " h e x a g o n a l p r i s m s to g i v e the faujasite structure w i t h the i m p o r t a n t s e c o n d a r y cage, the faujasite cage. T h i s is the cage w h e r e i n the c a t a l y t i c a c t i v i t y takes p l a c e .
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
63.
Catalytic
TURKEVICH AND Ο Ν Ο
Activity
and Active Centers
317
Its 4 ports h a v e a d i a m e t e r 8 - 9 A , p e r m i t t i n g b o t h straight a n d b r a n c h e d h y d r o c a r b o n s to enter the pore. T h e p o r t holes of t h e sodalite cage a n d the h e x a g o n a l p r i s m s are too s m a l l f o r the h y d r o c a r b o n to enter, b u t t h e y d o p l a y a n i m p o r t a n t r o l e i n the a c t i v a t i o n process.
T h e n u m b e r of
a c i d sites c a n b e c o n t r o l l e d b y t h e d e p t h of t h e r e p l a c e m e n t of s o d i u m b y t h e a m m o n i u m i o n . T h e r e are 3 different sites f o r t h e s o d i u m i o n , 16 i n t h e i n t e r i o r of t h e h e x a g o n a l p r i s m s , 32 at t h e h e x a g o n a l faces i n Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 1, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch063
the sodalite cages, a n d 8 i n the large cage next to t h e square o x y g e n faces (20,
21).
T h e kinetics of c r a c k i n g of c u m e n e w a s d e t e r m i n e d b y t h e p u l s e technique introduced b y Emmett, Kokes, a n d T o b i n ( S ) , modified b y T u r k e v i c h a n d c o w o r k e r s to d e t e r m i n e t h e n u m b e r of active sites a n d the specific a c t i v i t y (30).
T h e n u m b e r of sites active f o r c u m e n e c r a c k i n g
was e q u a l to t h e n u m b e r of s o d i u m ions r e p l a c e d b y h y d r o g e n ions the a m m o n i u m r o u t e ) replaced.
(via
u n t i l a b o u t h a l f of t h e s o d i u m ions h a d b e e n
F r o m that, the n u m b e r
of active
sites r e m a i n e d
constant.
A p p a r e n t l y , h a l f of the a c i d sites p r o d u c e d b y r e p l a c e m e n t of t h e s o d i u m i o n b y a m m o n i u m i o n a n d subsequent h e a t i n g w e r e n o t a v a i l a b l e f o r c a t a l y t i c a c t i v i t y a n d m u s t b e l o c a t e d i n either the sodalite cage or t h e h e x a g o n a l p r i s m b u t n o t i n t h e faujasite supercage.
Furthermore, the
t e c h n i q u e of a l t e r n a t i n g pulses of r e a c t i o n ( c u m e n e ) a n d p o i s o n ( q u i n o l i n e ) p e r m i t t e d t h e d e t e r m i n a t i o n of a c t i v i t y p e r active site.
This i n
creased w i t h t h e n u m b e r of sites e v e n w h e n t h e sites are n o t a v a i l a b l e to the reactant, i n d i c a t i n g a n i n t e r a c t i o n b e t w e e n the sites via transport of h y d r o g e n i o n o r electrons, b o t h of w h i c h c o u l d pass t h r o u g h t h e s m a l l p o r t holes.
F u r t h e r m o r e , m e a s u r e m e n t of t h e t e m p e r a t u r e coefficient of
the rate of c r a c k i n g of c u m e n e p e r m i t t e d t h e d e t e r m i n a t i o n of b o t h t h e a c t i v a t i o n energy of t h e c r a c k i n g r e a c t i o n a n d t h e e n t r o p y of a c t i v a t i o n . T h e a c t i v a t i o n energy decreased w i t h increase i n n u m b e r of sites b e c a u s e of the i n t e r a c t i o n of sites.
O n t h e other h a n d , t h e e n t r o p y of a c t i v a t i o n
was n e g a t i v e , i n d i c a t i n g that i n t h e t r a n s i t i o n state t h e a d s o r b e d m o l e cules are o r d e r e d .
F u r t h e r m o r e , w i t h increase i n n u m b e r of sites, t h e
e n t r o p y of a c t i v a t i o n decreases, i n d i c a t i n g that t h e greater t h e n u m b e r of sites, the greater
the r e q u i r e d o r d e r i n g .
I n t h e c a t a l y t i c c r a c k i n g of
c u m e n e , a large n u m b e r of c u m e n e m o l e c u l e s a d s o r b e d o n a large n u m b e r of i n t e r a c t i n g sites, w i t h 1 of these a d s o r b e d m o l e c u l e s u n d e r g o i n g the r e a c t i o n . T h e process does n o t i n v o l v e 1 c u m e n e m o l e c u l e r e a c t i n g w i t h 1 site. I t is the c r y s t a l l i n e structure of t h e zeolite, w h i c h p e r m i t s inter a c t i o n b e t w e e n a large n u m b e r of a c i d sites, that makes t h e zeolite catalyst s u p e r i o r to the a m o r p h o u s a l u m i n a s i l i c a g e l catalyst. T h e next step i n the d e t e r m i n a t i o n of t h e m e c h a n i s m of the c a t a l y t i c a c t i o n o f t h e a c i d zeolite catalyst is e l u c i d a t i n g the n a t u r e of the a c t i v e
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
318
M O L E C U L A R SIEVE
ZEOLITES
II
site—is i t a B r o n s t e d a c i d , L e w i s a c i d , o r base site? T h e B r o n s t e d a c i d site is a p r o t o n a d s o r b e d o n a n o x y g e n a t o m next to a n a l u m i n u m a t o m . T h e L e w i s a c i d sites are p r o d u c e d f r o m 2 B r o n s t e d sites b y e l i m i n a t i o n of w a t e r w i t h 2 protons a n d a n o x y g e n f r o m t h e a l u m i n u m — s i l i c o n b o n d . T h e d e h y d r a t i o n process w a s q u a n t i t a t i v e l y s t u d i e d b y T u r k e v i c h a n d C i b o r o w s k i (27),
u s i n g a stream of h e l i u m gas f o r d e h y d r a t i o n a n d a
t h e r m a l c o n d u c t i v i t y f o r d e t e r m i n a t i o n of t h e a m o u n t of w a t e r o r a m Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 1, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch063
m o n i a p r o d u c e d at a n y d e s i r e d t e m p e r a t u r e .
A l l the water was removed
f r o m the s o d i u m faujasite b y 2 5 0 ° C a n d n o f u r t h e r w a t e r w a s e v o l v e d e v e n w h e n the s o d i u m faujasite w a s h e a t e d to 9 0 0 ° C .
T h i s w a s t a k e n as
p r o o f that i n a s o d i u m zeolite there are n o free h y d r o x y l groups n o r a n y h y d r o g e n b o n d s h o l d i n g the structure together.
T h e s e findings are c o n
sistent w i t h the structure of t h e faujasite as d e t e r m i n e d b y x - r a y c r y s t a l l o g r a p h y . T h e w a t e r e v o l v e d i n t h e d e h y d r a t i o n of the s o d i u m faujasite was the w a t e r i n the cavities. W h e n t h e same p r o c e d u r e w a s a p p l i e d to a m m o n i u m faujasite, the same a m o u n t o f w a t e r w a s p r o d u c e d b e l o w 2 5 0 ° C as f r o m the p u r e s o d i u m faujasite. c o m p l e t e d b y heat treatment
at 4 0 0 ° C .
T h e a m m o n i a e v o l u t i o n is
T h e p r o d u c t at this stage is
essentially a B r o n s t e d a c i d . F u r t h e r heat treatment i n t h e t e m p e r a t u r e range of 4 5 0 ° - 6 0 0 ° C
p r o d u c e s f u r t h e r d e h y d r a t i o n , w h i c h converts the
B r o n s t e d acids i n t o a L e w i s a c i d a n d a B r o n s t e d base site w i t h r e m o v a l of 2 h y d r o g e n atoms a n d a n o x y g e n b e t w e e n a n a l u m i n u m a n d s i l i c o n a t o m i n the faujasite skeleton. T h u s , t h e c o n d i t i o n s h a v e b e e n established f o r the p r e p a r a t i o n of t h e a c i d zeolite i n t h e B r o n s t e d f o r m — h e l i u m flow gas at a t e m p e r a t u r e u p to 400 ° C — a n d the L e w i s a c i d B r o n s t e d base f o r m b y d e h y d r a t i o n i n a flow of h e l i u m at a t e m p e r a t u r e 550°C.
at least o f
A m i x t u r e of b o t h types of a c i d centers is p r o d u c e d i n t h e t e m
p e r a t u r e r a n g e of 4 5 0 ° - 5 5 0 ° C .
W e are thus i n a p o s i t i o n to establish
w h i c h t y p e of a c i d i t y is r e s p o n s i b l e f o r the various types of c a t a l y t i c a c t i v i t y of the zeolites. O t h e r w o r k e r s h a v e s t u d i e d the t h e r m a l d e c o m p o s i t i o n of s o d i u m a n d a m m o n i u m zeolites b o t h b e f o r e a n d after the T u r k e v i c h a n d C i b o r o w s k i studies. T h e results w e r e at best s e m i q u a n t i t a t i v e , since t h e y w e r e c a r r i e d o u t i n a static gas flow or i n a v a c u u m w h e r e the rate of r e m o v a l of gaseous p r o d u c t s , w a t e r , a n d a m m o n i a w a s u n d o u b t e d l y d i f f u s i o n c o n trolled.
T h e analysis w a s m a d e u s i n g moist l i t m u s p a p e r or i n f r a r e d
spectral bands, both methods qualitative or semiquantitative. titative r e l a t i o n s h i p w a s established b e t w e e n e v o l v e d i n the first stage a n d the w a t e r
N o quan
the a m o u n t of a m m o n i a
e v o l v e d i n t h e process
of
d e h y d r o x y l a t i o n i n t h e s e c o n d stage (2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16,19,22,24,32,
34,35,36).
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
63.
TURKEviCH A N D ΟΝΟ
Catalytic
Activity
and Active Centers
319
Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 1, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch063
Experimental T h e catalyst w a s p r e p a r e d b y 70-hour treatment of 100 grams of L i n d e s o d i u m Y z e o l i t e w i t h 1700 m l of 22.1 w t % of a m m o n i u m nitrate. T h e s l u r r y w a s o c c a s i o n a l l y s t i r r e d . A f t e r filtration, t h e s o l i d w a s w a s h e d s e v e r a l times w i t h d i s t i l l e d w a t e r a n d d r i e d at r o o m t e m p e r a t u r e . T h e a m o u n t of s o d i u m r e p l a c e d b y a m m o n i u m i o n w a s 5 2 % b y analysis o f the filtrate f o r s o d i u m u s i n g t h e m a g n e s i u m u r a n y l acetate reagent. T h i s compares f a v o r a b l y w i t h the result o b t a i n e d b y T u r k e v i c h a n d C i b o r o w ski. T h e p a l l a d i u m catalyst w a s p r e p a r e d b y c o n t a c t i n g a s a m p l e of s o d i u m Y z e o l i t e w i t h P d ( N H ) C l to g i v e P d 3 . 5 % , N a 9 6 . 4 % Y z e o l i t e a n d s i m i l a r l y t r e a t i n g a s a m p l e of N H 5 4 % , N a 4 6 % Y zeolite to g i v e Pd 2.6%, N H 5 4 % , N a 4 6 % Y zeolite. E x p e r i m e n t s s t u d y i n g the c h a n g e i n r e t e n t i o n t i m e of b r a n c h e d h y d r o c a r b o n s s h o w e d that there w a s n o c h a n g e i n p o r e size, a n d conse q u e n t l y c r y s t a l l i n e structure, o n t h e heat p r e t r e a t m e n t i n t h e t e m p e r a t u r e studied. A conventional pulse catalytic microreactor was used w i t h 15-65 m g of t h e catalyst f o r the c u m e n e runs a n d 65 m g f o r the 2 , 3 - d i m e t h y l b u t a n e runs. T h e catalyst w a s h e l d b e t w e e n 2 s m a l l p l u g s of b o r o s i l i c a t e glass w o o l i n a 5 - m m I D d i a m e t e r b o r o s i l i c a t e reactor. I n some experiments, the catalyst w a s d i l u t e d w i t h 9 6 % s i l i c a p o r o u s glass p o w d e r . T h e h e l i u m gas w a s p u r i f i e d b y passage t h r o u g h a l u m i n a k e p t at l i q u i d n i t r o g e n temperature. T h e reaction temperature was measured b y a thermocouple l o c a t e d adjacent to the reactor. T h e catalyst was p r e t r e a t e d at t h e d e s i r e d t e m p e r a t u r e f o r 16 hours i n a stream of h e l i u m . T h e p r o d u c t s w e r e a n a l y z e d w i t h a d i o c t y l p h t h a l a t e gas c h r o m a t o g r a p h y c o l u m n at 1 1 0 ° C . 3
4
2
4
4
Cumene
+
+
Cracking
T h e c u m e n e c r a c k i n g r e a c t i o n w a s s t u d i e d at 3 2 5 ° C . kinetic equation F k =
W r
W
T h e simple
1 In 1
— χ
( w h e r e F is the flow rate of the c a r r i e r gas, W t h e w e i g h t of t h e catalyst, k the r e a c t i o n constant, a n d χ t h e i n i t i a l f r a c t i o n c o n v e r t e d )
could not
be u s e d because t h e active catalysts (those p r e p a r e d b y heat treatment b e l o w 5 0 0 ° C ) a l w a y s gave c o n v e r s i o n a b o v e the e q u i l i b r i u m c o n v e r s i o n . T h i s w a s c a u s e d b y t h e s e p a r a t i o n of the p r o d u c t s f r o m e a c h other a n d f r o m the c u m e n e i n the reactor.
T h e r e is a sharp d r o p i n t h e a c t i v i t y of
the catalyst o n pretreatment of the catalyst at temperatures above 5 0 0 ° C . T h e a c t i v a t i o n e n e r g y of the r e a c t i o n i n the t e m p e r a t u r e range of 2 8 5 ° — 325 ° C f o r a n active catalyst w a s e s t i m a t e d to b e 24 k c a l . T h e q u i n o l i n e t i t r a t i o n of the samples o b t a i n e d b y heat treatment at v a r i o u s t e m p e r a tures s h o w e d a s i m i l a r decrease i n the n u m b e r of active centers w i t h increase
i n the t e m p e r a t u r e
of p r e t r e a t m e n t
( F i g u r e 1 ) , a n d this is
s i m i l a r to the c u r v e o b t a i n e d b y d e h y d r a t i o n of the B r o n s t e d acids into
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 1, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch063
320
M O L E C U L A R SIEVE ZEOLITES
350
400
450
500
550
Π
600
TEMPERATURE OF PRETREATMENT (°C)
Figuré 1. Effect of pretreatment temperature on catalytic cracking of cumene and on hydrogendeuterium exchange L e w i s a c i d a n d B r o n s t e d bases. T h u s , B r o n s t e d a c i d sites are r e s p o n s i b l e for the catalytic cracking of cumene.
T h e q u i n o l i n e does n o t react w i t h
the L e w i s a c i d sites at 3 2 5 ° C b u t o n l y w i t h t h e B r o n s t e d a c i d sites. F u r t h e r m o r e , f o r samples w h o s e p r e t r e a t m e n t t e m p e r a t u r e is e q u a l o r less t h a n 400 ° C , t h e n u m b e r o f active sites is 8.3 χ 1 0 . T h i s v a l u e is 20
to b e c o m p a r e d w i t h 9.9 X 1 0 / g r a m 20
calculated f r o m stoichiometry,
a s s u m i n g 25 w t % o f w a t e r a n d a m m o n i a as d e t e r m i n e d b y T u r k e v i c h and Ciborowski. T h e role of p a l l a d i u m i n zeolite was investigated.
T h e N a 100%
z e o l i t e has n o a c t i v i t y f o r c u m e n e c r a c k i n g at 450 ° C . O n t h e other h a n d , P d 3 5 % N a 9 6 . 4 % Y zeolite cracks c u m e n e i n a stream o f h y d r o g e n w i t h rate constants o f 16.7 m l / m i n / g r a m at 400 ° C a n d 63.8 m l / m i n / g r a m at 443 ° C .
T h e chromatographic column d i d not distinguish between
propylene a n d propane.
T h e p a l l a d i u m u n d o u b t e d l y is r e d u c e d t o t h e
m e t a l , p r o d u c i n g protons o n t h e surface w h i c h act as B r o n s t e d a c i d . T h e i n t r o d u c t i o n o f d e c a t i o n a t e d sites enhances t h e f a v o r a b l e effect o f p a l -
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
63.
TURKEVICH AND ΟΝΟ
Catalytic
Activity
and Active Centers
l a d i u m , the rate constant at 3 2 5 ° C for P d 2 . 6 %
N H
4
54%
321
N a 43%
Y
zeolite b e i n g 1850 after the catalyst is p l a c e d i n a stream of h y d r o g e n o v e r n i g h t at 4 4 0 ° C .
T h e p a l l a d i u m c a n b e v i s u a l i z e d as a c t i v a t i n g the
h y d r o g e n to r e m o v e carbonaceous at these h i g h temperatures.
m a t e r i a l w h i c h f o r m s o n the surface
H o w e v e r , it is also possible that the p a l
l a d i u m h e t e r o l y t i c a l l y dissociates the h y d r o g e n m o l e c u l e i n t o H " a n d H , +
a n d these c o n v e r t a n y s m a l l n u m b e r of L e w i s a c i d - B r o n s t e d base o n the Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 1, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch063
surface i n t o a l u m i n u m h y d r i d e a n d B r o n s t e d a c i d sites. c a r r i e d out at h i g h e r temperatures
Experiments
c o n f i r m this p o i n t of v i e w .
With
p a l l a d i u m o n d e c a t i o n a t e d zeolite, c r a c k i n g of c u m e n e c a n take
place
when
catalyst
is treated
at m u c h h i g h e r temperatures
than without
p a l l a d i u m — e . g . , the rate constant (at 3 2 5 ° C ) for the catalyst t r e a t e d at 4 9 0 ° C is 1850, at 5 4 0 ° C is 1190, at 4 5 4 ° C is 1070, at 5 5 6 ° C is 440, a n d at 6 0 0 ° C is 300.
A t these temperatures, the B r o n s t e d acids w o u l d
be
c o n v e r t e d to L e w i s a c i d - B r o n s t e d base sites. T h e s e w o u l d b e ineffective for c u m e n e c r a c k i n g a n d w o u l d f a v o r c a r b o n f o r m a t i o n . Cracking
of 2,3
-Dimethylbutanè
T h e c r a c k i n g of this b r a n c h e d c h a i n p a r a f f i n w a s c a r r i e d o u t 400°-450°C.
at
T h e p r o d u c t s of the r e a c t i o n w e r e n o t s i m p l y p r o p y l e n e
a n d p r o p a n e , as w o u l d be e x p e c t e d f r o m s i m p l e scission, b u t 38.4 m o l e % C H , 24.8% 3
8
0.8%
C H , 13.8% 3
C H , 3.7%
6
of a n o n i d e n t i f i a b l e C
2
4
4
C H , 4.2% 2
C H
6
4
1 0
, 1.3%
and
hydrocarbon. T h e conversion was propor
t i o n a l to the w e i g h t of the catalyst u s e d a n d i n v e r s e l y p r o p o r t i o n a l to the flow rate of the carrier gas.
A n e x a m i n a t i o n of the degree of de-
c a t i o n i z a t i o n o n the r e a c t i o n s h o w e d that the 1 2 % for s o d i u m d i d not p r o d u c e active centers,
ammonia
exchange
b u t f r o m that p o i n t
the
a c t i v i t y of the catalyst was p r o p o r t i o n a l to the degree of d e c a t i o n a t i o n . T h e a c t i v a t i o n e n e r g y is 27 k c a l / m o l e . T h e effect of the t e m p e r a t u r e of p r e t r e a t m e n t o n the a c t i v i t y of the catalyst shows a m a x i m u m of a c t i v i t y after pretreatment at 4 5 0 ° C a n d t h e n a m a r k e d d r o p i n the
500°-530°C
r e g i o n ( F i g u r e 2 ). T h e s e results suggest that L e w i s a c i d sites are neces sary i n a d d i t i o n to B r o n s t e d a c i d sites to c r a c k b r a n c h e d c h a i n h y d r o carbons.
T h e s e L e w i s a c i d sites abstract
a hydride ion, producing a
c a r b o n i u m i o n w h i c h t h e n undergoes v a r i o u s c a r b o n i u m i o n reactions w i t h the h e l p of B r o n s t e d a c i d a n d base sites. T h e necessity of a c e r t a i n n u m b e r of L e w i s sites for the c r a c k i n g of paraffins finds f u r t h e r s u p p o r t i n the results o b t a i n e d w i t h p a l l a d i u m .
Replacement
of 3.4%
of
the
s o d i u m ions b y p a l l a d i u m does not enhance the c r a c k i n g of 2 , 3 - d i m e t h y l butane.
T h e i n t r o d u c t i o n of p a l l a d i u m i n the d e c a t i o n a t e d Y z e o l i t e
( P d 2 . 6 % , N H 5 4 % , N a 43.4% ) a n d treatment w i t h h y d r o g e n at 3 6 0 ° 4
or 495 ° C o v e r n i g h t p r o d u c e d a catalyst w h i c h s h o w e d n o a c t i v i t y f o r
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
322
M O L E C U L A R SIEVE ZEOLITES
Π
Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 1, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch063
10,
ot=-=J 400
1 450
1 500
1— 550
Figure 2. Effect of pretreatment tem perature on catalytic cracking of 2,3-dimeihylbutane, using a decationated zeo lite and a paUadium-decationated zeolite the c r a c k i n g of 2 , 3 - d i m e t h y l b u t a n e at 4 0 0 ° C , w h i l e i t c r a c k e d r e a d i l y at 3 2 5 ° C .
cumene
T h e f u n c t i o n of p a l l a d i u m a n d p r o b a b l y other m e t a l
h y d r o g e n a t i n g a d d i t i o n s i n s u p p o r t e d o x i d e systems is to c a t a l y z e t h e h e t e r o l y t i c s p l i t t i n g of h y d r o g e n gas i n t o n e g a t i v e h y d r i d e i o n a n d a proton.
T h e n e g a t i v e h y d r i d e i o n serves as a h y d r o g e n b r i d g e b e t w e e n
the a l u m i n u m a n d s i l i c o n atoms of the L e w i s a c i d site, a n d t h e p r o t o n n e u t r a l i z e s t h e B r o n s t e d base site to m a k e a B r o n s t e d a c i d . T h i s a c i d m a y b e a l l the stronger b e c a u s e of t h e close p r o x i m i t y of the A l - H - S i b o n d . T h u s , b y using p a l l a d i u m a n d a decationated zeolite, the c r a c k i n g of i n d u s t r i a l l y v a l u a b l e b r a n c h e d c h a i n h y d r o c a r b o n s is m i n i m i z e d w h i l e the " c l i p p i n g off" of a l k y l side chains f r o m aromatics c a n b e c a r r i e d o u t r e a d i l y e v e n at h i g h temperatures. Cracking
of Branched Chain Olefins
T h e c r a c k i n g of the 2 , 3 - d i m e t h y l - 2 - b u t e n e a n d 2 , 3 - d i m e t h y l - l - b u t e n e s h o w e d that t h e rates of t h e v a r i o u s reactions t h e y u n d e r g o w e r e i n d e p e n d e n t of t h e p o s i t i o n of the d o u b l e b o n d or the t e m p e r a t u r e of p r e t r e a t m e n t of t h e catalyst.
B o t h B r o n s t e d a n d L e w i s acids w e r e effective.
A t 200 ° C , the d o u b l e b o n d m i g r a t i o n r e a c t i o n w a s d o m i n a n t a n d a significant c a r b o n skeleton i s o m e r i z a t i o n to 3 , 3 - d i m e t h y l - l - b u t e n e w a s observed.
A s l i g h t a m o u n t of c r a c k i n g w a s n o t e d .
A t 3 0 0 ° C , t h e 2,3-
d i m e t h y l b u t e n e s h a d i s o m e r i z e d extensively i n t o t h e 3 , 3 - d i m e t h y l b u t e n e , a n d this c o m p o u n d u n d e r w e n t c r a c k i n g to p r o d u c e 1 3 % C ' s a n d 2 6 % 5
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
63.
TURKEVICH AND ΟΝΟ
C 's.
Catalytic
Activity
and Active Centers
323
A t 4 0 0 ° C , a n appreciable amount of 3,3-dimethylbutene still per
4
sists, the C s a n d C s r e m a i n at t h e same l e v e l as at 3 0 0 ° C , b u t the y i e l d 4
5
of p r o p y l e n e increases to 1 0 % o f t h e p r o d u c t .
T h e s e results i n d i c a t e
that t h e c r a c k i n g o f a n olefin first i n v o l v e s a skeleton i s o m e r i z a t i o n to a n olefin w h o s e subsequent c r a c k i n g reactions are n o t e x p l a i n e d r e a d i l y
Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 1, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch063
by a simple carbonium ion mechanism.
Xylene
Isomerization
T h e c o n v e r s i o n o f ortho- t o meta- a n d p a r a - x y l e n e w a s c a r r i e d o u t o n a series o f d e c a t i o n a t e d catalysts w h i c h w e r e subjected t o t h e r m a l treatment at v a r i o u s temperatures.
10-yl pulses of o-xylene w e r e u s e d ,
the catalyst a m o u n t w a s 3 0 0 - 3 5 0 m g , a n d t h e flow rate o f t h e h e l i u m c a r r i e r gas w a s 5 0 - 1 0 0 m l / m i n .
T h e p r o d u c t s w e r e a n a l y z e d o n 7.8-
benzoquinoline o n Chromosorb W gas-chromatographic column. T h e ra-xylene
p r e d o m i n a t e d over the p a r a i s o m e r . A s m a l l toluene p r o d u c t i o n
s e e m e d to p a r a l l e l that o f i s o m e r i z a t i o n . T h e c o n v e r s i o n o f x y l e n e
400
440
480
520
560
TEMPERATURE OF PRETREATMENT (°C)
Figure 3. Effect of pretreatment temperature on catalytic isomerization of ortho-xylene
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
χ
324
M O L E C U L A R SIEVE ZEOLITES
( r a t i o of meta-
a n d para-xylenes to t o t a l x y l e n e s )
followed
II
first-order
kinetics
where x
eq
w a s t h e e q u i l i b r i u m v a l u e of 0.782. T h e p l o t o f the l o g a r i t h m
t e r m against W/F Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 1, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch063
0
gave a straight l i n e w h o s e slope gave t h e
first-order
r e a c t i o n constant, k. A p l o t of k against t h e t e m p e r a t u r e of the pretreat m e n t of t h e catalyst s h o w e d a m a r k e d d r o p i n t h e c u r v e at 5 0 0 ° - 5 2 0 ° C , a g a i n i n d i c a t i n g that B r o n s t e d
a c i d sites are r e s p o n s i b l e
f o r xylene
i s o m e r i z a t i o n ( F i g u r e 3 ) (15, 36). N o t a l l reactions take p l a c e o n t h e B r o n s t e d a c i d sites. T h e h y d r o gen-deuterium
equilibration
takes
place
on the L e w i s
acid
sites
(Figure 1). T h e c h a r a c t e r i z a t i o n o f these L e w i s a c i d sites b y m a g n e t i c resonance techniques has b e e n extensively p u r s u e d i n t h e l a b o r a t o r y .
Literature Cited (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25)
Barrer, R. M., Endeavour 1964, 23, 122. Benesi, Η. Α., J. Catalysis 1967, 8, 368. Bertsch, L., Hapgood, H. W.,J.Phys. Chem. 1963, 67, 1621. Breck, D. W.,J.Chem. Educ. 1964, 41, 678. Carter, J. L., Lucchesi, P. J., Yates, D. J.C.,J.Phys. Chem. 1961, 68, 1385. Cattanach, J., Wu, E. L., Venuto, P. B., J. Catalysis 1968, 11, 342. Eberly, P.K.,J.Phys. Chem. 1968, 72, 1042. Emmett, P.H.,Kokes, R. V., Tobin, H. P.,J.Am. Chem. Soc. 1955, 77, 5860. Fischer, L. F., Meier, W. M., Fortschr. Mineral. 1965, 42, 50-86. Hughes, T. R., White, H. M.,J.Phys. Chem. 1967, 71, 2192. Kerr, G. T.,J.Catalysis 1969, 15, 200. Kerr, G. T.,J.Phys. Chem. 1967, 71, 4155. Ibid., 1969, 73, 2780. Kerr, G. T., Shipman, G. F.,J.Phys. Chem. 1968, 72, 3071. Hansford, R. C., Ward, J. W.,J.Catalysis 1969, 13, 316. Liengme, Β. V., Hall, W. K., Trans. Faraday Soc. 1966, 62, 3229. Mackey, J., Thomas, W. H., Turkevich, J., Actes Congr. Intern. Catalyse, 2nd, Paris, 1960, 1961, 1815. Nicula, Α., Stamires, D., Turkevich, J.,J.Chem. Phys. 1965, 42, 3684. Peri, J. B., Actes Congr. Intern. Catalyse, 2nd, Paris, 1960, 1961, 1, 1333. Pickert, P. E., Rabo, J. Α., Dempsey, E., Schomaker, V., Proc. Intern. Congr. Catalysis, 3rd, Amsterdam, 1964, 1965, 714. Rabo, J. Α., Angell, C. L., Kasai, P. H., Shomaker, V., Disc. Faraday Soc. 1966, 41, 328. Smith, J. V., Bennett, J. M., Flanigen, Ε. M., Nature 1967, 215, 241. Stamires, D. N., Turkevich, J.,J.Am. Chem. Soc. 1964, 86, 749, 757. Szymanski, Η. Α., Stamires, D. N., Lynch, G. R.,J.Apt. Soc. Am. 1960, 50, 1323. Turkevich, J., Catalysis Rev. 1967, 1, 1-35.
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 1, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch063
63. TURKEVICH AND ΟΝΟ Catalytic Activity and Active Centers 325
(26) Turkevich, J., Preprints of Papers from USA for Japan USA Seminar on Catalytic Science, A-3-1-A-3-27, Tokyo and Kyoto, Japan, May 6, 1968. (27) Turkevich, J., Ciborowski, S., J. Phys. Chem. 1967, 71, 3208. (28) Turkevich, J., Ichikawa, Α., Ikawa, T., 140th Meeting, ACS, Chicago, 1961. (29) Turkevich, J., Murakami, Y., Nozaki, F., Ciborowski, S., Chem. Eng. Progr. 1967, 63, 75. (30) Turkevich, J., Nozaki, F., Stamires, D. N., Proc. Intern. Congr. Catalysis, 3rd, Amsterdam, 1964, 1965, 586. (31) Turkevich, J., Ono, Y., Bull. Polytech. Inst. Jassy (Roumania), in press. (32) Uytterhoeven, J. B., Christner, L. G., Hall, W. K., J. Phys. Chem. 1965, 69, 2117. (33) Venuto, S. B., Landis, P. S., Advan. Catalysis 1968, 18, 259. (34) Ward, J. W., J. Catalysis 1967, 9, 225. (35) Ibid., 1968, 10, 34. (36) Ibid., 1969, 13, 321. RECEIVED January 30, 1970.
Discussion R. C . Pink ( Q u e e n s U n i v e r s i t y , Belfast, N o r t h e r n I r e l a n d ) : T u r k e v i c h has s a i d that o n l y the D - H exchange r e a c t i o n c a n , w i t h certainty, b e a t t r i b u t e d to the L e w i s a c i d a c t i v i t y . T h e c y c l o p r o p a n e i s o m e r i z a t i o n r e a c t i o n , h o w e v e r , seems to r e s p o n d to b o t h the B r o n s t e d a n d the L e w i s activity.
NH
4
+
Y zeolites a c t i v a t e d at different temperatures s h o w t w o
t e m p e r a t u r e regions of a c t i v i t y , o n e c o r r e s p o n d i n g closely to the B r o n s t e d a c t i v i t y of the catalyst, the other at a m u c h h i g h e r t e m p e r a t u r e ( — 6 5 0 ° ) c o r r e s p o n d i n g to t h e t e m p e r a t u r e at w h i c h the e l e c t r o n d o n o r - a c c e p t o r p r o p e r t i e s are at a m a x i m u m . J. T u r k e v i c h :
I was i n error i n the statement that h y d r o g e n - d e u
t e r i u m exchange r e a c t i o n is the o n l y r e a c t i o n that takes p l a c e w i t h the h e l p of a c i d sites, f o r w e h a v e f o u n d that butene-1 to butene-2
trans
f o r m a t i o n is c a t a l y z e d b y b o t h B r o n s t e d a n d L e w i s a c i d sites. T h e B r o n sted sites, h o w e v e r , g i v e a m a r k e d stereospecificity i n p r o d u c i n g n o n e q u i l i b r i u m m i x t u r e s of cis a n d trans, w h i l e the L e w i s a c i d sites g i v e a n e q u i l i b r i u m m i x t u r e of the g e o m e t r i c isomers. M . S. Goldstein ( A m e r i c a n C y a n a m i d , S t a m f o r d , C o n n . 0 6 9 0 2 ) : t h i n k that the results f r o m y o u r p u l s e m e t h o d a n d o u r c o n t i n u o u s
I
flow
m e t h o d f o r p o i s o n i n g w i t h q u i n o l i n e ( G o l d s t e i n , M . S., M o r g a n , T . R . , /. Catalysis
1970, 16, 232) are i n g e n e r a l agreement.
However, we found
a correspondence between quinoline adsorption a n d quinoline poisoning. W e also f o u n d that N a Y a d s o r b e d q u i n o l i n e as w e l l as H Y . W e inter p r e t e d the q u i n o l i n e p o i s o n i n g as c a u s e d b y supercage b l o c k a g e .
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.
Would
326
M O L E C U L A R SIEVE ZEOLITES
II
y o u agree that o u r results i n d i c a t e that q u i n o l i n e is n o t a s p e c i f i c p o i s o n f o r B r o n s t e d sites? J . T u r k e v i c h : N o , w e are c o n v i n c e d m o r e t h a n ever f r o m the q u a n t i t a t i v e results that w e h a v e p u b l i s h e d that q u i n o l i n e i n the p o i s o n i n g experiments b l o c k s specific sites i n supercages.
T o t a l a d s o r p t i o n of q u i n
o l i n e c a n take p l a c e b e y o n d this specific p o i s o n i n g a n d , b e i n g n o n s p e c i f i c to sites, has n o r e l e v a n c e to catalysis. Downloaded by UNIV OF MASSACHUSETTS AMHERST on June 1, 2018 | https://pubs.acs.org Publication Date: June 1, 1971 | doi: 10.1021/ba-1971-0102.ch063
P . B . V e n u t o ( M o b i l O i l C o r p . , Paulsboro, N . J. 08034): I n your s e c o n d s l i d e , y o u s h o w e d a p l o t of c a t a l y t i c a c t i v i t y vs. n u m b e r of c a t a l y t i c sites f o r a n a m m o n i u m - e x c h a n g e d Y system.
I n this s l i d e , c a t a l y t i c ac
t i v i t y d i d n o t increase i n a s i m p l e l i n e a r r e l a t i o n s h i p ; rather, it i n c r e a s e d g r e a t l y at the h i g h e r site concentrations.
D o y o u a t t r i b u t e this to the
a p p e a r a n c e of sites w i t h h i g h e r e n e r g y ( d i f f e r e n t t y p e sites) or to the " c o l l e c t i v e " a c t i o n of sites of s i m i l a r types? J . T u r k e v i c h : T h e s l i d e w a s f r o m a n earlier p u b l i s h e d w o r k p r e sented at the A m s t e r d a m I n t e r n a t i o n a l C o n g r e s s o n C a t a l y s i s . It indicates first that the c a t a l y t i c a c t i v i t y p e r site is not constant as one increases the n u m b e r of sites, b u t m o r e d r a m a t i c a l l y that it increases w i t h increases i n site n u m b e r e v e n w h e n these n e w sites are n o t a v a i l a b l e to the substrate (cumene)
or p o i s o n q u i n o l i n e . T h i s w e i n t e r p r e t to b e o w i n g to inter
a c t i o n a n d m i g r a t i o n of protons ( a n d / o r electrons)
a m o n g the v a r i o u s
sites.
Flanigen and Sand; Molecular Sieve Zeolites-II Advances in Chemistry; American Chemical Society: Washington, DC, 1971.