Catalytic Aspects of Metal Phosphine Complexes - ACS Publications

diene cluster [Pt 3 (SnCl 3 ) 2 ( C 8 H 1 2 ) 3 ] which has a triangle of platinum ... relative to external H 3 P 0 4 , Me4 Sn, and Na 2 PtCl e and ±...
3 downloads 0 Views 1MB Size
2

P-31, Sn-119, and Pt-195 NMR Studies on Platinum-Tin Homogeneous Hydrogenation Catalysts K. A . O S T O J A S T A R Z E W S K I and P. S.

PREGOSIN

Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002

Laboratorium für Anorganische C h e m i e , E T H - Z e n t r u m , Universitätstrasse 6, C H - 8 0 9 2 Zürich, S w i t z e r l a n d

P-31, Sn-119, and Pt-195 NMR spectroscopic methods have been used to identify the products of the reaction of SnCl2 with phosphine complexes of platinum(II). These complexes are of the type [Pt(SnCl3)L(PR )2], L = Cl-, SnCl3-, H-, or alkyl, and are of interest, spectroscopically, in that the one-bond platinum-tin coupling 1J(195Pt,1 1 9 S n )can exceed 30,000 Hz and therefore represents the largest known nuclear spin-spin coupling constant. The two-bond interaction in the poly-SnCl complex J(119Sn, 117Sn) at > 18,000 Hz is also exceedingly large. 3

3

2

P

l a t i n u m p h o s p h i n e c o m p l e x e s a r e r e c o g n i z e d t o f u n c t i o n as h o m o ­ geneous

hydrogénation

c o m b i n e d w i t h a n excess

a n d hydroformylation

catalysts

o f a c o - c a t a l y s t s u c h as t i n ( I I )

when

chloride

(1, 2, 3 ) . S p e c i f i c a l l y , α-olefin h y d r o f o r m y l a t i o n p r o c e e d s b o t h w i t h high y i e l d a n d selectivity SnCl

2

using the combination [PtCl (PPh ) ] + 2

3

2

as s h o w n i n E q u a t i o n 1 (4):

CH (CH ) CH=CH 3

d V

2

Z

/

4

4

2 A

— PtCUPPhak + n-SnClj

• 9 0 % 1-octanal

(1)

66° T h e h o m o g e n e o u s hydrogénation a n d h y d r o f o r m y l a t i o n r e a c t i o n s are k n o w n to i n v o l v e m e t a l h y d r i d e , m e t a l olefin, a n d m e t a l a l k y l c o o r d i n a t i o n c o m p l e x e s ( 5 ) ; h o w e v e r , t h e r e is r e l a t i v e l y l i t t l e i n t h e literature c o n c e r n i n g the function o f S n C l i n this connection. T h e w o r k t h a t h a s b e e n d o n e s u g g e s t s (6, 7, 8, 9) t h a t S n C l r e a c t s w i t h p l a t i n u m c o m p l e x e s c o n t a i n i n g a P t - C l b o n d a c c o r d i n g to E q u a t i o n 2. 2

2

0065-2393/82/0196-0023$05.00/0 © 1982 American Chemical Society Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

24

METAL PHOSPHINE COMPLEXES

Pt-Cl + SnCl

Pt-SnCl

2

(2)

3

I n s u p p o r t o f the d i r e c t p l a t i n u m - t i n b o n d are structural

determinations

(SnCl )(PPh )] (ii), 3

3

for

[Mn(SnCl )(CO) ] 3

5

[ A u ( S n C l ) ( P M e P h ) ] (12), 3

2

2

crystallographic

(10),

[Pd(w-allyl)-

a n d the

cycloocta-

d i e n e cluster [ P t ( S n C l ) ( C H ) ] w h i c h has a triangle o f p l a t i n u m 3

3

2

8

1 2

3

a t o m s c a p p e d a b o v e a n d b e l o w b y t w o S n C l " g r o u p s (13). 3

In addition

to t h e m e t a l - m e t a l b o n d t h e r e a r e t w o f u r t h e r p o s s i b l e i n t e r a c t i o n s o f the S n C l " l i g a n d w i t h the p l a t i n u m . T h e

m o s t t r i v i a l is n o n a s s o -

3

ciative, w i t h the S n C l trichlorostannate

2

s e r v i n g as a c h l o r i d e e x t r a c t o r f o r m i n g

counterion, and

indeed

t h e s o l i d state for [ C o C l ( d p p e ) ] S n C l

Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002

2

phino)ethane recent

(14).

this has

(dppe =

3

been

of

in

l,2-bis(diphenylphos-

T h e last a n d most i n t r i g u i n g option, stems

structural determination

the

found

[Ag(SnCl )(PP)] 3

where

2,ll-bis(diphenylphosphinomethyl)benzo[c]phenanthrene,

a

from

a

PP

=

chelat­

i n g d i p h o s p h i n e that m a y s p a n the trans positions o f a s q u a r e p l a n a r c o m p l e x (15).

I n t h i s m o l e c u l e , a b b r e v i a t e d as I, t h e S n C l ~ c o o r d i ­ 3

nates to the t r a n s i t i o n m e t a l v i a the h a l o g e n .

CI

SnCl

2

I

T h e p r o b l e m o f e s t a b l i s h i n g the solution structure o f p l a t i n u m tin complexes

is c o m p l i c a t e d b y t h e l a b i l i t y o f t h i s s y s t e m . W e

f o u n d (16,

( a n d w i l l refer to this later) that these c o m p l e x e s

17)

have are

o f t e n d y n a m i c o n t h e N M R t i m e s c a l e . D e s p i t e t h e s e d i f f i c u l t i e s i t is p o s s i b l e to c h a r a c t e r i z e s u c h m o l e c u l e s u s i n g N M R T h i s means that w e

u s e (a)

P-31 N M R

methods.

both qualitatively,

for

information o n the orientation o f the tertiary p h o s p h i n e ligands, a n d a n a l y t i c a l l y t o d e t e r m i n e t h e n u m b e r o f c o m p l e x e s i n s o l u t i o n (this is a very receptive nucleus a n d 1-2% readily);

(b)

S n - 1 1 9 (I = i

o f i m p u r i t i e s often are

n a t u r a l a b u n d a n c e = 8.6%)

detected

NMR

p r o b e for t h e i d e n t i t y o f t h e t r i c h l o r o s t a n n a t e m o i e t y ; a n d (c) (I = i , n a t u r a l a b u n d a n c e = 3 3 . 7 % ) N M R

as

a

Pt-195

for m u l t i p l i c i t y d a t a c o n ­

c e r n e d w i t h the n u m b e r of coordinated phosphines (and N M R spins i n g e n e r a l ) . T h e v a l u e o f H - l N M R i n m e t a l h y d r i d e c h e m i s t r y is so w e l l e s t a b l i s h e d (18)

t h a t n o f u r t h e r j u s t i f i c a t i o n is r e q u i r e d h e r e .

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

2.

STARZEWSKi A N D P R E G O S I N

Pt-Sn

Hydrogénation

25

Catalysts

W e b e g i n b y c o n s i d e r i n g the products o f E q u a t i o n 3 a n d f o l l o w b y d i s c u s s i n g t h e c o m p l e x e s t h a t r e s u l t from a d d i n g m o l e c u l a r h y d r o g e n and eventually an acetylene. PtCl P 2

? -SSi* ?

2

(3)

Experimental P-31, Sn-119, and Pt-195 N M R spectra were measured using B r u k e r H X - 9 0 ( P only) a n d W M - 2 5 0 (101.27, 93.28, and 53.77 M H z ) spectrometers. T h e samples were measured as solutions i n rotating 10-mm tubes u s i n g ~40°-45° pulse angles for P , S n , and P t w i t h acquisition times of —0.7, 0.2, and 0.2 s, respectively. Spectral widths were routinely (WM-250) 10,000, 50,000 and 50,000 H z for these same n u c l e i . C h e m i c a l shifts are i n parts per m i l l i o n relative to external H P 0 , M e S n , a n d N a P t C l a n d ± 1 p p m for the two metals. A positive sign indicates a shift to a lower field (higher frequency) relative to the reference. C o u p l i n g constants are i n hertz a n d are ± 3 H z for Ρ and ±12 H z for S n a n d P t . T h e variable-temperature spectra were mea­ sured u s i n g the commercially p r o v i d e d controller whose accuracy is ~ ±1°C. T h e temperatures a n d solvents for the i n d i v i d u a l measurements are given i n the tables. Sample concentrations were of the order of 5 x 10~ M . 31

Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002

31

119

195

3

4

4

2

e

31

1 1 9

195

2

Results and

Discussion

[PtCl(SnCl )P ] Complexes. T h e r e a c t i o n o f cis- [ P t C l ( P E t ) ] (or t h e t r i p r o p y l or t r i - n - b u t y l a n a l o g s ) i n e i t h e r C D C 1 o r C D C 1 d o e s n o t afford s i m p l e i n s e r t i o n o f S n C l i n t o a P t - C l b o n d to y i e l d t h e c i s i s o m e r , b u t g i v e s d i r e c t l y trans- [ P t C l ( S n C l ) ( P E t ) ] . T h e trans i s o m e r is s u g g e s t e d b y t h e a p p e a r a n c e o f a s i n g l e P r e s o n a n c e , δ = 13.6, flanked symmetrically by P t (7( Pt, P ) = 2 0 4 2 H z ) a n d - Sn (7( Sn, 3 i ) = 227 H z , / ( S n , P) = 2 3 7 H z ) satellite lines. (In the p r o c e e d i n g p a g e s o n l y v a l u e s for t h e S n isotope w i l l b e given). T h e S n s p e c t r u m reveals t r i p l e t structure from the t w o P E t groups a n d P t s a t e l l i t e s w h o s e s p a c i n g is s t r o n g l y s u g g e s t i v e o f a o n e - b o n d c o u ­ p l i n g constant; the P t spectrum shows a 1 : 2 : 1 structure confirming t h e p r e s e n c e o f t w o e q u i v a l e n t P E t g r o u p s (δ P t = - 4 7 9 0 r e l a t i v e to N a P t C l ) . W e reserve further c o m m e n t o n these c o u p l i n g constants u n t i l t h e d e s c r i p t i v e c h e m i s t r y is finished. T h e s a m e c o m p l e x is o b ­ t a i n e d d i r e c t l y f r o m trans- [ P t C l ( P E t ) ] . T h e a n a l o g o u s d i c h l o r i d e c o m p l e x c o n t a i n i n g t h e trans s p a n n i n g c h e l a t e , C o m p l e x II, w h i c h is e l e c t r o n i c a l l y s i m i l a r to P E t , c l e a n l y affords £ r a n s - [ P t C l ( S n C l ) ( E t P P E t ) ] (19). 3

2

2

3

2

3

2

2

2

3

3

2

3 1

1 9 5

117

2

P

195

1 1 9

31

1 1 7

1 1 9

31

1 1 9

1 1 9

3

1 9 5

1 9 5

1 9 5

3

2

e

2

3

2

3

2

3

2

T h e c o m p l e x e s cis-[PtCl(SnCl )P ] m a y be obtained starting from either a c i s - b i s - p h o s p h i n e c o m p l e x o f a tertiary aryl p h o s p h i n e or a c h e l a t i n g d i p h o s p h i n e , e.g. P P h or D I O P c o m p l e x e s (20), ( a l t h o u g h careful e x a m i n a t i o n o f the P-31 spectra o f the monodentate systems s u g g e s t s t h a t t h e t r a n s i s o m e r is a l s o p r e s e n t ) . 3

2

3

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

METAL PHOSPHINE COMPLEXES

26

= Et PPEt 2

CH

CH

2

Et P

2

PEt

2

= bis(diethylphosphinom e t h y l ) b e n z o [ c]phenanthrene

2

2

II

[Pt(SnCl ) P ] Complexes.

Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002

3

2

Further addition of S n C l

2

t i o n c o n t a i n i n g trans- [ P t C l ( S n C l ) ( P E t ) ] l e a d s 3

3

s h o w n i n E q u a t i o n 4. U n f o r t u n a t e l y , S n C l

2

2

to a solu­

to the e q u i l i b r i u m

2

is o n l y s p a r i n g l y s o l u b l e i n

c h l o r i n a t e d h y d r o c a r b o n s ; h o w e v e r , sufficient tin(II) d i c h l o r i d e c a n b e d i s s o l v e d i n a c e t o n e s u c h that t h e e q u i l i b r i u m lies far to the right. fran5-[PtCl(SnCl )(PEt ) l 3

3

trans-[Pt(SnCl ) (PEt ) ]

2

3 2

(4)

3 2

A t t h i s p o i n t i t is w o r t h m e n t i o n i n g t h a t t h e r e a r e t w o w a y s

to

detect the presence o f a poly-trichlorostannane derivative u s i n g N M R s p e c t r o s c o p y : (1) v i a t h e r e l a t i v e i n t e n s i t i e s o f t h e

1 1 7

Sn and

1 1 9

S n satel­

l i t e s i n t h e P - 3 1 (or P t - 1 9 5 ) N M R s p e c t r u m a n d (2) f r o m t h e o b s e r v a ­ tion o f a y( 2

1 1 7

Sn,

1 1 9

S n ) c o u p l i n g constant i n the Sn-119 spectrum.

P o i n t 2 is t h e m o r e o b v i o u s a n d c a n b e d e m o n s t r a t e d for a c o m ­ p l e x s u c h as III. C l e a r l y t h e t w o m a g n e t i c a l l y i n e q u i v a l e n t t i n a t o m s PEt Cl

3

1 1 7

3

Sn—Pt— PEt

1 1 9

SnCl

3

3

III w i l l superimpose a n additional s i m p l e c o u p l i n g pattern o n the Sn-119 spectrum, thereby u n e q u i v o c a l l y establishing the presence o f more t h a n o n e S n C l " l i g a n d (see F i g u r e 1). 3

P o i n t 1 is l e s s o b v i o u s b u t e q u a l l y i m p o r t a n t . I n t h e P - 3 1 s p e c t r u m o f a m o n o - t i n c o m p l e x , the ratio o f the

1 1 9

S n (or

1 1 7

S n ) satellites to the

m a i n - b a n d ( P not c o u p l e d to N M R - a c t i v e tin) w i l l b e approximately 3 1

1 : 2 0 d u e to the r e l a t i v e l y d i l u t e s p i n I = i t i n isotopes ([—84% not c o u p l e d to I = \ S n ] / [ ~ 8 %

3 1

P c o u p l e d t o e.g.

1 1 9

d u e to c o u p l i n g ] ) . I n a c o m p l e x c o n t a i n i n g t w o S n C l molecules

having only one

1 1 7

S n or

1 1 9

3 1

P

Sn, divided by 2 3

groups there are

S n (-13%) and a few

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

(

2

2

CD CU/RT CD C1 /-30°C CD Cy-80°C CDCl3/-50°C

e

d

b

3

t

3

2

117

2

3

3

3

119

2

3

3

2

2

e

3

8

2

(+4.0) (-7.9) (-5.4) (-5.3)

(+0.1)

(-2.7)

(-1.1) (+1.4) (-7.2) (-2.3)

(Δδ)»

2493 2503 2640 2625

2650

2713

( -301) ( -311) ( -297) (-294)

( -369)

( -339)

(•- 6 3 3 ) ( -356) ( -363) ( -347)

2102 2041 2372 2363

6

(Δ/)

/ΐββρα»

8

3

(CI complex)], e.g. (values for [PtCl(SnCl )(PEt ),])

9.8 10.1 18.3 18.0

+28.5

+24.6

+ 17.1 + 13.6 + 18.8 +20.5

3 1

δ Ρ

P-31N M R Data"

T + irons-[PtCHSnCljKPEt^]' T + trans- [ P t C * ( S n C l ) ( P B z P h ) ] + T trans- [ P t C ( S n C l ) ( P P h ) ] + T trans- [ P t C ( S n C l ) ( P P h ) ] Λ experimental for details The Δ sign refers to the following difference: [(SnCl complex) [PtCl (PEt ) ]). ' Et^PP = Complex II. Average of S n and S n . MeO,C = C H C 0 M e . C = phenyl; C = E t 0 C = C H C O E t ; C

3

2

[PtH(SnCl )(PPh ) ]

3

trans-

c

[PtH(SnCl )(PBzPh ) ]

2

2

trans-

3

3

3

3

3

[PtCUSnClaXEtfT)]' [PtCl(SnCl )(PEt ) ] [PtH(SnCl )(Et4PP)] [PtH(SnCl )(PEt ) ]

transtranstranstrans-

T a b l e I.

Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002

34

METAL PHOSPHINE COMPLEXES o q ^ T t r - i o c s j i o o o

(M CM

«-H i-H

β 00

Ν Η Ν 05 Ο ι>

Ο Ο (Ν CO CO Œ>

»

Η

C

* ^

i-H i-H ©

i-H

χ J (Μ

11

ce

^

J

^

S ο ίο σ ί ο

00 ΙΟ

+ + +

Η

+

©

CO CO ^ b00 b- l> ic

-Η 00 ο Η Φ ι—1

Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002

+ ++

ce

I>t^ co

1

I I

ce 15 Q

Τ3

ΙΟ 00 ^t co ο œ co oq

OOOOCO^^COiO^

ι ι

I

I

I

^ 2 S

O CO CO CD 00 l> t> Tjî + + -h -h

as

t> 00 ^ ci ai oô ai

I I cb

fi

s

oo

«D

ΙΟ

S

ϋ ϋ ϋ υ b b b I OObNr, ι ι ι ε a.

ϋ ϋ ϋ ϋ ϋ b b b b b

^ ^ ^ ^ Ν

f2

Ν

Ν

Ν

M

M W

N U

Q Q Q Û Û Û Û Û Û ϋ ϋ ϋ ϋ ϋ ϋ ϋ ϋ ϋ

ϋ ϋ ϋ Π Ν

M

M

Il

W

Q Q Q Q ϋ ϋ ϋ ϋ

PH PH

§ S ai « «S ce 5

PH PH PH

CO

u

UUPQ α -g fi fi fi fi fi fi fi 00 00 00 00 52,00 00 00 00^ o

«!

co

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

2.

STARZEWSKi A N D P R E G O S I N

Pt-Sn

Hydrogénation

PEt

35

Catalysts

3

I [Cl Sn—Pt—CI] 3

I PEt 7(

195

Pt,

119

3

Sn) = 28954 H z VIII

C o m p l e x VIII; a l t h o u g h t h e s a m e o p e r a t i o n ( p l u s a s e c o n d factor o f ~ 2 d u e t o t h e p r e s e n c e o f e t h y l g r o u p s i n s t e a d o f c h l o r i n e (39)) s e e m s s a t i s f a c t o r y w h e n c o m p a r i n g C o m p l e x e s IX a n d X . P e r h a p s t h e π t e r m is m o r e i m p o r t a n t i n o n e c a s e t h a n i n a n o t h e r and/or a c o m p a r i s o n w i t h a Ρ c o u p l i n g is u n s u i t a b l e . T h e t r i c h l o r o s t a n n a t e g r o u p is t h o u g h t t o b e a g o o d π-acceptor d u e t o t h e e l e c t r o n - w i t h d r a w i n g properties o f the halogens, a n d this c o n c e i v a b l y c o u l d favor larger s coefficients i n a m o l e c u l a r o r b i t a l i n v o l v e d w i t h t h e p l a t i n u m - t i n bond.

Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002

Α Β

3 1

PEt

PEt

3

I [Et P—Pt—H] 3

+

3

I PEt P t , P ) = 2,515 H z (37) IX 3

7(

195

3

I [Cl Sn—Pt—H] I PEt S n ) = 9,067 H z X 3

7(

31

195

Pt,

119

I n s u m m a t i o n , t h e 7( Pt> S n ) c a n b e u s e d to assign structure w h e r e t h e m o d e o f b i n d i n g o f t h e t i n is i n q u e s t i o n a n d l a r g e o n e - b o n d p l a t i n u m - t i n / values are to b e e x p e c t e d a n d seem m a n a g e a b l e w i t h i n the context o f the F e r m i contact term. O V E R T W O B O N D S . A S mentioned, the splitting /( Sn, Ή ) = 1 7 4 0 H z (see F i g u r e 3) is s o m e w h a t l a r g e for a t w o - b o n d t r a n s c o u p l i n g c o n s t a n t (40) a n d i n fact is t h e l a r g e s t k n o w n t w o - b o n d c o u p l ­ i n g i n v o l v i n g a p r o t o n (17). 195

1 1 9

2

1 1 9

This k i n d of coupling-constant information c a n have diagnostic v a l u e for other transition-metal h y d r i d e c o m p l e x e s . T h e V a s k a a n a l o g trans- [ I r C l ( C O ) P P ] r e a c t s w i t h S n C l t o g i v e a n i r i d i u m h y d r i d e c o m ­ p l e x w h o s e s t r u c t u r e m a y b e e i t h e r X I or X I I (41 ). T h e o b s e r v a t i o n o f a / ( S n , Ή ) c o u p l i n g c o n s t a n t o f 1 5 7 0 H z s u g g e s t s t h a t S t r u c t u r e X I is correct a n d vibrational spectroscopic data support this assignment. 2

2

1 1 9

/

P

H

-

ΛO C - K i r —

, Cl

P

-

OC-(-Ir —

Cl

P P = 2,11bis(diphenylphosphinomethyl)-

CljSn"

N

XPI

^

" '

v

~

benzo[c]phenanthrene

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

36

METAL PHOSPHINE COMPLEXES

A

two-bond

V ("•Sn

3 1

c o u p l i n g constant

>1.5

K H z is l a r g e ;

? ) ^ i n t h e c o m p l e x e s cis- [ P t C l ( S n C l ) P ] , P 3

2

2

however,

= 2 x PPh

3

or

D I O P , i s l a r g e r y e t w i t h v a l u e s e x c e e d i n g 4 K H z . T h i s k n o w l e d g e is also v a l u a b l e a n d has assisted i n d i s t i n g u i s h i n g b e t w e e n the isomeric p o s s i b i l i t i e s for t h e [ P t ( S n C l ) P 2 ] c o m p l e x e s , w h i c h for m o n o d e n t a t e 3

2

phosphorus ligands are a l l trans: J ( 2

1 1 9

Sn,

4 K H z is n o t t h e l a s t w o r d ! W e find J ( 2

1 1 9

P)

3 1

c i s

~ 200 - 250 Hz). B u t

S n , " ' S n ) ^ to b e >

16,000

a n d w e p l a n to s u b m i t these, a n d y e t larger t w o - b o n d c o u p l i n g c o n ­ s t a n t s , s e p a r a t e l y for p u b l i c a t i o n . Additional Physical Measurements.

I n a l l o f the complexes

we

Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002

have e n c o u n t e r e d to d a t e — a n d s u c h m o l e c u l e s are reasonable m o d e l s for i n t e r m e d i a t e s

i n t h e hydrogénation c y c l e — t h e

SnCl

g r o u p is

3

p r e s e n t as a c o o r d i n a t e d l i g a n d a n d f o r m s d i s t i n c t m e t a l - m e t a l b o n d s in solution. F u r t h e r , b o t h t h e hydrogénation a n d h y d r o f o r m y l a t i o n reactions are r e p o r t e d to r e q u i r e a n excess o f tin(II) d i c h l o r i d e w i t h a Sn/Pt ratio o f m o r e t h a n 2 ( o f t e n 5 is o p t i m a l ) . O u r N M R s t u d i e s s u g g e s t S n / P t > 1 affords trans-

an appreciable

increase

[Pt(SnCl ) (PEt ) ] a n d higher S n C l 3

more complete tial relevance

2

3

2

2

that

i n the concentration

of

concentrations support a

formation o f poly-tin species. I n v i e w o f the poten­ o f these c o m p l e x e s

it w o u l d b e v a l u a b l e to further

characterize them. T h i s w i l l require not only additional

complexes

b u t also a d d i t i o n a l p h y s i c o c h e m i c a l information c o n c e r n i n g the elec­ t r o n i c s t r u c t u r e o f t h e g r o u n d a n d l o w - l y i n g e x c i t e d states. W e h a v e therefore

measured some X-ray photoelectron E S C A spectra i n the

hope o f o b t a i n i n g a fuller picture o f the charge distribution. I n con­ trast to U V p h o t o e l e c t r o n

spectroscopy,

(UV-PES),

where

orbital

interactions p l a y a d o m i n a n t role, E S C A b i n d i n g energies, B E s , are recognized

(42, 43) t o d e p e n d p r i m a r i l y o n t h e c h a r g e o f t h e a t o m

a n d t h e charges o f t h e s u r r o u n d i n g a t o m s ; i.e., t h e h i g h e r t h e p o s i t i v e c h a r g e t h e m o r e e n e r g y is n e e d e d t o e j e c t a c o r e e l e c t r o n ( a s s u m i n g that there are s i m i l a r relaxation

energies).

I n T a b l e I I I w e g i v e B E s for s o m e o f o u r c o m p l e x e s a n d n o t e t h e f o l l o w i n g p o i n t s : (a) t h e S n ( 3 d

5 / 2

) values o f 4 8 6 . 7 - 487.2 e V are larger

t h a n t h a t f o r t h e m o d e l t i n ( I I ) c o m p l e x ( E t 4 N ) S n C l at 4 8 5 . 7 e V 3

s u g g e s t i n g a n i n c r e a s e d p o s i t i v e c h a r g e o n t i n d u e to S n C l t i o n t o t h e p l a t i n u m , a n d (b) t h e P t ( 4 f

7/2

) values, 72.7-73.3 eV, do not

deviate significantly from those o f K P t C l 2

c o m p l e x e s (see T a b l e

3

4

= 73.4 e V or other m o d e l

III).

δ+ ;Sn:

(44)

coordina­

—^Sn

— Pt



Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

2.

STARZEWSKi

Pt-Sn

A N D PREGOSIN

Hydrogénation

These data m a y b e interpreted u s i n g a classical complex

model

i n w h i c h w e have

37

Catalysts

donor-acceptor

a d i m i n i s h e d positive

platinum

charge a n d a n e n h a n c e d p o s i t i v e charge o n t i n . T h e c o o r d i n a t i o n o f the S n C l " u n i t decreases the P t B E o n o n e h a n d ; h o w e v e r , the presence o f 3

a positively charged neighboring t i n compensates BE

b y increasing the

w i t h the n e t result b e i n g little or n o significant change

i nthe

ionization potential o f the p l a t i n u m core electrons. T h e t i n core re­ sponds to the donation o f the lone p a i r b y s h o w i n g a n e n h a n c e d poten­ t i a l w h i c h is i n c r e a s e d f u r t h e r b y i n t r o d u c i n g a p o s i t i v e l y

charged

n e i g h b o r i n g p l a t i n u m . T h e e n d effect at t i n is a r e l a t i v e l y h i g h c o r e

Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002

p o t e n t i a l t h a t c r e a t e s t h e i m p r e s s i o n o f a h i g h p o s i t i v e c h a r g e at t h i s metal ((Et N) SnCl 4

The

2

e

= 4 8 7 . 1 e V (45)).

p i c t u r e is a t l e a s t q u a l i t a t i v e l y i n a g r e e m e n t w i t h

S n - 1 1 9 m Môssbauer m e a s u r e m e n t s trichlorostannate

complexes

earlier

for a v a r i e t y o f t r a n s i t i o n - m e t a l

b y Fenton

a n d Z u c k e r m a n (46) w h o

more rigorously c o n c l u d e d that the t i n i n M - S n C l

3

units should be

c o n s i d e r e d as t i n ( I V ) . F r o m T a b l e I I w e note that t h e P t - 1 9 5 N M R c h e m i c a l shifts o f the platinum-tin complexes

f a l l i n a n d e v e n at h i g h e r

classical Pt(0) c o m p l e x e s ppm,

field

than the

(e.g. [ P t ( C F - t e C - C F ) ( P E t ) ] = - 4 7 1 2 3

3

[ P t ( f r a n s - s t i l b e n e ) ( P E t ) ] = - 5 1 2 2 (47)). 3

2

3

2

Accordingly

i t is

t e m p t i n g to seek a r e l a t i o n s h i p b e t w e e n t h e Pt-195 N M R c o o r d i n a t i o n c h e m i c a l shift Δδ = ô(complex w i t h tin)-6(related c o m p l e x w i t h o u t tin) a n d the e l e c t r o n d e n s i t y at t h e m e t a l . H o w e v e r , t h e f e w E S C A data for t h e c h o s e n test c o m p o u n d s d o n o t i n d i c a t e a s i m p l e c h a r g e

depen­

dence o f the N M R shielding. A m o r e q u a n t i t a t i v e a t t e m p t at i n t e r p r e t i n g p l a t i n u m c h e m i c a l s h i f t s r e q u i r e s t h a t w e c o n s i d e r s o m e f o r m o f t h e R a m s e y (48) e q u a ­ tion, w h i c h describes

the resonance

p a r a m a g n e t i c s c r e e n i n g t e r m , σ>· Q

A

frequency,

v, i n t e r m s o f t h e

is a c h a r g e - d e n s i t y ,

B

bond-order

m a t r i x , Δ Ε is t h e a v e r a g e e x c i t a t i o n e n e r g y , a n d r r e p r e s e n t s a d i s t a n c e f r o m t h e n u c l e u s for, i n t h i s c a s e , a g i v e n d e l e c t r o n . voz8H (l 0

-

σ )\ π Ρ

a oc(lME)(l/r )XQ P

3

(8)

2

A B

A l t h o u g h t h e r e is s o m e p r e c e d e n c e f o r b e l i e v i n g t h a t

1 9 5

Pt chemi­

c a l shifts m a y b e u n d e r s t o o d q u a l i t a t i v e l y i f the Δ Ε t e r m c a n b e esti­ m a t e d from v i s i b l e U V d a t a (49), t h e r e is a n e x p e r i m e n t a l d i f f i c u l t y i n o u r c o m p l e x e s i n t r o d u c e d b y t h e fact t h a t m i n o r i m p u r i t i e s w i t h h i g h extinction coefficients

m a y distort considerably the U V curves. W e

have f o u n d that o u r n e a r l y colorless h y d r i d o - t i n , a n d c h l o r o - t i n d e r i v a ­ t i v e s a l s o c a n b e i s o l a t e d as y e l l o w - o r o r a n g e - c o l o r e d c o m p l e x e s t h a t , from

3 1

P m e a s u r e m e n t s , are > 9 5 % p u r e . It seems that c a u t i o n w i l l b e

r e q u i r e d i n interpreting the U V spectra. Nevertheless, a future study

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

4

2

2

3

2

3

3

3

c

2

2

2

3

73.3 73.3 — 72.7 c l s

6

6

(73.2) (73.0) (73.2) — 6

ESCA

Data"

e

0

Ref. 51. Data are in electron volts relative to a carbon Is B E of 285.0 eV. * Values for the complexes where S n C l is replaced by chlorine. Ref. 52.

3

3

3

trans- [ P t C l ( S n C l ) ( P E t ) ] frans-[PtH(SnCl )(PPh ) ] cis- [ P t C l ( S n C l ) ( P P h ) ] cis-[Bu N] [PtCl (SnCl ) ]

m

Pt(4f )

T a b l e III.

487.2 487.0 486.8 486.7

m

Sn(3d )

Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002

131.6 132.0 132.5 —

(131.7) (131.9)

P(2p)

2.

Pt-Sn

A N D PREGOSIN

STARZEWSKi

T a b l e IV.

Hydrogénation IR Data" (Δί>)" [cm ']

»>PtH

[cm trans- [ P t C l ( S n C l ) ( E t P P ) ] trans- [ P t C l ( S n C l ) ( P E t ) ] trans-[PtH(SnCl )(Et PP)] trans- [ P t H ( S n C l ) ( P E t ) ] trans-[PtH(SnCl )(PBzPh ) ] trans-[PtH(SnCl )(PPh ) ] trans- [ P t C H S n C l a X P E t , , ) ^ trans- [ P t C ( S n C l ) ( P B z P h ) ] ° Measured as K B r discs. Δν = (i/Pt-H in the tin complex) - (v See Table I for abbreviations. 3

3

3

3

3

2

2 2

3

2

Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002

2

4

3

3 2

3

2

2

']

— — 2112 2120 2154 2200 _ —

4

3

c

39

Catalysts

î-SnCU

[cm

— — (93) (-108) (66) (45) _ —

']

353,335,320 352,329,316 342,320 332,306 337,317,308 332,315,306 329,305 340,320

Pt-Η in the chloro complex).

b

c

i n this d i r e c t i o n c o u l d p r o v e h e l p f u l , a l t h o u g h the k n o w l e d g e

of a

s i n g l e , l o w - e n e r g y U V t r a n s i t i o n b y i t s e l f is n o t n e c e s s a r i l y s u f f i c i e n t to c l a i m a f u l l u n d e r s t a n d i n g o f t h e Δ Ε s u m m a t i o n . T h e 1/r t e r m m a y n o t 3

b e v a r y i n g s i g n i f i c a n t l y as o u r E S C A d a t a s h o w n o m a r k e d c h a n g e i n t h e c h a r g e o n p l a t i n u m . S i n c e w e h a v e n o s a t i s f a c t o r y m e t h o d o f es­ t i m a t i n g c h a n g e s i n Q B , o t h e r t h a n o u r I R d a t a w h i c h is far t o o c r u d e A

(see

Table

IV), a n d since an interpretation of ΔΕ

deeper understanding of our δ

1 9 5

is p r o b l e m a t i c , a

P t data m u s t await further support,

perhaps i n the form o f m o l e c u l a r orbital calculations. O n e c o u l d seek a d d i t i o n a l h e l p from the values δ

1 1 9

S n ; however,

i n a d d i t i o n t o t h e p r o b l e m s a l r e a d y m e n t i o n e d w e n o t e t h a t t h e r e is a considerable dependence

of δ

1 1 9

S n on both solvent a n d temperature

(50). I n v i e w o f t h e d i f f e r e n t s a m p l e c o n d i t i o n s i n d i c a t e d b y b o t h t h e s o l u b i l i t y a n d the d y n a m i c characteristics o f o u r c o m p l e x e s , a d e t a i l e d interpretation o f these values w o u l d b e p r e s u m p t u o u s . I n s u m m a t i o n , t h e r e is r e a s o n t o b e l i e v e , N M R studies, that the c o o r d i n a t i o n o f S n C l

2

from the E S C A

and

bestows interesting prop­

e r t i e s o n o u r c o m p l e x e s ; h o w e v e r , t h e r e is as y e t i n s u f f i c i e n t d a t a t o p e r m i t d e f i n i t i v e c o n c l u s i o n s r e l e v a n t to t h e h o m o g e n e o u s

hydrogéna­

tion reaction. Acknowledgments W e t h a n k H . R u e g g e r for e x p e r i m e n t a l a s s i s t a n c e a n d L . M . V e n ­ a n z i for m a n y h e l p f u l d i s c u s s i o n s . Literature

Cited

1. Itatani, H.; Bailar, J. C. Jr. Ind. Eng. Chem. Prod. Res. Dev. 1972, 11, 146. 2. Cramer, R. D.; Jenner, E . L.; Lindsey, R. V. Jr.; Stolberg, U. G. J. Amer. Chem. Soc. 1963, 85, 1691.

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

40 3. 4. 5. 6. 7. 8. 9.

Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002

10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46.

M E T A L PHOSPHINE COMPLEXES

Knifton, J. F. J. Org. Chem. 1976, 41, 793. Schwager, I.; Knifton, J. F. J. Catal. 1976, 45, 256. Parshall, G. W. J. Mol. Catal. 1978, 4, 243. Young, J. F.; Gillard, R. D.; Wilkinson, G. J. Chem. Soc. 1964, 5176. Baird, M . C. J. Inorg. Nucl. Chem. 1967, 29, 367. Cramer, R. D.; Lindsey, R. V. Jr.; Prewitt, C. T.; Stolberg, U. G. J. Amer. Chem. Soc. 1965, 87, 658. Lindsey, R. V.; Parshall, G. W.; Stolberg, U. G. J. Amer. Chem. Soc. 1965, 87, 658. Onaka, S. Bull. Chem. Soc. Jpn. 1975, 48, 319. Mason, R.; Robertson, G. B.; Whimp, P. O. Chem. Comm. 1968, 1655. Clegg, W., Acta Crystallogr. 1978, B34, 278. Guggenberger, L. J . Chem. Comm. 1968, 512. Stalick, J. K.; Corfield, P. W. R.; Meek, D. W. J. Amer. Chem. Soc. 1972, 94, 6194. Bürgi, H . B.; Johnson, D. K.; Venanzi, L. M., unpublished results. Pregosin, P. S.; Sze, S. N. Helv. Chim. Acta 1978, 61, 1848. Starzewski, Ostoja Κ. Α.; Ruegger, H.; Pregosin, P. S. Inorg. Chim. Acta 1979, 36, L445. Jesson, J. P. In "Transition Metal Hydrides", Muetterties, E . , E d . ; Marcel Dekker: New York, 1971; p. 75. Baumgartner, E . ; Venanzi, L. M., unpublished data. Pregosin, P. S.; Sze, S. N. Helv. Chim. Acta 1978, 61, 1848. Starzewski, Ostoja Κ. Α.; Pregosin, P. S., unpublished data. Hsu, C. C.; Geanangel, R. A. Inorg. Chem. 1980, 19, 110. Hsu, C. C.; Geanangel, R. A. Inora. Chem. 1977, 16, 2529. Kauffman, J. W.; Moor, D. H.; Williams, R. J. J. Inorg. Nucl Chem. 1977, 39, 1165. Ruegger, H.; Pregosin, P. S., unpublished data. Kunz, R. W.; Pregosin, P. S. In " N M R Basic Principles and Progress"; Springer-Verlag: Heidelberg, 1979; Vol. 16. Butler, G.; Eaborn, C.; Pidcock, A. J. Organomet. Chem. 1979, 181, 47. Eaborn, C.; Pidcock, Α.; Steele, B. R. J. Chem. Soc. Dalton 1976, 767. Eaborn, C.; Pidcock, Α.; Steele, B. R. J. Chem. Soc. Dalton 1975, 809. Starzewski, Ostoja Κ. Α.; Pregosin, P. S. Angew. Chem. Int. Ed. 1980, 19, 316. Nelson, J. H.; Cooper, V.; Rudolph, R. R. Inorg. Nucl. Chem. Lett. 1980, 16, 263. Pidcock, Α.; Richards, R. E . ; Venanzi, L. M . J. Chem. Soc. A 1966, 1707. Appleton, T. G.; Clark, H . C.; Manzer, L. E . Coord. Chem. Rev. 1973, 10, 335. Pople, J. Α.; Santry, D. P. Mol. Phys. 1964, 8, 1. Ibid, 1965, 9, 311. Crocker, C.; Goggin, P. L.; Goodfellow, R. J. J. Chem. Soc. Dalton 1976, 2494. Allen, F. H.; Pidcock, Α.; Waterhouse, C. R. J. Chem. Soc. A, 1970, 2087. Dingle, T. W.; Dixon, K. R. Inorg. Chem. 1974, 13, 846. Mather, G. G.; Pidcock, Α.; Rapsey, G. J . N. J.C.S. Dalton 1973, 2095. Verkade, J. G. Coord. Chem. Rev. 1972-73, 9, 1. Baumgartner, E . ; Starzewski, Ostoja Κ. Α.; Venanzi, L. M., unpublished data. Riggs, W. M. Anal. Chem. 1972, 44, 830. Cook, C. D.; Wan, K. Y.; Gelius, U.; Hamrin, K.; Johansson, G.; Olsson, E . ; Siegbahn, H.; Nordling, C.; Siegbahn, K. J. Amer. Chem. Soc. 1971, 93, 1904. Parshall, G. W. Inorg. Chem. 1972, 11, 433. Swartz, W. E . ; Watts, P. H.; Lippincott, E. R.; Watts, J. C.; Huheey, J. E . Inorg. Chem. 1972, 11, 2632. Fenton, D. E . ; Zuckerman, J. J. Inorg. Chem. 8, 1771.

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

2.

STARZEWSKI A N D PREGOSIN

Pt-Sn Hydrogénation Catalysts

41

47. Browning, J . ; Green, M.; Spencer, J. L.; Stone, F. G. A. J. Chem. Soc. Dalton, 1977, 278. 48. Ramsey, N . F. Phys. Rev. 1950, 78, 699. 49. Goggin, P. L.; Goodfellow, R. J.; Haddock, S. R.; Taylor, B. F.; Marshall, I. R. H. J. Chem. Soc. Dalton 1976, 459. 50. Smith, P. J.; Smith, L. Inorg. Chim. Acta Rev. 1973, 7, 11. 51. Starzewski, Ostoja Κ. Α.; Pregosin, P. S.; Sawatsky, G., unpublished data. 52. Grutsch, P. Α.; Zeller, M . V.; Fehlner, T. P. Inorg. Chem. 1973, 12, 1431.

Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002

R E C E I V E D August 15, 1980.

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.