2
P-31, Sn-119, and Pt-195 NMR Studies on Platinum-Tin Homogeneous Hydrogenation Catalysts K. A . O S T O J A S T A R Z E W S K I and P. S.
PREGOSIN
Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002
Laboratorium für Anorganische C h e m i e , E T H - Z e n t r u m , Universitätstrasse 6, C H - 8 0 9 2 Zürich, S w i t z e r l a n d
P-31, Sn-119, and Pt-195 NMR spectroscopic methods have been used to identify the products of the reaction of SnCl2 with phosphine complexes of platinum(II). These complexes are of the type [Pt(SnCl3)L(PR )2], L = Cl-, SnCl3-, H-, or alkyl, and are of interest, spectroscopically, in that the one-bond platinum-tin coupling 1J(195Pt,1 1 9 S n )can exceed 30,000 Hz and therefore represents the largest known nuclear spin-spin coupling constant. The two-bond interaction in the poly-SnCl complex J(119Sn, 117Sn) at > 18,000 Hz is also exceedingly large. 3
3
2
P
l a t i n u m p h o s p h i n e c o m p l e x e s a r e r e c o g n i z e d t o f u n c t i o n as h o m o geneous
hydrogénation
c o m b i n e d w i t h a n excess
a n d hydroformylation
catalysts
o f a c o - c a t a l y s t s u c h as t i n ( I I )
when
chloride
(1, 2, 3 ) . S p e c i f i c a l l y , α-olefin h y d r o f o r m y l a t i o n p r o c e e d s b o t h w i t h high y i e l d a n d selectivity SnCl
2
using the combination [PtCl (PPh ) ] + 2
3
2
as s h o w n i n E q u a t i o n 1 (4):
CH (CH ) CH=CH 3
d V
2
Z
/
4
4
2 A
— PtCUPPhak + n-SnClj
• 9 0 % 1-octanal
(1)
66° T h e h o m o g e n e o u s hydrogénation a n d h y d r o f o r m y l a t i o n r e a c t i o n s are k n o w n to i n v o l v e m e t a l h y d r i d e , m e t a l olefin, a n d m e t a l a l k y l c o o r d i n a t i o n c o m p l e x e s ( 5 ) ; h o w e v e r , t h e r e is r e l a t i v e l y l i t t l e i n t h e literature c o n c e r n i n g the function o f S n C l i n this connection. T h e w o r k t h a t h a s b e e n d o n e s u g g e s t s (6, 7, 8, 9) t h a t S n C l r e a c t s w i t h p l a t i n u m c o m p l e x e s c o n t a i n i n g a P t - C l b o n d a c c o r d i n g to E q u a t i o n 2. 2
2
0065-2393/82/0196-0023$05.00/0 © 1982 American Chemical Society Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
24
METAL PHOSPHINE COMPLEXES
Pt-Cl + SnCl
Pt-SnCl
2
(2)
3
I n s u p p o r t o f the d i r e c t p l a t i n u m - t i n b o n d are structural
determinations
(SnCl )(PPh )] (ii), 3
3
for
[Mn(SnCl )(CO) ] 3
5
[ A u ( S n C l ) ( P M e P h ) ] (12), 3
2
2
crystallographic
(10),
[Pd(w-allyl)-
a n d the
cycloocta-
d i e n e cluster [ P t ( S n C l ) ( C H ) ] w h i c h has a triangle o f p l a t i n u m 3
3
2
8
1 2
3
a t o m s c a p p e d a b o v e a n d b e l o w b y t w o S n C l " g r o u p s (13). 3
In addition
to t h e m e t a l - m e t a l b o n d t h e r e a r e t w o f u r t h e r p o s s i b l e i n t e r a c t i o n s o f the S n C l " l i g a n d w i t h the p l a t i n u m . T h e
m o s t t r i v i a l is n o n a s s o -
3
ciative, w i t h the S n C l trichlorostannate
2
s e r v i n g as a c h l o r i d e e x t r a c t o r f o r m i n g
counterion, and
indeed
t h e s o l i d state for [ C o C l ( d p p e ) ] S n C l
Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002
2
phino)ethane recent
(14).
this has
(dppe =
3
been
of
in
l,2-bis(diphenylphos-
T h e last a n d most i n t r i g u i n g option, stems
structural determination
the
found
[Ag(SnCl )(PP)] 3
where
2,ll-bis(diphenylphosphinomethyl)benzo[c]phenanthrene,
a
from
a
PP
=
chelat
i n g d i p h o s p h i n e that m a y s p a n the trans positions o f a s q u a r e p l a n a r c o m p l e x (15).
I n t h i s m o l e c u l e , a b b r e v i a t e d as I, t h e S n C l ~ c o o r d i 3
nates to the t r a n s i t i o n m e t a l v i a the h a l o g e n .
CI
SnCl
2
I
T h e p r o b l e m o f e s t a b l i s h i n g the solution structure o f p l a t i n u m tin complexes
is c o m p l i c a t e d b y t h e l a b i l i t y o f t h i s s y s t e m . W e
f o u n d (16,
( a n d w i l l refer to this later) that these c o m p l e x e s
17)
have are
o f t e n d y n a m i c o n t h e N M R t i m e s c a l e . D e s p i t e t h e s e d i f f i c u l t i e s i t is p o s s i b l e to c h a r a c t e r i z e s u c h m o l e c u l e s u s i n g N M R T h i s means that w e
u s e (a)
P-31 N M R
methods.
both qualitatively,
for
information o n the orientation o f the tertiary p h o s p h i n e ligands, a n d a n a l y t i c a l l y t o d e t e r m i n e t h e n u m b e r o f c o m p l e x e s i n s o l u t i o n (this is a very receptive nucleus a n d 1-2% readily);
(b)
S n - 1 1 9 (I = i
o f i m p u r i t i e s often are
n a t u r a l a b u n d a n c e = 8.6%)
detected
NMR
p r o b e for t h e i d e n t i t y o f t h e t r i c h l o r o s t a n n a t e m o i e t y ; a n d (c) (I = i , n a t u r a l a b u n d a n c e = 3 3 . 7 % ) N M R
as
a
Pt-195
for m u l t i p l i c i t y d a t a c o n
c e r n e d w i t h the n u m b e r of coordinated phosphines (and N M R spins i n g e n e r a l ) . T h e v a l u e o f H - l N M R i n m e t a l h y d r i d e c h e m i s t r y is so w e l l e s t a b l i s h e d (18)
t h a t n o f u r t h e r j u s t i f i c a t i o n is r e q u i r e d h e r e .
Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
2.
STARZEWSKi A N D P R E G O S I N
Pt-Sn
Hydrogénation
25
Catalysts
W e b e g i n b y c o n s i d e r i n g the products o f E q u a t i o n 3 a n d f o l l o w b y d i s c u s s i n g t h e c o m p l e x e s t h a t r e s u l t from a d d i n g m o l e c u l a r h y d r o g e n and eventually an acetylene. PtCl P 2
? -SSi* ?
2
(3)
Experimental P-31, Sn-119, and Pt-195 N M R spectra were measured using B r u k e r H X - 9 0 ( P only) a n d W M - 2 5 0 (101.27, 93.28, and 53.77 M H z ) spectrometers. T h e samples were measured as solutions i n rotating 10-mm tubes u s i n g ~40°-45° pulse angles for P , S n , and P t w i t h acquisition times of —0.7, 0.2, and 0.2 s, respectively. Spectral widths were routinely (WM-250) 10,000, 50,000 and 50,000 H z for these same n u c l e i . C h e m i c a l shifts are i n parts per m i l l i o n relative to external H P 0 , M e S n , a n d N a P t C l a n d ± 1 p p m for the two metals. A positive sign indicates a shift to a lower field (higher frequency) relative to the reference. C o u p l i n g constants are i n hertz a n d are ± 3 H z for Ρ and ±12 H z for S n a n d P t . T h e variable-temperature spectra were mea sured u s i n g the commercially p r o v i d e d controller whose accuracy is ~ ±1°C. T h e temperatures a n d solvents for the i n d i v i d u a l measurements are given i n the tables. Sample concentrations were of the order of 5 x 10~ M . 31
Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002
31
119
195
3
4
4
2
e
31
1 1 9
195
2
Results and
Discussion
[PtCl(SnCl )P ] Complexes. T h e r e a c t i o n o f cis- [ P t C l ( P E t ) ] (or t h e t r i p r o p y l or t r i - n - b u t y l a n a l o g s ) i n e i t h e r C D C 1 o r C D C 1 d o e s n o t afford s i m p l e i n s e r t i o n o f S n C l i n t o a P t - C l b o n d to y i e l d t h e c i s i s o m e r , b u t g i v e s d i r e c t l y trans- [ P t C l ( S n C l ) ( P E t ) ] . T h e trans i s o m e r is s u g g e s t e d b y t h e a p p e a r a n c e o f a s i n g l e P r e s o n a n c e , δ = 13.6, flanked symmetrically by P t (7( Pt, P ) = 2 0 4 2 H z ) a n d - Sn (7( Sn, 3 i ) = 227 H z , / ( S n , P) = 2 3 7 H z ) satellite lines. (In the p r o c e e d i n g p a g e s o n l y v a l u e s for t h e S n isotope w i l l b e given). T h e S n s p e c t r u m reveals t r i p l e t structure from the t w o P E t groups a n d P t s a t e l l i t e s w h o s e s p a c i n g is s t r o n g l y s u g g e s t i v e o f a o n e - b o n d c o u p l i n g constant; the P t spectrum shows a 1 : 2 : 1 structure confirming t h e p r e s e n c e o f t w o e q u i v a l e n t P E t g r o u p s (δ P t = - 4 7 9 0 r e l a t i v e to N a P t C l ) . W e reserve further c o m m e n t o n these c o u p l i n g constants u n t i l t h e d e s c r i p t i v e c h e m i s t r y is finished. T h e s a m e c o m p l e x is o b t a i n e d d i r e c t l y f r o m trans- [ P t C l ( P E t ) ] . T h e a n a l o g o u s d i c h l o r i d e c o m p l e x c o n t a i n i n g t h e trans s p a n n i n g c h e l a t e , C o m p l e x II, w h i c h is e l e c t r o n i c a l l y s i m i l a r to P E t , c l e a n l y affords £ r a n s - [ P t C l ( S n C l ) ( E t P P E t ) ] (19). 3
2
2
3
2
3
2
2
2
3
3
2
3 1
1 9 5
117
2
P
195
1 1 9
31
1 1 7
1 1 9
31
1 1 9
1 1 9
3
1 9 5
1 9 5
1 9 5
3
2
e
2
3
2
3
2
3
2
T h e c o m p l e x e s cis-[PtCl(SnCl )P ] m a y be obtained starting from either a c i s - b i s - p h o s p h i n e c o m p l e x o f a tertiary aryl p h o s p h i n e or a c h e l a t i n g d i p h o s p h i n e , e.g. P P h or D I O P c o m p l e x e s (20), ( a l t h o u g h careful e x a m i n a t i o n o f the P-31 spectra o f the monodentate systems s u g g e s t s t h a t t h e t r a n s i s o m e r is a l s o p r e s e n t ) . 3
2
3
Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
METAL PHOSPHINE COMPLEXES
26
= Et PPEt 2
CH
CH
2
Et P
2
PEt
2
= bis(diethylphosphinom e t h y l ) b e n z o [ c]phenanthrene
2
2
II
[Pt(SnCl ) P ] Complexes.
Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002
3
2
Further addition of S n C l
2
t i o n c o n t a i n i n g trans- [ P t C l ( S n C l ) ( P E t ) ] l e a d s 3
3
s h o w n i n E q u a t i o n 4. U n f o r t u n a t e l y , S n C l
2
2
to a solu
to the e q u i l i b r i u m
2
is o n l y s p a r i n g l y s o l u b l e i n
c h l o r i n a t e d h y d r o c a r b o n s ; h o w e v e r , sufficient tin(II) d i c h l o r i d e c a n b e d i s s o l v e d i n a c e t o n e s u c h that t h e e q u i l i b r i u m lies far to the right. fran5-[PtCl(SnCl )(PEt ) l 3
3
trans-[Pt(SnCl ) (PEt ) ]
2
3 2
(4)
3 2
A t t h i s p o i n t i t is w o r t h m e n t i o n i n g t h a t t h e r e a r e t w o w a y s
to
detect the presence o f a poly-trichlorostannane derivative u s i n g N M R s p e c t r o s c o p y : (1) v i a t h e r e l a t i v e i n t e n s i t i e s o f t h e
1 1 7
Sn and
1 1 9
S n satel
l i t e s i n t h e P - 3 1 (or P t - 1 9 5 ) N M R s p e c t r u m a n d (2) f r o m t h e o b s e r v a tion o f a y( 2
1 1 7
Sn,
1 1 9
S n ) c o u p l i n g constant i n the Sn-119 spectrum.
P o i n t 2 is t h e m o r e o b v i o u s a n d c a n b e d e m o n s t r a t e d for a c o m p l e x s u c h as III. C l e a r l y t h e t w o m a g n e t i c a l l y i n e q u i v a l e n t t i n a t o m s PEt Cl
3
1 1 7
3
Sn—Pt— PEt
1 1 9
SnCl
3
3
III w i l l superimpose a n additional s i m p l e c o u p l i n g pattern o n the Sn-119 spectrum, thereby u n e q u i v o c a l l y establishing the presence o f more t h a n o n e S n C l " l i g a n d (see F i g u r e 1). 3
P o i n t 1 is l e s s o b v i o u s b u t e q u a l l y i m p o r t a n t . I n t h e P - 3 1 s p e c t r u m o f a m o n o - t i n c o m p l e x , the ratio o f the
1 1 9
S n (or
1 1 7
S n ) satellites to the
m a i n - b a n d ( P not c o u p l e d to N M R - a c t i v e tin) w i l l b e approximately 3 1
1 : 2 0 d u e to the r e l a t i v e l y d i l u t e s p i n I = i t i n isotopes ([—84% not c o u p l e d to I = \ S n ] / [ ~ 8 %
3 1
P c o u p l e d t o e.g.
1 1 9
d u e to c o u p l i n g ] ) . I n a c o m p l e x c o n t a i n i n g t w o S n C l molecules
having only one
1 1 7
S n or
1 1 9
3 1
P
Sn, divided by 2 3
groups there are
S n (-13%) and a few
Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
(
2
2
CD CU/RT CD C1 /-30°C CD Cy-80°C CDCl3/-50°C
e
d
b
3
t
3
2
117
2
3
3
3
119
2
3
3
2
2
e
3
8
2
(+4.0) (-7.9) (-5.4) (-5.3)
(+0.1)
(-2.7)
(-1.1) (+1.4) (-7.2) (-2.3)
(Δδ)»
2493 2503 2640 2625
2650
2713
( -301) ( -311) ( -297) (-294)
( -369)
( -339)
(•- 6 3 3 ) ( -356) ( -363) ( -347)
2102 2041 2372 2363
6
(Δ/)
/ΐββρα»
8
3
(CI complex)], e.g. (values for [PtCl(SnCl )(PEt ),])
9.8 10.1 18.3 18.0
+28.5
+24.6
+ 17.1 + 13.6 + 18.8 +20.5
3 1
δ Ρ
P-31N M R Data"
T + irons-[PtCHSnCljKPEt^]' T + trans- [ P t C * ( S n C l ) ( P B z P h ) ] + T trans- [ P t C ( S n C l ) ( P P h ) ] + T trans- [ P t C ( S n C l ) ( P P h ) ] Λ experimental for details The Δ sign refers to the following difference: [(SnCl complex) [PtCl (PEt ) ]). ' Et^PP = Complex II. Average of S n and S n . MeO,C = C H C 0 M e . C = phenyl; C = E t 0 C = C H C O E t ; C
3
2
[PtH(SnCl )(PPh ) ]
3
trans-
c
[PtH(SnCl )(PBzPh ) ]
2
2
trans-
3
3
3
3
3
[PtCUSnClaXEtfT)]' [PtCl(SnCl )(PEt ) ] [PtH(SnCl )(Et4PP)] [PtH(SnCl )(PEt ) ]
transtranstranstrans-
T a b l e I.
Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002
34
METAL PHOSPHINE COMPLEXES o q ^ T t r - i o c s j i o o o
(M CM
«-H i-H
β 00
Ν Η Ν 05 Ο ι>
Ο Ο (Ν CO CO Œ>
»
Η
C
* ^
i-H i-H ©
i-H
χ J (Μ
11
ce
^
J
^
S ο ίο σ ί ο
00 ΙΟ
+ + +
Η
+
©
CO CO ^ b00 b- l> ic
-Η 00 ο Η Φ ι—1
Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002
+ ++
ce
I>t^ co
1
I I
ce 15 Q
Τ3
ΙΟ 00 ^t co ο œ co oq
OOOOCO^^COiO^
ι ι
I
I
I
^ 2 S
O CO CO CD 00 l> t> Tjî + + -h -h
as
t> 00 ^ ci ai oô ai
I I cb
fi
s
oo
«D
ΙΟ
S
ϋ ϋ ϋ υ b b b I OObNr, ι ι ι ε a.
ϋ ϋ ϋ ϋ ϋ b b b b b
^ ^ ^ ^ Ν
f2
Ν
Ν
Ν
M
M W
N U
Q Q Q Û Û Û Û Û Û ϋ ϋ ϋ ϋ ϋ ϋ ϋ ϋ ϋ
ϋ ϋ ϋ Π Ν
M
M
Il
W
Q Q Q Q ϋ ϋ ϋ ϋ
PH PH
§ S ai « «S ce 5
PH PH PH
CO
u
UUPQ α -g fi fi fi fi fi fi fi 00 00 00 00 52,00 00 00 00^ o
«!
co
Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
2.
STARZEWSKi A N D P R E G O S I N
Pt-Sn
Hydrogénation
PEt
35
Catalysts
3
I [Cl Sn—Pt—CI] 3
I PEt 7(
195
Pt,
119
3
Sn) = 28954 H z VIII
C o m p l e x VIII; a l t h o u g h t h e s a m e o p e r a t i o n ( p l u s a s e c o n d factor o f ~ 2 d u e t o t h e p r e s e n c e o f e t h y l g r o u p s i n s t e a d o f c h l o r i n e (39)) s e e m s s a t i s f a c t o r y w h e n c o m p a r i n g C o m p l e x e s IX a n d X . P e r h a p s t h e π t e r m is m o r e i m p o r t a n t i n o n e c a s e t h a n i n a n o t h e r and/or a c o m p a r i s o n w i t h a Ρ c o u p l i n g is u n s u i t a b l e . T h e t r i c h l o r o s t a n n a t e g r o u p is t h o u g h t t o b e a g o o d π-acceptor d u e t o t h e e l e c t r o n - w i t h d r a w i n g properties o f the halogens, a n d this c o n c e i v a b l y c o u l d favor larger s coefficients i n a m o l e c u l a r o r b i t a l i n v o l v e d w i t h t h e p l a t i n u m - t i n bond.
Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002
Α Β
3 1
PEt
PEt
3
I [Et P—Pt—H] 3
+
3
I PEt P t , P ) = 2,515 H z (37) IX 3
7(
195
3
I [Cl Sn—Pt—H] I PEt S n ) = 9,067 H z X 3
7(
31
195
Pt,
119
I n s u m m a t i o n , t h e 7( Pt> S n ) c a n b e u s e d to assign structure w h e r e t h e m o d e o f b i n d i n g o f t h e t i n is i n q u e s t i o n a n d l a r g e o n e - b o n d p l a t i n u m - t i n / values are to b e e x p e c t e d a n d seem m a n a g e a b l e w i t h i n the context o f the F e r m i contact term. O V E R T W O B O N D S . A S mentioned, the splitting /( Sn, Ή ) = 1 7 4 0 H z (see F i g u r e 3) is s o m e w h a t l a r g e for a t w o - b o n d t r a n s c o u p l i n g c o n s t a n t (40) a n d i n fact is t h e l a r g e s t k n o w n t w o - b o n d c o u p l i n g i n v o l v i n g a p r o t o n (17). 195
1 1 9
2
1 1 9
This k i n d of coupling-constant information c a n have diagnostic v a l u e for other transition-metal h y d r i d e c o m p l e x e s . T h e V a s k a a n a l o g trans- [ I r C l ( C O ) P P ] r e a c t s w i t h S n C l t o g i v e a n i r i d i u m h y d r i d e c o m p l e x w h o s e s t r u c t u r e m a y b e e i t h e r X I or X I I (41 ). T h e o b s e r v a t i o n o f a / ( S n , Ή ) c o u p l i n g c o n s t a n t o f 1 5 7 0 H z s u g g e s t s t h a t S t r u c t u r e X I is correct a n d vibrational spectroscopic data support this assignment. 2
2
1 1 9
/
P
H
-
ΛO C - K i r —
, Cl
P
-
OC-(-Ir —
Cl
P P = 2,11bis(diphenylphosphinomethyl)-
CljSn"
N
XPI
^
" '
v
~
benzo[c]phenanthrene
Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
36
METAL PHOSPHINE COMPLEXES
A
two-bond
V ("•Sn
3 1
c o u p l i n g constant
>1.5
K H z is l a r g e ;
? ) ^ i n t h e c o m p l e x e s cis- [ P t C l ( S n C l ) P ] , P 3
2
2
however,
= 2 x PPh
3
or
D I O P , i s l a r g e r y e t w i t h v a l u e s e x c e e d i n g 4 K H z . T h i s k n o w l e d g e is also v a l u a b l e a n d has assisted i n d i s t i n g u i s h i n g b e t w e e n the isomeric p o s s i b i l i t i e s for t h e [ P t ( S n C l ) P 2 ] c o m p l e x e s , w h i c h for m o n o d e n t a t e 3
2
phosphorus ligands are a l l trans: J ( 2
1 1 9
Sn,
4 K H z is n o t t h e l a s t w o r d ! W e find J ( 2
1 1 9
P)
3 1
c i s
~ 200 - 250 Hz). B u t
S n , " ' S n ) ^ to b e >
16,000
a n d w e p l a n to s u b m i t these, a n d y e t larger t w o - b o n d c o u p l i n g c o n s t a n t s , s e p a r a t e l y for p u b l i c a t i o n . Additional Physical Measurements.
I n a l l o f the complexes
we
Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002
have e n c o u n t e r e d to d a t e — a n d s u c h m o l e c u l e s are reasonable m o d e l s for i n t e r m e d i a t e s
i n t h e hydrogénation c y c l e — t h e
SnCl
g r o u p is
3
p r e s e n t as a c o o r d i n a t e d l i g a n d a n d f o r m s d i s t i n c t m e t a l - m e t a l b o n d s in solution. F u r t h e r , b o t h t h e hydrogénation a n d h y d r o f o r m y l a t i o n reactions are r e p o r t e d to r e q u i r e a n excess o f tin(II) d i c h l o r i d e w i t h a Sn/Pt ratio o f m o r e t h a n 2 ( o f t e n 5 is o p t i m a l ) . O u r N M R s t u d i e s s u g g e s t S n / P t > 1 affords trans-
an appreciable
increase
[Pt(SnCl ) (PEt ) ] a n d higher S n C l 3
more complete tial relevance
2
3
2
2
that
i n the concentration
of
concentrations support a
formation o f poly-tin species. I n v i e w o f the poten o f these c o m p l e x e s
it w o u l d b e v a l u a b l e to further
characterize them. T h i s w i l l require not only additional
complexes
b u t also a d d i t i o n a l p h y s i c o c h e m i c a l information c o n c e r n i n g the elec t r o n i c s t r u c t u r e o f t h e g r o u n d a n d l o w - l y i n g e x c i t e d states. W e h a v e therefore
measured some X-ray photoelectron E S C A spectra i n the
hope o f o b t a i n i n g a fuller picture o f the charge distribution. I n con trast to U V p h o t o e l e c t r o n
spectroscopy,
(UV-PES),
where
orbital
interactions p l a y a d o m i n a n t role, E S C A b i n d i n g energies, B E s , are recognized
(42, 43) t o d e p e n d p r i m a r i l y o n t h e c h a r g e o f t h e a t o m
a n d t h e charges o f t h e s u r r o u n d i n g a t o m s ; i.e., t h e h i g h e r t h e p o s i t i v e c h a r g e t h e m o r e e n e r g y is n e e d e d t o e j e c t a c o r e e l e c t r o n ( a s s u m i n g that there are s i m i l a r relaxation
energies).
I n T a b l e I I I w e g i v e B E s for s o m e o f o u r c o m p l e x e s a n d n o t e t h e f o l l o w i n g p o i n t s : (a) t h e S n ( 3 d
5 / 2
) values o f 4 8 6 . 7 - 487.2 e V are larger
t h a n t h a t f o r t h e m o d e l t i n ( I I ) c o m p l e x ( E t 4 N ) S n C l at 4 8 5 . 7 e V 3
s u g g e s t i n g a n i n c r e a s e d p o s i t i v e c h a r g e o n t i n d u e to S n C l t i o n t o t h e p l a t i n u m , a n d (b) t h e P t ( 4 f
7/2
) values, 72.7-73.3 eV, do not
deviate significantly from those o f K P t C l 2
c o m p l e x e s (see T a b l e
3
4
= 73.4 e V or other m o d e l
III).
δ+ ;Sn:
(44)
coordina
—^Sn
— Pt
—
Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
2.
STARZEWSKi
Pt-Sn
A N D PREGOSIN
Hydrogénation
These data m a y b e interpreted u s i n g a classical complex
model
i n w h i c h w e have
37
Catalysts
donor-acceptor
a d i m i n i s h e d positive
platinum
charge a n d a n e n h a n c e d p o s i t i v e charge o n t i n . T h e c o o r d i n a t i o n o f the S n C l " u n i t decreases the P t B E o n o n e h a n d ; h o w e v e r , the presence o f 3
a positively charged neighboring t i n compensates BE
b y increasing the
w i t h the n e t result b e i n g little or n o significant change
i nthe
ionization potential o f the p l a t i n u m core electrons. T h e t i n core re sponds to the donation o f the lone p a i r b y s h o w i n g a n e n h a n c e d poten t i a l w h i c h is i n c r e a s e d f u r t h e r b y i n t r o d u c i n g a p o s i t i v e l y
charged
n e i g h b o r i n g p l a t i n u m . T h e e n d effect at t i n is a r e l a t i v e l y h i g h c o r e
Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002
p o t e n t i a l t h a t c r e a t e s t h e i m p r e s s i o n o f a h i g h p o s i t i v e c h a r g e at t h i s metal ((Et N) SnCl 4
The
2
e
= 4 8 7 . 1 e V (45)).
p i c t u r e is a t l e a s t q u a l i t a t i v e l y i n a g r e e m e n t w i t h
S n - 1 1 9 m Môssbauer m e a s u r e m e n t s trichlorostannate
complexes
earlier
for a v a r i e t y o f t r a n s i t i o n - m e t a l
b y Fenton
a n d Z u c k e r m a n (46) w h o
more rigorously c o n c l u d e d that the t i n i n M - S n C l
3
units should be
c o n s i d e r e d as t i n ( I V ) . F r o m T a b l e I I w e note that t h e P t - 1 9 5 N M R c h e m i c a l shifts o f the platinum-tin complexes
f a l l i n a n d e v e n at h i g h e r
classical Pt(0) c o m p l e x e s ppm,
field
than the
(e.g. [ P t ( C F - t e C - C F ) ( P E t ) ] = - 4 7 1 2 3
3
[ P t ( f r a n s - s t i l b e n e ) ( P E t ) ] = - 5 1 2 2 (47)). 3
2
3
2
Accordingly
i t is
t e m p t i n g to seek a r e l a t i o n s h i p b e t w e e n t h e Pt-195 N M R c o o r d i n a t i o n c h e m i c a l shift Δδ = ô(complex w i t h tin)-6(related c o m p l e x w i t h o u t tin) a n d the e l e c t r o n d e n s i t y at t h e m e t a l . H o w e v e r , t h e f e w E S C A data for t h e c h o s e n test c o m p o u n d s d o n o t i n d i c a t e a s i m p l e c h a r g e
depen
dence o f the N M R shielding. A m o r e q u a n t i t a t i v e a t t e m p t at i n t e r p r e t i n g p l a t i n u m c h e m i c a l s h i f t s r e q u i r e s t h a t w e c o n s i d e r s o m e f o r m o f t h e R a m s e y (48) e q u a tion, w h i c h describes
the resonance
p a r a m a g n e t i c s c r e e n i n g t e r m , σ>· Q
A
frequency,
v, i n t e r m s o f t h e
is a c h a r g e - d e n s i t y ,
B
bond-order
m a t r i x , Δ Ε is t h e a v e r a g e e x c i t a t i o n e n e r g y , a n d r r e p r e s e n t s a d i s t a n c e f r o m t h e n u c l e u s for, i n t h i s c a s e , a g i v e n d e l e c t r o n . voz8H (l 0
-
σ )\ π Ρ
a oc(lME)(l/r )XQ P
3
(8)
2
A B
A l t h o u g h t h e r e is s o m e p r e c e d e n c e f o r b e l i e v i n g t h a t
1 9 5
Pt chemi
c a l shifts m a y b e u n d e r s t o o d q u a l i t a t i v e l y i f the Δ Ε t e r m c a n b e esti m a t e d from v i s i b l e U V d a t a (49), t h e r e is a n e x p e r i m e n t a l d i f f i c u l t y i n o u r c o m p l e x e s i n t r o d u c e d b y t h e fact t h a t m i n o r i m p u r i t i e s w i t h h i g h extinction coefficients
m a y distort considerably the U V curves. W e
have f o u n d that o u r n e a r l y colorless h y d r i d o - t i n , a n d c h l o r o - t i n d e r i v a t i v e s a l s o c a n b e i s o l a t e d as y e l l o w - o r o r a n g e - c o l o r e d c o m p l e x e s t h a t , from
3 1
P m e a s u r e m e n t s , are > 9 5 % p u r e . It seems that c a u t i o n w i l l b e
r e q u i r e d i n interpreting the U V spectra. Nevertheless, a future study
Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
4
2
2
3
2
3
3
3
c
2
2
2
3
73.3 73.3 — 72.7 c l s
6
6
(73.2) (73.0) (73.2) — 6
ESCA
Data"
e
0
Ref. 51. Data are in electron volts relative to a carbon Is B E of 285.0 eV. * Values for the complexes where S n C l is replaced by chlorine. Ref. 52.
3
3
3
trans- [ P t C l ( S n C l ) ( P E t ) ] frans-[PtH(SnCl )(PPh ) ] cis- [ P t C l ( S n C l ) ( P P h ) ] cis-[Bu N] [PtCl (SnCl ) ]
m
Pt(4f )
T a b l e III.
487.2 487.0 486.8 486.7
m
Sn(3d )
Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002
131.6 132.0 132.5 —
(131.7) (131.9)
P(2p)
2.
Pt-Sn
A N D PREGOSIN
STARZEWSKi
T a b l e IV.
Hydrogénation IR Data" (Δί>)" [cm ']
»>PtH
[cm trans- [ P t C l ( S n C l ) ( E t P P ) ] trans- [ P t C l ( S n C l ) ( P E t ) ] trans-[PtH(SnCl )(Et PP)] trans- [ P t H ( S n C l ) ( P E t ) ] trans-[PtH(SnCl )(PBzPh ) ] trans-[PtH(SnCl )(PPh ) ] trans- [ P t C H S n C l a X P E t , , ) ^ trans- [ P t C ( S n C l ) ( P B z P h ) ] ° Measured as K B r discs. Δν = (i/Pt-H in the tin complex) - (v See Table I for abbreviations. 3
3
3
3
3
2
2 2
3
2
Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002
2
4
3
3 2
3
2
2
']
— — 2112 2120 2154 2200 _ —
4
3
c
39
Catalysts
î-SnCU
[cm
— — (93) (-108) (66) (45) _ —
']
353,335,320 352,329,316 342,320 332,306 337,317,308 332,315,306 329,305 340,320
Pt-Η in the chloro complex).
b
c
i n this d i r e c t i o n c o u l d p r o v e h e l p f u l , a l t h o u g h the k n o w l e d g e
of a
s i n g l e , l o w - e n e r g y U V t r a n s i t i o n b y i t s e l f is n o t n e c e s s a r i l y s u f f i c i e n t to c l a i m a f u l l u n d e r s t a n d i n g o f t h e Δ Ε s u m m a t i o n . T h e 1/r t e r m m a y n o t 3
b e v a r y i n g s i g n i f i c a n t l y as o u r E S C A d a t a s h o w n o m a r k e d c h a n g e i n t h e c h a r g e o n p l a t i n u m . S i n c e w e h a v e n o s a t i s f a c t o r y m e t h o d o f es t i m a t i n g c h a n g e s i n Q B , o t h e r t h a n o u r I R d a t a w h i c h is far t o o c r u d e A
(see
Table
IV), a n d since an interpretation of ΔΕ
deeper understanding of our δ
1 9 5
is p r o b l e m a t i c , a
P t data m u s t await further support,
perhaps i n the form o f m o l e c u l a r orbital calculations. O n e c o u l d seek a d d i t i o n a l h e l p from the values δ
1 1 9
S n ; however,
i n a d d i t i o n t o t h e p r o b l e m s a l r e a d y m e n t i o n e d w e n o t e t h a t t h e r e is a considerable dependence
of δ
1 1 9
S n on both solvent a n d temperature
(50). I n v i e w o f t h e d i f f e r e n t s a m p l e c o n d i t i o n s i n d i c a t e d b y b o t h t h e s o l u b i l i t y a n d the d y n a m i c characteristics o f o u r c o m p l e x e s , a d e t a i l e d interpretation o f these values w o u l d b e p r e s u m p t u o u s . I n s u m m a t i o n , t h e r e is r e a s o n t o b e l i e v e , N M R studies, that the c o o r d i n a t i o n o f S n C l
2
from the E S C A
and
bestows interesting prop
e r t i e s o n o u r c o m p l e x e s ; h o w e v e r , t h e r e is as y e t i n s u f f i c i e n t d a t a t o p e r m i t d e f i n i t i v e c o n c l u s i o n s r e l e v a n t to t h e h o m o g e n e o u s
hydrogéna
tion reaction. Acknowledgments W e t h a n k H . R u e g g e r for e x p e r i m e n t a l a s s i s t a n c e a n d L . M . V e n a n z i for m a n y h e l p f u l d i s c u s s i o n s . Literature
Cited
1. Itatani, H.; Bailar, J. C. Jr. Ind. Eng. Chem. Prod. Res. Dev. 1972, 11, 146. 2. Cramer, R. D.; Jenner, E . L.; Lindsey, R. V. Jr.; Stolberg, U. G. J. Amer. Chem. Soc. 1963, 85, 1691.
Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
40 3. 4. 5. 6. 7. 8. 9.
Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002
10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46.
M E T A L PHOSPHINE COMPLEXES
Knifton, J. F. J. Org. Chem. 1976, 41, 793. Schwager, I.; Knifton, J. F. J. Catal. 1976, 45, 256. Parshall, G. W. J. Mol. Catal. 1978, 4, 243. Young, J. F.; Gillard, R. D.; Wilkinson, G. J. Chem. Soc. 1964, 5176. Baird, M . C. J. Inorg. Nucl. Chem. 1967, 29, 367. Cramer, R. D.; Lindsey, R. V. Jr.; Prewitt, C. T.; Stolberg, U. G. J. Amer. Chem. Soc. 1965, 87, 658. Lindsey, R. V.; Parshall, G. W.; Stolberg, U. G. J. Amer. Chem. Soc. 1965, 87, 658. Onaka, S. Bull. Chem. Soc. Jpn. 1975, 48, 319. Mason, R.; Robertson, G. B.; Whimp, P. O. Chem. Comm. 1968, 1655. Clegg, W., Acta Crystallogr. 1978, B34, 278. Guggenberger, L. J . Chem. Comm. 1968, 512. Stalick, J. K.; Corfield, P. W. R.; Meek, D. W. J. Amer. Chem. Soc. 1972, 94, 6194. Bürgi, H . B.; Johnson, D. K.; Venanzi, L. M., unpublished results. Pregosin, P. S.; Sze, S. N. Helv. Chim. Acta 1978, 61, 1848. Starzewski, Ostoja Κ. Α.; Ruegger, H.; Pregosin, P. S. Inorg. Chim. Acta 1979, 36, L445. Jesson, J. P. In "Transition Metal Hydrides", Muetterties, E . , E d . ; Marcel Dekker: New York, 1971; p. 75. Baumgartner, E . ; Venanzi, L. M., unpublished data. Pregosin, P. S.; Sze, S. N. Helv. Chim. Acta 1978, 61, 1848. Starzewski, Ostoja Κ. Α.; Pregosin, P. S., unpublished data. Hsu, C. C.; Geanangel, R. A. Inorg. Chem. 1980, 19, 110. Hsu, C. C.; Geanangel, R. A. Inora. Chem. 1977, 16, 2529. Kauffman, J. W.; Moor, D. H.; Williams, R. J. J. Inorg. Nucl Chem. 1977, 39, 1165. Ruegger, H.; Pregosin, P. S., unpublished data. Kunz, R. W.; Pregosin, P. S. In " N M R Basic Principles and Progress"; Springer-Verlag: Heidelberg, 1979; Vol. 16. Butler, G.; Eaborn, C.; Pidcock, A. J. Organomet. Chem. 1979, 181, 47. Eaborn, C.; Pidcock, Α.; Steele, B. R. J. Chem. Soc. Dalton 1976, 767. Eaborn, C.; Pidcock, Α.; Steele, B. R. J. Chem. Soc. Dalton 1975, 809. Starzewski, Ostoja Κ. Α.; Pregosin, P. S. Angew. Chem. Int. Ed. 1980, 19, 316. Nelson, J. H.; Cooper, V.; Rudolph, R. R. Inorg. Nucl. Chem. Lett. 1980, 16, 263. Pidcock, Α.; Richards, R. E . ; Venanzi, L. M . J. Chem. Soc. A 1966, 1707. Appleton, T. G.; Clark, H . C.; Manzer, L. E . Coord. Chem. Rev. 1973, 10, 335. Pople, J. Α.; Santry, D. P. Mol. Phys. 1964, 8, 1. Ibid, 1965, 9, 311. Crocker, C.; Goggin, P. L.; Goodfellow, R. J. J. Chem. Soc. Dalton 1976, 2494. Allen, F. H.; Pidcock, Α.; Waterhouse, C. R. J. Chem. Soc. A, 1970, 2087. Dingle, T. W.; Dixon, K. R. Inorg. Chem. 1974, 13, 846. Mather, G. G.; Pidcock, Α.; Rapsey, G. J . N. J.C.S. Dalton 1973, 2095. Verkade, J. G. Coord. Chem. Rev. 1972-73, 9, 1. Baumgartner, E . ; Starzewski, Ostoja Κ. Α.; Venanzi, L. M., unpublished data. Riggs, W. M. Anal. Chem. 1972, 44, 830. Cook, C. D.; Wan, K. Y.; Gelius, U.; Hamrin, K.; Johansson, G.; Olsson, E . ; Siegbahn, H.; Nordling, C.; Siegbahn, K. J. Amer. Chem. Soc. 1971, 93, 1904. Parshall, G. W. Inorg. Chem. 1972, 11, 433. Swartz, W. E . ; Watts, P. H.; Lippincott, E. R.; Watts, J. C.; Huheey, J. E . Inorg. Chem. 1972, 11, 2632. Fenton, D. E . ; Zuckerman, J. J. Inorg. Chem. 8, 1771.
Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.
2.
STARZEWSKI A N D PREGOSIN
Pt-Sn Hydrogénation Catalysts
41
47. Browning, J . ; Green, M.; Spencer, J. L.; Stone, F. G. A. J. Chem. Soc. Dalton, 1977, 278. 48. Ramsey, N . F. Phys. Rev. 1950, 78, 699. 49. Goggin, P. L.; Goodfellow, R. J.; Haddock, S. R.; Taylor, B. F.; Marshall, I. R. H. J. Chem. Soc. Dalton 1976, 459. 50. Smith, P. J.; Smith, L. Inorg. Chim. Acta Rev. 1973, 7, 11. 51. Starzewski, Ostoja Κ. Α.; Pregosin, P. S.; Sawatsky, G., unpublished data. 52. Grutsch, P. Α.; Zeller, M . V.; Fehlner, T. P. Inorg. Chem. 1973, 12, 1431.
Downloaded by CORNELL UNIV on August 10, 2016 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch002
R E C E I V E D August 15, 1980.
Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.