Catalytic Aspects of Metal Phosphine Complexes - American

JOHN C. JEFFERY and PAUL A. TUCKER. Research School of Chemistry, The Australian National University, Canberra,. The A.C.T., Australia .... these imin...
1 downloads 0 Views 673KB Size
18 Metal Complexes of Iminophosphine and Iminoarsine Chelating Agents Downloaded by UNIV OF ROCHESTER on September 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch018

Structure, Reactivity, and Stereochemistry J O H N E . H O O T S , T H O M A S B.R A U C H F U S S 1 ,and S T E V E N P. S C H M I D T School of Chemical Sciences, University of Illinois, Urbana I L 61801 J O H N C. J E F F E R Y and P A U L A. T U C K E R Research School of Chemistry, The Australian National University, Canberra, The A.C.T., Australia

The coordination chemistry of iminophosphine and im­ inoarsine ligands is surveyed with emphasis on our re­ cent results with tetradentate diiminodiarsines and diminodiphosphines derived from 1,2-diaminoalkanes. The ligand en = P prepared from ethylenediamine and o-diphenylphosphinobenzaldehyde forms tetrahedral complexes with copper(I) (X-ray structure) and silver(I), both of which are configurationally labile. The same ligand forms diamagnetic, four- and five-coordinate nickel(II) complexes of the formula [Ni(en = P2)](BF ) and [NiBr(en = P )]Br. Two tridentate en = P com­ plexes have been prepared, Mo(en = P )(CO) which contains an uncoordinated phosphine moiety, and [Cu(en = P )(t-BuNC)]ClO4 which contains an uncoordi­ nated imine. Chiral diiminodiarsines prepared from (R)-1,2-diaminopropane and (R,R)-1,2-diaminocyclohexane are uniquely stereospecific in their binding of tetra­ hedral copper(I) affording complexes in exclusively the Δ(λ) configuration. 2

4 2

2

2

2

3

2

/ C h e l a t i n g phosphine ligands continue to serve coordination c h e m ists i n their efforts to manipulate the electronic a n d reactivity patterns o f metal complexes. These studies have received an a d d i 1To whom correspondence should be addressed. 0065-2393/82/0196-0303$05.00/0 © 1982 American Chemical Society Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

304

M E T A L PHOSPHINE COMPLEXES

Downloaded by UNIV OF ROCHESTER on September 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch018

tional i m p e t u s from the p r o m i s e d a n d sometimes p r o v e n desirable c a t a l y t i c p r o p e r t i e s o f t h e s e c o m p o u n d s . S y n t h e t i c r o u t e s t o m o s t org a n o p h o s p h i n e s r e l y a l m o s t e x c l u s i v e l y o n a P - C b o n d c o u p l i n g as t h e e s s e n t i a l a n d u s u a l l y final s y n t h e t i c s t e p i n t h e i r s y n t h e s i s . O u r i n t e r ­ est i n t h e p h o s p h i n o b e n z a l d e h y d e s s t e m s f r o m t h e p r o s p e c t o f d e v e l ­ o p i n g a l t e r n a t i v e , s y n t h e t i c a l l y m o r e flexible s t r a t e g i e s t o c h e l a t i n g agents b e a r i n g tertiary p h o s p h i n e donors. I m i n e formation, p r o b a b l y the m o s t g e n e r a l l y u s e f u l r o u t e to m u l tidentate l i g a n d s , has b e e n a p p l i e d to the p r e p a r a t i o n o f o n l y a l i m i t e d n u m b e r o f a r s e n i c - ( i ) a n d p h o s p h o r u s - (2, 3) c o n t a i n i n g c h e l a t i n g a g e n t s v i a E q u a t i o n 1. W e h a v e s i n c e d e s c r i b e d t h e a l t e r n a t i v e a n d R E~*NH 2

2

+ R'-CHO

R E~*N==€HR' 2

(1)

m o r e g e n e r a l l y u s e f u l route to this class o f c h e l a t i n g agents v i a E q u a ­ t i o n 2, Ε = P, A s (4). I n a s m u c h as l i n e a r t e t r a d e n t a t e l i g a n d s d e r i v e d f r o m e t h y l e n e d i a m i n e , e.g. s a l e n a n d a c a c e n , h a v e p r o v e d to b e e x c e p R E

R E

2

2

t i o n a l l y v e r s a t i l e i n c o o r d i n a t i o n c h e m i s t r y a n d c a t a l y s i s , w e h a v e fo­ c u s e d m u c h o f o u r effort o n t h e c o r r e s p o n d i n g d i i m i n o d i p h o s p h i n e s a n d diiminodiarsines derived from phosphino- a n d arsinobenzaldehydes a n d a variety of diamines. Discussion T h e C a r b o n y l p h o s p h i n e s . T h e arsino- a n d p h o s p h i n o b e n z a l d e ­ h y d e s a r e t h e e s s e n t i a l s t a r t i n g m a t e r i a l s for t h e p r e s e n t w o r k a n d d e s e r v e c o m m e n t . T h e s e l i g a n d s , m a n y o f w h i c h w e r e p r e p a r e d first Scheme

I.

E = P, R=Ph,n = l-3 E=P, R = Me,n=l E=As, R=Ph,n = l

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

18.

HOOTS E T A L .

Chelating

305

Agents Scheme II.

iminophosphines PPh

PPh

2

+

RNH

CH = NR

CHO

diamines

Downloaded by UNIV OF ROCHESTER on September 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch018

monoamines

-NH C

H

3

2

2

2

S

NH

2

*J3 by S c h i e m e n z a n d Kaack, can b e synthesized i n ca. 5 0 % overall y i e l d from the c o m m e r c i a l l y a v a i l a b l e o - b r o m o b e n z a l d e h y d e i n three steps (see S c h e m e I) (5). T h e p r o d u c t s a r e i s o l a t a b l e as a i r - s t a b l e , b r i g h t y e l l o w crystalline materials ( P h A s C H C H O is pale y e l l o w ) that are c h a r a c t e r i z e d r e a d i l y b y I R (v — 1 6 9 0 c m ) a n d H - l N M R (7(P,CHO) - 7 Hz). 2

e

co

4

- 1

Monoiminophosphines. As illustrated i n Scheme II, P C H O con­ denses w i t h a w i d e variety o f s i m p l e a n d f u n c t i o n a l i z e d mono­ a m i n e s . Studies o f the M o ( O ) derivatives o f several o f these l i g a n d s demonstrate that they efficiently d i s p l a c e C O from M o ( C O ) affording (chel)Mo(CO) o r / a c - ( c h e l ) M o ( C O ) d e r i v a t i v e s (4). S i m i l a r , b u t bimetallic, complexes can b e obtained from t h e ligands prepared b y c o n d e n s a t i o n s w i t h n o n c h e l a t i n g d i a m i n e s s u c h as m - o r p diaminobenzene. e

4

3

I n m o r e recent studies, w e have d e m o n s t r a t e d that this condensa­ tion reaction allows one to readily introduce chiral functionalities into the p h o s p h i n e system. For instance, ( - ) - 3 - p i n a n e m e t h y l a m i n e read­ i l y c o n d e n s e s w i t h P C H O a n d A s C H O t o afford t h e c h i r a l i m i n e s ; these i m i n e s also m a y b e r e d u c e d t o the c o r r e s p o n d i n g s e c o n d a r y a m i n e s u s i n g N a B H . T h e efficacy o f these l i g a n d s i n a s y m m e t r i c catalysis is b e i n g e x p l o r e d c u r r e n t l y , a n d i n v i e w o f the w i d e variety o f n a t u r a l l y o c c u r r i n g c h i r a l a m i n e s , o u r m e t h o d o l o g y is e x t r e m e l y promising. 4

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

306

M E T A L PHOSPHINE COMPLEXES

D i i m i n o d i p h o s p h i n e s . T h e a l d e h y d e P C H O c l e a n l y condenses w i t h e t h y l e n e d i a m i n e i n r e f l u x i n g e t h a n o l to afford t h e o f f - w h i t e d i i m i n e , e n = P . T h i s l i g a n d r e a c t s r e a d i l y w i t h m o s t m e t a l i o n s afford­ i n g d e r i v a t i v e s i n a v a r i e t y o f g e o m e t r i e s as s h o w n b y X - r a y c r y s t a l l o g r a p h i c a n d s p e c t r o s c o p i c s t u d i e s (6).

Downloaded by UNIV OF ROCHESTER on September 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch018

2

A n e x a m p l e o f ( p s e u d o ) t e t r a h e d r a l g e o m e t r y is p r o v i d e d b y t h e Cu(I) complex, [Cu(en = P )]C10 . T h e structure from an X-ray study is d e p i c t e d i n F i g u r e 1 f r o m a p e r s p e c t i v e t h a t c l e a r l y s h o w s t h e ex­ p e c t e d s k e w e d e t h y l e n e d i a m i n e b a c k b o n e ( v i d e infra). T h e corre­ s p o n d i n g Ag(I) d e r i v a t i v e has the same g e o m e t r y j u d g i n g f r o m the s i m i l a r i t y o f the H - l N M R a n d I R spectra o f the Cu(I) a n d Ag(I) complexes. S q u a r e p l a n a r a n d five-coordinate d e r i v a t i v e s o f e n = P a r e f o u n d for t h e d i a m a g n e t i c y e l l o w [ N i ( e n = P ) ] and brown [Ni(en = P ) B r ] . A m o s t i n t e r e s t i n g f e a t u r e o f t h e s e c o m p o u n d s is t h e i r e l e c 2

4

2

2

2

+ 2

+

Inorganic Chemistry

Figure

1.

Structure

of [Cu(en = P )] with thermal at the 50% probability level 2

+

ellipsoids

drawn

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

Downloaded by UNIV OF ROCHESTER on September 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch018

18.

HOOTS E T A L .

Chelating

307

Agents

Inorganic Chemistry

Figure

2.

Structure

of Mo(en =

P )(CO) 2

3

t r o c h e m i s t r y , w h e r e i t is s e e n b y c y c l i c v o l t a m e t r y t h a t b o t h t h e n i c kel(I) a n d nickel(O) derivatives o f en = P are accessible v i a reversible 2

couples i n acetonitrile. I n a n a t t e m p t to p r e p a r e c o m p l e x e s w h e r e t h e e n = P l i g a n d is c o o r d i n a t e d t o a n o c t a h e d r a l m e t a l i o n , w e e x a m i n e d i t s c h e m i s ­ try w i t h molybdenum(O). T h e r e d m o l y b d e n u m c a r b o n y l derivative M o ( e n = P ) ( C O ) is f o r m e d i n h i g h y i e l d f r o m M o ( C O ) (see E q u a t i o n 4). W e h a v e s h o w n n o w t h a t t h i s c o m p l e x c o n t a i n s o n e u n c o o r d i n a t e d p h o s p h i n e m o i e t y i n a d d i t i o n to the facially b o u n d P - N - N segment o f the c h e l a t i n g agent. T h e P - 3 1 { H - 1 } N M R c l e a r l y s h o w s t w o s i n g l e r e s o n a n c e s at 3 4 . 8 6 a n d - 1 6 . 1 5 p p m v s . H P 0 a t t r i b u t e d t o t h e b o u n d a n d u n c o o r d i n a t e d p h o s p h i n e s , r e s p e c t i v e l y . T h e s t r u c t u r e (see F i g ­ u r e 2) is i n i n t e r e s t i n g c o n t r a s t to a n o t h e r t r i d e n t a t e e n = P c o m p l e x , [Cu(en = P ) ( f - B u N C ) ] C l 0 prepared from the reaction o f [Cu(en = P ) ] C 1 0 w i t h a slight excess o f i - B u N C . I R s p e c t r o s c o p i c data i n d i ­ cated that the i m i n e s w e r e i n e q u i v a l e n t i n this c o m p o u n d . T h e X - r a y 2

2

3

e

3

4

2

2

2

4

4

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

M E T A L PHOSPHINE COMPLEXES

308

s t r u c t u r e (see F i g u r e 3) r e v e a l e d t h a t t h e i s o n i t r i l e h a s d i s p l a c e d one i m i n e w i t h the formation of the tridentate e n = P chelate w h i c h c o n t a i n s a nine-membered chelate ring. T h i s c o m p l e x is l a b i l e a n d t h e f - B u N C e x c h a n g e c a n b e b r o u g h t w i t h i n t h e N M R t i m e f r a m e o n l y at - 6 0 ° C . C e s s a t i o n o f t h e e x c h a n g e b e t w e e n t h e Ν sites, w h i c h w o u l d r e s u l t i n a n o n e q u i v a l e n c e o f t h e p h o s p h o r u s d o n o r s , is n o t o b s e r v e d 2

e v e n at - 9 0 ° C b y P - 3 1 N M R . T h e geometry o f the chelates i n the t w o tridentate e n = P c o m ­ plexes c a n be r a t i o n a l i z e d neatly b y c o n s i d e r i n g the s p a c i a l restraints o f t h e o c t a h e d r o n a n d t e t r a h e d r o n . I n t h e f o r m e r , t h e c o o r d i n a t i o n sites are a c c o m o d a t e d c o m f o r t a b l y b y adjacent six- a n d five-membered che­ late rings whereas the greater l i g a n d - m e t a l - l i g a n d bite angle o f the t e t r a h e d r o n s t a b i l i z e s t h e m o r e flexible s i x - a n d n i n e - m e m b e r e d c h e ­ l a t e r i n g s e q u e n c e (see F i g u r e 4).

Downloaded by UNIV OF ROCHESTER on September 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch018

2

Mo(CO)

e

+ en = P

2

Mo(en = P )(CO) 2

3

+ 3CO

(4)

C h i r a l D i i m i n o d i a r s i n e s . T h e facility o f the i m i n e formation a l ­ l o w s for s t r a i g h t f o r w a r d i n t r o d u c t i o n o f c h i r a l s u b s t i t u e n t s i n t o m u l t i d e n t a t e l i g a n d s c o n t a i n i n g soft d o n o r s . T h i s s y n t h e t i c r o u t e is p r o m -

F i g u r e 3.

Structure of [Cu(en = P )(t-BuNC)] + with the thermal soids drawn at the 50% probability level 2

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

ellip­

18.

HOOTS E T A L .

C

Chelating

309

Agents

P,

N,

Mo(en = P )(CO) 2

Downloaded by UNIV OF ROCHESTER on September 1, 2017 | http://pubs.acs.org Publication Date: June 1, 1982 | doi: 10.1021/ba-1982-0196.ch018

Figure 4.

3

Selected angular

parameters

for en = P

structures

2

i s i n g for p r e p a r i n g s t e r e o s p e c i f i c c h e l a t i n g a g e n t s for l o w - v a l e n c y m e t a l i o n s . T h e H - l N M R s p e c t r a o f [ C u ( e n = P ) ] C 1 0 (35° to - 5 3 ° C ) a n d [ C u ( e n = A s ) ] C 1 0 (35°C) i n d i c a t e t h a t t h e s e c o m p l e x e s a r e u n ­ d e r g o i n g r a p i d i n v e r s i o n a b o u t t h e m e t a l i o n as i n d i c a t e d i n E q u a t i o n 5. I n a s m u c h as t h e d i s p o s i t i o n o f t h e Ε • · · Ν ( Ε = A s , Ρ ) c h e l a t e 2

2

4

4

(5)

Δ-λ

Λ-δ

r i n g s is d i c t a t e d b y t h e c o n f o r m a t i o n o f t h e e t h y l e n e b a c k b o n e , i t s h o u l d b e p o s s i b l e to fix t h e o v e r a l l c h i r a l i t y o f t h e c o m p l e x b y l o c k i n g the c o n f o r m a t i o n o f that b a c k b o n e . W e h a v e a p p r o a c h e d this p r o b l e m b y e x a m i n i n g the conformation b e h a v i o r o f t w o analogues of e n = A s . B o t h the X - r a y structure o f [Cu(en = P ) ] C 1 0 a n d the F i e s e r m o ­ l e c u l a r m o d e l s i n d i c a t e that p l a c e m e n t o f a m e t h y l g r o u p i n a n axial site o n t h e e t h y l e n e b a c k b o n e o f C u ( e n = E ) w o u l d result i n sig­ n i f i c a n t l y u n f a v o r a b l e n o n b o n d e d interactions w i t h the a r o m a t i c s u b ­ s t i t u e n t ^ , a n d p r e l i m i n a r y e x p e r i m e n t s c o n f i r m t h i s p r e d i c t i o n (see F i g u r e 5). ( R ) - l , 2 - D i a m i n o p r o p a n e e f f i c i e n t l y c o n d e n s e s w i t h A s C H O to afford t h e d i i m i n e R - p n = A s w h i c h w a s c o n v e r t e d d i r e c t l y to its c r y s t a l l i n e c o p p e r ( I ) d e r i v a t i v e , [ C u ( R - p n = A s ) ] C 1 0 . F o r refer­ e n c e s , t h e l i g a n d e n = A s a n d its c o p p e r ( I ) c o m p l e x h a v e b o t h b e e n isolated a n d characterized. T h e H - l N M R spectrum of [Cu(R-pn = A s ) ] C 1 0 d i s p l a y s t h e c o m p l e x i t i e s e x p e c t e d for its l o w s y m m e t r y (see F i g u r e 6), w h e r e t h e m o s t i m p o r t a n t f e a t u r e is t h e p a i r o f r e s o n a n c e s for the n o n e q u i v a l e n t i m i n o protons. If this s p e c t r u m w e r e the w e i g h t e d a v e r a g e o f r a p i d l y i n t e r c o n v e r t i n g d i a s t e r e o m e r s (see E q u a t i o n 6), t h e 2

2

4

2

+

2

2

4

2

2

4

Alyea and Meek; Catalytic Aspects of Metal Phosphine Complexes Advances in Chemistry; American Chemical Society: Washington, DC, 1982.

310

M E T A L PHOSPHINE COMPLEXES

A-[CU(R-PN=AS )-A|