4 Catalytic Oxidation of Isobutylene to Methacrolein over Copper Oxide Catalysts RANVEER S. MANN and DENIS J . ROULEAU
1
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0051.ch004
Chemical Engineering
Department,
University of Ottawa, Ottawa 2, Canada
The air oxidation of isobutylene was investi gated over supported and unsupported copper oxide catalysts in an isothermal integral flow reactor. The effect of several variables—ratio of oxygen to isobutylene in the feed, process temperatures, copper concentrations of the cat alysts, and reciprocal of space velocity on the conversion and yield—were determined. Though several mechanisms were postulated, the rate of reaction was most satisfactorily correlated by a mechanism which assumes the rate-controlling step as the surface reaction be tween strongly adsorbed isobutylene and gas eous (weakly adsorbed) oxygen. The rate ex -r=
αKC H 4
1
+
PC H
8
4
KC H PC H 4
8
4
8
PO
2
8
+
KC H OPC H O 4
8
4
6
pression fitted the data very well.
Q w i n g to t h e l i k e l y o c c u r r e n c e of c o m p l e t e o x i d a t i o n to c a r b o n d i o x i d e a n d w a t e r , c o m p a r a t i v e l y f e w studies h a v e b e e n c a r r i e d o u t o n t h e v a p o r phase c a t a l y t i c o x i d a t i o n o f olefins o n m e t a l oxides. T h e selective o x i d a t i o n o f e t h y l e n e to e t h y l e n e oxide ( 7 ) , p r o p y l e n e to a c r o l e i n (18), a n d v a r i o u s a r o m a t i c s t o a r o m a t i c d i c a r b o x y l i c acids o r a n h y d r i d e s r e p r e sent cases of c o n s i d e r a b l e i n d u s t r i a l i m p o r t a n c e . T h o u g h s e v e r a l patents ( 1, 3, 4, 5, 6, 8, 9,14 ) h a v e a p p e a r e d d u r i n g t h e past f e w years d e s c r i b i n g the use of v a r i o u s m e t a l oxides i n t h e p a r t i a l o x i d a t i o n of i s o b u t y l e n e to m e t h a c r o l e i n , scientific l i t e r a t u r e d e s c r i b i n g t h e effects of v a r i o u s o p e r a t i n g v a r i a b l e s o n t h e c o m p o s i t i o n o f p r o d u c t s is q u i t e l i m i t e d . T h e gas p h a s e o x i d a t i o n of i s o b u t y l e n e has b e e n e x a m i n e d b y a static m e t h o d b e t w e e n 1
Present address:
Canadian Celanese Co., Drummondville, Quebec, Canada.
40 In Selective Oxidation Processes; Fields, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
4.
MANN AND ROULEAU
41
Isobutylene to Methacrolein
252° a n d 320° C . b y S k i r r o w a n d W i l l i a m s ( 1 7 ) . T h e y o b t a i n e d c a r b o n dioxide,
carbon
monoxide,
water,
propylene,
acetone,
formaldehyde,
a c e t a l d e h y d e , i s o b u t y l a l d e h y d e , m e t h a c r o l e i n , p r o p y l e n e oxide, m e t h a n e , a n d acetic a c i d as r e a c t i o n p r o d u c t s .
T h e formation of the more i m -
p o r t a n t p r o d u c t s has b e e n a c c o u n t e d f o r i n terms o f a r a d i c a l a d d i t i o n m e c h a n i s m , i n i t i a t e d b y a d d i t i o n of a h y d r o x y l r a d i c a l t o t h e t e r m i n a l CH
2
g r o u p a n d f o l l o w e d b y p e r o x y r a d i c a l f o r m a t i o n a n d its subsequent
decomposition.
Bretton, W a n , a n d D o d g e
e x p e r i m e n t a l v a r i a b l e s , contact
( 2 ) s t u d i e d t h e effects of
time, b e d temperature, a n d a i r / h y d r o -
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0051.ch004
c a r b o n ratios o n t h e c o n v e r s i o n a n d y i e l d s of p r o d u c t f o r t h e o x i d a t i o n of h y d r o c a r b o n s c o n t a i n i n g f o u r c a r b o n atoms o n V 0 2
5
supported on Alfrax.
I n t h e case o f i s o b u t y l e n e o x i d a t i o n , t h e y o b t a i n e d acetic a c i d , m e t h a c r o lein, a n d formaldehyde water.
besides c a r b o n d i o x i d e , c a r b o n m o n o x i d e , a n d
T h e f o r m a t i o n of t h e r e a c t i o n p r o d u c t s has b e e n e x p l a i n e d b y a
s c h e m e o f a t o m i c d e h y d r o g e n a t i o n a n d p e r o x i d a t i o n s i m i l a r to that s u g gested b y W a t e r s ( 2 0 ) , a n d b y p e r o x i d e d e c o m p o s i t i o n .
Popova, M i l m a n ,
a n d L a t y s h e v a ( 1 5 ) s t u d i e d t h e o x i d a t i o n o f i s o b u t y l e n e to m e t h a c r o l e i n at 3 5 0 ° - 7 0 ° C . i n t h e presence of a 0 . 1 - 1 . 5 % c o p p e r o x i d e ( 7 0 % C u 0 2
+
3 0 % C u O ) catalyst s u p p o r t e d o n a Suite base, u s i n g a n i s o b u t y l e n e /
o x y g e n r a t i o of 5.6:1.
O n o x i d a t i o n , 3 . 8 % of t h e i s o b u t y l e n e w a s c o n -
v e r t e d to c a r b o x y l c o m p o u n d s ,
8 2 . 5 % of w h i c h was methacrolein, the
balance being propionaldehyde, acetaldehyde, and acrolein. T h e a i r o x i d a t i o n of i s o b u t y l e n e w a s i n v e s t i g a t e d o v e r several s u p p o r t e d a n d u n s u p p o r t e d c o p p e r oxide catalysts alone o r m i x e d w i t h other m e t a l oxides i n a n i s o t h e r m a l i n t e g r a l flow reactor.
T h e effect o f several
variables—ratio of o x y g e n to i s o b u t y l e n e i n the' feed, process t e m p e r a t u r e , c o p p e r c o n c e n t r a t i o n , r e c i p r o c a l of space v e l o c i t y — o n t h e c o n v e r s i o n a n d yield was determined.
Based o n experimental data, the rate-controlling
step a n d the rate e q u a t i o n f o r the p a r t i a l a i r o x i d a t i o n of i s o b u t y l e n e w e r e determined.
Experimental T h e e x p e r i m e n t a l a p p a r a t u s u s e d to s t u d y t h e r e a c t i o n is s h o w n s c h e m a t i c a l l y i n F i g u r e 1. T h e reactants, d r y a i r , a n d c h e m i c a l l y p u r e i s o b u t y l e n e ( m i n . 9 9 % p u r i t y ) w e r e o b t a i n e d f r o m h i g h pressure, d i a p h r a g m t y p e regulators, w h e r e b y t h e pressure o f a i r a n d i s o b u t y l e n e w e r e r e d u c e d to 20 p.s.i.g. a n d m e t e r e d o v e r B r o o k s rotameters. T h e gases w e r e m i x e d a n d p r e h e a t e d b e f o r e e n t e r i n g t h e reactor. T h e p r e h e a t i n g section, c o n s i s t i n g of a 3 foot l o n g / inch—o.d., 316 stainless steel t u b i n g w o u n d a r o u n d the reactor, w a s i m m e r s e d i n a constant t e m p e r a t u r e m e t a l b a t h . T h e reactor w a s h e a t e d i n a l i q u i d m e t a l ( 5 0 % b i s m u t h , 5 0 % l e a d ) bath, w h i c h i n t u r n was situated i n a n electrically heated furnace, whose temperature w a s controlled to w i t h i n ± 3 ° C . b y a H o n e y w e l l Pyrovane t e m p e r a t u r e c o n t r o l l e r . T h e catalyst b e d consisted of c o p p e r o x i d e s u p 1
8
In Selective Oxidation Processes; Fields, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0051.ch004
42
SELECTIVE OXIDATION PROCESSES
Figure
1.
Flow diagram for the air oxidation
of
isobutylene
p o r t e d alone o r m i x e d w i t h a n o t h e r o x i d e , p l a c e d i n a 0.5 i n c h — i . d . 304 stainless steel reactor, h e l d i n p l a c e b y a stainless steel p o r o u s p l a t e i n t h e b o t t o m a n d steel w o o l at t h e t o p . T h e r m o c o u p l e s p l a c e d a t the center o f the catalyst b e d i n the reactor, a n d i n t h e m e t a l b a t h s u r r o u n d i n g i t , r e c o r d e d t h e same temperatures at h i g h flow rate of gases, i n d i c a t i n g t h a t t h e p r e h e a t i n g section w a s l o n g e n o u g h to heat t h e e n t e r i n g gases u p to t h e d e s i r e d t e m p e r a t u r e . H o w ever, d u r i n g the course of c a t a l y t i c r e a c t i o n , these t h e r m o c o u p l e s r e c o r d e d a difference of a b o u t 7 ° C , w h i c h c o u l d b e c o n s i d e r e d as n e g l i g i b l e . T h e r e a c t i o n has therefore b e e n t r e a t e d as v i r t u a l l y t a k i n g p l a c e u n d e r i s o thermal conditions, considering the h i g h l y exothermic nature of the reaction. P r o c e d u r e . F o r t h e start of t h e r u n , a i r w a s s l o w l y passed t h r o u g h the reactor, w h i l e t h e catalyst w a s b r o u g h t t o t h e r e q u i r e d t e m p e r a t u r e . W h e n t h e r e q u i r e d t e m p e r a t u r e w a s a t t a i n e d , i s o b u t y l e n e a n d a i r ratios w e r e a d j u s t e d to t h e d e s i r e d values a n d m a i n t a i n e d at t h e specified rates over a p e r i o d of 15 m i n u t e s , a n d t h e reactor w a s b r o u g h t to steady state. T h e steady state r u n w a s c o n t i n u e d f o r 3 0 - 6 0 m i n u t e s b y c o l l e c t i n g t h e l i q u i d s a m p l e f r o m t h e exit gases i n a n i c e c o o l e d t r a p ( T r a p I ) . T h e n o n c o n d e n s e d gases w e r e passed t h r o u g h a s a m p l i n g v a l v e l e a d i n g t o a F i s h e r G a s P a r t i t i o n e r . T h e off gases f r o m t h e s a m p l i n g v a l v e w e r e passed through a l i q u i d air trap ( T r a p I I ) . Part of the aldehydes w h i c h d i d not c o n d e n s e i n T r a p I c o n d e n s e d i n T r a p I I . A n a l y t i c a l . T h e t o t a l a c i d content w a s o b t a i n e d b y t i t r a t i n g t h e condensate f r o m i c e - c o o l e d t r a p w i t h 0.055IV K O H s o l u t i o n . V e r y l i t t l e a c i d w a s present i n t h e condensate a n d w a s c o n s i d e r e d t o o i n s i g n i f i c a n t to affect the m a t e r i a l b a l a n c e ; as s u c h , i t w a s n o t i n c l u d e d i n t h e analysis of t h e p r o d u c t s . T h e condensate f r o m T r a p I c o n t a i n e d m i n o r q u a n t i t i e s of a l d e h y d e s .
In Selective Oxidation Processes; Fields, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0051.ch004
4.
MANN AND ROULEAU
43
Isobutylene to Methacrolein
GASES. T h e i n l e t f e e d gas a n d exit p r o d u c t gases w e r e a n a l y z e d f o r isobutylene, carbon monoxide, carbon dioxide, oxygen, a n d nitrogen b y p e r i o d i c i n j e c t i o n o f 0.5 m l . s a m p l e i n t o G a s P a r t i t i o n e r c o n t a i n i n g a 6-foot h e x a m e t h y l p h o s p h o r a m i d e c o l u m n a n d a 13-foot 13 X m o l e c u l a r sieve c o l u m n c o n n e c t e d i n series. N i t r o g e n w a s o b t a i n e d b y difference. ALDEHYDES. T h e sample from the l i q u i d air trap w a s diluted w i t h approximately 8 m l . of d i e t h y l ether a n d p l a c e d i n a refrigerator w h i c h w a s k e p t at 5 ° C . O n c e t e m p e r a t u r e e q u i l i b r i u m w a s r e a c h e d , .005 m l . o f the m i x t u r e w a s i n j e c t e d i n t o a 1 5 4 D P e r k i n - E l m e r gas c h r o m a t o g r a p h , c o n t a i n i n g t w o 4-meter c o l u m n s o f C a r b o w a x 1500 o n T e f l o n . T h e c o l u m n c o u l d separate acetone, a c e t a l d e h y d e , p r o p i o n a l d e h y d e , c r o t a n a l d e h y d e , a c r o l e i n , m e t h a c r o l e i n , a n d w a t e r . O n l y m e t h a c r o l e i n , w a t e r , a n d traces of acetone a n d a c e t a l d e h y d e w e r e o b t a i n e d w i t h a l l catalysts except catalyst V I I I a n d catalyst I X . Catalysts. Catalyst I , a pumice-supported copper oxide catalyst (16 w t . % of c o p p e r ) w a s p r e p a r e d b y i m p r e g n a t i n g 2 0 - 4 0 m e s h c r u s h e d p u m i c e stone w i t h c o p p e r n i t r a t e s o l u t i o n . C a t a l y s t I I ( 2 % c o p p e r ) , Catalyst I I I ( 8 % copper), and Catalyst I V ( 3 2 % copper) were prepared b y impregnating pumice w i t h the required amount of copper nitrate solutions. C a t a l y s t V , a n u n s u p p o r t e d c o p p e r o x i d e c a t a l y s t , w a s p r e p a r e d b y c a l c i n i n g c o p p e r n i t r a t e f o r t w o h o u r s a t 200° C . a n d f o u r h o u r s at 550° C . C a t a l y s t V I , a m o l y b d e n u m o x i d e c a t a l y s t s u p p o r t e d o n p u m i c e (8% M o 0 ) was prepared b y impregnating pumice with an ammonium paramolybdate solution. Catalyst V I I , a copper-molybdenum oxide c a t a l y s t ( 7 5 % C u O + 2 5 % M0O3) w a s p r e p a r e d b y i m p r e g n a t i n g t h e pumice w i t h a copper nitrate plus a m m o n i u m paramolybdate solution, c o n t a i n i n g c o p p e r o x i d e a n d m o l y b d i c o x i d e i n r e q u i r e d ratios. C a t a l y s t V I I I , a copper oxide supported o n a l u m i n a ( 1 6 % copper) was prepared by impregnating alumina w i t h copper nitrate solution. Catalyst I X , a m i x e d o x i d e c a t a l y s t ( 8 % oxides, M0O3, V 0 , P 0 i n a r a t i o o f 5 : 1 : 0 . 6 ) was prepared b y impregnating alumina w i t h a n a m m o n i u m paramolybdate-ammonium vanadate-ammonium phosphate solution containing r e q u i r e d ratios o f oxides. A l l t h e catalysts except C a t a l y s t V w e r e d r i e d o v e r n i g h t at 105° C . a n d c a l c i n e d at 550° C . f o r six h o u r s . E a c h c a t a l y s t w a s a c t i v a t e d b y p l a c i n g i t i n t h e flow r e a c t o r a n d p a s s i n g a s l o w s t r e a m of a i r o v e r i t f o r 12 h o u r s a t 400° C . 3
2
5
2
5
Results and Discussion T h e effect of o x y g e n ( i n t h e a i r ) / i s o b u t y l e n e i n t h e f e e d , t h e operati n g temperature, a n d the copper concentration i n the catalyst o n the c o n v e r s i o n of i s o b u t y l e n e a n d t h e y i e l d of m e t h a c r o l e i n w e r e i n v e s t i g a t e d . W h i l e c o n v e r s i o n is r e f e r r e d to as t h e m o l e s of i s o b u t y l e n e
consumed
( r e a c t e d ) p e r h o u r to t h e m o l e s of i s o b u t y l e n e f e d p e r h o u r , t h e r a t i o o f the moles of m e t h a c r o l e i n p r o d u c e d p e r h o u r t o t h e m o l e s o f i s o b u t y l e n e r e a c t e d p e r h o u r h a s b e e n d e f i n e d as y i e l d o f m e t h a c r o l e i n .
F o r carbon
d i o x i d e a n d c a r b o n m o n o x i d e , t h e y i e l d has b e e n d e f i n e d as o n e - f o u r t h o f the r a t i o o f t h e m o l e s of c a r b o n m o n o x i d e o r c a r b o n d i o x i d e f o r m e d t o the moles of i s o b u t y l e n e r e a c t e d .
T h e ratio of grams of catalyst to t h e
In Selective Oxidation Processes; Fields, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
SELECTIVE OXIDATION PROCESSES
44 Table I.
Conversions and Yields for Different Catalysts
τ = 4oo° α, Ν = ι, W/F = u i fields
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0051.ch004
Catalyst
Conversion of Isobutylene
CO
C0
Acids
Other Aldehydes
0.296 0.333 0.308 0.274 0.069
0 .688 0 .651 0 .678 0 717 0 840
0.009 0.013 0.012 0.009 0.098
— — — — —
— — — — —
0.301 0.181 0.273
0 .682 0 532 0 .383
0.009 0.171 0.083
0.010 0.046
4
0.400 0.272 0.371 0.422 0.467 negligible 0.386 0.526 0.618
I II III IV V VI VII VIII IX
C HsO
2
—
—
0.106 0.215
.70
.60
*
X
°
y
C H 4
8
C H 0 4
6
.50
9 LJ
>ο ζ
Ζ
ο ο
.20
.10
c
80
100
Effect of copper concentration conversion and yield
on the
20
40
60
% COPPER Figure
2.
g r a m m o l e of i s o b u t y l e n e f e d p e r h o u r is defined as W / F . T h e r a t i o of W/F w a s v a r i e d b y v a r y i n g t h e a m o u n t of catalyst w h i l e k e e p i n g t h e a m o u n t o f f e e d constant, a n d v i c e - v e r s a . E f f e c t o f V a r i o u s C a t a l y s t s o n O x i d a t i o n . T h e effect o n t h e c o n v e r sion a n d y i e l d f o r several catalysts at 400° C , a W/F r a t i o of 1.71, a n d a n
In Selective Oxidation Processes; Fields, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0051.ch004
4.
MANN AND ROULEAU
ΟI
Isobutylene to Methacrolein
ι
0
ι
1
I
1
1 2 3 4 MOLES OXYGEN/MOLES C H IN FEED 4
Figure
45
5
8
3. Effect of oxygen/isobutylene in feed (Ν) on conversion and yield
o x y g e n / i s o b u t y l e n e r a t i o o f 1.0 is g i v e n i n T a b l e I .
ratio
T h o u g h catalyst I X
g a v e t h e h i g h e s t c o n v e r s i o n , catalyst I w a s c o n s i d e r e d t h e best f o r t h e detailed kinetic study.
It h a d negligible activity towards the formation
of o r g a n i c c o m p o u n d s other t h a n m e t h a c r o l e i n a n d a v e r y h i g h s e l e c t i v i t y for m e t h a c r o l e i n p r o d u c t i o n at a h i g h rate o f c o n v e r s i o n .
T h i s catalyst
w a s u s e d therefore t h r o u g h o u t t h e i n v e s t i g a t i o n of t h e r e a c t i o n k i n e t i c s . Effect of C o p p e r Concentration.
T h e o x i d a t i o n of i s o b u t y l e n e w a s
c a r r i e d o u t o v e r s e v e r a l c o p p e r o x i d e catalysts c o n t a i n i n g v a r y i n g a m o u n t s of c o p p e r o x i d e / s u p p o r t
ratios.
F i g u r e 2 shows
t h e effect o f c o p p e r
c o n c e n t r a t i o n i n t h e catalyst o n t h e c o n v e r s i o n of i s o b u t y l e n e at 400° C , a W/F r a t i o o f 1.71 a n d a n Ν — 3.0. I t i n c r e a s e d f a i r l y r a p i d l y u p t o a c o n c e n t r a t i o n of 1 0 % c o p p e r b y w e i g h t .
F o r h i g h e r concentrations, t h e
effect o n t h e c o n v e r s i o n w a s m u c h less p r o n o u n c e d , t h o u g h i t i n c r e a s e d s t e a d i l y u p to a v a l u e o f 0.467 f o r u n s u p p o r t e d c o p p e r oxide.
A n increase
i n c o p p e r content of the catalyst, o n t h e other h a n d , a d v e r s e l y affected t h e y i e l d of methacrolein.
T h e decrease i n t h e y i e l d o f m e t h a c r o l e i n seems
to b e d i r e c t l y p r o p o r t i o n a l t o a n increase i n c o p p e r content o f t h e catalyst.
In Selective Oxidation Processes; Fields, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
SELECTIVE OXIDATION PROCESSES
46 Effect
of Oxygen/Isobutylene
b u t y l e n e r a t i o (N)
Ratio.
T h e effect of
oxygen/iso-
i n t h e f e e d o n t h e c o n v e r s i o n a n d y i e l d f o r a W/F
r a t i o o f 1.0 o v e r c o p p e r o x i d e s u p p o r t e d o n p u m i c e ( C a t a l y s t I ) a t 400° C . is s h o w n i n F i g u r e 3.
T h e c o n v e r s i o n of i s o b u t y l e n e i n c r e a s e d r a p i d l y
w i t h reactant ratios u p t o a n Ν of 2 a n d t h e n s e e m e d to b e c o m e i n d e p e n d e n t of the r e a c t a n t ratios. E f f e c t of T e m p e r a t u r e .
T h e influence o f t h e t e m p e r a t u r e a n d y i e l d
over Catalyst I was investigated i n the temperature range 350°-450° C .
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0051.ch004
.35|
—I
* ο
X
C H 4
8
V y
CH0 4
6
.20· 350 Figure
4.
375 400 425 450 TEMPERATURE °C Effect of temperature on conversion and yield
F i g u r e 4 shows t h e effect of t e m p e r a t u r e o n t h e c o n v e r s i o n a n d y i e l d at a W/F r a t i o of 1.2 a n d Ν — 2.0. W i t h i n c r e a s i n g t e m p e r a t u r e f r o m 350° to 450° C , t h e c o n v e r s i o n i n c r e a s e d b u t the y i e l d decreased. E f f e c t o f W/F R a t i o s . F i g u r e 5 shows t h e effect of v a r i o u s W/F ratios o n t h e c o n v e r s i o n of i s o b u t y l e n e a n d t h e y i e l d of m e t h a c r o l e i n a n d c a r b o n d i o x i d e at 400° C . a n d a n Ν of 1.0 over C a t a l y s t I . I t is seen that t h o u g h t h e f r a c t i o n of i s o b u t y l e n e c o n s u m e d (% c o n v e r s i o n ) i n c r e a s e d
In Selective Oxidation Processes; Fields, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0051.ch004
4.
MANN AND ROULEAU
Isobutylene to
Methacrolein
47
r a p i d l y u p to a W/F r a t i o o f 2, t h e r e is n o t m u c h c h a n g e i n t h e c o n v e r s i o n of i s o b u t y l e n e f o r W/F e x c e e d i n g 2. F i g u r e s 2, 3, a n d 4, s h o w t h a t w h i l e t h e m e t h a c r o l e i n y i e l d decreases w i t h i n c r e a s e d c o p p e r concentrations, t e m p e r a t u r e o r o x y g e n / i s o b u t y l e n e ratio i n the feed, the y i e l d of carbon dioxide, carbon monoxide, a n d water i n c r e a s e d . T h e s e results suggest t h a t m e t h a c r o l e i n u n d e r w e n t f u r t h e r o x i d a t i o n t o c a r b o n d i o x i d e a n d m o n o x i d e . T h e a b o v e results a r e i n l i n e w i t h t h e findings of Isaev, M a r g o l i s , a n d S a z a n o v a (12) a n d V o g e , W a g n e r , a n d Stevenson (19), w h o o x i d i z e d p r o p y l e n e over c u p r o u s o x i d e catalysts. T h e y e s t a b l i s h e d , b y means o f k i n e t i c a n d i s o t o p i c d a t a , t h a t most of t h e c a r b o n d i o x i d e f o r m e d i n t h e process results f r o m t h e o x i d a t i o n of a c r o l e i n . A k i n e t i c analysis o f t h e e x p e r i m e n t a l d a t a (16) w a s m a d e u s i n g t h e H o u g e n - W a t s o n (11) a p p r o a c h , w h e r e b y v a r i o u s m e c h a n i s m s w h i c h m i g h t c o n t r o l t h e r e a c t i o n rate are p o s t u l a t e d , a n d t h e rate expressions consistent w i t h these hypotheses are d e r i v e d . T h e r a t e - c o n t r o l l i n g m e c h a -
A. C. S. Editorial Library In Selective Oxidation Processes; Fields, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
48
SELECTIVE OXIDATION PROCESSES
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0051.ch004
n i s m of t h e s o l i d - c a t a l y z e d gas r e a c t i o n m a y b e t h e mass transfer o f t h e reactants o r p r o d u c t s o r c h e m i c a l r e a c t i o n o f a d s o r b e d m o l e c u l e s at the catalyst surface. T h e rate expressions thus d e r i v e d are t h e n fitted to t h e e x p e r i m e n t a l d a t a . T h e rate expression w h i c h gives t h e best fit is r e t a i n e d ; the others are d i s c a r d e d . T h e eifects of diffusion a n d mass transfer w e r e k e p t at a m i n i m u m b y u s i n g a h i g h v e l o c i t y of gas t h r o u g h the catalyst b e d . T h e use of inert p o r o u s s u p p o r t a n d its s m a l l p a r t i c l e size ( 2 0 - 4 0 m e s h ) a n d surface area (less t h a n 0.1 s q . m e t e r / g r a m ) r u l e d o u t the p o s s i b i l i t y of t h e d i f f u s i o n i n the pores c o n t r o l l i n g t h e r e a c t i o n . A p l o t of i n i t i a l rates against p a r t i a l pressure of i s o b u t y l e n e i n d i c a t e d that the d e s o r p t i o n of t h e p r o d u c t s w a s definitely n o t rate c o n t r o l l i n g . S i n c e d e s o r p t i o n of p r o d u c t s , mass transfer, a n d d i f f u s i o n a l effects w e r e n o t rate c o n t r o l l i n g , t h e p o s s i b i l i t y of t h e a d s o r p t i o n of reactants a n d surface r e a c t i o n b e t w e e n a d s o r b e d m o l e c u l e s as rate c o n t r o l l i n g w a s e x a m i n e d . W r i t i n g t h e s t o i c h i o m e t r i c e q u a t i o n f o r the r e a c t i o n as G H 4
8
+
0
2
ç± C H 0 + 4
6
H 0 2
a n d f o l l o w i n g the u s u a l p r o c e d u r e of d e r i v a t i o n ( J O ) , n e g l e c t i n g t h e t e r m ( ^ C
4
H
6
O
K ^ H O , ) / ^
S
I
N
C
E
Κ
( e q u i l i b r i u m constant)
o x i d a t i o n of i s o b u t y l e n e w a s v e r y l a r g e
(In Κ >
f o r t h e gas phase 2 0 ) , equations f o r
v a r i o u s p o s t u l a t e d m e c h a n i s m s r e l a t i n g t h e rate of f o r m a t i o n of m e t h a c r o l e i n a n d w a t e r w e r e d e r i v e d ( T a b l e I I ) a n d tested f o r t h e best fit of experimental data. T h e d a t a w a s most satisfactorily c o r r e l a t e d b y m e c h a n i s m V I , w h i c h assumes
that t h e r a t e - c o n t r o l l i n g step is a surface
reaction
Table II.
between
Rate Equations
Type of Reaction Mechanism I :
Surface reaction between adsorbed isobutylene a n d adsorbed oxygen, adsorption of isobutylene controlling.
M e c h a n i s m II :
Surface r e a c t i o n between adsorbed isobutylene a n d oxygen i n gas phase, a d s o r p t i o n o f isobutylene c o n t r o l l i n g .
M e c h a n i s m III :
Surface reaction between adsorbed isobutylene a n d adsorbed oxygen, adsorption of oxygen c o n t r o l l i n g .
Mechanism I V :
Surface reaction between adsorbed oxygen a n d isobutylene i n gas phase, adsorption o f oxygen controlling.
Mechanism V :
Surface reaction between adsorbed isobutylene a n d adsorbed oxygen phase
Mechanism V I :
Surface reaction between adsorbed isobutylene a n d oxygen i n gas phase
Mechanism V I I :
Surface reaction between adsorbed oxygen a n d isobutylene i n gas phase
In Selective Oxidation Processes; Fields, E.; Advances in Chemistry; American Chemical Society: Washington, DC, 1965.
4.
MANN AND ROULEAU
Isobutylene to Methacrolein
49
s t r o n g l y a d s o r b e d i s o b u t y l e n e a n d gaseous ( o r v e r y w e a k l y a d s o r b e d ) oxygen.
T h e a d s o r p t i o n e q u i l i b r i u m constant f o r m e t h a c r o l e i n
(K
C 4 H e 0
w a s a s s u m e d t o b e t h e same as f o r i s o b u t y l e n e since a c h a n g e i n K h a d l i t t l e effect o n t h e c o r r e l a t i o n .
)
C 4 H e 0
T h o u g h the numerical value o f the
a d s o r p t i o n e q u i l i b r i u m constant f o r m e t h a c r o l e i n c o u l d n o t b e e s t i m a t e d p r e c i s e l y , t h e best fit t o t h e e x p e r i m e n t a l d a t a w a s o b t a i n e d w h e n K w a s o f the^eame
o r d e r o f m a g n i t u d e as K
C 4 H ( J
.
C 4 H e 0
T h e r e a c t i o n rate f o r
the o x i d a t i o n o f i s o b u t y l e n e t o m e t h a c r o l e i n h a s b e e n satisfactorily e x
Downloaded by NORTH CAROLINA STATE UNIV on May 3, 2015 | http://pubs.acs.org Publication Date: January 1, 1965 | doi: 10.1021/ba-1965-0051.ch004
pressed b y the f o l l o w i n g e q u a t i o n :