40
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch040
Catalytic Properties of Zeolites— A General Review KH. M. MINACHEV and YA. I. ISAKOV Zelinsky Institute of Organic Chemistry, Academy of Sciences, Leninsky Prospect 47, B-334 Moscow, U.S.S.R.
Much progress has been made in understanding the catalytic activity of zeolites for several type of reactions. The number of reactions catalyzed by zeolites has been extended, and new multicomponent polyfunctional catalysts with specific properties h been developed. In addition to cracking and hydrocracking, reactions such as n-alkane isomerization, low temperature isomerization of aromatic C hydrocarbons, and disproportionation of toluene are industrially performed over zeolite-containing catalysts. Moreover, introduction of various compounds (CO , HCl) into reaction mixtures allows one to control the intensity and selectivity of the reactions. There are many reviews on the catalytic behavior of zeolites and even more original papers an patents. This review emphasizes the results, achievements, a trends which we consider to be most important. 8
2
Catalytic studies on zeolite can be classified according to their point of ^
v i e w a n d general m e t h o d of a p p r o a c h as f o l l o w s : (1) E s t a b l i s h m e n t of t h e n a t u r e of a c t i v e sites for v a r i o u s reactions. S e a r c h for s i m i l a r i t i e s a n d differences between t h e c r y s t a l l i n e zeolites a n d the amorphous silica-aluminas. (2) C o r r e l a t i o n between s t r u c t u r e a n d c o m p o s i t i o n of zeolites a n d t h e i r a c t i v i t y , s t a b i l i t y , a n d s e l e c t i v i t y for selected m o d e l reactions. (3) S e a r c h for t h e a p p l i c a b i l i t y of zeolite c a t a l y s t s t o c o n v e n t i o n a l a n d new reactions. S t u d y of t h e o r e t i c a l a n d p r a c t i c a l p r o b l e m s of o i l refining a n d p e t r o l e u m c h e m i s t r y a n d of k i n e t i c s a n d m e c h a n i s m s of m o d e l r e a c tions. (4) I n v e s t i g a t i o n of methods t o c o n t r o l zeolite properties a n d c o m p o s i t i o n , t o m o d i f y these properties to o b t a i n t h e highest specificity i n t h e i r a p p l i c a t i o n as c a t a l y s t s for v a r i o u s processes. D e v e l o p m e n t of new m u l t i c o m p o n e n t p o l y f u n c t i o n a l c a t a l y t i c systems. (5) S t u d y of the m o l e c u l a r sieve properties a n d t h e i r possible a p p l i c a t i o n t o develop h i g h l y selective c a t a l y s t s . 451 In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
452
MOLECULAR SIEVES
(6) S t u d y of the c o n d i t i o n s of p r e t r e a t m e n t a n d t h e i r effect o n t h e a c t i v i t y , s e l e c t i v i t y , s t a b i l i t y , a n d a b i l i t y for regenerating t h e zeolite catalysts. (7) A p p l i c a t i o n of zeolite c a t a l y s t s i n i n d u s t r i a l processes.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch040
F o r m a n y reactions, especially c a r b o n i u m - i o n t y p e reactions, the zeolites a n d t h e a m o r p h o u s s i l i c a - a l u m i n a s h a v e c o m m o n properties. The a c t i v a t i o n energies of t h e processes w i t h b o t h t y p e s of c o m p o u n d s change i n s i g n i f i c a n t l y , a n d b o t h c o m p o u n d s h a v e s i m i l a r responses t o poisons a n d p r o m o t o r s (1> 2). I n general the zeolites are f a r more a c t i v e t h a n t h e a m o r p h o u s c a t a l y s t s , b u t i o n exchange a n d o t h e r m o d i f i c a t i o n s c a n p r o d u c e changes i n zeolite a c t i v i t y w h i c h are more i m p o r t a n t t h a n the differences between t h e a c t i v i t i e s of t h e a m o r p h o u s a n d zeolitic c a t a l y s t s ' T h e r e are several reasons w h y the a c t i v i t y of t h e zeolites is h i g h e r t h a n t h a t of a m o r p h o u s c a t a l y s t s . I n some cases t h e difference m a y be the r e s u l t of a greater n u m b e r of a c t i v e sites. I n other cases, the a d s o r p t i o n f a c t o r is responsible (2). T h e a d s o r p t i o n p o t e n t i a l is h i g h e r i n t h e n a r r o w pores of the zeolites. H e n c e the residence t i m e of the a d s o r b e d molecules is longer, a n d w i t h sites of s i m i l a r c h e m i c a l c h a r a c t e r t h e p r o b a b i l i t y of r e a c t i o n increases. T h e surface c o n c e n t r a t i o n of r e a c t i n g m o l e cules i n the zeolites is greater b y t w o orders of m a g n i t u d e t h a n i n t h e a m o r p h o u s s i l i c a - a l u m i n a s . T h e r e f o r e , a l l other factors b e i n g e q u a l , t h e c a t a l y t i c a c t i v i t y p e r u n i t mass of zeolite is m u c h h i g h e r t h a n t h a t of s i l i c a a l u m i n a s . T h e r e is also evidence (2, 3-8) t h a t t h e n u m b e r of centers of h i g h a c i d i t y is greater i n some zeolites t h a n i n a m o r p h o u s s i l i c a - a l u m i n a s . T h i s is responsible for a h i g h e r a c t i v i t y of zeolites i n r e a c t i o n s i n v o l v i n g s t r o n g l y a c i d i c centers. F i n a l l y , for reactions i n w h i c h cations are a c t i v e , t h e h i g h a c t i v i t y of t h e zeolites m a y be c o r r e l a t e d w i t h t h e i r h i g h exchange capacities. C o r r e l a t i o n s between s t r u c t u r e a n d c a t a l y t i c a c t i v i t y h a v e been d e s c r i b e d for c a r b o n i u m - i o n t y p e r e a c t i o n s (1). M u c h effort was also spent to e s t a b l i s h a c o r r e l a t i o n between s t r u c t u r a l a n d c o m p o s i t i o n a l factors a n d t h e a c t i v i t y for redox t y p e r e a c t i o n s (1, 9-12). T r a n s i t i o n m e t a l ions i n zeolites were s h o w n t o be a c t i v e i n t h e o x i d a t i o n a n d hydrogénation of h y d r o c a r b o n s . I n t h i s c o n n e c t i o n v a r i o u s techniques were used t o locate t h e cations i n t h e f r a m e w o r k of the f a u j a s i t e - t y p e zeolites (13-20). T h e s e ions m i g r a t e u p o n t h e r m a l t r e a t m e n t o r b y the a d s o r p t i o n of v a r i o u s s u b stances. T h u s , m e t h o d s are needed t o d e t e r m i n e t h e l o c a t i o n of t h e c a t ions u n d e r r e a c t i o n c o n d i t i o n s . T h e n u m b e r of r e a c t i o n s c a t a l y z e d b y zeolites is c o n t i n u a l l y i n c r e a s ing. S y n t h e t i c faujasites c o n t a i n i n g t r a n s i t i o n m e t a l cations are a c t i v e for t h e complete o x i d a t i o n of H , C O , C H , N H (9). U p o n interaction of N H w i t h 0 over C r Y a n d A g Y , N 0 a n d N are f o r m e d (9). Mahida et al. (21) i n v e s t i g a t e d t h e o x i d a t i o n of p r o p y l e n e o v e r C u Y . Depending o n t h e t e m p e r a t u r e a n d o n t h e w a t e r v a p o r content i n t h e r e a c t i o n m i x t u r e , 2
3
2
2
2
4
3
2
2 +
In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
40.
453
Catalytic Properties of Zeolites
MINACHEV AND ISAKOV
v a r i o u s a m o u n t s of 2 - p r o p a n o l , a c e t a l d e h y d e , acetone, a n d a c r o l e i n are formed.
I r o n - c o n t a i n i n g zeolites of t y p e A , X , a n d Y s h o w considerable
a c t i v i t y a n d s e l e c t i v i t y i n t h e o x i d a t i v e a m m o n o l y s i s of p r o p y l e n e
(22).
C H + N H + 0 -> C H 2 = C H — C N + H 0 3
6
3
2
2
T y p e Y zeolites, c o n t a i n i n g C u
2 +
, Pd
2 +
, A g , and Z n +
2 +
, are a c t i v e
i n t h e o x i d a t i v e d e h y d r o g e n a t i o n of cyclohexane a t 2 2 0 ° - 3 5 0 ° C (23).
For
a 1 0 % c o n v e r s i o n of cyclohexane, t h e s e l e c t i v i t y of benzene f o r m a t i o n
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch040
was as h i g h as 8 0 % . 2 - M e t h y l c u m a r a n was f o r m e d (24) b y c o n d e n s a t i o n of p h e n o l w i t h a l k y l a l c o h o l i n t h e presence of C a Y .
T h e r e a c t i o n proceeded s e l e c t i v e l y , a n d t h e y i e l d was p r o p o r t i o n a l t o t h e a c i d i t y of t h e c a t a l y s t . M i n a c h e v , E i d u s et al. (26) f o u n d t h a t C a , N i , C o , a n d N d Y zeolites were a c t i v e i n the d i s p r o p o r t i o n a t i o n of p r o p y l e n e t o ethylene a n d butènes. T h e process was a c c o m p a n i e d b y h y d r o g e n r e a r r a n g e m e n t t o f o r m s a t u rated hydrocarbons a n d condensation products.
The selectivity i n this
r e a c t i o n depends o n t h e c o m p o s i t i o n of the c a t a l y s t s , t h e i r p r e t r e a t m e n t , a n d t h e e x p e r i m e n t a l c o n d i t i o n s (26). A n u m b e r of c a t i o n i c forms of zeolite t y p e A were f o u n d t o h a v e h i g h a c t i v i t y a n d s e l e c t i v i t y i n t h e h y d r a t i o n of e t h y l e n e to e t h a n o l (27,
28).
A t 2 2 0 ° C t h e a c t i v i t y decreased i n t h e order L a Y > C a Y > M g A > C d A > ZnA > AgA > SrA > CaA ~
CeA.
M i n a c h e v et al. f o u n d a one-step
r e a c t i o n i n t h e f o r m a t i o n of sec-butylbenzene f r o m benzene a n d ethylene over i o n - e x c h a n g e d zeolites (29). C a t a l y t i c a c t i v i t i e s of zeolites were also s t u d i e d for t h e d e h y d r a t i o n of t h e azeotropic m i x t u r e of w a t e r a n d d i m e t h y l v i n y l c a r b i n o l w i t h f o r m a t i o n of isoprene (30), for t h e hydrogénation of e t h y l e n e (31), t h e c r o t o n i c c o n d e n s a t i o n of η-butyl a l d e h y d e (82), a n d m a n y o t h e r reactions (38-41). Z e o l i t e c a t a l y s t s i n m a n y forms are u s e d for i m p o r t a n t c o m m e r c i a l processes.
T h e studies were e x t e n d e d t o L zeolites, m o r d e n i t e , e r i o n i t e ,
a n d d e a l u m i n a t e d faujasites a n d m o r d e n i t e s .
M o r e a t t e n t i o n is p a i d
n o w to zeolites w i t h u n i v a l e n t a n d m u l t i v a l e n t cations a n d t o m u l t i c o m ponent catalysts.
A m o n g these some i m p o r t a n t examples are t h e t e l
l u r i u m - c o n t a i n i n g c a t a l y s t for h y d r o c a r b o n d e h y d r o c y c l i z a t i o n (42),
the
d i f u n c t i o n a l N i - a n d P d - z e o l i t e c a t a l y s t s for benzene h y d r o d i m e r i z a t i o n t o p h e n y l c y c l o h e x a n e (48), t h e c a t a l y s t for t h e h y d r o g e n a t i o n of p h e n o l c y c l o h e x a n o l (44), t h e 4 % N i / N a Y w h i c h forms b u t a n o l , 2 - e t h y l h e x a n o l , 2 - e t h y l h e x a n a l , a n d 2 - e t h y l h e x a n o l f r o m a m i x t u r e of n - b u t y r a l d e h y d e and hydrogen.
In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
454
MOLECULAR SIEVES
R i c h a r d s o n (45) s h o w e d , b y m a g n e t i z a t i o n measurements, t h a t the r e d u c t i o n of N i
2
+
t o N i o n zeolite Y depends o n t h e a c i d i t y of t h e s a m p l e .
T h i s is e v i d e n t f r o m the d a t a i n T a b l e I . AI2O3 a n d s i l i c a - a l u m i n a s are i n c l u d e d .
F o r comparison, data on 7 -
T h e r e d u c e d n i c k e l concentrates
outside t h e c r y s t a l s i n p a r t i c l e s of a p p r o x i m a t e l y 100 A .
Interesting
e x p e r i m e n t s are r e p o r t e d b y L a w s o n et al. (46) a n d b y R e m a n et al. (47) c o n c e r n i n g t h e possiblities of m o d i f y i n g t h e m e t a l - z e o l i t e c a t a l y s t .
The
f o r m e r shows t h e increased s t a b i l i t y of a 1 % N i - N a Y a g a i n s t p o i s o n i n g b y i n t r o d u c t i o n of C r 0 . Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch040
2
T h e l a t t e r considers a l l o y contacts o n t h e s u r
3
face of zeolites p r o d u c e d b y r e d u c t i o n of m i x e d N i - C u , N i - C d , N i - A g , a n d o t h e r p o l y c a t i o n i c Y zeolites. Table I. Dependence of the Degree of Nickel Reduction to M e t a l and the Size of Crystallites on the Nature of a Catalyst Support (45) Support 9
Si0 AWz 2
Si0
2
Ni-content, wt% Reduction degree, % Crystallites diameter, A
5.00
Al 0 2
3
5.03
4.89
NaY 2.46
99
12.5
75.4
100
95
79
83
126
LiY 3.03 79.5 112
CaY 3.05
MgY 2.68
75.8
45.1
99
95
NH Y 4
2.40 0 —
Catalysts were reduced at 400°C for 16 hrs; nickel was introduced into zeolites (S1O2/AI2O3 = 4.75) by ion exchange, on other supports by impregnating. α
M o l e c u l a r sieve effects a n d t h e i r influence o n c a t a l y t i c s e l e c t i v i t y offer i m p o r t a n t p o s s i b i l i t i e s . C h e n (48) s h o w e d t h a t for a g i v e n r e a c t i o n s y n t h e t i c offretite, w i t h i t s 12-membered r i n g s of o x y g e n ions, e x h i b i t e d no s e l e c t i v i t y where the presence of s m a l l a m o u n t s of erionite (3%) r e s u l t e d i n a n effective b l o c k i n g of t h e large openings a n d t h e c r e a t i o n of s e l e c t i v i t y . T h i s emphasizes the possible influence of i m p u r i t i e s o n t h e p r a c t i c a l uses of zeolite c a t a l y s t s . Zeolites are u s e d i n m a n y i m p o r t a n t i n d u s t r i a l c a t a l y t i c processes. I n a d d i t i o n to c r a c k i n g (49) z e o l i t e - c o n t a i n i n g c a t a l y s t s are used i n h y d r o c r a c k i n g (50, 51) a n d i n t h e s o - c a l l e d process of s e l e c t o f o r m i n g (52). T h i s process is t h e selective h y d r o c r a c k i n g of n-paraffins f r o m m i x t u r e s of isoparaffinic a n d a r o m a t i c h y d r o c a r b o n s . S i n c e 1970, zeolites h a v e been used for h y d r o i s o m e r i z a t i o n of p e n t a n e - h e x a n e o i l f r a c t i o n s t o o b t a i n h i g h q u a l i t y gasolines (the H e i s o m e r process, U n i o n C a r b i d e C o r p . a n d S h e l l C o (50, 58, 54)). B i f u n c t i o n a l zeolite c a t a l y s t s are used for l o w t e m p e r a t u r e i s o m e r i z a t i o n of a r o m a t i c h y d r o c a r b o n s a n d toluene d i s p r o p o r t i o n a t i o n (55). M a n y other examples c a n be g i v e n t o i l l u s t r a t e t h e i m p o r t a n c e of zeolite c a t a l y s t s i n m o d e r n o i l r e f i n i n g a n d p e t r o c h e m i c a l industry.
In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
40.
MINACHEV AND
iSAKOv
455
Catalytic Properties of Zeolites
Influence of Various Substances on the Catalytic Activity of Zeolites T h e s u p e r a c t i v i t y of zeolite c a t a l y s t s sometimes becomes a considerable d i s a d v a n t a g e w h e n i t is responsible for u n d e s i r a b l e side r e a c t i o n s . T h e s e m a y a l t e r t h e s e l e c t i v i t y o r cause d e a c t i v a t i o n a n d a g i n g . T h e s e p r o b l e m s h a v e been r e v i e w e d (56).
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch040
R e c e n t w o r k b y R a b o et al. (67) opens n e w p o s s i b i l i t i e s f o r c o n t r o l l i n g t h e a c t i v i t y a n d s e l e c t i v i t y of zeolite c a t a l y s t s . O c c l u s i o n of v a r i o u s guest molecules i n t o t h e sodalite c a v i t i e s of Y zeolites c a n s i g n i f i c a n t l y change t h e c a t a l y t i c properties of t h e zeolites f o r c a r b o n i u m - t y p e r e a c t i o n s . A n i o n s of o c c l u d e d salts are l o c a t e d close t o t h e center o f t h e s o d a l i t e c a v i t y a n d s t r o n g l y influence t h e a r r a n g e m e n t of cations i n t h e faujasite l a t t i c e a n d hence t h e c a t a l y t i c a c t i v i t y . O n e of t h e m o s t p r o m i s i n g m e t h o d s f o r c o n t r o l l i n g t h e i n t e n s i t y a n d s e l e c t i v i t y of processes is t h e i n t r o d u c t i o n of v a r i o u s substances i n t o t h e r e a c t i o n m i x t u r e . V e n u t o et al. (58) a t t a i n e d a h i g h l y selective d e h y d r o g e n a t i o n of h y d r o c a r b o n s o v e r c a t i o n exchanged zeolite X b y c o n d u c t i n g t h e r e a c t i o n i n t h e presence of N H . I t is also w e l l k n o w n t h a t t h e a d d i t i o n of s m a l l a m o u n t s of w a t e r increases t h e a c t i v i t y of zeolites for c a r b o n i u m - i o n t y p e r e a c t i o n s : c r a c k i n g (59), a l k y l a t i o n (68), i s o m e r i z a t i o n (56,60), d i s p r o p o r t i o n a t e (60,61,62) a n d others (56). 3
T h e a b i l i t y of w a t e r molecules t o p r o m o t e a r e a c t i o n depends o n m a n y factors. I n m o s t cases, zeolites w i t h m o n o v a l e n t cations h a v e l o w a c t i v i t y . H o w e v e r , t h e a d d i t i o n of w a t e r molecules t o X a n d Y zeolites w i t h m o n o v a l e n t ions increased t h e i s o m e r i z a t i o n of c y c l o p r o p a n e (68). D e c a t i o n i z e d zeolites c a n be p r o m o t e d r e a d i l y w i t h w a t e r , a n d t h e process is r e v e r s i b l e (2, 60, 64). I t w a s s h o w n (2) t h a t t h e p r o m o t i n g a b i l i t y of w a t e r molecules i n faujasites i s less w h e n the S i 0 / A l 0 increases. D e a l u m i n a t e d faujasites a r e e v e n m o r e difficult t o p r o m o t e . F o r erionite a n d m o r d e n i t e t h e m a x i m u m effect of w a t e r was o b s e r v e d o n l y after t r e a t m e n t w i t h l i q u i d w a t e r a n d subsequent h e a t i n g (2). T h e effect of w a t e r o n zeolites s a t u r a t e d w i t h p o l y v a l e n t cations is less p r o n o u n c e d (65, 66, 67). H o w e v e r , t h e presence of m u l t i v a l e n t cations stabilizes t h e c a t a l y t i c a c t i v i t y . W a t e r a n d alcohols were r e p o r t e d t o p r o m o t e i o n exchanged zeolites for n - p e n t a n e i s o m e r i z a t i o n (68) a n d n-hexadecane h y d r o c r a c k i n g (69). 2
2
3
O t h e r p r o t o n donors ( H B r , H C 1 , H S , H S e , H C N , C H S H ) c a n h a v e a s i m i l a r p r o m o t i n g effect as w a t e r (56, 61, 70, 71). F o r a l k y l a t i o n of benzene w i t h p r o p y l e n e t h e a c t i v i t y of H N a X , C a X , a n d N a X increased o n a d d i t i o n of C H C 1 (72), a n d C C 1 h a d a s i m i l a r effect o n t h e a c t i v i t y of N a Y , C d Y , a n d B a Y (73), b u t i t w a s n o t u n d e r s t o o d w h y t h e a c t i v i t y of C a Y f o r t h e same r e a c t i o n decreased o n a d d i t i o n of t h e same p r o d u c t s . T h e a c t i v i t y of N a Y f o r a l k y l a t i o n increases c o n s i d e r a b l y b y i n t r o d u c i n g d i m e t h y l ether a n d n - b u t y r a l d e h y d e . 2
3
7
2
3
4
G a s e s other t h a n s t e a m c a n influence t h e c a t a l y t i c p r o p e r t i e s as w e l l , a n d t h i s p h e n o m e n o n i s of great t h e o r e t i c a l a n d p r a c t i c a l v a l u e . T h e
In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
456
MOLECULAR SIEVES
a c t i v i t y of a l k a l i n e a n d a l k a l i n e e a r t h zeolites of t y p e A a n d X i n c r a c k i n g , i s o m e r i z a t i o n , a l k y l a t i o n , a n d d e a l k y l a t i o n of h y d r o c a r b o n s a n d for a l c o h o l d e h y d r a t i o n increases c o n s i d e r a b l y i n t h e presence of C 0 (74, 75). F o r e x a m p l e , t h e c o n v e r s i o n of cumene o v e r C a X a t 4 6 8 ° C a n d a v o l u m e r a t e of 1 h r - increased f r o m 6 0 % t o 9 0 % w h e n C 0 was a d d e d (74). N a X , w h e n n o t c a t i o n deficient, is u n a b l e t o c a t a l y z e t h e d e h y d r a t i o n of p r o p a n o l a t t e m p e r a t u r e s as h i g h as 3 0 0 ° C . I n t h e presence of C 0 i t h a s c o n siderable a c t i v i t y a t a t e m p e r a t u r e as l o w as 2 3 0 ° C . W e believe t h a t the a c t i v e centers are f o r m e d as a r e s u l t of c h e m i s o r p t i o n of- C 0 o n t h e cations (such as C a ) o r o n l a t t i c e defects. 2
1
2
2
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch040
2
2 +
W e s t u d i e d t h e effect of C 0 o n s y n t h e t i c faujasites f o r t h e d i s p r o p o r t i o n a t i o n of toluene (66, 62, 76) a n d for t h e a l k y l a t i o n of benzene w i t h olefins (77) i n great d e t a i l . L a p i d u s et al. (78) i n v e s t i g a t e d t h e c o n v e r s i o n of i s o b u t y l e n e over N a X a n d N a Y zeolites i n t h e presence of C 0 . O v e r N a Y , t h e c o n v e r s i o n c o u l d be increased b y a d d i n g C 0 t o t h e olefin, a n d C a n d C h y d r o c a r b o n s were f o r m e d . O v e r N a X t h e effect is less p r o n o u n c e d ( T a b l e I I ) . A d d i t i o n of N h a d n o a p p r e c i a b l e effect. 2
2
2
5
7
2
Table II.
Isobutylene Conversion over Na-Faujasites in the Presence of C 0 (78) 0
2
Conversion of C0 Content, butylène, % vol %
Yield from Consumed Isobutylene, %
2
Catalyst* NaX (x = 2.5)
3.5 2.0
4.0 NaY (x = 4.2) 6.0
6 41
4.4
13.5 37.0
NaY (x = 4.8) β 6 c
iC4H10
βCJI*
CtHw
Ceff 12
traces
— —
— 0.1
— 0.1
— 0.2
96.0 97.5
4.0 2.1
7.0 8.6
— 0.8
— 4.3
1.3 20
— 13.5
86.3 66.5
5.4 4.1
0.6 10.5
1.3
0.2 4.9
0.3 2.0
0.5 13.5
95.6 65.4
2.8 2.4
C Hu 7
c
Csffie Coke
Carried out at atmospheric pressure at 200°C with a contact time of 4 sec. Value of χ is for Si0 /Al 0 . A quantity of 3-5% i - C H is present in heptenes. 2
2
8
3
8
A s i m i l a r a c t i v a t i n g effect is p r o d u c e d b y S 0 d u r i n g p r e t r e a t m e n t of t h e c a t a l y s t o r b y a d d i t i o n of S 0 t o t h e reagents i n p r o p o r t i o n s b e t w e e n 0.1 a n d 2 5 % of t h e zeolite w e i g h t (79). I m p o r t a n t v a r i a t i o n s c a n also be p r o d u c e d b y C S , p h e n y l m e r c a p t a n s , n i t r o u s a n d n i t r i c oxides, n i t r o c o m p o u n d s a n d others (80, 81). Since m o s t of these c o m p o u n d s a r e a c i d i c , t h e p r o b l e m of s t r u c t u r a l d a m a g e arises, especially a t h i g h t e m p e r a t u r e s . I n f o r m a t i o n o n t h i s p r o b l e m is scarce (56). 2
2
2
In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
40. MINACHEV AND iSAKov
Catalytic Properties of Zeolites
457
The activity and stability of zeolites can be increased by adding H or O in some reactions. Addition of H increases the activity of X and Y zeolites for isooctane cracking as compared with the activity in a He atmo sphere (82). Minachev et al. (83) discovered an increased activity of CaY and NdY zeolites for the hydrogenation of ethylene when air was added to a starting mixture of C H and H . The authors assume that the activat ing effect is caused by variations in the rate of adsorption and desorption in the system H - C H - C H . Addition of O also considerably increases the rate of disproportionation of toluene over CaY, MgY, and M Y zeo lites. At the same time there is a decrease in coke formation (84). In some cases, addition of selective poisons can increase the selectivity of catalytic processes. According to Williams et al. (85) the transalkylation of alkyl aromatic C hydrocarbons, occurring during isomerization, can be suppressed by adding (CH )3CNH (only 5 ppm) to the reacting mixture. At the same time, isomerization is increased. Thus, the addition of compounds to reaction mixtures can influence the catalytic activity of zeolites. The effect may be increased conversion or a shorter reaction time. The effects may be caused by surface modi fication or by variation in adsorption-desorption in the system reagentproduct-zeolite. Sometimes the properties of the zeolite change so radi cally that it is possible to talk about the action of new catalytic systems.
2
2
2
2
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch040
2
2
4
4
2
2
6
2
8
3
2
Literature Cited 1. Minachev, Kh. M., Kinetics Catalysis (1970) 11, 413. 2. Topchieva, Κ. V., Romanovskii, Β. V., "Sovremennye Problemy Physicheskoy Chimii," Vol. 4, p. 407, Moscow University, Moscow, 1970. 3. Otouma, H., Arai, Y., Ukihashi, H., Bull. Chem. Soc. Japan (1969) 42, 2249. 4. Moscou, L., Lakeman, M., J. Catalysis (1970) 16, 173. 5. Beaumont, R., Bartomeuf, D., C. R. Acad. Sci. (1971) C272, 363. 6. Navalichina, M. D., Romanovskii, Β. V., Topchieva, Κ. V., Kinetics Catalysis (1971) 12, 1062. 7. Ibid., (1972) 13, 231. 8. Ikemoto, M., Tsutsumi, K., Takahashi, H., Bull. Chem. Soc. Japan (1972) 45, 1330. 9. Roginsky, S. Z., Altshuler, Ο. V., Vinogradova, O. M., Seleznev, V. Α., Zito vskaya, I. L., Dokl. Akad. Nauk SSSR (1971) 196, 872. 10. Boreskov, G. K., Bobrov, Ν. N., Maksimov, N. G., Anufrienko, V. F., lone, K. G., Shestakova, Ν. Α., Dokl. Akad. Nauk SSSR (1971) 201, 887. 11. Mochida, I., Hayata, S., Kato, Α., Seiyama, T., J. Catalysis (1971) 23, 31. 12. Gryaznova, Ζ. V., Epishina, G. P., Mikhaleva, I. M., Dokl. Akad. Nauk SSSR (1972) 203, 1339. 13. Gallezot, P., Imelik, B., J. Chimie Phys. Physico-chim. Biol. (1971) 68, 34. 14. Mortier, W. J., Bosnians, H. J., J. Phys. Chem. (1971) 75, 3327. 15. Gallezot, P., Ben Taarit, Y., Imelik, B., C. R. Acad. Sci. (1971) C272, 261. 16. Gallezot, P., Ben Taarit, Y., Imelik, B., J. Catalysis (1972), 26, 295. 17. Ibid., (1972) 26, 481. 18. Mortier, W. J., Bosmans, H. J., Uytterhoeven, J. B., J. Phys. Chem. (1972) 76, 650.
In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch040
458
MOLECULAR SIEVES
19. Micheikin, I. D., Zhidomirov, G. M., Kazansky, V. B., Usp. Khim. (1972) 41, 909. 20. Bogomolov, V. I., Mirzabekova, Ν. V., Isakov, Ya. I., Golender, L. O., Mina chev, Kh. M., Izv. Acad. Nauk SSSR, Ser. Khim. (1972) 1697. 21. Mochida, I., Hayata, S., Kato, Α., Seiyama, T., Bull. Chem. Soc. Japan (1971) 44, 2282. 22. Skalkina, L. V., Kolchin, I. K., Margolis, L. Ya., Ermolenko, N. F., Levina, S. Α., Malashevich, L. N., Kinetics Catalysis (1971) 12, 242. 23. Mochida, I., Jitsumatsu, T., Kato, Α., Seiyame, T., Bull. Chem. Soc. Japan (1971) 44, 2595. 24. Viktorova, Ε. Α., Rastorgueva, M. N., Vestn. Moscov. Univ., Ser. Khim. (1971) 12, 371. 25. Lapidus, A. L., Isakov, Ya. I., Samorokova, E. P., Minachev, Kh. M., Eidus, Ya. T., Izv. Akad. Nauk SSSR, Ser. Khim. (1971) 1673. 26. Minachev, Kh. M., Ryashentseva, Μ. Α., Isagulants, G. V., Rozhedestven skaya, G. V., Izv. Akad. Nauk SSSR, Ser. Khim. (1972) 705. 27. Nitta, M., Hattori, H., Matsudzaki, C., Tanabe, K., Shkubai, Catalyst (1971) 13, 103. 28. Nitta, M., Tanabe, K., Hattori, H., Sekju Gakkaishi, J. Japan Petrol. Inst. (1972) 15, 113. 29. Minachev, Kh. M., Mortikov, E. S., Leontjev, A. S., Masloboev-Shwedov, Α. Α., Zhomov, A. K., Kholdyakov, Ν. I., Kononov, N. F., Neftepererabotka Neftekhim. (1971) 9, 24. 30. Ivanova, L. N., Kucherov, V. F., Neftekhimia (1970) 10, 400. 31. Minachev, Kh. M., Khodakov, Yu. S., Nesterov, V. K., Neftekhimiya (1971) 11, 487. 32. Isakov, Ya. I., Minachev, Kh. M., Usachev, N. Ya., Izv. Akad. Nauk SSSR, Ser. Khim. (1972) 1175. 33. Kemball, C., McCosh, R., Proc. Roy. Soc. London (1971) A321 (1545), 249. 34. Ibid., p. 259. 35. Minachev, Kh. M., Dmitriev, R. V., Isakov, Ya. I., Bronnikov, O. D., Kinetics Catalysis (1971) 12, 712. 36. Areshidze, Kh. I., Eidus, Ya. T., Lapidus, A. L., Dolidze, Α. V., Dokl. Akad. Nauk SSSR (1971) 198, 90. 37. Venuto, P. B., Landis, P. S., J. Catalysis (1971) 21, 330. 38. Gryaznova, Ζ. V., Baskunyan, Κ. Α., Melnichenko, I. Α., Kinetics Catalysis (1971) 12, 1471. 39. Venuto, P. B., Chem. Technol. (1971) 215. 40. Westheimer, F. H., Taguchi, K., J. Org. Chem. (1971) 36, 1570. 41. Panchenkov, G. M., Kuznetsov, Ο. I., Gusejnov, A. M. D., Mund, C. L., Dokl. Akad. Nauk SSSR (1972) 204, 390. 42. Lang, W. H., Mikovsky, R. J., Silvestri, A. J., J. Catalysis (1971) 20, 293. 43. Slaugh, L. H., Leonard, J. Α., J. Catalysis (1969) 13, 385. 44. Areshidze, Kh. I., Sikharulidze, N. G., Dzhaoshvili, Ο. Α., British Patent 1,257,607; C. A. (1972) 76, 45816f. 45. Richardson, J., T. J. Catalysis (1971) 21, 122. 46. Lawson, J. D., Rase, H. F., Ind. Eng. Chem., Prod. Res. Develop. (1970) 9, 317. 47. Reman, W. G., Ali, A. H., Schuit, G. C. Α., J. Catalysis (1971) 20, 374. 48. Chen, Ν. Y., Preprints, Intern. Congr. Catalysis, 5th Palm-Beach, 1972, No 101. 49. Oblad, A. G., Oil Gas J. (1972) 70 (13), 84.
In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
40.
MINACHEV AND ISAKOV
Catalytic Properties of Zeolites
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch040
50. 51.
459
Miller, R. L., Chem. Eng. (1972) 79 (5), 60. Becher, Α., Blume, H., Grasshoff, E., Onderka, E., Welker, J., Weiss, W., Sachse, D., Klotsche, H., Chem. Technol., (1971) 23, 666. 52. Chen, Ν. Y., Maziuk, J., Schwartz, A. B., Weisz, P. B., Petrol. Interamer. (1969) 27 (2), 42. 53. Oil Gas J. (1971) 69 (10), 44. 54. Kouwenhoven, H. W., Van Zijll Langhout, W. C., Chem. Eng. Progr. (1971) 67 (4), 65; Petrol. Petrochem. Int. (1971) 11 (11), 64. 55. Grandio, P., Schneider, F. H., Schwartz, A. B., Wise, J. J., Oil Gas J. (1971) 69 (48), 62. 56. Minachev, Kh. M., Isakov, Ya. I., "Prigotovlenie, Aktivaziya i Regeneraziya Zeolitnych Catalisatorov," Zniiteneftechim, Moscou, 1971. 57. Rabo, J. Α., Poutsma, M. L., Skeels, G. W., Preprints, Intern. Congr. Catalysis, 5th, Palm-Beach, 1972, No. 102. 58. Venuto, P. B., Landis, P. S., Advan. Catalysis (1968) 18, 259. 59. Plank, C. J., Proc. Intern. Congr. Catalysis, 3rd, Amsterdam, (1965) 1, 726. 60. Benesi, Η. Α., J. Catalysis (1967) 8, 368. 61. Matsumoto, H., Morita, Y., J. Chem. Soc. Japan, Ind. Chem. Sect. (1968) 71, 1496, A93. 62. Minachev, Kh. M., Isakov, Ya. I., Dokl. Acad. Nauk SSSR (1972) 202, 1341. 63. Habgood, H. W., George, Ζ. M., Molecular Sieves, Paper Conference, 1967 (pub. 1968), p. 130. 64. Thoang, Ho Shi, Romanowsky, Β. V., Topchieva, Κ. V., Dokl. Akad. Nauk SSSR (1966) 168, 1114. 65. Pickert, P. E . , Rabo, J. Α., Dempsey, E., Schomaker, V., Proc. Intern. Congr. Catalysis, 3rd, Amsterdam (1965) 1, 714. 66. Ward, J. W., J. Catalysis (1969) 14, 365. 67. Topchieva, Κ. V., Romanovskii, Β. V., Piguzova, L. I., Thoang, Ho Shi, Bizreh, Y. W., Proc. 4th Intern. Congr. Catalysis, 4th, Moscow, 1968 (1971) 2, 135. 68. Yamamoto, N., Fujii, K., Idemaru, Y., Furukawa, T., Bull. Japan Petrol. Inst. (1966) 8, 13. 69. Yan, T. T., J. Catalysis (1972) 25, 204. 70. Matsumoto, H., Morita, Y., J. Chem. Soc. Japan, Ind. Chem. Sect. (1967) 70, 1674, A106. 71. Matsumoto, H., Futami, H., Tokuno, M., Morita, Y., J. Chem. Soc. Japan, Ind. Chem. Sect. (1970) 73, 841, A48. 72. Kolesnikov, I. M., Panchenkov, G. M., Tretjyakova, V. Α., Zh. Phisiches. Chim. (1967) 41, 1114. 73. Kolesnikov, I. M., Pancenkov, G. M., Shusharina, Ν. M., Tretjyakova, V. Α., Neftekhimiya (1969) 9, 52. 74. British Patent 961,319; R. Zh. Khim. (1966) 11, 112. 75. Frilette, V. J., US Pat. 3033778; RZh. Khim., 1964, 4H97II; Pat. F. R. G. 1,203,740, R. Zh. Khim., 1967, 14H194 II. 76. Isakov, Ya. I., Minachev, Kh. M., Neftekhimiya (1970) 10, 805. 77. Isakov, Ya. I., Minachev, Kh. M., Kalinin, V. P., Izv. Akad. Nauk SSSR, Ser. Khim. (1973) 4. 78. Lapidus, A. L., Isakov, Ya. I., Rudakova, L. N., Minachev, Kh. M., Eidus, Ya. T., Izv. Akad. Nauk SSSR, Ser. Khim. (1972) 1896. 79. Miale, J. N., Weisz, P. B., U.S. Patent 3,240,697; C. A. (1966) 64, 15064e. 80. Miale, J. N., Weisz, P. B., U.S. Patent 3,175,967; R. Zh. Khim. (1966) 15, 138.
In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.
460
MOLECULAR SIEVES
Miale, J. N., U.S. Patent 3,178,365; C. A. (1965) 63, 411h. Beaumont, R., Barthomeuf, D., C. R. Acad. Sci. (1969) C269, 617. 83. Minachev, Kh. M., Shchukina, Ο. K., Markov, Μ. Α., Dmitriev, R. V., Neftekhimia (1968) 8, 37. 84. Cloupek, F. J., U.S. Patent 3,437,709; C. A. (1969) 71, 21841f. 85. Williams, A. H., Germanas, D., Donaldson, G. R., U.S. Patent, 3,637,881; 81. 82.
C. A. (1972) 76, 72188j.
Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1973 | doi: 10.1021/ba-1973-0121.ch040
RECEIVED December 22, 1972.
In Molecular Sieves; Meier, W., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1973.