2 Catalytic Synthesis of Hydrocarbons from Carbon Monoxide and Hydrogen
1
M. A. VANNICE
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch002
Corporate Research Laboratories, Exxon Research and Engineering Co., Linden, N.J. 07036
Different synthesis processes are reviewed briefly before recent research on the catalytic behavior of the Group VIII metals in carbon monoxide hydrogenation, in which spe cific activities have been determined for the first time, is presented. Chemisorption measurements used to define reduced metal surface area indicate that the ordering of specific activities for these supported metals is significantly different from relative activities determined in older studies of unsupported metals in which metal surface areas were not measured. Supported Pt and Pd catalysts have much higher specific activities than unsupported Pt and Pd, and these activity increases are attributed to a crystallite size effect and a metal-support interaction, respectively. Sup ported Ni catalysts show a similar, but less pronounced, activity enhancement compared with unsupported Ni, and in addition exhibit a shift in selectivity to higher molecular weight hydrocarbons.
Hp h e i n c r e a s i n g d e m a n d f o r e n e r g y , c o u p l e d w i t h t h e u n c e r t a i n t y a n d Α
expense of c r u d e o i l i m p o r t s , has r e n e w e d interest i n t h e p r o d u c t i o n
of fuels a n d c h e m i c a l s f r o m h y d r o g e n - d e f i c i e n t m a t e r i a l s . E n e r g y sources s u c h as c o a l , r e s i d u a , o i l shale, a n d t a r sands c a n b e gasified w i t h s t e a m or o x y g e n to p r o d u c e a gas c o n t a i n i n g l a r g e q u a n t i t i e s o f c a r b o n m o n o x i d e a n d h y d r o g e n . O n c e m e t h a n e is r e m o v e d f r o m this C O - H
2
rnixture,
i t is p u r i f i e d to r e m o v e s u l f u r poisons a n d t h e n a l l o w e d t o o v e r a catalyst 1
Current address: Department of Chemical Engineering, The Pennsylvania State University, University Park, Pa. 16802. 15
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
16
SOLID S T A T E
to p r o d u c e a v a r i e t y of o r g a n i c p r o d u c t s .
CHEMISTRY
T h e synthesis of h y d r o c a r b o n
p r o d u c t s , w i t h t h e e x c e p t i o n of m e t h a n e , is c o m m o n l y r e f e r r e d to as t h e F i s c h e r - T r o p s c h synthesis r e a c t i o n . M a n y o r g a n i c p r o d u c t s c a n b e f o r m e d b y these C O - H reactions.
2
C o n t r o l of the p r o d u c t d i s t r i b u t i o n is of m a j o r
synthesis
importance
since specific p r o d u c t s are r e q u i r e d f o r different e n d uses. F o r i n s t a n c e , m e t h a n e a n d o t h e r l i g h t h y d r o c a r b o n s are necessary f o r t h e p r o d u c t i o n of substitute n a t u r a l gas ( S N G ) . H o w e v e r , i f a s y n t h e t i c n a p h t h a , w h i c h c a n b e u p g r a d e d i n t o h i g h octane m o t o r f u e l , is d e s i r e d , t h e n C4-C10 h y d r o c a r b o n l i q u i d s are p r e f e r r e d . A n o t h e r s i t u a t i o n of interest i n v o l v e s Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch002
m e t h a n e w h i c h is n o w b e i n g flared i n the N e a r E a s t . A s a n a l t e r n a t i v e t o b u r n i n g this f u e l , i t c o u l d b e t r a n s p o r t e d to the U . S . as l i q u i d n a t u r a l gas ( L N G ) , m e t h a n o l , or paraffinic l i q u i d s . T h e l a t t e r t w o alternatives i n v o l v e steam r e f o r m i n g of m e t h a n e f o l l o w e d b y different C O - H
2
syn
thesis reactions. F i n a l l y , the p r o d u c t i o n of paraffinic l i q u i d s m a y b e a n important factor i n a combined
coal gasification-electrical generation
p o w e r p l a n t since these paraffinic l i q u i d s ( o r C H O H ) 3
c a n b e easily
s t o r e d d u r i n g off-peak h o u r s f o r use d u r i n g p e a k - l o a d h o u r s . T h e benefits of u n d e r s t a n d i n g a n d c o n t r o l l i n g p r o d u c t s e l e c t i v i t y i n CO-H
2
reactions are a p p a r e n t , a n d k n o w l e d g e of t h e c a t a l y t i c b e h a v i o r
of t h e G r o u p V I I I metals is a n i m p o r t a n t step t o w a r d a c h i e v e m e n t this g o a l .
A short r e v i e w of e x i s t i n g synthesis processes w i l l
the state of the art t o d a y i n C O - H
2
of
describe
catalysis. R e c e n t r e s e a r c h u s i n g
w e l l - c h a r a c t e r i z e d , s u p p o r t e d m e t a l catalysts is p r e s e n t e d , a n d the s i g nificance of these results is discussed. Different
Synthesis Processes
T h e gasification of h e a v y , h y d r o g e n - d e f i c i e n t m a t e r i a l s p r o v i d e s o n e r o u t e to p r o d u c e
c l e a n fuels
l a r g e q u a n t i t i e s of C O a n d H of p r o d u c t s . F i g u r e 1.
2
T h i s process
generates
w h i c h c a n react to f o r m a w i d e v a r i e t y
A s i m p l i f i e d s c h e m e of the o v e r a l l process is s h o w n i n
The C O - H
c o n t a i n i n g poisons. the w a t e r - g a s
and chemicals.
2
s t r e a m is p u r i f i e d to r e m o v e
C0
2
and sulfur-
T h e d e s i r e d H / C O r a t i o is t h e n o b t a i n e d b y u s i n g
shift r e a c t i o n .
2
Finally, by
the a p p r o p r i a t e
choice
of
catalyst a n d r e a c t i o n c o n d i t i o n s , the p r o d u c t d i s t r i b u t i o n is a d j u s t e d to m a x i m i z e p r o d u c t i o n of the d e s i r e d
compounds.
T h e t h e r m o d y n a m i c s for the f o r m a t i o n of o r g a n i c c o m p o u n d s
have
b e e n c a l c u l a t e d a n d d i s c u s s e d i n d e t a i l elsewhere ( J ) . W i t h the e x c e p t i o n of a f e w c o m p o u n d s s u c h as f o r m a l d e h y d e a n d acetylene, the A G ° values at 2 9 8 ° Κ are n e g a t i v e ;
therefore,
p r o d u c t i o n of
an
enormous
v a r i e t y of c o m p o u n d s at reasonable r e a c t i o n t e m p e r a t u r e s is t h e o r e t i c a l l y possible. T h e p r o d u c t i o n of different p r o d u c t s , h o w e v e r , c a n b e f a v o r e d b y a j u d i c i o u s c h o i c e of catalyst a n d t h e a p p r o p r i a t e r a n g e of t e m p e r a -
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
2.
Catalytic
VANNICE
Synthesis
CO + Η·
CH,
WATER-GAS SHIFT
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch002
L _
17
Hydrocarbons
PURIFIER
GASIF1ER
SYNTHESIS — t » C H -^C H 2
REACTOR
HEAT
o
1.
Gasification
4
A
—CH3OH —«* GASOLINE
COAL RESIDUA OIL SHALE TAR SANDS
STEAM OR 0
Figure
of
of hydrogen-deficient
materials
provides
one
t u r e a n d pressure as i l l u s t r a t e d i n F i g u r e 2. M e t a l catalysts f a v o r t h e p r o d u c t i o n of n o r m a l paraffins a n d olefins, w h e r e a s m e t a l oxides s u c h as Th0 /Al 0 2
2
3
can produce
branched-chain hydrocarbons.
Metal
oxides
a n d d o p e d m e t a l oxides a r e also r e q u i r e d f o r t h e f o r m a t i o n o f alcohols. A r o m a t i c s , a l d e h y d e s , ketones, a n d acids c a n also b e p r o d u c e d .
A dis
c u s s i o n o f e a c h of these processes i n s o m e w h a t m o r e d e t a i l w i l l p r o v i d e a f a m i l i a r i z a t i o n w i t h t h e catalysts u s e d a n d t h e t y p i c a l p r o d u c t d i s t r i b u tions a t t a i n e d . A n u m b e r of c o m p l i c a t i n g reactions c a n o c c u r c o n c u r r e n t l y w i t h t h e synthesis r e a c t i o n ; s o m e of t h e m o s t i m p o r t a n t reactions a r e s h o w n i n T a b l e I . S i n c e w a t e r is a p r i m a r y p r o d u c t i n m o s t of t h e synthesis r e a c tions, t h e w a t e r - g a s shift r e a c t i o n c a n o c c u r b e t w e e n this w a t e r a n d c a r b o n m o n o x i d e f r o m t h e f e e d s t r e a m . T h i s r e a c t i o n changes t h e o x y g e n containing by-products from H hydrogen a n d carbon monoxide.
2
0 to C 0
2
a n d alters t h e usage r a t i o of
T h e B o u d o u a r d r e a c t i o n results i n t h e
d i s p r o p o r t i o n a t i o n o f C O to p r o d u c e c a r b o n o n t h e catalyst surface a n d C0 . 2
C a r b o n d e p o s i t i o n c a n also o c c u r b y t h e d i r e c t r e a c t i o n o f h y d r o
gen a n d carbon monoxide.
T h i s is b a s i c a l l y t h e reverse r e a c t i o n o f c o a l
gasification i f t h e l a t t e r is r e p r e s e n t e d Table I.
i n a very simplified manner.
Complicating Reactions in C O Hydrogénation
W a t e r gas s h i f t
CO + H 0 2
B o u d o u a r d reaction C o k e deposition Carbide formation
C0 + H 2
2 C O -> C + C 0 H
2
2
2
+ C O -> C + H 0 2
xM + C
M*C
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Figure
2.
4
Many different
10 Pressure, atm
Fixed bed -CoCarbonyls Paraffins Olefins
-RuHigh-melting paraffins
ZnO Methanol
100
2
3
-
1,000
Carbonyls -
• CH3OCH3
reactions can occur
(6)
Kirk-Othmer Encyclopedia of Chemical Technology
carbon monoxide-hydrogen
Ni — • Carbonyls Paraffins Olefins
CH
Fe Olefins - ParaffinsChemicals I
Fluid bed
ZnO + alkali Methanol and higher alcohols
2
ZnO + Al 0 Branched-chain olefins and — alcohols —
Th0
Aromatic* Alicyelts Branched-chain paraffins
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch002
10,000
2.
vANNiCE
Catalytic
Table II.
Synthesis
of
19
Hydrocarbons
Product Distribution from Medium-Pressure Synthesis Processes ( 1 ) Mol%
Catalyst
Paraffins
F e ( 2 2 0 ° C , 10 a t m ) C o (200°C, 7 atm)
46.4 79.0
Olefins 33.1 20.0
Alcohols 20.5 1.0
The Fischer-Tropsch and Related Syntheses
F i n a l l y , w h e n c a r b o n exists o n t h e surface of a m e t a l catalyst, t h e r e is Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch002
the p o s s i b i l i t y of m e t a l c a r b i d e f o r m a t i o n . T h e f o r m a t i o n of these c a r b i d e s , s u c h as F e C , C o C , a n d N i C , c a n alter the c a t a l y t i c b e h a v i o r of 2
2
3
t h e m e t a l that w a s i n i t i a l l y present. M e t h a n a t i o n has r e c e i v e d t h e most a t t e n t i o n d u r i n g t h e past
few
years, p r i m a r i l y b e c a u s e i t converts a l o w B t u syn-gas m i x t u r e i n t o a h i g h B t u substitute n a t u r a l gas
(SNG).
T y p i c a l l y , R a n e y n i c k e l or
m a s s i v e n i c k e l / a l u m i n a catalysts are u s e d i n a t e m p e r a t u r e r a n g e 523-673°K.
of
T e m p e r a t u r e s h i g h e r t h a n 700° Κ c a n r e s u l t i n severe c a t a
lyst d e a c t i v a t i o n c a u s e d b y m e t a l s i n t e r i n g . A w i d e r a n g e of pressures c a n b e e m p l o y e d , b u t o p e r a t i o n at 3 6 0 0 - 7 2 0 0 k P a ( 5 0 0 - 1 0 0 0 p s i ) a l l o w s a d i r e c t t i e - i n w i t h p i p e l i n e n a t u r a l gas.
U n d e r these o p e r a t i n g c o n d i
tions m e t h a n e is t h e p r e p o n d e r a n t h y d r o c a r b o n p r o d u c t since o n l y s m a l l a m o u n t s of ethane, p r o p a n e , a n d b u t a n e are f o r m e d .
T h i s r e a c t i o n is
d i s c u s s e d i n d e t a i l b y M i l l s a n d Steffgen ( 2 ) , V l a s e n k o a n d Y u z e f o v i c h (3), and Greyson
(4).
T h e first c o m m e r c i a l F i s c h e r - T r o p s c h catalysts d e v e l o p e d w e r e precipitated C o / K i e s e l g u h r a n d reduced, promoted i r o n oxide. are s u b s t a n t i a l differences
co-
There
i n the product distribution obtained i n the
m e d i u m - p r e s s u r e synthesis process,
w h i c h is n o r m a l l y r u n b e t w e e n
5
a n d 20 a t m . C o b a l t p r o d u c e s paraffins p r i m a r i l y , w h i l e p r o m o t e d i r o n gives a l a r g e r p e r c e n t a g e
of olefins a n d o x y g e n a t e d m a t e r i a l w h i c h is
m o s t l y alcohols, as i n d i c a t e d i n T a b l e I I . A l o o k at just the h y d r o c a r b o n p o r t i o n of the p r o d u c t reveals f u r t h e r differences
i n the c a t a l y t i c b e
h a v i o r of C o a n d F e . A n e x a m i n a t i o n of t h e m o l e c u l a r w e i g h t d i s t r i b u tions s h o w n i n F i g u r e 3 i n d i c a t e s that w i t h F e , a m a x i m u m occurs the C
3
species o n a w t %
for
basis, w h e r e a s m e t h a n e is t h e p r e d o m i n a n t
p r o d u c t over C o w i t h a s e c o n d m a x i m u m o c c u r r i n g for the C 5 f r a c t i o n . T h e enormous a m o u n t of d a t a d e s c r i b i n g these synthesis processes has b e e n d i s c u s s e d b e f o r e ( 1 ). I n the late 1930s P i c h l e r d i s c o v e r e d that r u t h e n i u m p r o d u c e s
very
h i g h m o l e c u l a r w e i g h t paraffinic waxes at l o w temperatures a n d v e r y h i g h pressures. T h i s b e h a v i o r is r e p r e s e n t e d i n F i g u r e 4 w h e r e i t c a n b e seen t h a t over 30 w t % of the p r o d u c t has a n average m o l e c u l a r w e i g h t
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch002
The Fischer-Tropsch and Related Syntheses
Figure
3.
Molecular
weight distribution of hydrocarbon medium-pressure synthesis process (1)
products
in
the
> 200,000. T h i s b e h a v i o r has b e e n d i s c u s s e d i n greater d e t a i l b y P i c h l e r a n d co-workers (5,6). T h e m e t a l oxides seem to b e less a c t i v e synthesis catalysts t h a n the metals, thereby necessitating more d e m a n d i n g reaction conditions. T h e y d o p r o d u c e a m u c h different p r o d u c t s p e c t r u m , h o w e v e r . M e t h a n o l c a n b e s y n t h e s i z e d q u i t e s e l e c t i v e l y w i t h Z n O catalysts, a n d z i n c o x i d e c h r o m i a catalysts w e r e first c o m m e r c i a l i z e d i n t h e e a r l y 1920s. T h e l o w
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
2.
VANNICE
Catalytic
Synthesis
0
of Hydrocarbons
21
200000 LOO 000 600003 800 000 ' WOO 000
MOLECULAR WT.
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch002
Chemie Ingénieur Tech ni k
Figure 4. Ruthenium is unique in its production of high molecular weight paraffinic waxes (90°C, 2000 atm) (5).
a c t i v i t y o f these catalysts r e q u i r e d h i g h o p e r a t i n g t e m p e r a t u r e s of 5 5 0 ° 7 0 0 ° K , r e s u l t i n g i n v e r y u n f a v o r a b l e e q u i l i b r i u m conversions since A G ° f o r t h e m e t h a n o l synthesis r e a c t i o n b e c o m e s p o s i t i v e at c a . 4 2 5 ° K . V e r y h i g h r e a c t o r pressures of
100-600
atm were
therefore
necessary
to
a c h i e v e reasonable conversions b e c a u s e of this t h e r m o d y n a m i c l i m i t a t i o n . C a t a l y s t s d e v e l o p e d r e c e n t l y w h i c h c o n t a i n c o p p e r are m o r e a c t i v e t h a n t h e z i n c o x i d e - c h r o m i a catalysts a n d c a n b e u s e d at l o w e r t e m p e r a t u r e s , t h e r e b y r e d u c i n g t h e pressure r e q u i r e d to a c h i e v e t h e same conversions. T h i s c h a n g e results i n a m o r e e c o n o m i c a l process since pressures o f o n l y 50-100 a t m are n o w needed.
A g o o d r e v i e w of t h e m e t h a n o l synthesis
r e a c t i o n is p r o v i d e d b y N a t t a ( 7 ) . T h e a d d i t i o n of a l k a l i metals to z i n c o x i d e i m p a r t s t h e c a p a b i l i t y to p r o d u c e l o n g e r - c h a i n alcohols, b u t these catalysts m u s t b e o p e r a t e d at h i g h t e m p e r a t u r e s a n d h i g h pressures. A t these c o n d i t i o n s 2 - b u t a n o l is t h e p r i m a r y p r o d u c t , exclusive of m e t h a n o l , a n d comprises o v e r 50 w t % of t h e p r o d u c t s h o w n i n F i g u r e 5. T h e synthesis of h i g h e r m o l e c u l a r w e i g h t alcohols is discussed i n greater d e t a i l b y N a t t a , C o l o m b o , a n d Pasquon (8). A t these h i g h pressures a n d e v e n h i g h e r t e m p e r a t u r e s , t h e use of Th0 -Al 0 2
products
2
3
catalysts results i n t h e isosynthesis r e a c t i o n i n w h i c h t h e
are p r i m a r i l y b r a n c h e d paraffins r a t h e r t h a n s t r a i g h t - c h a i n
hydrocarbons.
A t t h e c o n d i t i o n s g i v e n i n F i g u r e 6, i s o b u t a n e is t h e
p r i n c i p a l p r o d u c t o n a w t % basis. T h e p r o d u c t i o n of aromatics also has b e e n o b s e r v e d i n this system. A d e t a i l e d d e s c r i p t i o n of t h e isosynthesis r e a c t i o n is g i v e n b y C o h n ( 9 ) . T h e newest development i n C O - H
2
catalysis w a s d i s c l o s e d r e c e n t l y
b y U n i o n C a r b i d e ( 1 0 ) . B y u s i n g a h o m o g e n e o u s R h catalyst at m o d erate t e m p e r a t u r e s
(525°K)
a n d e x t r e m e l y h i g h pressures o f 2 0 , 0 0 0 -
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
22
SOLID STATE
( 4 1 0 C , 375
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch002
e
CHEMISTRY
ATM)
π
i-C
4
ALCOHOL CARBON NUMBER
2-METHYL HIGHER ALC. Catalysis
Figure
5.
Product
distribution for the alcohol synthesis reaction. 14% K 0/ZnO(8).
Catalyst:
9
(450 C, e
300
ATM)
run
C
4
i-C
4
C + 5
(ALC)
CARBON NUMBER Catalysis
Figure
6.
The isosynthesis
reaction favors isobutane ThO /AkO (9). t
formation.
Catalyst:
s
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
2.
Catalytic
VANNiCE
Synthesis
of
23
Hydrocarbons
50,000 p s i , ethylene g l y c o l c a n b e s y n t h e s i z e d d i r e c t l y f r o m C O a n d H . 2
A b o u t three-quarters of the p o l y h y d r o x y p r o d u c t is c o m p o s e d of e t h y l e n e glycol, w i t h the
balance
c o m p o s e d of p r o p y l e n e g l y c o l a n d g l y c e r i n e .
M e t h a n o l is also p r o d u c e d i n this process.
T h i s result s t r o n g l y suggests
that n e w h o m o g e n e o u s catalysts m a y p l a y a n i m p o r t a n t f u t u r e r o l e i n t h e catalysis of C O - H
2
synthesis reactions.
A l t h o u g h research c o n c e r n i n g C O - H
2
synthesis reactions spans t h r e e -
quarters of a c e n t u r y , a n u m b e r of p r o b l e m s s t i l l r e m a i n to b e
solved.
A s t y p i f i e d b y the figures p r e s e n t e d , there is s t i l l a l a c k of p r o d u c t selec t i v i t y , e s p e c i a l l y i n the synthesis of h y d r o c a r b o n s o t h e r t h a n m e t h a n e . Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch002
T h e c a p a b i l i t y of selectively f o r m i n g a specified c o m p o u n d , i.e., e t h y l e n e , w o u l d b e h i g h l y desirable.
I n a d d i t i o n to this p r o b l e m , a l l the G r o u p
V I I I metals are v e r y sensitive to s u l f u r poisons s u c h as H S , a n d a s u l f u r 2
tolerant catalyst w o u l d b e a m a j o r i m p r o v e m e n t . F o r e x a m p l e , the m e t h a n a t i o n processes u s i n g n i c k e l catalysts r e q u i r e that the H S l e v e l i n the 2
f e e d s t r e a m b e r e d u c e d to 0.01-0.1 p p m to a c h i e v e satisfactory catalyst l i f e t i m e s . B e c a u s e of this r e q u i r e m e n t , a d d i t i o n a l p u r i f i c a t i o n steps m u s t b e a d d e d to a t t a i n these v e r y l o w s u l f u r levels. A n o t h e r p r o b l e m is catalyst d e a c t i v a t i o n , w h i c h c a n o c c u r b e c a u s e of s i n t e r i n g of m e t a l p a r t i c l e s , c o k e d e p o s i t i o n , a n d m e t a l c a r b i d e f o r m a tion.
C a t a l y s t s that are m o r e sinter-resistant are p a r t i c u l a r l y d e s i r a b l e .
A l s o , some of the G r o u p V I I I metals f o r m v o l a t i l e c a r b o n y l s . T h i s creates a p r o b l e m n o t o n l y because of the t o x i c i t y of these c a r b o n y l s b u t also b e c a u s e i m p r o p e r catalyst t r e a t m e n t c a n result i n m e t a l t r a n s p o r t w i t h i n t h e catalyst b e d a n d e v e n out of t h e reactor. A l t h o u g h m a n y studies i n v o l v i n g heterogeneous catalysts for
CO-H
2
reactions h a v e b e e n c o n d u c t e d , most of the d a t a w e r e o b t a i n e d b e f o r e the a d v e n t of the sensitive a n a l y t i c a l t e c h n i q u e s a v a i l a b l e t o d a y .
There
fore, l a r g e p r o d u c t y i e l d s w e r e r e q u i r e d f o r p r o d u c t analyses, w h i c h w e r e f r e q u e n t l y r e p r e s e n t e d i n terms of d i s t i l l a t i o n fractions. product
distributions were
not commonplace.
Reactors
Detailed
were usually
o p e r a t e d at h i g h conversions, t h e r e b y p r o v i d i n g k i n e t i c d a t a f r o m i n t e g r a l reactors.
T h e s e d a t a are n o t so easily i n t e r p r e t e d as d a t a
from
d i f f e r e n t i a l reactors since heat a n d mass transfer effects, s e c o n d a r y
reac
tions, a n d p r o d u c t i n h i b i t i o n c a n c o m p l i c a t e k i n e t i c analysis. I n a d d i t i o n , n o specific a c t i v i t y rate d a t a h a d b e e n d e t e r m i n e d i n these e a r l i e r studies b e c a u s e c h e m i s o r p t i o n t e c h n i q u e s h a d n o t b e e n d e v e l o p e d to t h e p o i n t where cedure.
they were
u t i l i z e d as a r o u t i n e catalyst c h a r a c t e r i z a t i o n
pro
T h e c o m p a r i s o n of rates o n the basis of u n i t m e t a l surface area
or p e r m e t a l surface site, i.e. t u r n o v e r n u m b e r s , is the o n l y m e a n i n g f u l w a y to c o m p a r e t h e i n t r i n s i c a c t i v i t y of different m e t a l catalysts. B e c a u s e of these l i m i t a t i o n s s t i l l e x i s t i n g i n the 1970s, a s t u d y w a s i n i t i a t e d to p r o v i d e this necessary i n f o r m a t i o n for t h e first t i m e .
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
24
SOLDO S T A T E
Table III.
Dispersion Variations for Different Metal Catalysts (11) Catalyst
% Metal
15% F e / A l 0 5% R u / A l 0 2% C o / A l 0 5%Ni/Al 0 2% P d / A l 0 1% R h / A l 0 1.75% P t / A l 0 2% I r / A l 0 2
3
2
3
2
3
2
3
2
3
2
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch002
2
Dispersion 2* 6* 8' 13' 22* 48' 88* 90'
3
2
3
3
* Assuming bridged bonding of CO. * Assuming linear bonding of CO. Supported Metal
CHEMISTRY
Journal of Catalysis
Catalysts
T h e b e h a v i o r o f G r o u p V I I I metals d i s p e r s e d o n a v a r i e t y o f t y p i c a l m e t a l o x i d e s u p p o r t s has b e e n i n v e s t i g a t e d i n t h e C O — H
2
synthesis r e a c
t i o n ( I I ) . D i s p e r s i n g a m e t a l o n a s u p p o r t i s advantageous n o t o n l y b e c a u s e i t results i n t h e f o r m a t i o n o f v e r y s m a l l m e t a l crystallites, t h e r e b y i n c r e a s i n g t h e s u r f a c e a r e a p e r g r a m o f t h e m e t a l c o m p o n e n t , b u t also b e c a u s e t h e m e t a l surface i s s t a b i l i z e d u n d e r r e a c t i o n c o n d i t i o n s . I t w a s necessary t o s t u d y these w e l l - c h a r a c t e r i z e d G r o u p V I I I m e t a l catalysts i n o r d e r t o m a k e m e a n i n g f u l k i n e t i c c o m p a r i s o n s . tion of H
2
Chemisorp-
a n d C O m e a s u r e d t h e surface a r e a o f t h e r e d u c e d m e t a l ,
t h e r e b y a l l o w i n g t h e c a l c u l a t i o n o f b o t h specific a c t i v i t y , expressed as turnover numbers, a n d m e t a l dispersion, w h i c h is the ratio of surface m e t a l atoms t o t h e t o t a l n u m b e r o f m e t a l atoms i n t h e catalyst. T a b l e I I I s h o w s t h e d i s p e r s i o n d a t a f o r a series o f a l u m i n a - s u p p o r t e d m e t a l s . T h e m o r e n o b l e G r o u p V I I I metals a r e t y p i c a l l y b e t t e r d i s p e r s e d . T h e w i d e Table I V .
(11)
N e w vs. O l d D a t a for Methanation A c t i v i t y Vannice
Fischer et al. (1925) CH Formation/'g Metal t
Ru Ir Rh Ni Co Os Pt Fe Pd
N
CHi
Metal Ru Fe Ni Co Rh Pd Pt Ir
@ 275°C (sec' ) 1
0.181 0.057 0.032 0.020 0.013 0.012 0.0027 0.0018 Journal of Catalysis
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
2.
VANNICE
Catalytic
Synthesis
of
25
Hydrocarbons
v a r i a t i o n i n d i s p e r s i o n v a l u e s illustrates t h e i m p o r t a n c e of c h a r a c t e r i z i n g catalysts i n this m a n n e r . A d i f f e r e n t i a l , flow m i c r o r e a c t o r w a s o p e r a t e d at steady-state c o n d i tions, a n d c o n v e r s i o n d a t a free f r o m heat a n d mass transfer l i m i t a t i o n s w e r e o b t a i n e d (11).
E v e n at these l o w conversions, t y p i c a l l y less t h a n
5 % , a c c u r a t e p r o d u c t d i s t r i b u t i o n s c o u l d b e d e t e r m i n e d b y gas c h r o m a tography using sub-ambient temperature programming.
Specific activi
ties for t h e G r o u p V I I I metals are l i s t e d i n T a b l e I V . T h e s e results f o r t h e m e t h a n a t i o n r e a c t i o n are c o m p a r e d w i t h those f r o m t h e o n l y o t h e r kinetic study w h i c h encompassed Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch002
F i s c h e r i n 1925 ( 1 2 ) .
a l l the G r o u p V I I I m e t a l s — t h a t of
T e c h n i q u e s to m e a s u r e m e t a l s u r f a c e areas w e r e
n o t yet a v a i l a b l e , a n d these a c t i v i t i e s w e r e c o m p a r e d o n a g r a m - m e t a l basis w i t h n o c o r r e c t i o n for surface area differences. W h e n this c o r r e c t i o n is m a d e , significant changes o c c u r i n t h e o r d e r i n g of a c t i v i t y , e s p e c i a l l y f o r F e a n d I r . A n o t h e r i m p o r t a n t feature is t h a t a f a c t o r of o n l y 100 i n specific a c t i v i t y separates t h e least a c t i v e a n d t h e m o s t a c t i v e m e t a l s i n t h e m e t h a n a t i o n r e a c t i o n . T h e same o r d e r i n g of a c t i v i t y exists f o r t o t a l C O conversion
(11).
E v e n at these l o w conversions, h i g h e r m o l e c u l a r w e i g h t p r o d u c t s are easily d e t e c t e d w h e n present, a n d these metals e x h i b i t s e l e c t i v i t y trends r e p r e s e n t a t i v e of t h e i r b e h a v i o r u n d e r t y p i c a l p r o c e s s i n g c o n d i t i o n s .
As
e x p e c t e d , a n increase i n the H / C O r a t i o i n t h e f e e d stream increases 2
t h e r e l a t i v e f o r m a t i o n of m e t h a n e . T h e k i n e t i c parameters o b t a i n e d for this series of a l u m i n a - s u p p o r t e d metals are l i s t e d i n T a b l e V . B y fitting d a t a to a p o w e r rate l a w , a c t i v a t i o n energies a n d p a r t i a l pressure d e p e n d e n c i e s w e r e o b t a i n e d . W i t h the e x c e p t i o n of R u a n d C o , the m e t h a n a t i o n r e a c t i o n is a b o u t first o r d e r i n h y d r o g e n a n d n e a r zero o r d e r i n c a r b o n m o n o x i d e . Table V .
Methanation Kinetics over Alumina-Supported Metals as Determined by a Power Rate L a w ( 1 1 ) N
Catalyst Ru Fe Ni Co Rh Pd Pt Ir
These data reveal
(
sec ) 1
0.181 0.057 0.032 0.020 0.013 0.012 0.0027 0.0018
C
H
4
=
Ae »' E
R
A ( sec' )
-P /-Pco H
E (kcal/mol)
y
m
1
5.7 χ 2.2 Χ 2.3X 9.0 Χ 5.2 Χ 1.2 X 1.6 Χ 1.4 Χ
T
10 10 10 10 10 10 10 10
8 7
8 7 7 e 4 4
24.2 21.3 25.0 27.0 24.0 19.7 16.7 16.9
X 1.6 1.1 0.8 1.2 1.0 1.0 0.8 1.0
Y -0.6 -0.1 -0.3 -0.5 -0.2 0 0 0.1 Journal of Catalysis
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
26
SOLID S T A T E C H E M I S T R Y
30 μ
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch002
20
10
15
20
25 E
30
(kcal/mole) m
Journal of Catalysis
Figure 7.
The compensation effect for the methanation
reaction
(11)
t h a t a c o m p e n s a t i o n effect exists f o r the m e t h a n a t i o n r e a c t i o n as s h o w n i n F i g u r e 7. S e c o n d l y , w i t h a d s o r p t i o n d a t a f r o m t h e o p e n l i t e r a t u r e , a s t r o n g c o r r e l a t i o n w a s f o u n d to o c c u r b e t w e e n specific a c t i v i t y a n d t h e h e a t of a d s o r p t i o n of C O (11).
T h i s is r e p r e s e n t e d i n F i g u r e 8.
This
c o r r e l a t i o n appears to b e t h e r i g h t - h a n d p o r t i o n of t h e w e l l - k n o w n v o l cano plot.
T h i s r e l a t i o n s h i p is a n i m p o r t a n t r e s u l t since i t n o t
correlates a c a t a l y t i c p r o p e r t y w i t h a p h y s i c a l l y m e a s u r a b l e
only
property,
b u t i t also tells us that w e a k e n i n g the m e t a l - C O b o n d appears t o r e s u l t i n higher activity. Metal Crystallite
Size Effects and Metal-Support
Interactions
M e t a l s w e r e d i s p e r s e d o n a v a r i e t y of m a t e r i a l s t h a t are t y p i c a l l y u s e d as s u p p o r t s , s u c h as A 1 0 , S i 0 , zeolites, a n d c a r b o n . I t w a s f o u n d t h a t t h e s u p p o r t c a n p l a y a v e r y n o t i c e a b l e r o l e i n the catalysis of C O - H reactions b y i n f l u e n c i n g the b e h a v i o r of the m e t a l c o m p o n e n t (IS). For 2
3
2
2
Goodenough and Whittingham; Solid State Chemistry of Energy Conversion and Storage Advances in Chemistry; American Chemical Society: Washington, DC, 1977.
Downloaded by CORNELL UNIV on October 22, 2016 | http://pubs.acs.org Publication Date: June 1, 1977 | doi: 10.1021/ba-1977-0163.ch002
2.
VANNICE
Catalytic
Synthesis
-30
of
27
Hydrocarbons
-40
-50
CO Heat of Adsorption (kcal/aole) Figure 8. Conelation between methanation activity and CO heat of adsorption for alumina-supported metals. Both values for Ni/ηAl O from Table VIII are included. 2
s
i n s t a n c e , s u p p o r t e d P t catalysts h a v e a specific a c t i v i t y t w o orders
of
m a g n i t u d e h i g h e r t h a n u n s u p p o r t e d P t , as s h o w n i n T a b l e V I . T h e m a j o r r o l e of the s u p p o r t i n this case appears to b e the f o r m a t i o n a n d s t a b i l i z a t i o n of v e r y s m a l l P t crystallites since o n l y s m a l l differences i n t u r n o v e r n u m b e r exist b e t w e e n h i g h l y d i s p e r s e d P t o n different s u p p o r t s . Table V I .
Effect of Platinum Crystallite Size on Methanation A c t i v i t y (14) H / C O — 3, Ρ = 2
1 atm
Ncm @ 275°C (sec^XlO )
Catalyst
3
1.75% P t / A l 0 1.75% P t / A l 0 (sint.) 2.0% P t / S i 0 Pt Black 25% Pt Black/Al 0 (Physical mixture) 2
2
This
3
3
2
2
3
2.7 2.2 1.6