Downloaded by CHINESE UNIV OF HONG KONG on February 17, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch021
Chapter 21 Cellulosic Adhesives David N.-S. H o n Wood Chemistry Laboratory Department of Forestry Clemson University Clemson, SC 29634
Cellulose is an old polymer with new industrial applications. The derivatization of cellulose has opened up tremendous production and marketing possibilities for the adhesives industry. Various important adhesives have been derived from cellulose ethers. The structure and molecular size of cellulose and their influence on swelling and solubility are important considerations in the preparation of cellulose derivatives for adhesive applications. Modern cellulosic adhesives derived from grafted copolymers and polyblends are also proving very useful. Since t h e energy a n d c h e m i c a l r a w m a t e r i a l c r u n c h o f 1973, m a n y a l t e r n a t i v e s to p e t r o l e u m a n d other i m p o r t e d c h e m i c a l stocks have been e x p l o r e d .
What
are t h e needs o f t h e adhesive i n d u s t r y ? W h a t other sources c a n b e t a p p e d ? C e l l u l o s e , a p o l y s a c c h a r i d e p r o d u c e d i n great a b u n d a n c e i n n a t u r e , i s a p r i m e c a n d i d a t e as a r a w m a t e r i a l for use i n adhesives because o f i t s a v a i l a b i l i t y a n d r e l a t i v e l y l o w cost a n d because o f i t s readiness t o b e converted i n t o a v a r i e t y of useful adhesive p r o d u c t s .
I n essence, cellulose i s a wonder m a t e r i a l w i t h a
p r o m i s i n g future ( i ) . Structure and Molecular Weight C e l l u l o s e i s a polydisperse, l i n e a r s y n d i o t a c t i c p o l y m e r . Its basic m o n o m e l i c u n i t is D-glucose, w h i c h l i n k s successively t h r o u g h a g l u c o s i d i c b o n d i n the β c o n f i g u r a t i o n between c a r b o n 1 a n d c a r b o n 4 o f adjacent u n i t s t o f o r m l o n g c h a i n l,4-/?-glucans. F i g u r e 1 shows a s t r u c t u r a l d i a g r a m o f a p o r t i o n o f a cellulose c h a i n . Because o f t h e /^-configuration o f t h e i n t e r m o n o m e r l i n k s , the glucose u n i t s effectively alternate u p a n d d o w n i n t h e c h a i n . Hence, scientists consider cellobiose as the r e p e a t i n g u n i t o f cellulose, o n w h i c h a s y n d i o t a c t i c c o n f i g u r a t i o n o f the m a c r o m o l e c u l e is f o r m e d . T h e size o f the cellulose molecule 0097-6156/89/0385-0289$06.00/0 « 1989 American Chemical Society
In Adhesives from Renewable Resources; Hemingway, Richard W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by CHINESE UNIV OF HONG KONG on February 17, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch021
290
ADHESIVES F R O M RENEWABLE RESOURCES
.
HoCOH
,
QH
ι
.
H
2
C
0
H
«
F i g u r e 1. T h e p a r t i a l m o l e c u l a r structure of cellulose.
In Adhesives from Renewable Resources; Hemingway, Richard W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
21.
HON
291
Cellulosic Adhesives
o c c u r r i n g i n n a t u r e , i n d i c a t e d b y i t s degree o f p o l y m e r i z a t i o n ( D P ) or c h a i n l e n g t h , is dependent h e a v i l y o n i t s source ( T a b l e I). I n some cases, the D P m a y exceed
10,000.
T a b l e I. Degree o f P o l y m e r i z a t i o n o f C e l l u l o s e f r o m
Downloaded by CHINESE UNIV OF HONG KONG on February 17, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch021
V a r i o u s Sources Source A. xylinum Bagasse B a s t fibers C o t t o n fibers C o t t o n linter F l a x fibers P u l p cellulose (bleached) R a m i e fibers Rice straw Valonia W o o d fibers
Degree o f P o l y m e r i z a t i o n 2,000 - 3,700 700 1,0008,000 1,0007,000 500 9,000-
900 5,000 14,000 5,000 8,000 2,100 11,000
700 - 800 25,000 - 27,000 8,000 - 9,000
C e l l u l o s e never occurs i n pure f o r m ; i n softwood a n d h a r d w o o d , i t c o n s t i tutes a b o u t 40 to 5 0 % of the weight, i n flax 70 to 8 5 % , whereas, cottonseed h a i r s , w h i c h are the purest source, c o n t a i n more t h a n 9 0 % ( T a b l e I I ) . I n these m a t e r i a l s , cellulose macromolecules serve as a s t r u c t u r a l m a t e r i a l w i t h i n the c o m p l e x architecture of the p l a n t cell w a l l s . C o m m e r c i a l p r o d u c t i o n o f cellulose is concentrated o n the h i g h l y pure sources like c o t t o n or easily harvested sources like w o o d . Adhesives and Adhesion A d h e s i v e s h o l d two surfaces together b y developing i n t e r n a l or cohesive s t r e n g t h . In order to h o l d surfaces together, adhesives must be a p p l i e d to the substrate i n a fluid f o r m to wet, spread, a n d penetrate the surface c o m p l e t e l y a n d leave no voids. Hence, adhesives m u s t be low i n viscosity at the t i m e o f a p p l i c a t i o n . In order t o p r o v i d e s t r o n g cohesive s t r e n g t h , the adhesive m u s t be set o r solidified by either c o o l i n g , c r o s s l i n k i n g r e a c t i o n , or e v a p o r a t i o n o f solvents, d e p e n d i n g o n whether the adhesive is h o t m e l t ( t h e r m o p l a s t i c ) , thermoset, or solvent-based. T h i s also i m p l i e s t h a t i n order to p r o v i d e enough b o n d i n g s t r e n g t h , a n adhesive m u s t be a p o l y m e r w i t h h i g h m o l e c u l a r weight. A s a r u l e of t h u m b , the higher the m o l e c u l a r weight, the higher the b o n d i n g power. H o w e v e r , for t h e r m o p l a s t i c s , as for cellulosic adhesives, the higher the m o l e c u l a r weight, the more difficult i t becomes t o process the adhesives. Hence, the m o l e c u l a r weight range of t h i s t y p e of p o l y m e r is carefully chosen to represent the best c o m p r o m i s e
In Adhesives from Renewable Resources; Hemingway, Richard W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
292
ADHESIVES F R O M RENEWABLE RESOURCES
between p r o c e s s a b i l i t y a n d final properties. F o r adhesive a p p l i c a t i o n , m a n y a d hesives a n d h o t m e l t s have a lower m o l e c u l a r weight. T h e adhesives w i t h lower m o l e c u l a r weight have better s o l u b i l i t y i n solvents, a w i d e r range of c o m p a t a b i l i t i e s w i t h other resins a n d p l a s t i c i z e r s , a n d lower m e l t i n g or softening p o i n t s .
Downloaded by CHINESE UNIV OF HONG KONG on February 17, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch021
T a b l e I I . N a t u r a l Sources o f C e l l u l o s e Source
Cellulose Content (%)
Bagasse Bamboo Cotton Flax Hemp Jute Kapok Ramie Straw Wood
35 409070-
45 55 99
75 7 5 - 80 6 0 - 65 7 0 - 75 7 0 - 75 4 0 - 50 4 0 - 50
C e l l u l o s e is a p o l y m e r t h a t meets these requirements as a n adhesive. H o w ever, due t o i t s s e m i c r y s t a l l i n e s t r u c t u r e , h i g h l y h y d r o g e n - b o n d e d cellulose c a n not be dissolved easily i n c o n v e n t i o n a l solvents, a n d i t c a n n o t be m e l t e d before i t b u r n s . T h i s is because the a t t r a c t i v e forces a n d s t a b i l i t y o f c r y s t a l structures are greater t h a n those t h a t result f r o m i n t e r a c t i o n between p o l y m e r a n d solvent. Hence, cellulose i t s e l f is not s u i t a b l e for use as a n adhesive. T h e same c a n be s a i d of regenerated cellulose. I n order to m a k e cellulose soluble or m e l t a b l e , the h y d r o g e n b o n d s m u s t be broken (i.e., cellulose molecules m u s t be m o r e flexible a n d possess h i g h entropy, so t h a t they can be separated e a s i l y ) . C e l l u l o s e is a s e m i c r y s t a l l i n e p o l y m e r . I n the c r y s t a l l i n e r e g i o n , the l i n e a r p o l y m e r i c chains are h e l d together b y r e l a t i v e l y s t r o n g i n t e r m o l e c u l a r h y d r o gen b o n d s . D e r i v a t i v e s , g r a f t i n g , a n d p o l y b l e n d i n g of cellulose can reduce the s t r e n g t h o f i n t e r m o l e c u l a r b o n d s , m a k i n g cellulose soluble i n water a n d i n organic solvents. S o m e cellulose derivatives are also m e l t a b l e under heat. A s a m a t t e r of fact, cellulose derivatives are a very g o o d class o f t h e r m o p l a s t i c a d hesives. T h e y c a n be used i n the f o r m of s o l u t i o n s , dispersions i n w a t e r , or solids. T h e i r properties are i n m a n y cases influenced b y factors such as m o l e c u l a r weight a n d degree o f c h e m i c a l s u b s t i t u t i o n a n d , i n c o p o l y m e r s , the m o n o m e r r a t i o ; i n graft c o p o l y m e r s , the degree of g r a f t i n g .
In Adhesives from Renewable Resources; Hemingway, Richard W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
21.
HON
Cellulosic Adhesives
293
Swelling and Dissolution of Cellulose
Downloaded by CHINESE UNIV OF HONG KONG on February 17, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch021
A p o l y m e r dissolves i n two stages. F i r s t , solvent molecules diffuse i n t o the p o l y m e r , s w e l l i n g i t t o a gel state. T h e n , the gel g r a d u a l l y disintegrates, a n d the molecules diffuse i n t o the s o l v e n t - r i c h regions. I n essence, s o l u b i l i t y a n d s w e l l i n g of a p o l y m e r i n a solvent d e p e n d u p o n c o m p e t i t i v e i n t e r m o l e c u l a r a t t r a c t i o n between solvent a n d p o l y m e r molecules versus adjacent p o l y m e r molecules. If the interactive force between the p o l y m e r molecule a n d solvent molecule is stronger t h a n the p o l y m e r - p o l y m e r secondary force, the p o l y m e r w i l l i n i t i a l l y swell a n d dissolve. A l t h o u g h cellulose molecules h o l d together s t r o n g l y v i a i n t e r m o l e c u l a r a n d i n t r a m o l e c u l a r h y d r o g e n b o n d i n g s , some l i q u i d s c a n penetrate c e l l u lose c o m p l e t e l y a n d thus w i l l cause i n t r a c r y s t a l l i n e as well as i n t e r c r y s t a l l i n e s w e l l i n g . W a t e r is a g o o d s w e l l i n g agent for cellulose; however, s w e l l i n g o n l y occurs either i n i n t e r c r y s t a l l i n e regions or o n the surfaces o f the c r y s t a l l i t e s a n d the gross s t r u c t u r e . W a t e r does not penetrate the c r y s t a l l i n e r e g i o n . T h e r e are m a n y reagents, such as a l k a l i m e t a l h y d r o x i d e s , salts i n s t r o n g l y a l k a l i n e s o l u t i o n , some i n o r g a n i c acids a n d salts, a n d c e r t a i n amines a n d related c o m p o u n d s t h a t c a n cause i n t r a c r y s t a l l i n e s w e l l i n g of cellulose. I n order to m a k e cellulose soluble or m e l t a b l e , c h e m i c a l reagents m u s t be i n t r o d u c e d i n t o the cellulose t o destroy the i n t e r m o l e c u l a r h y d r o g e n b o n d i n g . O n c e the o r i g i n a l h y d r o g e n b o n d s have been b r o k e n a n d i n t r a m i c e l l a r s w e l l i n g is achieved, the cellulose h y d r o x y Is are capable o f r e a c t i n g like o r d i n a r y a l i p h a t i c h y d r o x y l groups. Hence, s o d i u m h y d r o x i d e is a p o p u l a r l y used agent t o swell cellulose p r i o r t o s u b s t i t u t i o n reactions. G e n e r a l l y , the s u b s t i t u t i o n of h y d r o x y l groups i n cellulose b y a b u l k y reagent allows s e p a r a t i o n of cellulose chains so t h a t a solvent m a y penetrate a n d solvate the molecules. T h i s a c t i o n has been f o u n d useful i n b r i n g i n g cellulose i n t o s o l u t i o n or l o w e r i n g i t s m e l t i n g p o i n t . C o n s e q u e n t l y , based o n t h i s p r i n c i p l e , m a n y adhesive a n d c o a t i n g m a t e r i a l s have been prepared f r o m cellulose by different s u b s t i t u t i o n reactions. T w o m a j o r groups are cellulose esters (2-4) a n d cellulose ethers (2-4). T h e s u b s t i t u t i o n of h y d r o g e n a n d h y d r o x y l groups w i t h a p o l y m e r b y a graft c o p o l y m e r i z a t i o n r e a c t i o n has also been f o u n d useful i n b r i n g i n g cellulose i n t o s o l u t i o n a n d l o w e r i n g its m e l t i n g p o i n t . T h e g r a f t i n g of a c r y l o n i t r i l e w i t h subsequent h y d r o l y i s produces a water-soluble cellulose-acrylic a c i d g r a f t - c o p o l y m e r . O c c a s i o n a l l y , the b l e n d i n g of cellulose w i t h a c o m p a t i b l e p o l y m e r has also been f o u n d useful i n lowering the softening p o i n t of cellulose or i n c r e a s i n g i t s a p p l i c a b i l i t y i n use as a n adhesive. F o r instance, the b l e n d i n g of cellulose w i t h n a t u r a l r u b b e r to m a k e s u r g i c a l adhesives has been c o m m e r c i a l l y successful. Hence, the adhesives i n d u s t r y has a w i d e v a r i e t y of cellulosic p r o d u c t s f r o m w h i c h t o select a n d create a n end p r o d u c t w i t h v a r y i n g adhesive properties. Cellulose Derivatives: Esters and Ethers Since cellulose is a p o l y h y d r o x y l a l c o h o l , i t can undergo esterification a n d etheri f i c a t i o n m o d i f i c a t i o n s . T h e properties o f the derivatives depend h e a v i l y o n the
In Adhesives from Renewable Resources; Hemingway, Richard W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
294
ADHESIVES F R O M RENEWABLE RESOURCES
Downloaded by CHINESE UNIV OF HONG KONG on February 17, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch021
t y p e , d i s t r i b u t i o n , a n d u n i f o r m i t y o f the s u b s t i t u e n t groups. F o r each β-0-Dg l u c o p y r a n o s y l r i n g , there are three h y d r o x y l groups available for the n u c l e o p h i l i c s u b s t i t u t i o n r e a c t i o n . R e a c t i o n s at these sites c a n o c c u r either o n a one-to-one basis or w i t h f o r m a t i o n of side chains d e p e n d i n g o n choice of reagent employed t o m o d i f y the cellulose. T h e t e r m "degree of s u b s t i t u t i o n " ( D S ) is used t o i d e n t i f y the average n u m b e r of sites reacted per r i n g . T h e m a x i m u m value is 3, c o r r e s p o n d i n g to the n u m b e r of h y d r o x y Is available for r e a c t i o n . W h e n s i d e - c h a i n f o r m a t i o n is possible, the t e r m " m o l a r s u b s t i t u t i o n " ( M S ) is used t o denote the l e n g t h of side c h a i n , a n d the value c a n exceed 3. C e l l u l o s e E s t e r s . C e l l u l o s e contains p r i m a r y a n d secondary h y d r o x y l groups. Hence, cellulose esters c a n be m a d e w i t h a l l i n o r g a n i c a n d o r g a n i c acids. T r a d i t i o n a l l y , cellulose esters are m a d e b y a c o n t r o l l e d a c i d - c a t a l y z e d r e a c t i o n be tween a n a c i d or a c i d a n h y d r i d e a n d the h y d r o x y l groups of cellulose. T h e r e a c t i o n requires the absence of water for c o m p l e t i o n because i t is a reversible r e a c t i o n . T h e general r e a c t i o n scheme c a n be i l l u s t r a t e d as s h o w n i n Scheme 1.
Cellulose + A c i d
c a t
-^
Cellulose Ester +
s t
H 0 2
Scheme 1
H i s t o r i c a l l y , the first t h e r m o p l a s t i c s y n t h e t i c adhesive was the cellulose i n organic ester, cellulose n i t r a t e . Schonbeir ( 5 ) is generally regarded as h a v i n g discovered cellulose n i t r a t e i n 1845 b y n i t r a t i n g cellulose w i t h a m i x t u r e of n i t r i c a n d s u l f u r i c acids. M o s t early w o r k was a i m e d at u t i l i z i n g cellulose n i t r a t e i n explosives, b u t l a t e r , i t f o u n d use i n p l a s t i c , adhesives, a n d c o a t i n g a p p l i c a t i o n s . T o d a y , i t is s t i l l one of the most i m p o r t a n t adhesives. C e l l u l o s e n i t r a t e can be prepared b y t r e a t i n g h i g h l y p u r i f i e d cellulose w i t h a m i x t u r e of n i t r i c a n d s u l f u r i c a c i d (6). T h e r e a c t i o n scheme m a y be represented as s h o w n i n Scheme 2.
R-OH + H N 0
3
H
^
4
R-O-NO2 +
H 0 2
Scheme 2
F o r adhesive a p p l i c a t i o n , the a c i d m i x t u r e is m a d e u p of n i t r i c a c i d ( 2 5 % ) , sulfuric a c i d ( 5 5 % ) , a n d water ( 2 0 % ) . T h e f u n c t i o n of s u l f u r i c a c i d is to remove the water of r e a c t i o n so t h a t n i t r a t i o n m a y be c a r r i e d to the desired degree m o r e readily. T h e various p r o d u c t s m a y be characterized by n i t r o g e n content, w h i c h corresponds t o the degree of s u b s t i t u t i o n . T h e n i t r o g e n content also de termines the s o l u b i l i t y of cellulose n i t r a t e . W i t h 11.8 to 1 2 . 2 % n i t r o g e n content,
In Adhesives from Renewable Resources; Hemingway, Richard W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
21.
HON
295
Cellulosic Adhesives
Downloaded by CHINESE UNIV OF HONG KONG on February 17, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch021
cellulose n i t r a t e w i l l be soluble i n esters, ketones, e t h e r - a l c o h o l m i x t u r e s , a n d g l y c o l ethers. It w i l l also have excellent a r o m a t i c h y d r o c a r b o n tolerance b u t less tolerance for a l i p h a t i c h y d r o c a r b o n s . W i t h 11.3 t o 1 1 . 7 % n i t r o g e n content, it w i l l have a p p r o x i m a t e l y the same solvency; however, i t w i l l also tolerate h i g h percentages of l o w - m o l e c u l a r weight a n h y d r o u s alcohols. W i t h 10.9 t o 1 1 . 2 % n i t r o g e n content, i t c a n dissolve i n a l c o h o l . I n p r a c t i c e , the n i t r a t i o n o f c e l l u lose is allowed to proceed o n l y far enough t o give a n average d i n i t r a t e (nitrogen content r a n g i n g f r o m 10.7 to 1 2 . 2 % ) , since the t r i n i t r a t e is explosive. Because of i t s w i d e range o f s o l u b i l i t y , cellulose n i t r a t e has become a p o p u l a r " h o u s e h o l d " cement. It is a waterproof, clear, flexible adhesive for use w i t h p l a s t i c s , c l o t h , w o o d , p a p e r , c h i n a , glass, m e t a l , a n d leather. A m e d i u m or h i g h viscosity t y p e cellulose n i t r a t e is generally used w i t h solvents t h a t are f a i r l y r a p i d i n e v a p o r a t i o n r a t e . A p l a s t i c i z e r is used t o give flexibility. S e v e r a l c o m m e r c i a l grades of cellulose n i t r a t e w i t h characteristic properties are l i s t e d i n T a b l e I I I . C e l l u l o s e acetate is u n i v e r s a l l y recognized as the m o s t i m p o r t a n t o r g a n i c ester of cellulose. It is w i d e l y used i n plastics a n d textiles b u t finds o n l y l i m i t e d a p p l i c a t i o n i n adhesives a n d coatings. It c a n be prepared by r e a c t i n g h i g h p u r i t y cellulose w i t h acetic a n h y d r i d e , u t i l i z i n g acetic a c i d as the solvent a n d sulfuric a c i d as a c a t a l y s t (3) as s h o w n i n Scheme 3.
R-OH + ( C H C O ) 0 3
2
H
^
A
R-O-COCH3 + CH3COOH
Scheme 3
T h e degree o f n i t r a t i o n o f cellulose n i t r a t e c a n be r e g u l a t e d b y choice of r e a c t i o n c o n d i t i o n s ; however, the degree o f a c e t y l a t i o n is not r e g u l a t e d u n t i l t r i acetate is o b t a i n e d . T h i s is because, i f a c e t y l a t i o n is i n t e r r u p t e d before complete esterification, a heterogeneous m i x t u r e of the triacetate a n d unreacted cellulose w i l l result. T h e diacetate is n o r m a l l y o b t a i n e d by p a r t i a l h y d r o l y s i s of the t r i acetate so t h a t p r o d u c t s w i t h various degrees o f esterification are o b t a i n a b l e . A s a n adhesive, i t is used i n s o l u t i o n w i t h o u t a d d i t i v e s or fillers. It finds use i n b u i l d i n g models a n d j o i n i n g p l a s t i c s , leather, w o o d , a n d c h i n a . P l a s t i c i z e d cellulose acetate films have f o u n d use for p r o t e c t i n g a r c h i v a l d o c u m e n t s . A l a m i n a t e of the d o c u m e n t a n d a sheet of cellulose acetate film are m a d e u n d e r heat a n d pressure. T h e cellulose acids act not o n l y as a n adhesive b u t also i n g i v i n g p r o t e c t i o n against s o i l i n g , a g i n g , a n d m e c h a n i c a l abuse. C e l l u l o s e acetate films can a l l be a c t i v a t e d by b r u s h i n g t h e m w i t h acetone a n d t h e n l a m i n a t e d w i t h d o c u m e n t s w i t h o u t u s i n g heat a n d pressure. C e l l u l o s e esters of b u t y r i c a n d p r o p i o n i c acids have l i m i t e d adhesive use. However, cellulose caprate, h a v i n g a refractive i n d e x near t h a t of glass a n d g o o d resistance t o p h o t o c h e m i c a l change, is a useful h o t m e l t o p t i c a l cement for the m a n u f a c t u r e o f c o m p o u n d lenses.
In Adhesives from Renewable Resources; Hemingway, Richard W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
296
ADHESIVES F R O M RENEWABLE RESOURCES
Downloaded by CHINESE UNIV OF HONG KONG on February 17, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch021
T a b l e I I I . C h a r a c t e r i s t i c s of C o m m e r c i a l C e l l u l o s e N i t r a t e A d h e s i v e s Bond Adhesives C o .
Manufacturer/Supplier Commercial name
Bond Adhesives
Co.
G. C. Electronics
Bond
Bond
Electronic
9164
5275
C e m e n t 34-2S
S p e c i a l t u b e for V e r s a t i l e , t o u g h W a t e r p r o o f , vibration f i l m s , resists controlled resistant b o n d water dispensing
Features
Substrates
1. M i n e r a l 2. G l a s s
Wood Leather
3. M i n e r a l 4. P l a s t i c
Plastic Glass Metal
5. Characteristics 1. C o l o r
Clear
Clear
Metal Paper Textile
Clear-light straw
2. W e i g h t per g a l l o n 7.30
7.20
7.90
3. S o l i d s content, % 4. Solvent
17.0 Tin
23.0 BAc, EAc, Tin
5. 6. 7. 8.
Flammable
25.0 Ac Flammable
>6 m o / R T T h i n syrup
>2 y r / R T M e d i u m syrup
24 h r / R T Brush, dip,
30 m i n 24 h r / R T B r u s h , knife,
tube
tube
(lb/gal)
F l a s h point (°C) Storage c o n d i t i o n s Form C u r e conditions
9. A p p l i c a t i o n procedure
-9 >2 y r / R T Liquid 10-15 m i n / R T Brush
In Adhesives from Renewable Resources; Hemingway, Richard W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
21.
297
Cellulosic Adhesives
HON
T a b l e I I I . C h a r a c t e r i s t i c s of C o m m e r c i a l C e l l u l o s e N i t r a t e A d h e s i v e s
Downloaded by CHINESE UNIV OF HONG KONG on February 17, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch021
(continued)
Manufacturer/Supplier
G. C. Electronics
G. C. Electronics
Service Plastic C e m e n t 10-324 C e m e n t 10-302
Commercial name
General P u r p o s e 45-2
Features
Universal type, Waterproof, quick d r y i n g waterproof, w i l l not become quick d r y i n g brittle
Substrates
G. C. Electronics
Waterproof, quick d r y i n g , strong, hard, resists v i b r a t i o n
1. P a p e r 2. L e a t h e r
Plastic Textile
Metal Plastic
3. M e t a l 4. G l a s s 5. C e r a m i c
Wood
Wood Paper Ceramic
Characteristics 1. C o l o r
Clear-light straw
2. W e i g h t per g a l l o n (lb/gal) 3. S o l i d s content, 4. Solvent 5. F l a s h p o i n t 6. Storage 7. F o r m
%
(°C)
conditions
Clear-light
Clear-light
straw
straw
7.90 7.90 30.0 23.0 23.0 BAc, EAc, T i n BAc, EAc, T i n BAc, EAc, Tin
7.90
-9 >2 y r / R T
-9 >2 y r / R T
-9 >2 y r / R T
Liquid
Liquid
Liquid
8. C u r e c o n d i t i o n s
10-15 m i n / R T
10-15 m i n / R T
10-15 m i n / R T
9. A p p l i c a t i o n procedure
Brush
Brush
Brush
In Adhesives from Renewable Resources; Hemingway, Richard W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by CHINESE UNIV OF HONG KONG on February 17, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch021
298
ADHESIVES F R O M RENEWABLE RESOURCES
Interestingly, m i x t u r e s of esters of cellulose such as the a c e t a t e / b u t y r a t e a n d a c e t a t e / p r o p i o n a t e are i n m a n y ways s u p e r i o r t o the s t r a i g h t acetate i n h a v i n g , for instance, lower water a b s o r p t i o n a n d greater flexibility. T h e y have f o u n d use i n adhesive a p p l i c a t i o n . C e l l u l o s e a c e t a t e - b u t y r a t e is p r e p a r e d by u s i n g a m i x t u r e of acetic a n h y d r i d e a n d b u t y r i c a n h y d r i c w i t h s u l f u r i c a c i d as c a t a l y s t , a n d t h e n the p r o d u c t is s l i g h t l y h y d r o l y z e d . D e p e n d i n g o n the r e a c t i o n c o n d i t i o n s , various p r o d u c t s m a y be o b t a i n e d . C e l l u l o s e a c e t a t e - b u t y r a t e c a n be used i n h o t m e l t adhesives or dissolved i n ketone-ester solvent m i x t u r e s . It has been used i n the m a n u f a c t u r e of safety glass. T h e c o m p o s i t i o n of a t y p i c a l c o m m e r c i a l grade of cellulose a c e t a t e - b u t y r a t e for adhesive a p p l i c a t i o n is s h o w n in Table I V .
T a b l e I V . P r o p e r t i e s of T y p i c a l C o m m e r c i a l G r a d e s of C e l l u l o s e A c e t a t e - B u t y r a t e for A d h e s i v e A p p l i c a t i o n Acetyl Content
Butyryl Content
Hydroxy Content
(%) 17 26 37
(%)
(%) 29.5 20.5 13.0
1.0 2.5 2.0
Degree of E s t e r i f i c a t i o n ( D S ) Acetyl Butyrate Hydroxy 2.1 1.4 0.95
0.7 1.1 1.65
0.2 0.5 0.4
A d d i t i o n a l i n f o r m a t i o n o n p h y s i c a l a n d c h e m i c a l properties of cellulose esters is s u m m a r i z e d i n T a b l e V . Cellulose Ethers.
C e l l u l o s e ethers are f o r m e d w h e n cellulose, i n the pres
ence of a l k a l i or as a l k a l i cellulose, is treated w i t h a l k y l or a r y l a l k y l h a l i d e s . T w o types of r e a c t i o n are employed i n the p r e p a r a t i o n of cellulose ethers. T h e most c o m m o n is n u c l e o p h i l i c s u b s t i t u t i o n . M e t h y l a t i o n of a l k a l i cellulose w i t h a m e t h y l h a l i d e is a n e x a m p l e of t h i s t y p e . T h e other t y p e of etherification re a c t i o n is M i c h a e l a d d i t i o n . T h i s r e a c t i o n proceeds b y way of a n a l k a l i - c a t a l y z e d a d d i t i o n of a n a c t i v a t e d v i n y l group t o the cellulose. T h e r e a c t i o n of aery Ion i t r i l e w i t h a l k a l i cellulose is a t y p i c a l e x a m p l e . T h e general r e a c t i o n is o u t l i n e d i n Scheme 4. R - O + C H = C H - C N —•> R - 0 - C H - C H - C N R - 0 - C H - C ^ H - C N + H 0 — • R - 0 - C H - C H - C N + ΟΗ$ e
2
2
e
2
2
2
2
Scheme 4
C e l l u l o s e ethers have f o u n d p o p u l a r a p p l i c a t i o n s due to t h e i r s o l u b i l i t y c h a r acteristics. T h e i n t r o d u c t i o n of a s m a l l n u m b e r of a l k y l (e.g., m e t h y l or e t h y l )
In Adhesives from Renewable Resources; Hemingway, Richard W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
21.
299
Cellulosic Adhesives
HON
T a b l e V . P h y s i c a l a n d C h e m i c a l P r o p e r t i e s of C e l l u l o s e E s t e r s Cellulose Nitrocellulose
Acetate
Cellulose Acetate B u t y r a t e High Acetyl High Butyl
B u l k i n g value,
Downloaded by CHINESE UNIV OF HONG KONG on February 17, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch021
(gal/lb)
0.0704
0.0925
0.104
0.0965
Specific g r a v i t y
1.70
1.30
1.25
1.17
Tensile s t r e n g t h , [psi ( 1 - m i l film)]
9,000-16,000
8,500-11,000 2,500-6,500
10-50
4-55
40-60
155-220
235-255
240
165
Ketones, esters
Alcohols, aromatic hydrocarbons
Elongation, [psi ( 1 - m i l film)] Softening point, Solubility
0
F
E s t e r s , ketones, K e t o n e s ether alcohols, g l y c o l ethers
Resin
Good
Limited
Limited
Wide
Excellent
Limited
Limited
Wide
Resistance to: W e a k acids
Fair
Good
Good
Poor
S t r o n g acids
Poor
Poor
Poor
Poor
W e a k alkalies
Poor
Good
Poor
Poor
S t r o n g alkalies Water Sunlight Heat
Poor
Poor
Poor
Poor
Good Fair Fair
Good Good Very good
Good Excellent Very good
Good Excellent Fair
V i s c o s i t y range
Wide
Limited
Fair
Fair
Flammability
High
V e r y low
Low
Low
C o l o r of
Water white
Water white Water white Water white
Wide
Limited
compatibility Plasticizer compatibility
film
Use of adhesives
Fair
Wide
In Adhesives from Renewable Resources; Hemingway, Richard W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
Downloaded by CHINESE UNIV OF HONG KONG on February 17, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch021
300
ADHESIVES F R O M RENEWABLE RESOURCES
groups i n t o the cellulose molecule sufficiently opens u p the s t r u c t u r e to p e r m i t s o l u b i l i t y i n aqueous s o d i u m h y d r o x i d e . A s s u b s t i t u t i o n increases, the p r o d u c t s become soluble i n decreasing concentrations o f a l k a l i , a n d at l e n g t h , they are soluble i n water. A s the n u m b e r o f a l k o x y groups increases, the p r o d u c t s be come less soluble i n water a n d m o r e soluble i n p o l a r o r g a n i c solvents. A t higher degrees of s u b s t i t u t i o n , s o l u b i l i t y i n p o l a r o r g a n i c solvents declines, whereas, s o l u b i l i t y i n n o n p o l a r solvents increases. D u r i n g the past 20 years, cellulose ethers have progressed f r o m m a t e r i a l s o f l a r g e l y e x p e r i m e n t a l a n d d e v e l o p m e n t a l i m p o r t a n c e t o p r o d u c t s of considerable i n d u s t r i a l i m p o r t a n c e . T h e m o s t i m p o r t a n t p r o d u c t s t h a t have been used i n adhesive a p p l i c a t i o n are l i s t e d i n Table V I .
Table V I . Important Cellulose Ethers Used in Adhesive Applications Substance
Symbol
Carboxymethylcellulose Ethylcellulose Methylcellulose Hydroxyethylcellulose Hydroxypropylcellulose Ethylhydroxyethylcellulose Hydroxy butylmethylmethylcellulose Hydroxyethylmethylmethylcellulose
CMC EC MC H EC HPC EHEC HBMC HEMC
M e t h y l - a n d ethylcelluloses are prepared by r e a c t i n g p u r i f i e d w o o d p u l p or c o t t o n linters h a v i n g a h i g h α-cellulose content w i t h aqueous s o d i u m h y d r o x ide a n d t h e n w i t h m e t h y l chloride or e t h y l chloride a c c o r d i n g to the f o l l o w i n g scheme:
ROH + NaOH
—•
ROH-NaOH
R O H - N a O H (complex)
—•
R O N a + CH3CI —> RONa + CH CH C1 3
2
RONa +
H 0 2
ROCH3 +
—• ROCH CH 2
NaCl 3
+
NaCl
Scheme 5
H y d r o x y e t h y l c e l l u l o s e ( H E C ) a n d h y d r o x y p r o p y l c e l l u l o s e ( H P C ) are pre p a r e d by r e a c t i n g c o t t o n linter or w o o d p u l p w i t h aqueous s o d i u m h y d r o x i d e , a n d the r e s u l t i n g a l k a l i cellulose is reacted w i t h ethylene oxide a n d propylene oxide, respectively.
In Adhesives from Renewable Resources; Hemingway, Richard W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
21.
HON
Cellulosic Adhesives
301
ROH + NaOH
—• RONa + H 0 2
A
RONa + C H - C H 2
2
—
R-(OCH -CH )-OH
—•
R-0-CH -CH(OH)-CH
2
2
A RONa + CH -CH - C H Downloaded by CHINESE UNIV OF HONG KONG on February 17, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch021
3
2
2
3
Scheme 6 T h e h y d r o x y l groups can also undergo r e a c t i o n w i t h ethylene o x i d e ; hence, two or m o r e p o l y ( o x y m e t h y l e n e ) u n i t s can f o r m p o l y m e r s as s h o w n i n Scheme 7.
R - 0 - C H - C H - O H 4- η CE ^CE 2
2
2
R-0-(CH -CH -0)„+i-H
—•
2
2
2
Scheme 7 L i k e w i s e , the secondary h y d r o x y l g r o u p i n the h y d r o x y p r o p y l g r o u p c a n u n d e r g o h y d r o x y p r o p y l a t i o n t o give a side c h a i n :
Λ R-0-CH -CH(OH)CH 2
+
3
CH -CH-CH 3
2
1 R-0-CH -CH-CH I 2
3
0-CH -CH(OH)-CH 2
3
Scheme 8 T h e r e a c t i o n o f a l k a l i cellulose w i t h a m i x t u r e o f e t h y l c h l o r i d e a n d e t h y lene oxide can p r o d u c e e t h y l h y d r o x y e t h y l c e l l u l o s e ( E H E C ) , as i l l u s t r a t e d i n Scheme 9.
/
0
R-C-θ + C H - C H C 1 + C H - C H 2
2
OCH CH OH 2
2
—-»
2
R OCH CH 2
3
Scheme 9
In Adhesives from Renewable Resources; Hemingway, Richard W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
302
ADHESIVES F R O M RENEWABLE RESOURCES
T h e r e a c t i o n of a l k a l i cellulose w i t h a m i x t u r e of m e t h y l chloride a n d p r o p y lene oxide c a n p r o d u c e h y d r o x y p r o p y l m e t h y l c e l l u l o s e ( H P M C ) . OCH
Ο R-O
e
3
+ CH3CI + C H 3 - C H - C H 2 — • R Ô-CH -CH(OH)-CH
Downloaded by CHINESE UNIV OF HONG KONG on February 17, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch021
2
3
Scheme 10
I n general, these groups of cellulose ethers have been used for t h e i r i n n a t e adhesive properties a n d t o p r o v i d e t h i c k e n i n g to adhesive f o r m u l a t i o n s . T h e y are used for p l y w o o d adhesives, i n d u s t r i a l adhesives, w a l l p a p e r paste, l i b r a r y paste, a n d l a t e x adhesives. F o r e x a m p l e , m e t h y l c e l l u l o s e is used i n some a d hesives as a n a d d i t i v e t o c o n t r o l viscosity, especially i n the heat-cure p h e n o l f o r m a l d e h y d e glues a n d other hot-pressing adhesives. H y d r o x y e t h y l c e l l u l o s e is used as a n ingredient i n p o l y v i n y l acetate emulsions, where i t acts as a thickener and protective colloid. C e l l u l o s e ethers have also been used i n the ceramic i n d u s t r y ( 7 ) . Since t h e i r appearance i n 1959, water-based cellulose ethers have replaced solvent-based adhesives. T h e adhesives used for ceramic tile are r e a d y - m i x e d p r o d u c t s based o n n a t u r a l or s y n t h e t i c r u b b e r , p o l y v i n y l acetate, a n d other resins, a n d they a l l c o n t a i n cellulose ethers of one k i n d or another (e.g. M C , E C , H P M C , H E M C , H E C ) . T h e s e cellulose ethers reduce water loss, m o d i f y the v i s c o s i t y of the m i x , a n d c a n p r o v i d e excellent adhesion for dry, very porous tiles. S o d i u m c a r b o x y l m e t h y l c e l l u l o s e ( N a - C M C ) is also a water-soluble a n i o n i c l i n e a r cellulose ether. It is prepared b y t r e a t i n g cellulose w i t h aqueous s o d i u m h y d r o x i d e followed b y reaction w i t h s o d i u m chloracetate as s h o w n i n Scheme 11.
ROH + NaOH + ClCH COONa 2
—•
R O C H C O O N a + NaCl + 2
H 0 2
Scheme 11
C M C has been w i d e l y used as a n o n s t a i n i n g w a l l p a p e r adhesive. It has also been used as a n adhesive i n the paper a n d t e x t i l e i n d u s t r i e s . C h a r a c t e r i s t i c s of C M C t h a t are i m p o r t a n t for this a p p l i c a t i o n are i t s ease of " s l i p / ' n o n s p o i l i n g p r o p e r t y , h i g h adhesive efficiency, a n d ease of m a k e u p . C M C has f o u n d use i n the ceramics i n d u s t r y where its a b i l i t y t o b i n d a n d s u s p e n d m a t e r i a l s d u r i n g various stages of m a n u f a c t u r e is i m p o r t a n t . It is used i n glazes for s a n i t a r y w a r e , s t r u c t u r a l t i l e , a n d dinner ware.
In Adhesives from Renewable Resources; Hemingway, Richard W., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1989.
21.
HON
Cellulosic Adhesives
303
Graft C o p o l y m e r s of Cellulose C e l l u l o s e esters a n d cellulose ethers are p r e p a r e d based o n the s u b s t i t u t i o n of cellulose h y d r o x y l groups w i t h short c h a i n regents. C e l l u l o s e c a n also be modified by introduction of long chain polymer(s) onto its m a i n chain. T h e
Downloaded by CHINESE UNIV OF HONG KONG on February 17, 2016 | http://pubs.acs.org Publication Date: December 31, 1989 | doi: 10.1021/bk-1989-0385.ch021
p r o d u c t s are m o s t l y grafted c o p o l y m e r s , a n d i n some cases, block c a n also be m a d e .
copolymers
M a n y different m e t h o d s o f g r a f t i n g have been developed. B y far the greatest effort has been v i a free-radical v i n y l - p o l y m e r i z a t i o n routes. T h e general r e a c t i o n scheme is s h o w n below:
Initiation
In — •
In
0
In© + R H — • R
+ M
0
Propagation R M
0
—•
+ M
R R M
—•
R M
0
R
0
+ R
R
0
+ R M
R
0
+ RM+1
—+ 0
0
RM+1
4- n M — • 0
0
R(M)„+i
R-R
—+ —
R-MR R-RM+1
In = i n i t i a t o r , R H = cellulose, M =
monomer
Scheme 12
V i n y l m o n o m e r s t h a t c a n be grafted to cellulose to achieve adhesive p r o p e r ties are a c r y l i c a c i d , a e r y l o n i t r i l e , m e t h y l m e t h a c r y l a t e , a n d m a n y others. G r a f t c o p o l y m e r s of cellulose derivatives have also f o u n d use as adhesives. F o r e x a m ple, v i n y l a c e t a t e - g r a f t e d h y d r o x y e t h y l c e l l u l o s e c a n be used as a n adhesive for p a c k a g i n g a n d tile (