Chain Length Dependence of the Thermodynamic Properties of n

LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Fr...
3 downloads 4 Views 3MB Size
Review Cite This: J. Chem. Eng. Data XXXX, XXX, XXX−XXX

pubs.acs.org/jced

Chain Length Dependence of the Thermodynamic Properties of n‑Alkanes and their Monosubstituted Derivatives José C. S. Costa,*,†,‡ Adélio Mendes,‡ and Luís M. N. B. F. Santos† †

CIQUPCentro de Investigaçaõ em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto, Portugal ‡ LEPABELaboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, P-4200-465 Porto, Portugal S Supporting Information *

ABSTRACT: The present work presents an extensive literature survey and analysis of the heat capacity and thermodynamic properties of fusion, vaporization, and sublimation for the linear hydrocarbons and several terminally substituted homologous series. The successive introduction of methylene groups on the relative stability of the solid and liquid phases is analyzed and discussed based on the chain length dependence of the enthalpies, entropies, and Gibbs energies of phase transition. An odd−even alternation is observed in the fusion and sublimation equilibria. The improved packing patterns of evennumbered n-alkanes is reflected in higher values of melting temperatures and thermodynamic properties of phase transition. Molar heat capacities in liquid phase of n-alkanes derivatives exhibit a linear dependence with the chain length by an increment of 31 ± 2 J·K−1·mol−1 per methylene group (−CH2−). A contribution of 4.95 kJ·mol−1 per methylene group (value corrected for 298.15 K) is derived for the increment of the enthalpy of vaporization. A constant value for the specific enthalpy of vaporization is observed for long chain compounds: 360 J·g−1. As predictable, the enthalpy of vaporization is higher for groups that can form hydrogen-bonding interactions than for plain hydrocarbons. Concerning the monohalogenated alkanes, a clear increasing of enthalpy of vaporization for the larger halogen groups is observed. Moreover, the thermodynamic results indicate that along the fusion of n-alkanes and n-alkanols, there is a decrease of around 40% in the magnitude of intermolecular interactions.



INTRODUCTION Phase transition thermodynamics is used to describe and explain transitions between condensed and isotropic states of matter: solid, liquid, gas, and plasma. A phase change of a certain physical state is reflected by variations of properties of the medium, owing to the alteration of some external conditions such as pressure and temperature.1−3 Phase transitions between solid, liquid, and gaseous states are ubiquitous in nature and very significant not only in natural processes but also in industry, whereby they are used nowadays in many technologies. In fact, phase transitions are of interest in various fields of application such as the oil industry and phase change materials for heat storage and transfer, concentrated solar thermal power generation systems,4 development of different materials in metallurgy,5 thin film deposition by thermal evaporation for optoelectronic applications,6−9 and coating of several surfaces by physical processes,10,11 among others. Over the past decades, several researchers have been focused in determining thermodynamic properties of hydrocarbons and derivatives and in developing models of prediction for longchain compounds.12−20 Various group contribution methods to predict thermochemical and phase change properties were developed by different authors.21−25 Chickos et al. developed © XXXX American Chemical Society

simple algorithms to model physical properties of organic and organometallic compounds by estimating condensed phase properties such as vaporization enthalpies, heat capacities, enthalpies and entropies of fusion, vapor pressures, and enthalpies of sublimation of small molecules.12−14 Domalski and Hearing et al. also developed several methods of estimation of the thermodynamic properties of organic compounds and contributed to a large amount of experimental data involving phase transition thermodynamics of n-alkanes and derivatives.15−17,25 Majer and Svoboda contributed to determining most of the enthalpies of vaporization referenced for hydrocarbons and derivatives.18 Della Gatta et al. have been concerned with phase transitions and thermodynamic properties of model compounds of biological interest by studying solid−solid and solid−liquid transitions in a homologous series of alkanes derivatives.19,20 The present work came out of exploring the chain-length dependence of the thermodynamic properties of fusion, vaporization, and sublimation processes for an extended series of linear n-alkanes and their derivatives: CH3-(CH2)n-R series; Received: September 19, 2017 Accepted: December 5, 2017

A

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

R={CH3, CH2OH, CH2SH, CH2NH2, CH2NO2, CH2Cl, CH2Br, CH2I}. Experimental data on melting and boiling temperatures, heat capacities, and thermodynamic properties of phase transition (fusion, sublimation, and vaporization) were reviewed for a series of hydrocarbons and monosubstituted alkanes: n-alkanes, n-alkenes, n-alkynes, n-alkanols, n-alkanethiols, n-alkanamines, n-nitroalkanes, n-chloroalkanes, n-bromoalkanes, and n-iodoalkanes. In some cases, enthalpies and entropies of phase transition were derived from the dependence of vapor pressures with temperature. To allow a comparison between the data, all properties were converted to a reference temperature of θ = 298.15 K by heat capacity correction. A similar and traditional evaluation would be possible by comparison of different molecules at the same reduced temperature and pressure. From the data analysis, trends in melting and boiling temperatures as well as in molar and specific thermodynamic properties associated with the phase transition were plotted for all families of long-chain alkane derivatives.

The combination of eqs 3 and 4 allows deriving the hypothetical value of the Gibbs energies of fusion at the reference temperature θ, eq 5.1−3 ⎡ θ ⎤ ΔfusG°(θ ) = ΔfusH °(Tm)⎢1 − ⎥ Tm ⎦ ⎣ ⎡ ⎛ ⎤ ⎛ θ ⎞⎞ + ΔfusCp◦⎢θ ⎜⎜1 − ln⎜ ⎟⎟⎟ − (Tm)⎥ ⎢⎣ ⎝ ⎥⎦ ⎝ Tm ⎠⎠

Gibbs energies associated with the vaporization or sublimation processes (Δvap;subG°) were calculated from values of enthalpies (Δvap;subH°) and entropies (Δvap;subS°) of vaporization/ sublimation by eq 1. These enthalpic and entropic contributions can be derived from the dependence of vapor pressures with temperature, using the integrated form of the Clausius− Clapeyron equation, eq 6, where p is the vapor pressure (p/Pascal), T the vaporization or sublimation temperature (T/K), a is a constant, b is calculated as Δvap;subH°(⟨T⟩)/R, ⟨T⟩ is the average temperature of vaporization/sublimation, and R is the gas constant. Eq 6 is an approximation of rigorous Clapeyron equation, where the gas phase is assumed ideal and the volume of condensed phases is neglected.



DATA ANALYSIS The relative thermodynamic stability of a state can be evaluated by the magnitude of Gibbs energy (G), the thermodynamic potential used to determine the maximum of reversible work achieved by a thermodynamic system at a constant pressure and temperature.1−3 Keeping constant the temperature and pressure, reduction in Gibbs energy is a required condition for the spontaneity of a fusion, vaporization, or sublimation process. At constant temperature and pressure, the alteration in Gibbs energy along a phase change is a consequence of change in enthalpy (H) and entropy (S) associated with the phase transition. The standard molar Gibbs energy of phase transition (ΔtransG°) are calculated through eq 1, where ΔtransH° and ΔtransS° denote the change in enthalpy and entropy associated with the phase transition, respectively, and θ is a reference temperature. In this work, all properties are referenced to θ = 298.15 K.1−3 ΔtransG°(θ ) = ΔtransH °(θ ) − θ ΔtransS°(θ )

1 ln(p) = a − b( ) T

(1)

Δ vap;subH °(θ ) = Δ vap;subH °(⟨T ⟩) + Δ vap;subCp◦(θ − ⟨T ⟩) (7)

⎛ θ ⎞ Δ H °(Tm) ΔfusS°(θ ) = fus + ΔfusCp◦ × ln⎜ ⎟ Tm ⎝ Tm ⎠

Δ vap;subH °(⟨T ⟩)

Δ vap;subS°(θ ) =

⟨T ⟩

⎛ θ ⎞ + Δ vap;subCp◦ln⎜ ⎟ ⎝ ⟨T ⟩ ⎠

⎛ p° ⎞ − R ln⎜ ⎟ ⎝ p⟨T ⟩ ⎠

(2)

Thermodynamic properties associated with the fusion process, enthalpies (ΔfusH°) and entropies (ΔfusS°) of fusion were converted to a hypothetical reference temperature of θ = 298.15 K and were derived by eqs 3 and 4, respectively. ΔfusH °(θ ) = ΔfusH °(Tm) + ΔfusCp◦(θ − Tm)

(6)

The standard molar enthalpies of vaporization or sublimation at the reference temperature θ, (Δvap;subH° (θ)), were calculated from Δvap;subH° (⟨T⟩) (determined by the parameter b of Clausius−Clapeyron equation) by eq 7, where Δvap;subC°p is the difference between the molar heat capacity of the gas and liquid/solid phases. For the data analysis of this work, the value of Δvap;subCp° is considered constant within the temperature range (θ to ⟨T⟩). The standard molar entropies of sublimation/ vaporization at the reference temperature θ (Δvap;subS° (θ)) were calculated from eq 8, where p(⟨T⟩) is the vapor pressure relative to the average temperature and p° = 105 Pa.

The analysis of melting temperature (Tm) is relevant for the analysis of the solid phase stability over the liquid as it is expressed by eq 2 considering that at the phase equilibrium temperature ΔfusG° = 0. Δ H °(Tm) Tm = fus ΔfusS°(Tm)

(5)

(8)

With the fundamental thermodynamic equations presented, the Clarke−Glew equation can be derived considering the thermodynamic properties converted to a reference temperature of θ (Δvap;subG°, Δvap;subH°, Δvap;subCp°), eq 9.

(3)

Δ vap;subG°(θ )



Δ vap;subG°(T )

T ⎛1 1⎞ = Δ vap;subH °(θ )⎜ − ⎟ + Δ vap;subCp◦ ⎝θ T⎠ ⎡⎛ θ ⎞ ⎤ ⎛T ⎞ ⎢⎝⎜ ⎠⎟ − 1 + ln⎜⎝ ⎟⎠⎥ ⎣ T θ ⎦ θ

(4)

ΔfusH° (Tm) and ΔfusS° (Tm) denote the enthalpy and entropy of fusion at the melting temperature, respectively, and ΔfusC°p is the difference between the molar heat capacity of the liquid and solid phase at the reference temperature θ. For the data analysis of this work, the value of ΔfusCp° is considered constant within the temperature range (θ to Tm).

(9)

Thermodynamic properties associated with the process of sublimation, fusion, and vaporization are interrelated by means of eq 10, where θ is the reference temperature. For solid and B

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

Table 1. Standard (p° = 105 Pa) Molar Heat Capacities in Liquid Phase (Cp,m°) Obtained at T = 298.15 K and Melting (Tmelting) and Boiling (Tboiling) Points for a Series of Linear n-Alkanes and Derivatives compound

Cp,m° (l)/J·K−1·mol−1

Tmelting/K

Tboiling/K

90.762 89.563 85.565 134.963 143.565 177.863 182.663 216.463 219.765 243.563 247.663 263.663 267.863 279.063 283.163 291.163 295.163 301.363 305.363 309.763 313.763 316.163

111.718 184.664 231.118 272.718 309.218 341.918 371.618 398.818 424.018 447.318 467.766 489.567 508.667 526.967 543.867 560.267 575.067 589.367 602.967 616.267 629.767 641.867

104.063 88.263 87.863 108.042 133.463 154.363 171.563 191.638 206.963 224.063 237.963 250.068 260.268 269.468 277.268 284.070 291.071

169.364 225.518 266.918 303.118 336.567 366.867 394.418 420.167 443.767 465.967 486.767 506.067 524.269 541.467 557.667 573.267

Table 1. continued compound

167.339 195.639 224.739 254.639 284.439 314.439 344.939 375.839 406.739 438.339 470.039 501.639 534.840 57241 60441

69841

1-propanol 1-butanol 1-pentanol 1-hexanol 1-heptanol 1-octanol 1-nonanol 1-decanol 1-undecanol 1-dodecanol 1-tridecanol 1-tetradecanol 1-pentadecanol 1-hexadecanol 1-heptadecanol 1-octadecanol 1-nonadecanol 1-eicosanol

121.925 155.325 183.325 211.825 241.225 270.442 300.325 330.043 360.743

485.842

methanamine ethanamine 1-propanamine 1-butanamine 1-pentanamine 1-hexanamine 1-heptanamine 1-octanamine 1-nonanamine 1-decanamine 1-undecanamine 1-dodecanamine 1-tridecanamine 1-tetradecanamine 1-pentadecanamine 1-hexadecanamine 1-heptadecanamine 1-octadecanamine

614.267 n-alkynes 192.472 170.474 147.463 167.175 141.075 192.275 193.775

acetylene 1-propyne 1-butyne 1-pentyne 1-hexyne 1-heptyne 1-octyne 1-nonyne 1-decyne 1-udecyne 1-dodecyne 1-tridecyne 1-hexadecyne 1-octadecyne methanol ethanol

189.073 250.067 281.218 313.467 344.567 372.967 399.467 424.067 447.267 469.267 488.267

nitromethane nitroethane 1-nitropropane 1-nitrobutane 1-nitropentane

274.076 288.077

chloromethane chloroethane 1-chloropropane 1-chlorobutane 1-chloropentane 1-chlorohexane

586.078 n-alkanols 81.144 112.344

175.363 158.863

Tboiling/K

143.944 177.244 208.144 240.444 272.144 305.244

148.779 183.965 194.780 225.818 240.418 258.481 266.269 280.081 288.582 300.283 304.784 308.185 316.984 322.286 327.384 330.187 333.987 336.687

370.318 390.918 411.218 430.518 449.567 467.667 486.767 504.269

370.644 406.345 438.445

150.263 126.263 160.063 157.563 197.563 192.663 229.963 224.063 267.789 247.963

279.088 308.218 340.918 371.618 399.818 424.267 450.267 472.367 493.267

534.269 562.269

581.267

n-alkanethiols methanethiol ethanethiol 1-propanethiol 1-butanethiol 1-pentanethiol 1-hexanethiol 1-heptanethiol 1-octanethiol 1-nonanethiol 1-decanethiol 1-dodecanethiol

n-alkenes ethylene 1-propene 1-butene 1-pentene 1-hexene 1-heptene 1-octene 1-nonene 1-decene 1-undecene 1-dodecene 1-tridecene 1-tetradecene 1-pentadecene 1-hexadecene 1-heptadecene 1-octadecene 1-eicosene

Tmelting/K

n-alkanols

n-alkanes methane ethane propane butane pentane hexane heptane octane nonane decane undecane dodecane tridecane tetradecane pentadecane hexadecane heptadecane octadecane nonadecane eicosane heneicosane docosane

Cp,m° (l)/J·K−1·mol−1

337.718 351.518 C

118.0 (299 K)46 144.647 172.348 201.2 (296 K)49 230.750 259.350 300.2 (300 K)51 350.450 442.8 (300 K)51 n-alkanamines

547.769 179.763 192.290 188.465 224.091 218.091 254.292 250.293 272.894

162.552 188.053 252.053 309.354

288.294 288.295 301.294 300.796 311.194 313.295 319.494 322.298 325.094 n-nitroalkanes 106.055 134.256 160.457

n-chloroalkanes 81.258 107.859 131.460 159.561 187.726 216.226

266.818 289.867 320.418 350.218 377.418 405.918 428.493 452.867 475.467 493.767 515.267 532.267 548.097 564.467 580.867 595.767 609.267 622.067

244.887 183.787 169.299 191.899

374.418 388.267 404.867 426.267 445.767

174.563 134.864 150.2101 150.1102

249.0100 285.567 319.618 351.718 380.918 408.118

179.2103

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

liquid phases, vapor pressures at θ = 298.15 K are extrapolated by eq 11, where p° = 105 Pa.1−3

Table 1. continued compound 1-chloroheptane 1-chlorooctane 1-chlorononane 1-chlorodecane 1-chlorododecane 1-chlorohexadecane 1-chlorooctadecane

−1

−1

Cp,m° (l)/J·K ·mol

n-chloroalkanes 245.426 274.726

Tmelting/K

Tboiling/K

203.7103

432.267 455.267 476.767 496.667 533.267 595.267 621.267

Δsub[H °; S°; G°](θ ) = Δ vap[H °; S°; G°](θ ) + Δfus[H °; S°; G°](θ )



n-bromoalkanes bromomethane bromoethane 1-bromopropane 1-bromobutane 1-brompentane 1-bromohexane 1-bromoheptane 1-bromooctane 1-bromononane 1-bromodecane 1-bromoundecane 1-bromododecane 1-bromotridecane 1-bromotetradecane 1-bromopentadecane 1-bromohexadecane 1-bromooctadecane 1-bromononadecane iodomethane iodoethane 1-iodopropane 1-iodobutane 1-iodopentane 1-iodohexane 1-iodoheptane 1-iodooctane 1-iodododecane 1-iodohexadecane 1-iodooctadecane

105.826 134.626 162.226 219.726 247.926

179.563 154.6103 163.0104 160.463 185.163 188.163 214.9103 218.2104 243.2104 244.0104 263.3104

513.867 549.267

291.7 288.2106 301.0107 310.9108 n-iodoalkanes 82.026 109.726 136.226 164.526 193.626 222.526 251.826

206.7103 162.3109 171.8109 169.7102 199.0103 227.5102 293.0110 307.0111

(11)

RESULTS AND DISCUSSION Table 1 lists the heat capacities (Cp°) in liquid phase, obtained at θ = 298.15 K, and melting (Tmelting) and boiling (Tboiling) temperatures for a series of linear n-alkanes and derivatives. Trends in molar and specific heat capacities of the liquid phase are represented in Figure 1, and trends in melting and boiling temperatures are represented in Figure 2. The chain length dependence for all thermodynamic properties explored is expressed as a function of the number of carbon atoms for each alkane derivative. Molar heat capacities in liquid phase of n-alkanes exhibit a linear dependence with the chain length by an increment of 31 ± 2 J·K−1·mol−1 per methylene group (−CH2−). Heat capacities of the gas phase for a series of n-alkanes are plotted for comparison, and an increment of 23 ± 1 J·K−1·mol−1 per −CH2− group is observed. These results are in very nice agreement with the additive group contribution values determined by previous authors.25 The substitution of the terminal methyl group by a hydroxyl group (n-alkanols), sulfhydryl group (n-alkanethiols), amino group (n-alkanamines), nitro group (n-nitroalkanes), or a halogen group (halogenoalkanes) leads to a larger contribution on the molar heat capacity values. Comparing n-chloro, n-bromo, and n-iodoalkanes, the contribution in terms of Cp° is slightly higher for the derivatives with heavier halogens. According to Shehatta, by looking at the different series, bromides have an average Cp° value that is 3.34 J·K−1·mol−1 higher than the analogous chlorides, and the average value of the iodides is 2.39 J·K−1·mol−1 higher than the corresponding bromine compounds.26 It can be also noted that values of Cp° for n-alkenes are slightly lower than verified

276.618 311.618 344.218 374.718 402.918 428.567 451.767 474.067

279.1104 104

⎛ Δ vap;subG°(θ ) ⎞ ⎟⎟ psolid;liquid (θ ) = p°exp⎜⎜ − Rθ ⎝ ⎠

(10)

580.267 595.267 609.267

315.7109 345.618 375.718 403.767 430.267 454.467 477.267 498.767 571.467 656.267

Figure 1. Trends in molar (A) and specific heat capacities in the liquid phase (B), at θ = 298.15 K, for a series of n-alkanes (large solid black circle), n-alkenes (grey open circle), n-alkanols (blue solid square), n-alkanethiols (blue open square), n-alkanamines (red solid triangle), n-nitroalkanes (green dash), n-chloroalkanes (yellow asterisk), n-bromoalkanes (red ×) and n-iodoalkanes (purple plus). Trends in molar and specific heat capacities in the gas phase for a series of n-alkanes are plotted for comparison (small solid black circle).27−31 Solid lines connecting the points of each series are presented for clarification. Dashed line represents the value of specific heat capacity for polyethylene. D

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

Figure 2. Trends in melting (A) and boiling points (B) for a series of n-alkanes (black solid circle), n-alkenes (grey large open circle), n-alkynes (grey small open circle), n-alkanols (blue solid square), n-alkanethiols (blue open square), n-alkanamines (red triangle), n-nitroalkanes (green dash), n-chloroalkanes (yellow asterisk), n-bromoalkanes (red ×), and n-iodoalkanes (purple plus). Solid lines connecting the points of each series are presented for clarification.

Figure 3. Deviation on the values of ΔH (A), θΔS (B), and ΔG (C) as a function of the percentage deviation on the real value of ΔCp considered for the vaporization process of n-undecane (blue open circle), n-dodecane (green open square), n-tridecane (purple open triangle), n-tetradecane (blue open diamond), n-pentadecane (orange open rectangle), n-hexadecane (blue asterisk), n-heptadecane (purple ×), and n-octadecane (green plus). All thermodynamic properties are referenced to θ = 298.15 K. Solid lines connecting the points of each series are presented for clarification.

for the series of n-alkanes. By increasing the chain length, specific heat capacities of the liquid phase (calculated as Cp°/M, where M is the molar mass) converge to the value of 2.23 ± 0.02 J·K−1·g−1 for n-alkanes, 2.15 ± 0.01 J·K−1·g−1 for n-alkenes, and 2.35 ± 0.01 J·K−1·g−1 for n-alkanols. For very large chains, specific heat capacities of the homologous series will tend to the value of 2.25 J·K−1·g−1 (typical value of polyethylene). A constant value of 1.65 ± 0.01 J·K−1·g−1 is observed for the specific heat capacity in gas phase for larger n-alkanes. By analyzing trends in melting temperatures, we can observe that for shorter chains, n-alkanamines are the family with higher values of Tmelting, followed by n-nitroalkanes, n-alkanols, and n-alkanethiols. Comparing the halogenated alkanes, compounds with the higher-size halogen exhibit higher values of Tm in agreement with the expected higher dispersive interaction. Among all series studied, n-alkenes are the family with lower values of Tm. It can be also observed that all alkane derivatives exhibit an odd−even effect in the values of Tm. Melting temperatures of alkanes with an even number or carbon atoms could be plotted by a polynomial curve that is higher than the curve for alkanes with an odd number of carbons (view details as Supporting Information). This result evidences a more efficient packing (lower crystalline structure vacancies), and the formation of a well-organized solid structure for the even-numbered n-alkanes. Odd-numbered alkanes pack less

tightly because methyl moiety at the end of the chain can avoid the methyl terminal group of a neighbor chain by increasing the distance between the chains.32 Hence, there are lower intermolecular forces in odd-numbered alkanes contributing for lower melting points. The differentiation in terms of melting temperatures is attributed to enthalpic and entropic contributions, eq 2, that are further discussed below. Concerning the observed trends of the boiling temperatures, we perceive a polynomial and regular growth of Tb along all the series. For long-chain n-alkanols, n-alkanethiols, and n-alkanamines, values of Tb converge as expected for the same temperature of the n-alkane homologous series. Contrary to the verified melting equilibrium, the boiling temperatures are quite similar in n-alkanes, n-alkenes, and n-alkynes series with the same number of carbon atoms. The differential analysis of the halogenoalkanes series shows that the chloroalkanes series presents the lowest values of Tb, which in this case follows the tendency observed for the Tm. For shorter chains, strong hydrogen bonding at the liquid phase contributes to larger values of Tb in n-alkanols. For instance, we observe that when comparing n-alkanols with n-alkanamines, Tb is higher for n-alkanols, while their Tm is lower. The differentiation in terms of boiling temperatures can be noted on the thermodynamic properties of vaporization that are further analyzed below. To allow a direct comparison of E

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

Table 2. Standard (p° = 105 Pa) Molar Enthalpies (ΔfusH°), Entropies (ΔfusS°), and Gibbs Energies of Fusion (ΔfusG°) for a Series of Linear n-Alkanes and Derivatives compound

Δsolid−solid/liquidHm°(T) kJ·mol−1

ethane propane butane pentane hexane heptane octane nonane decane undecane dodecane tridecane tetradecane pentadecane hexadecane heptadecane octadecane nonadecane eicosane heneicosane docosane

2.8(90K)63 3.5(86K)65 2.1(108 K)/4.7(235 K)63 8.4(144 K)65 13.1(178 K)63 14.0(183 K)63 20.7(216 K)63 6.3(217 K)/15.5(220 K)112 28.7(244 K)63 6.9(237 K)/22.2(248 K)112 36.8(264 K)63 7.7(255 K)/28.5(268 K)112 45.1(279 K)63 9.2(271 K)/34.6(283 K)112 51.5(291 K)63 10.9(284 K)/40.2(295 K)112 61.5(301 K)63 13.7(303 K)/47.4(305 K)112 67.8(310 K)63 15.5(306 K)/47.7(314 K)63 29.5(315 K)/47.8(316 K)63

ethylene 1-propene 1-butene 1-pentene 1-hexene 1-heptene 1-octene 1-nonene 1-decene 1-undecene 1-dodecene 1-hexadecene

3.4(104 K)63 2.9(88K)63 3.9(88K)63 5.9(108 K)68 9.4(133 K)63 12.6(154 K)63 15.3(172 K)63 20.0(192 K)42 8.0(198 K)/13.8(207 K)63 9.2(217 K)/17.0(224 K)63 4.6(213 K)/19.9(238 K)43 3.9(249 K)/30.1(277 K)42

methanol ethanol 1-propanol 1-butanol 1-pentanol 1-hexanol 1-heptanol 1-octanol 1-decanol 1-dodecanol 1-tridecanol 1-tetradecanol 1-pentadecanol 1-hexadecanol 1-heptadecanol 1-octadecanol 1-nonadecanol 1-eicosanol

0.6(161 K)/3.2(175)63 0.7(128)/4.9(159)113 5.5(149 K)79 9.3(184 K)65 10.5(196 K)63 15.5(226 K)63 18.2(240 K)63 25.2(258 K)81 33.7(280 K)81 40.3(297 K)81 44.8(305 K)81 47.3(308 K)85 53.6(317 K)81 57.7(322 K)86 63.1(327 K)81 66.7(331 K)114 72.4(335 K)114 73.7(338 K)114

methanethiol 1-propanethiol 1-butanethiol 1-pentanethiol 1-hexanethiol

0.2(138 K)/5.9(150 K)63 4.0(142 K)/5.5(160 K)63 10.5(158 K)63 17.5(198 K)63 18.0(193 K)63

ΔfusHm,298 K° kJ·mol−1 n-alkanes 3.8 ± 2.1 5.1 ± 2.1 10.0 ± 2.5 10.2 ± 1.5 14.8 ± 1.2 15.9 ± 1.2 22.2 ± 0.8 25.1 ± 1.1 29.9 ± 0.5 31.9 ± 0.8 37.7 ± 0.3 38.4 ± 0.5 45.7 ± 0.2 45.2 ± 0.3 51.8 ± 0.1 51.8 ± 0.1 61.4 ± 0.1 60.5 ± 0.1 67.3 ± 0.1 62.1 ± 0.2 75.6 ± 0.2 n-alkenes 4.3 ± 1.9 4.4 ± 2.1 5.8 ± 2.1 8.1 ± 1.9 11.7 ± 1.6 14.9 ± 1.4 17.6 ± 1.3 22.2 ± 1.1 26.2 ± 1.4 30.1 ± 1.1 28.5 ± 0.9 36.5 ± 0.5 n-alkanols 4.2 ± 1.8 7.1 ± 2.2 6.6 ± 1.5 10.3 ± 1.1 11.7 ± 1.0 16.5 ± 0.7 19.1 ± 0.6 25.9 ± 0.4 34.1 ± 0.2 40.3 ± 0.1 44.6 ± 0.1 47.0 ± 0.1 53.0 ± 0.2 56.8 ± 0.2 62.0 ± 0.3 65.4 ± 0.3 70.8 ± 0.4 71.9 ± 0.4 n-alkanethiols 6.6 ± 2.2 11.7 ± 2.1 11.8 ± 1.4 18.7 ± 1.0 19.5 ± 1.1 F

ΔfusSm,298 K° J·K−1·mol−1

Δfus Gm,298 K° kJ·mol−1

37.1 50.1 71.0 67.0 80.8 84.6 101.5 112.3 122.5 129.3 143.0 144.4 163.8 161.2 177.8 177.1 203.7 198.4 217.2 199.2 239.1

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

12.0 12.5 12.9 7.3 5.2 4.9 3.2 4.4 2.0 3.0 1.2 1.9 0.7 1.1 0.2 0.5 0.1 0.3 0.4 0.6 0.8

−7.3 −9.9 −11.1 −9.8 −9.3 −9.4 −8.1 −8.4 −6.6 −6.6 −4.9 −4.7 −3.1 −2.8 −1.3 −1.0 0.6 1.4 2.5 2.7 4.2

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

4.2 4.3 4.6 2.7 2.0 1.9 1.3 1.7 0.8 1.2 0.5 0.8 0.3 0.4 0.1 0.2 0.1 0.1 0.2 0.2 0.3

37.8 41.8 55.6 66.4 81.6 92.3 99.3 113.5 124.6 133.3 120.6 133.3

± ± ± ± ± ± ± ± ± ± ± ±

10.5 12.2 12.2 10.2 8.0 6.6 5.5 4.4 5.5 4.3 4.1 1.9

−6.9 −8.0 −10.8 −11.7 −12.6 −12.6 −12.0 −11.6 −11.0 −9.7 −7.5 −3.2

± ± ± ± ± ± ± ± ± ± ± ±

3.7 4.2 4.2 3.6 2.9 2.4 2.1 1.7 2.1 1.7 1.5 0.8

23.8 43.5 42.1 55.0 58.6 72.5 79.2 100.1 121.8 135.6 146.4 152.5 167.1 176.3 189.2 197.1 211.5 212.2

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

8.1 10.6 7.0 4.8 4.2 2.8 2.2 1.4 0.6 0.1 0.2 0.3 0.6 0.8 0.9 1.1 1.2 1.3

−2.9 −5.9 −6.0 −6.1 −5.8 −5.1 −4.5 −3.9 −2.2 −0.1 1.0 1.5 3.2 4.3 5.6 6.6 7.8 8.6

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

3.0 3.8 2.6 1.8 1.6 1.1 0.9 0.6 0.3 0.1 0.1 0.1 0.3 0.3 0.4 0.5 0.5 0.5

43.1 72.5 72.5 93.4 99.5

± ± ± ± ±

10.3 9.7 6.4 4.1 4.4

−6.2 −10.0 −9.8 −9.2 −10.2

± ± ± ± ±

3.8 3.6 2.4 1.6 1.7

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

Table 2. continued compound

Δsolid−solid/liquidHm°(T) kJ·mol−1

1-heptanethiol 1-octanethiol 1-nonanethiol 1-decanethiol

25.4(230 K)63 24.3(224 K)63 33.5(268 K)89 33.3(248 K)63

methanamine 1-propanamine 1-hexanamine 1-octanamine 1-decanamine

6.1(180 K)63 11.0(188 K)65 25.0(252 K)115 34.7(273 K)115 42.7(289 K)115

nitromethane nitroethane

9.7(245 K)63 9.9(184 K)63

chloromethane chloroethane

6.4(175 K)63 4.5(135 K)65

bromomethane 1-bromobutane 1-bromopentane 1-bromohexane 1-bromoheptane 1-bromooctane 1-bromononane 1-bromoundecane iodomethane

0.5(174 K)/6.0(180 K)63 9.2(160 K)63 14.4(185 K)63 18.1(188 K)63 21.8(214 K)105 24.7(218 K)105 30.1(243 K)105 33.5(263 K)105 9.1(207 K)116

ΔfusHm,298 K° kJ·mol−1 n-alkanethiols 26.5 ± 0.7 25.7 ± 0.7 34.1 ± 0.3 34.4 ± 0.5 n-alkanamines 6.3 ± 1.2 11.8 ± 1.1 25.6 ± 0.5 35.2 ± 0.2 42.9 ± 0.1 n-nitroalkanes 9.8 ± 0.5 10.5 ± 1.1 n-chloroalkanes 6.6 ± 1.2 5.3 ± 1.6 n-bromoalkanes 6.9 ± 1.7 10.5 ± 1.4 15.7 ± 1.1 19.6 ± 1.1 23.1 ± 0.8 26.2 ± 0.8 31.2 ± 0.5 34.4 ± 0.3 n-iodoalkanes 9.2 ± 0.9

ΔfusSm,298 K° J·K−1·mol−1

Δfus Gm,298 K° kJ·mol−1

114.7 113.7 127.4 138.5

± ± ± ±

2.6 2.9 1.1 1.8

−7.7 −8.2 −3.8 −6.9

± ± ± ±

1.0 1.1 0.4 0.7

34.8 61.8 101.4 128.5 148.3

± ± ± ± ±

5.1 4.6 1.7 0.9 0.3

−4.1 −6.6 −4.6 −3.2 −1.3

± ± ± ± ±

1.9 1.8 0.7 0.4 0.1

39.9 ± 2.0 56.2 ± 4.8

−2.1 ± 0.8 −6.3 ± 1.8

37.5 ± 5.4 37.2 ± 7.9

−4.6 ± 2.0 −5.8 ± 2.9

38.0 63.0 83.3 102.6 107.0 118.9 128.0 130.3

± ± ± ± ± ± ± ±

7.4 6.2 4.8 4.6 3.3 3.1 2.0 1.2

44.6 ± 3.7

−4.4 −8.3 −9.1 −11.0 −8.7 −9.3 −6.9 −4.5

± ± ± ± ± ± ± ±

2.8 2.3 1.8 1.8 1.3 1.2 0.8 0.5

−4.0 ± 1.4

Hence, by heat capacity correction, the followed methodology was used for converting enthalpies, entropies, and Gibbs energies of phase transition to the reference temperature: ΔfusH° (298.15 K) and ΔfusS° (298.15 K) were obtained from the experimental values of ΔfusH° (Tm) and Tm according to eqs 3 and 4, respectively, and ΔfusG° (298.15 K) was derived by eq 5. ΔvapH° (298.15 K) was obtained directly from literature data; ΔvapG° (298.15 K) was derived from eq 1 by using eqs 7 and 8 to convert the values of ΔvapH° (⟨T⟩) and ΔvapS° (⟨T⟩), derived from vapor pressure measurements, for the reference temperature, and ΔvapS° (298.15 K) was derived by eq 1 from the combination of ΔvapH° (298.15 K) and ΔvapG° (298.15 K). ΔsubH° (298.15 K), ΔsubS° (298.15 K), and ΔsubG° (298.15 K) were derived from the combination of fusion and vaporization properties by eq 10. In all cases, specific values were also calculated and analyzed. For the series of n-alkanes and their derivatives, Tables 2−Table 4 list the thermodynamic properties of fusion, vaporization, and sublimation, respectively. All thermodynamic properties were corrected to the same reference temperature of θ = 298.15 K. Trends in molar and specific enthalpies, molar and specific entropies, and molar and specific Gibbs energies associated with the phase transition processes are represented by Figures 4−6. From analysis of thermodynamic properties of fusion (Table 2, Figure 4) of all series, we observe clear differentiations on the stability of the solid phase relative to the fusion/melting process. In addition to melting temperature investigation, the relative stability of a solid phase is well expressed by analysis of the magnitude of ΔfusG° (298.15 K). As evidenced, when compared with the analogues n-alkanes, n-alkanols exhibit higher values of ΔfusG° (298.15 K), while the magnitude of this

phase stability between all compounds, thermodynamic properties of fusion, vaporization, and sublimation were corrected to θ = 298.15 K by heat capacity correction. The difference between the molar heat capacity of the gas and liquid phases was obtained according to eq 7 for n-undecane, n-dodecane, n-tridecane, n-tetradecane, n-pentadecane, n-hexadecane, n-heptadecane, and n-octadecane. For these 8 n-alkanes, ΔvapH° (298.15 K) was obtained directly from the experimental values recommended by Majer and Svoboda,18 and ΔvapH°(⟨T⟩) was derived from the dependence of vapor pressures with temperature by eq 6. Although the values of ΔvapH° and ΔvapS° converted to a reference temperature could be associated with a significant error by using a nonaccurate heat capacity correction, this issue is not so relevant for the values of ΔvapG°, as can be concluded by eq 9. This can be noted by Figure 3, where deviations on the real values of ΔvapH°, θΔvapS°, and ΔvapG°are presented when a heat capacity correction (ΔvapCp°) with a deviation of 10, 20, 30, 40, and 50% relative to the real value of ΔvapCp° is used for the vaporization process of each alkane. As an example, the deviations of 50% on the suitable value of ΔvapCp° used for n-octadecane leads to a deviation of 13 kJ·mol−1 on the ΔvapH° and 9 kJ·mol−1 on TΔvapS° but only 3 kJ·mol−1 on the ΔvapG° due to the entropic enthalpic compensation effect. The difference between the molar heat capacity of the gas and solid phases (ΔsubCp°) was obtained by an estimated equation proposed by Chickos33 and ΔfusCp° were derived as ΔsubCp° − ΔvapCp°. The values of ΔCp° derived from n-alkanes were used as an estimative of the ΔCp° of phase transition of all alkane derivatives considering an uncertainty of ±10 J·K−1·mol−1. More details regarding these corrections are presented as Supporting Information. G

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

Table 3. Standard (p° = 105 Pa) Molar Enthalpies (ΔvapH°), Entropies (ΔvapS°), Gibbs Energies of Vaporization (ΔvapG°), and Extrapolated Vapor Pressures at T = 298 K for a Series of Linear n-Alkanes and Derivatives compound

ΔvapGm, 298 K°akJ·mol−1 −9.8 −5.6 −2.4 1.0 4.5 7.2 10.2 12.7 15.6 18.8 21.6 24.6 27.5 30.3 33.3 36.0 38.6 42.0 45.0 47.9 50.8

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

3.3117 1.5118 2.0117 1.5120 1.2117 1.5117 1.5117 2.0c 1.5121 1.6122 1.9123 2.1122 2.3122 2.5122 2.7122 2.6122 2.866 2.0c 2.0c 2.0c 2.0c

−10.1 −6.0 −2.4 0.4 3.5 6.3 9.5 12.4 15.3 18.2 21.1 24.1 27.0 29.9 32.8 35.9 38.9 41.9 44.8 47.8 50.7

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

2.1127 1.6128 1.1129 1.2131 1.2131 1.2132 1.2130 1.1130 1.4130 1.6130 1.9130 2.1130 2.3130 2.5130 2.7130 2.0c 2.0c 2.0c 2.0c 2.0c 2.0c

acetylene 1-propyne 1-butyne 1-pentyne 1-hexyne 1-heptyne 1-octyne

−9.6 −4.3 −1.5 1.3 4.1 6.8 9.6

± ± ± ± ± ± ±

0.5132 1.4133 1.2134 2.0c 2.0c 2.0c 2.0c

methanol ethanol 1-propanol 1-butanol 1-pentanol 1-hexanol 1-heptanol

4.5 6.1 8.7 11.9 14.5 17.0 19.7

± ± ± ± ± ± ±

1.7135 1.8136 1.1137 1.1137 1.2137 1.1137 1.3137

ethane propane butane pentane hexane heptane octane nonane decane undecane dodecane tridecane tetradecane pentadecane hexadecane heptadecane octadecane nonadecane eicosane heneicosane docosane ethylene 1-propene 1-butene 1-pentene 1-hexene 1-heptene 1-octene 1-nonene 1-decene 1-undecene 1-dodecene 1-tridecene 1-tetradecene 1-pentadecene 1-hexadecene 1-heptadecene 1-octadecene 1-nonadecene 1-eicosene 1-heneicosene 1-docosene

ΔvapHm, 298 K° kJ·mol−1 n-alkanes 9.8 ± 1.018 16.3 ± 1.018 22.4 ± 1.0119 26.8 ± 1.018 31.7 ± 1.018 36.7 ± 1.018 41.5 ± 1.018 46.4 ± 1.018 51.4 ± 1.018 56.4 ± 1.018 61.5 ± 1.018 66.4 ± 1.018 71.3 ± 1.018 76.1 ± 1.018 81.4 ± 1.018 86.0 ± 1.018 90.6 ± 1.0124 96.4 ± 1.0125 100.8 ± 1.0119 106.8 ± 1.0126 111.9 ± 1.0126 n-alkenes 10.9 ± 2.0c 16.0 ± 1.018 20.9 ± 1.018 25.5 ± 1.018 30.6 ± 1.0119 35.7 ± 1.0119 40.4 ± 1.018 45.5 ± 1.0119 50.4 ± 1.018 55.4 ± 1.0119 60.8 ± 1.018 65.3 ± 1.0119 70.2 ± 1.0119 75.1 ± 1.0119 80.2 ± 1.018 84.9 ± 1.0119 90.0 ± 1.0119 95.0 ± 1.0119 100.0 ± 1.0119 104.9 ± 2.0c 109.8 ± 2.0c n-alkynes 14.5 ± 2.0c 19.2 ± 2.0c 23.8 ± 1.018 28.4 ± 1.0119 33.0 ± 2.0c 37.7 ± 2.0c 42.3 ± 1.018 n-alkanols 37.8 ± 1.018 42.4 ± 1.018 47.5 ± 1.018 52.4 ± 1.018 57.0 ± 1.018 61.6 ± 1.018 66.8 ± 1.018 H

ΔvapSm, 298 K° J·K−1·mol−1

pliquid, 298 Kb Pa

66.1 73.4 83.3 86.5 91.3 98.9 104.9 113.0 120.0 126.3 133.7 140.3 147.0 153.5 161.4 167.8 174.5 182.4 187.3 197.6 204.9

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

10.6 3.7 5.9 3.7 2.1 3.7 3.7 5.8 3.7 4.4 5.4 6.1 6.9 7.5 8.3 8.1 8.6 5.8 5.8 5.8 5.8

(1.4−20) × 106 (5.2−17) × 105 (1.2−6.1) × 105 (3.6−12) × 104 (1.0−26) × 104 (3.0−9.9) × 103 (8.8−30) × 102 (2.6−13) × 102 (1.0−3.3) × 102 (2.7−10) × 102 (7.6−35) × 10° (2.2−12) × 10° (6.2−39) × 10−1 (1.8−13) × 10−1 (5.0−43) × 10−2 (1.7−14) × 10−2 (5.7−53) × 10−3 (1.9−9.7) × 10−4 (5.9−30) × 10−4 (1.8−9.1) × 10−4 (5.6−28) × 10−5

70.5 73.9 78.2 84.2 90.9 98.6 103.8 111.0 117.7 124.6 133.0 138.3 144.9 151.5 158.8 164.2 171.4 178.2 185.1 191.5 198.1

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

2.5 4.3 1.5 2.2 2.2 2.2 2.2 1.5 3.2 4.3 5.3 6.1 6.9 7.6 8.2 5.8 5.8 5.8 5.8 4.0 4.0

(2.5−14) × 106 (5.9−22) × 105 (1.7−4.1) × 105 (5.2−14) × 104 (1.5−4.0) × 104 (4.8−13) × 103 (1.4−3.6) × 103 (4.3−10) × 102 (1.2−3.6) × 102 (3.3−12) × 101 (9.3−42) × 10° (2.6−14) × 10° (7.4−47) × 10−1 (2.1−15) × 10−1 (6.0−51) × 10−2 (2.3−11) × 10−2 (6.8−34) × 10−3 (2.1−10) × 10−3 (6.3−31) × 10−4 (1.9−9.5) × 10−5 (5.7−29) × 10−5

81.0 78.6 84.9 91.0 97.2 103.4 109.6

± ± ± ± ± ± ±

4.0 4.0 2.2 5.8 4.0 4.0 5.8

(3.9−6.0) × 106 (3.2−9.9) × 105 (1.1−3.0) × 105 (2.7−13) × 104 (8.7−44) × 103 (2.8−14) × 103 (9.2−46) × 102

111.7 121.7 130.1 136.0 142.5 149.6 158.1

± ± ± ± ± ± ±

4.8 5.1 1.5 1.5 2.2 1.2 2.6

(8.1−33) × 103 (4.1−18) × 103 (1.9−4.7) × 103 (5.4−13) × 102 (1.8−4.6) × 102 (6.8−16) × 101 (2.2−6.0) × 101 DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

Table 3. continued compound

ΔvapGm, 298 K°akJ·mol−1

1-octanol 1-nonanol 1-decanol 1-undecanol 1-dodecanol 1-tridecanol 1-tetradecanol 1-pentadecanol 1-hexadecanol 1-heptadecanol 1-octadecanol 1-nonadecanol 1-eicosanol 1-heneicosanol

22.4 24.3 27.4 29.4 32.5 34.3 36.4 39.2 41.5 44.2 46.5 49.1 51.5 54.0

± ± ± ± ± ± ± ± ± ± ± ± ± ±

1.1138 1.7137 1.1138 2.0c 1.4136 2.0c 2.5137 2.0c 2.0138 2.0c 2.3138 2.0c 2.0c 2.0c

methanethiol ethanethiol 1-propanethiol 1-butanethiol 1-pentanethiol 1-hexanethiol 1-heptanethiol 1-octanethiol 1-nonanethiol 1-decanethiol 1-undecanethiol 1-dodecanethiol

−1.6 −1.0 4.0 7.0 9.9 12.9 15.7 18.7 21.6 24.5 27.5 30.4

± ± ± ± ± ± ± ± ± ± ± ±

1.1140 1.3140 1.147 1.1141 1.3141 1.5141 1.6141 2.0c 2.0c 2.0c 2.0c 2.0c

methanamine ethanamine 1-propanamine 1-butanamine 1-pentanamine 1-hexanamine 1-heptanamine 1-octanamine 1-nonanamine 1-decanamine 1-undecanamine 1-dodecanamine 1-tridecanamine 1-tetradecanamine 1-pentadecanamine 1-hexadecanamine

−3.3 −0.8 2.4 4.9 7.6 10.3 13.0 15.7 18.5 21.2 23.9 26.6 29.3 32.5 34.8 37.1

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

1.2143 1.1140 1.4140 2.0c 2.0c 2.0c 2.0c 2.0c 2.0c 2.0c 2.0c 2.0c 2.0c 2.2140 2.0c 2.5140

nitromethane nitroethane 1-nitropropane 1-nitrobutane 1-nitropentane

7.2 9.1 10.6 12.3 14.0

± ± ± ± ±

1.8145 1.1140 1.1147 2.0c 2.0c

chloromethane chloroethane 1-chloropropane 1-chlorobutane 1-chloropentane 1-chlorohexane 1-chloroheptane 1-chlorooctane 1-chlorononane

−4.3 −1.2 2.1 5.1 7.9 11.1 14.1 16.9 19.8

± ± ± ± ± ± ± ± ±

0.8150 0.7151 0.5140 1.1137 2.0c 1.1137 1.0137 1.2137 1.5137

ΔvapHm, 298 K° kJ·mol−1 n-alkanols 71.0 ± 1.018 76.9 ± 1.018 81.5 ± 1.018 85.8 ± 1.0139 90.8 ± 1.0139 94.7 ± 1.0139 98.9 ± 1.018 103.5 ± 1.0139 107.7 ± 1.2139 112.5 ± 1.0139 116.8 ± 1.2139 122.1 ± 2.0c 125.9 ± 0.8139 131.4 ± 2.0c n-alkanethiols 23.8 ± 1.0119 27.5 ± 1.018 32.0 ± 1.018 36.7 ± 1.018 41.3 ± 1.018 46.4 ± 1.0142 51.0 ± 1.0142 55.8 ± 2.0c 60.6 ± 2.0c 65.5 ± 1.018 70.1 ± 2.0c 74.9 ± 2.0c n-alkanamines 23.9 ± 1.018 26.5 ± 2.0c 31.4 ± 1.018 35.8 ± 1.018 40.2 ± 1.018 45.1 ± 1.018 50.0 ± 1.018 54.6 ± 1.0144 59.2 ± 2.0c 63.9 ± 2.0c 68.5 ± 2.0c 73.2 ± 2.0c 77.9 ± 2.0c 82.6 ± 2.0c 87.2 ± 2.0c 91.9 ± 2.0c n-nitroalkanes 38.4 ± 1.018 41.6 ± 1.0146 43.9 ± 1.0148 48.6 ± 1.0148 50.3 ± 0.2149 n-chloroalkanes 20.5 ± 0.3152 24.6 ± 0.3152 28.6 ± 1.018 33.6 ± 1.018 38.3 ± 1.018 42.9 ± 1.018 47.7 ± 1.018 52.4 ± 1.018 55.9 ± 1.0153 I

ΔvapSm, 298 K° J·K−1·mol−1

pliquid, 298 Kb Pa

163.0 176.6 181.5 189.1 195.6 202.5 209.6 215.5 221.9 229.2 235.8 245.0 249.4 259.7

± ± ± ± ± ± ± ± ± ± ± ± ± ±

1.5 4.4 1.2 5.8 3.4 5.8 7.7 5.8 5.2 5.8 6.5 4.0 6.1 4.0

(7.6−18) × 10° (2.9−11) × 10° (1.0−2.5) × 10° (3.1−16) × 10−1 (1.1−3.6) × 10−1 (4.3−22) × 10−2 (1.5−12) × 10−2 (5.9−30) × 10−3 (2.4−12) × 10−3 (8.2−41) × 10−3 (2.8−18) × 10−4 (1.1−5.6) × 10−4 (4.2−21) × 10−5 (1.5−7.5) × 10−5

85.0 88.8 94.0 99.8 105.3 112.5 118.5 124.7 130.8 137.4 143.1 149.2

± ± ± ± ± ± ± ± ± ± ± ±

1.5 3.0 1.5 1.5 2.7 3.6 4.3 4.0 4.0 5.8 4.0 4.0

(1.2−2.9) × 105 (3.8−11) × 104 (1.3−3.1) × 104 (3.9−9.4) × 103 (1.1−3.1) × 103 (3.1−10) × 102 (9.4−35) × 101 (2.4−12) × 101 (7.3−37) × 10° (2.2−11) × 10° (6.9−34) × 10−1 (2.1−11) × 10−1

91.3 91.6 97.2 103.7 109.4 116.7 124.0 130.3 136.6 143.2 149.7 156.3 162.8 167.9 176.0 183.8

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

2.2 5.6 3.3 5.8 5.8 5.8 5.8 5.8 4.0 4.0 4.0 4.0 4.0 3.0 4.0 5.2

(2.3−6.2) × 105 (8.9−22) × 104 (2.1−6.6) × 104 (6.2−31) × 103 (2.1−10) × 103 (7.0−35) × 102 (2.3−12) × 102 (7.8−39) × 101 (2.6−13) × 101 (8.7−44) × 10° (2.9−15) × 10° (9.7−49) × 10−1 (3.2−16) × 10−1 (8.4−49) × 10−2 (3.6−18) × 10−2 (1.1−8.8) × 10−2

104.7 108.8 111.8 116.3 121.7

± ± ± ± ±

5.2 1.5 1.5 5.8 6.7

(2.6−12) × 103 (1.6−3.9) × 103 (9.1−22) × 102 (3.1−15) × 102 (1.6−7.9) × 102

83.1 86.4 88.7 95.5 101.9 106.5 112.8 118.9 121.1

± ± ± ± ± ± ± ± ±

2.6 2.1 2.9 1.5 5.8 1.5 0.8 2.5 3.6

(4.0−7.9) × 105 (1.2−2.1) × 105 (3.4−5.2) × 104 (8.1−20) × 103 (1.8−9.2) × 103 (7.1−17) × 102 (2.3−5.1) × 102 (6.5−18) × 101 (1.9−6.1) × 101 DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

Table 3. continued compound

ΔvapGm, 298 K°akJ·mol−1

1-chlorodecane 1-chloroundecane 1-chlorododecane 1-chlorotridecane 1-chlorotetradecane 1-chloropentadecane 1-chlorohexadecane 1-chloroheptadecane 1-chlorooctadecane 1-chlorononadecane 1-chloroeicosane 1-chloroheneicosane

22.6 25.5 28.2 31.3 34.1 37.1 39.8 43.0 45.9 48.8 51.8 54.7

± ± ± ± ± ± ± ± ± ± ± ±

2.1137 1.9137 2.0137 2.0c 2.5137 2.0c 2.8137 2.0c 2.0c 2.0c 2.0c 2.0c

bromomethane bromoethane 1-bromopropane 1-bromobutane 1-bromopentane 1-bromohexane 1-bromoheptane 1-bromooctane 1-bromononane 1-bromodecane 1-bromoundecane 1-bromododecane 1-bromotridecane 1-bromotetradecane 1-bromopentadecane 1-bromohexadecane

−2.0 1.2 4.5 7.4 10.7 13.8 17.0 20.1

± ± ± ± ± ± ± ±

1.1154 1.1155 1.1140 1.1156 2.0c 2.0c 2.0c 2.0c

iodomethane iodoethane 1-iodopropane 1-iodobutane 1-iodopentane 1-iodohexane 1-iodoheptane 1-iodooctane 1-iodononane 1-iododecane 1-iodoundecane 1-iodododecane 1-iodotridecane 1-iodotetradecane 1-iodopentadecane 1-iodohexadecane 1-iodoheptane 1-iodooctane 1-iodononane 1-iodoeicosane 1-iodoheneicosane

1.6 4.5 7.3 9.8 12.5 15.1 17.8 20.4 23.2 25.8 28.5 31.2

± ± ± ± ± ± ± ± ± ± ± ±

0.5140 1.1140 1.1140 2.0c 2.0c 2.0c 2.0c 1.5140 2.0c 2.0c 2.0c 2.0c

ΔvapHm, 298 K° kJ·mol−1 n-chloroalkanes 61.3 ± 2.0c 65.9 ± 1.0153 71.1 ± 1.018 75.1 ± 2.0c 79.8 ± 2.0c 84.4 ± 2.0c 91.8 ± 1.018 93.6 ± 2.0c 98.2 ± 2.0c 102.8 ± 2.0c 107.4 ± 2.0c 112.0 ± 2.0c n-bromoalkanes 23.2 ± 1.018 28.3 ± 1.018 32.1 ± 1.018 36.7 ± 1.018 41.3 ± 1.018 45.9 ± 1.018 50.6 ± 1.018 55.8 ± 1.018 60.6 ± 2.0c 65.4 ± 2.0c 70.1 ± 2.0c 74.8 ± 1.018 79.6 ± 2.0c 84.3 ± 2.0c 89.1 ± 2.0c 94.4 ± 1.018 n-iodoalkanes 26.1 ± 2.0c 32.1 ± 1.018 36.3 ± 1.018 40.7 ± 1.018 45.3 ± 1.018 49.8 ± 1.018 55.0 ± 1.0157 59.7 ± 1.0158 64.5 ± 1.0157 69.8 ± 1.0157 74.8 ± 1.0157 79.9 ± 1.0157 85.0 ± 1.0157 90.0 ± 1.0157 94.6 ± 1.0157 99.6 ± 1.0157 104.7 ± 1.0157 109.3 ± 1.0157 113.8 ± 1.0157 118.5 ± 1.5157 123.8 ± 2.0c

ΔvapSm, 298 K° J·K−1·mol−1

pliquid, 298 Kb Pa

130.0 135.6 143.8 147.1 153.2 158.3 174.4 169.6 175.2 180.8 186.5 192.1

± ± ± ± ± ± ± ± ± ± ± ±

2.1 5.5 5.8 4.0 4.8 4.0 8.6 4.0 4.0 4.0 4.0 4.0

(4.7−26) × 10° (1.6−7.4) × 10° (5.1−25) × 10−1 (1.5−7.4) × 10−1 (4.0−29) × 10−2 (1.4−7.0) × 10−2 (3.5−32) × 10−3 (1.3−6.6) × 10−3 (4.0−20) × 10−4 (1.2−6.2) × 10−4 (3.8−19) × 10−5 (1.2−5.9) × 10−5

84.5 90.9 92.6 98.1 102.7 107.6 112.7 119.6

± ± ± ± ± ± ± ±

1.5 1.5 1.5 1.5 5.8 5.8 5.8 5.8

(1.4−3.5) × 105 (4.0−9.7) × 104 (1.1−2.6) × 104 (3.2−7.7) × 103 (6.0−30) × 102 (1.7−8.5) × 102 (4.7−24) × 101 (1.3−6.6) × 101

82.0 92.7 97.3 103.7 110.1 116.2 124.7 131.7 138.7 147.5 155.3 163.4

± ± ± ± ± ± ± ± ± ± ± ±

4.0 1.5 1.5 5.8 5.8 5.8 5.8 3.5 5.8 5.8 5.8 5.8

(4.3−6.2) × 104 (1.1−2.6) × 104 (3.4−8.2) × 103 (8.6−43) × 102 (2.9−15) × 102 (9.9−50) × 101 (3.4−17) × 101 (1.5−4.7) × 101 (3.9−20) × 10° (1.3−6.7) × 10° (4.5−23) × 10−1 (1.5−7.7) × 10−1

a Values derived from the dependence of vapor pressures with vaporization temperatures and by heat capacity correction to 298.15 K. bExtrapolated from the Gibbs energies of vaporization. cInter/extrapolated values.

mostly a consequence of the lower values of ΔfusH° (298.15 K) exhibited by n-alkenes. Because the strength of the van der Waals forces is reliant on the number of available electrons, and an alkane has more electrons compared to its congener alkene with equal number of −CH2− moieties, n-alkanes have higher values of ΔfusH° and higher Tm.

property is lower for the series of n-alkenes. This differentiation stands in very nice agreement with the melting temperatures displayed by the homologous series of n-alkanes, n-alkenes, and n-alkanols. The magnitude of ΔfusG° and Tm derives from enthalpic and entropic differentiations/contributions. When n-alkanes with n-alkenes are compared, the differentiation is J

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

Table 4. Standard (p° = 105 Pa) Molar Enthalpies (ΔsubH°), Entropies (ΔsubS°), Gibbs Energies of Sublimation (ΔsubG°), and Extrapolated Vapor Pressures at T = 298 K for a Series of Linear n-Alkanes and Derivatives compound

ΔsubGm, 298 K°akJ·mol−1

ethane propane butane pentane hexane heptane octane nonane decane undecane dodecane tridecane tetradecane pentadecane hexadecane heptadecane octadecane nonadecane eicosane heneicosane docosane

−17.0 −15.4 −13.6 −8.8 −4.8 −2.1 2.2 4.3 9.0 12.1 16.7 19.9 24.3 27.5 32.1 35.0 39.2 43.4 47.5 50.6 55.1

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

5.3 4.5 5.0 3.1 2.3 2.4 2.0 2.6 1.7 2.0 2.0 2.2 2.3 2.5 2.7 2.6 2.8 2.0 2.0 2.0 2.0

ethylene 1-propene 1-butene 1-pentene 1-hexene 1-heptene 1-octene 1-nonene 1-decene 1-undecene 1-dodecene 1-hexadecene

−17.1 −14.1 −13.2 −11.3 −9.1 −6.3 −2.6 0.8 4.4 8.6 13.7 29.6

± ± ± ± ± ± ± ± ± ± ± ±

4.3 4.5 4.3 3.8 3.1 2.7 2.4 2.0 2.5 2.3 2.4 2.8

methanol ethanol 1-propanol 1-butanol 1-pentanol 1-hexanol 1-heptanol 1-octanol 1-decanol 1-dodecanol 1-tridecanol 1-tetradecanol 1-pentadecanol 1-hexadecanol 1-heptadecanol 1-octadecanol 1-nonadecanol 1-eicosanol

1.6 0.2 2.8 5.8 8.7 11.9 15.1 18.5 25.2 32.4 35.3 37.9 42.4 45.8 49.8 53.1 56.8 60.2

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

3.5 4.3 2.8 2.1 2.0 1.5 1.5 1.2 1.1 1.4 2.0 2.5 2.0 2.0 2.0 2.3 2.4 2.1

methanethiol 1-propanethiol 1-butanethiol 1-pentanethiol 1-hexanethiol

−7.8 −5.9 −2.9 0.8 2.7

± ± ± ± ±

3.9 3.7 2.6 2.0 2.2

ΔsubHm, 298 K°akJ·mol−1 n-alkanes 13.6 ± 2.3 21.4 ± 2.3 32.4 ± 2.7 37.0 ± 1.8 46.5 ± 1.6 52.6 ± 1.5 63.7 ± 1.3 71.5 ± 1.5 81.3 ± 1.1 88.3 ± 1.3 99.2 ± 1.1 104.8 ± 1.1 117.0 ± 1.0 121.3 ± 1.0 133.2 ± 1.0 137.8 ± 1.0 152.0 ± 1.0 156.9 ± 1.0 168.1 ± 1.0 168.9 ± 1.0 187.5 ± 1.0 n-alkenes 15.2 ± 2.8 20.4 ± 2.3 26.7 ± 2.3 33.6 ± 2.1 42.3 ± 1.9 50.6 ± 1.8 58.0 ± 1.6 67.7 ± 1.5 76.6 ± 1.7 85.5 ± 1.5 89.3 ± 1.3 116.7 ± 1.1 n-alkanols 42.0 ± 2.1 49.5 ± 2.4 54.1 ± 1.8 62.7 ± 1.5 68.7 ± 1.4 78.1 ± 1.2 85.9 ± 1.2 96.9 ± 1.1 115.6 ± 1.0 131.1 ± 1.0 139.3 ± 1.0 145.9 ± 1.0 156.4 ± 1.0 164.5 ± 1.2 174.5 ± 1.0 182.2 ± 1.2 192.9 ± 2.0 197.8 ± 0.9 n-alkanethiols 30.4 ± 2.4 43.7 ± 2.3 48.5 ± 1.7 60.0 ± 1.4 65.9 ± 1.5 K

ΔsubSm, 298 K°a J·K·mol−1

psolid, 298 Kb Pa

102.8 123.5 154.3 153.5 172.1 183.5 206.4 225.3 242.5 255.6 276.7 284.7 310.8 314.7 339.2 344.9 378.2 380.8 404.5 396.8 444.0

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

16.0 13.0 14.2 8.2 5.6 6.2 4.9 7.3 4.3 5.3 5.5 6.4 6.9 7.6 8.3 8.1 8.6 5.8 5.8 5.8 5.9

(1.1−83) × 107 (8.1−310) × 106 (3.2−180) × 106 (1.0−12) × 106 (2.8−17) × 105 (8.9−61) × 104 (1.9−9.2) × 104 (6.0−51) × 103 (1.3−5.3) × 103 (3.4−17) × 102 (5.4−26) × 101 (1.3−7.9) × 101 (2.2−14) × 10° (5.6−42) × 10−1 (8.2−71) × 10−2 (2.6−22) × 10−2 (4.4−41) × 10−3 (1.1−57) × 10−4 (2.1−11) × 10−5 (6.1−31) × 10−5 (9.7−50) × 10−6

108.3 115.7 133.8 150.6 172.5 190.9 203.1 224.5 242.3 257.9 253.6 292.1

± ± ± ± ± ± ± ± ± ± ± ±

10.8 12.9 12.3 10.4 8.3 7.0 6.0 4.7 6.3 6.1 6.6 8.5

(1.8−55) × 107 (4.8−180) × 106 (3.5−120) × 106 (2.1−44) × 106 (1.1−14) × 106 (4.3−38) × 105 (1.1−7.4) × 105 (3.3−17) × 104 (6.2−48) × 103 (1.2−8.0) × 103 (1.5−10) × 102 (2.1−20) × 10−1

135.5 165.2 172.2 191.0 201.1 222.1 237.3 263.1 303.3 331.2 348.9 362.1 382.6 398.2 418.4 432.9 456.5 461.6

± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±

9.4 11.7 7.1 5.1 4.8 3.0 3.3 2.1 1.4 3.4 5.8 7.7 5.8 5.3 5.9 6.6 4.2 6.3

(1.3−22) × 104 (1.6−50) × 104 (1.1−10) × 104 (4.1−23) × 103 (1.3−6.6) × 103 (4.5−15) × 102 (1.2−4.1) × 102 (3.5−9.6) × 101 (2.5−6.1) × 10° (1.2−3.8) × 10−1 (2.9−15) × 10−2 (8.2−62) × 10−3 (1.6−8.3) × 10−3 (4.3−21) × 10−4 (8.4−44) × 10−5 (1.9−13) × 10−5 (4.3−29) × 10−6 (1.2−6.6) × 10−6

128.1 166.5 172.3 198.7 212.0

± ± ± ± ±

10.4 9.8 6.6 4.9 5.7

(4.7−110) × 105 (2.4−49) × 105 (1.1−9.1) × 105 (3.2−17) × 104 (1.4−8.3) × 104 DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

Table 4. continued compound 1-heptanethiol 1-octanethiol 1-nonanethiol 1-decanethiol

8.0 10.4 17.7 17.6

± ± ± ±

1.9 2.6 2.4 2.1

methanamine 1-propanamine 1-hexanamine 1-octanamine 1-decanamine

−7.4 −4.2 5.7 12.6 19.9

± ± ± ± ±

2.3 2.2 2.1 2.0 2.3

nitromethane nitroethane

a

ΔsubGm, 298 K°akJ·mol−1

5.1 ± 2.0 2.9 ± 2.5

chloromethane chloroethane

−8.9 ± 2.2 −7.0 ± 3.0

bromomethane 1-bromobutane 1-bromopentane 1-bromohexane 1-bromoheptane 1-bromooctane 1-bromononane 1-bromoundecane

−6.4 −0.8 1.5 2.8 8.2 10.9

iodomethane

−2.4 ± 2.7

± ± ± ± ± ±

3.0 2.6 2.7 2.7 2.4 2.3

ΔsubHm, 298 K°akJ·mol−1 n-alkanethiols 77.5 ± 1.2 81.5 ± 2.1 94.7 ± 2.0 99.9 ± 1.1 n-alkanamines 30.2 ± 1.6 43.2 ± 1.5 70.7 ± 1.1 89.8 ± 1.0 106.8 ± 2.0 n-nitroalkanes 48.2 ± 1.1 52.1 ± 1.5 n-chloroalkanes 27.1 ± 1.3 29.9 ± 1.7 n-bromoalkanes 30.1 ± 2.0 47.2 ± 1.7 57.0 ± 1.5 65.5 ± 1.5 73.7 ± 1.3 82.0 ± 1.3 91.9 ± 2.1 104.5 ± 2.0 n-iodoalkanes 35.3 ± 2.2

ΔsubSm, 298 K°a J·K·mol−1

psolid, 298 Kb Pa

233.2 238.4 258.2 275.9

± ± ± ±

5.0 4.9 4.1 6.1

(1.8−8.7) × 103 (5.3−42) × 102 (3.0−20) × 101 (3.4−19) × 101

126.1 159.0 218.1 258.8 291.5

± ± ± ± ±

5.5 5.7 6.0 5.9 4.0

(7.9−49) × 105 (2.2−13) × 105 (4.3−24) × 103 (2.7−14) × 102 (1.3−8.4) × 101

144.6 ± 5.6 165.0 ± 6.6

(5.7−29) × 103 (1.1−8.4) × 104

120.6 ± 6.0 123.6 ± 8.2

(1.5−8.6) × 106 (5.4−50) × 105

7.6 6.4 7.5 7.4 6.7 6.6

(4.0−45) × 105 (5.0−39) × 104 (1.8−16) × 104 (1.1−9.4) × 104 (1.4−9.6) × 103 (4.8−32) × 102

126.6 ± 5.4

(8.8−80) × 104

122.5 161.1 186.0 210.2 219.7 238.5

± ± ± ± ± ±

b

Values derived from the combination of fusion and vaporization results. Extrapolated from the Gibbs energies of sublimation.

Also, the enthalpic contribution is the preponderant factor for higher values of ΔfusG° (298.15 K) and Tm of n-alkanols. In the case of n-alkanamines and n-nitroalkanes, an enthalpy− entropy compensation contributes to the higher relative stability of the solid, in terms of fusion, when compared with n-alkanes. Hydrogen bonding is responsible for the high melting temperatures of n-alkanols and n-alkanamines. Comparing n-alkanols with n-alkanethiols, ΔfusH° (298.15 K) was found to be higher for thiols; however, due to an enthalpy−entropy compensation, their ΔfusG° (298.15 K) and Tm values are close to n-alkanes. In respect to halogenoalkanes, there is no significant differentiation between the thermodynamic properties of fusion of n-alkanes and their monosubstituted halogenated derivatives. As evidenced by the specific thermodynamic properties, the differentiation of the properties for all series becomes diluted when the compound gains an ever-larger alkyl chain, which can only sustain much weaker van der Waals interactions and in the limit of molecules with very large number of carbon atoms, properties do not differ greatly from their congener saturated hydrocarbons. A clear odd−even effect can be perceived from all molar and specific thermodynamic properties of fusion, which would be expected after analyzing the results of Tm. Regarding the liquid−gas phase transition (Table 3, Figure 5), enthalpies, entropies, and Gibbs energies of vaporization display a regular growth along the series. As a rule, larger molecules have higher boiling temperatures and thermodynamic properties of liquid−gas transition. More −CH2− moieties mean a greater surface area possible for van der Waals interactions and thus higher relative stability of the liquid phase. Contrary to fusion, in vaporization, long-chain alkanes, alkenes, and alkynes have

similar properties of phase transition. Differentiation between these liquid hydrocarbons is very minimal. However, it should be noted that low-molecular alkynes have a slightly higher enthalpy of vaporization than alkenes and alkanes. At the liquid phase, van der Waals interactions do not differ by much as terminal monoalkenes and monoalkynes lack only two and three electrons, respectively. The difference between saturated and unsaturated hydrocarbons would be more pronounced as the number of multiple bonds increases. Concerning all series, n-alkanols are those that present higher values of ΔvapH°, ΔvapS°, and ΔvapG°. As expected, enthalpy of vaporization is greater for hydrogen-bonding molecules than for plain hydrocarbons. In fact, in the isotropic liquid phase, there is a degree of hydrogen bonding between alkanol molecules, which are no longer in fixed locations like observed in the crystal lattice. For each series, an approximation of the magnitude of intermolecular interaction in liquid phase of the terminal group R′ can be observed by extrapolation of the linear plots (r2 > 0.999 in all cases) of ΔvapH° (298.15 K) to n(C) = 0. For each terminal group, the following enthalpic contributions (values in kJ·mol−1) are obtained: R′ = OH, 33.9; R′ = SH, 17.7; R′ = NH3, 17.2; R′ = Cl, 13.6; R′ = Br, 18.0; R′ = I, 21.2. The higher value (33.9 kJ·mol−1) is observed for R′ = OH and is straightforward, related to the strong hydrogen bonding interaction observed in liquid n-alkanols. Concerning the monohalogenated alkanes, there is a clear increase in enthalpic contribution for the larger halogen groups. According to the gradient of the plots of ΔvapH°, the following enthalpic contributions (at 298.15 K, values in kJ·mol−1) of the −CH2− moiety were found for each series: n-alkanes, 4.95; n-alkenes, 4.95; n-alkynes, 4.63; L

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

Figure 4. Trends in molar (A) and specific (B) enthalpies of fusion, molar (C) and specific (D) entropies of fusion, and molar (E) and specific (F) Gibbs energies of fusion at θ = 298.15 K for a series of n-alkanes (black solid circle), n-alkenes (grey open circle), n-alkanols (blue solid square), n-alkanethiols (blue open square), n-alkanamines (red solid triangle), n-nitroalkanes (green dash), n-chloroalkanes (yellow asterisk), n-bromoalkanes (red ×), and n-iodoalkanes (purple plus). Solid lines connecting the points of each series are presented for clarification.

(hydrocarbons) < ΔvapG°(alkanamines) < ΔvapG°(chloroalkanes) < ΔvapG°(alkanethiols) < ΔvapG°(bromoalkanes) < ΔvapG°(iodoalkanes) < ΔvapG°(alkanols) < ΔvapG°(nitroalkanes). For larger chains, the values of ΔvapG° tend to be approximately similar to those observed for hydrocarbons. Also, through analysis of the specific thermodynamic properties, it can be predicted that values for larger chains of alkane derivatives will not differ greatly from the analogues hydrocarbons. According to these data, constant values of Δvaph° ∼ 360 J·g−1, Δvaps° ∼ 0.55 J·g−1, and Δvapg° ∼ 172 J·g−1 are typical values for the polyethylene. The odd−even effect observed in melting properties is not

n-alkanols, 4.64; n-alkanethiols, 4.76; n-alkanamines, 4.67; n-chloroalkanes, 4.90; n-bromoalkanes, 4.74; n-iodoalkanes, 4.88. Due to the reduced number of data points available in the n-nitroalkanes series, the extrapolation and interpretation of the data series is not easy; however, there is an indication that the ΔvapH° (298.15 K) and ΔvapS° (298.15 K) of this series are located between those of the n-alkanes and n-alkanols series. Due to enthalpic and entropic contributions, the following relation of ΔvapG°, a property that is related to the phase stability of each compound and its volatility (Table 3) at the liquid phase (at θ = 298.15 K), is noted for shorter chains: ΔvapG° M

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

Figure 5. Trends in molar (A) and specific (B) enthalpies of vaporization, molar (C) and specific (D) entropies of vaporization, and molar (E) and specific (F) Gibbs energies of vaporization at θ = 298.15 K for a series of n-alkanes (black solid circle), n-alkenes (grey large open circle), n-alkynes (grey small open circle), n-alkanols (blue solid square), n-alkanethiols (blue open square), n-alkanamines (red solid triangle), n-nitroalkanes (green dash), n-chloroalkanes (yellow asterisk), n-bromoalkanes (red ×), and n-iodoalkanes (purple plus). Solid lines connecting the points of each series are presented for clarification. Dashed lines represent the values of specific thermodynamic properties of vaporization for polyethylene.

of ΔsubG°) of the solid phase of saturated hydrocarbons are due to an enthalpic contribution. Also, as verified for the liquid phase, the intermolecular hydrogen bonding of n-alkanols is reflected in higher values of ΔsubH°and ΔsubG°. For larger chains, the properties of each series tend to n-alkanes once the molar enthalpies and entropies will become larger, only due to a successive increasing of −CH2− moieties and, hence, the same effect in terms of van der Waals interactions will be observed for all compounds. Comparing the magnitude of enthalpies of fusion and sublimation, it can be concluded that in general, along the solid−liquid

observed in the thermodynamic properties of vaporization of the series studied in this work. By combination of fusion and vaporization results, thermodynamic properties related to the solid−gas phase transition were evaluated (Table 4, Figure 6). Thermodynamic properties of sublimation provide a further analysis of the relative stability of the crystalline phase of each compound. Due to the similarity observed for vaporization, the differentiation on the sublimation parameters for alkanes and alkenes is the same as that observed on the fusion equilibrium. Higher cohesive forces (higher values N

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

Figure 6. Trends in molar (A) and specific (B) enthalpies of sublimation, molar (C) and specific (D) entropies of sublimation, and molar (E) and specific (F) Gibbs energies of sublimation at θ = 298.15 K for a series of n-alkanes (black solid circle), n-alkenes (grey open circle), n-alkanols (blue solid square), n-alkanethiols (blue open square), n-alkanamines (red triangle), n-nitroalkanes (green dash), n-chloroalkanes (yellow asterisk), n-bromoalkanes (red ×), and n-iodoalkanes (purple plus). Solid lines connecting the points of each series are presented for clarification.

to the thermodynamic properties of fusion and sublimation, this effect can be found in many properties of the solid phase such as density and solubility.36−38 Research works on crystalline structures and their packing patterns provided an explanation for the melting properties alternation that was clarified by using a geometric model.32 According to Boese et al., the melting point alternation of the homologous series of n-alkanes is explained by the distinct interaction of methyl groups in odd or even molecules.32 The melting point alternation is directly correlated with crystal density. In fact, in accordance to Bond, the odd alkanes have lower density and lower melting points than the

transition, there is a decrease of around 40% in the magnitude of intermolecular interactions in the n-alkanes and 36% in the n-alkanols. This evidence highlights the stronger contribution of the alcohol functional group in the cohesive interaction that will be preserved in the liquid phase. For instance, the value of ΔfusH°/ΔsubH° = 0.40 was found for n-octadecane and n-eicosane, and the value of ΔfusH°/ΔsubH° = 0.36 was obtained for n-octadecanol and n-eicosanol. The odd−even effect observed on the thermodynamic properties associated with the solid phase are already described for linear n-alkanes and several terminally substituted linear alkyl derivatives.32,34,35 In addition O

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

Figure 7. Representation of the second derivative values of melting temperatures, d(Tm)/d(n) (A), and molar enthalpies of sublimation, d(ΔsubH)/ d(n) (B), for a series of n-alkanes (black solid circle), n-alkenes (grey open circle), n-alkanols (blue solid square), n-alkanethiols (blue open square), n-alkanamines (red solid triangle) and n-bromoalkanes (red plus). Solid lines connecting the points of each series are presented for clarification.

even alkanes due to alternating packing density at the layer interface.35 Figure 7 evidences the odd−even effect in some thermodynamic properties studied in this work for homologous series of n-alkanes and derivatives. The representations of the second derivative of melting temperature trend and enthalpies of sublimation were used to better elucidate the odd−even effect along the chain length. For n-alkanes, there is a clear increase in the property when passing from a molecule with an odd number of −CH2− groups (or an odd number of carbons) to the consecutive molecule with an even carbon number. The same odd−even alternation (zigzag effect) can be observed for n-alkanamines and for shorter n-alkanols. For larger n-alkanols, n-alkanethiols, and halogenoalkanes, the odd−even effect is contrary; hence, the property increases from a molecule with an even number of −CH2− groups to the consecutive molecule with an odd number of carbons. Considering the n-alkanes, chains with even number carbon atoms are more symmetrical and hence pack favorably in the crystal lattice, which contributes for much stronger van der Waals attraction forces for homologous series with an even number of carbon atoms. The improved packing patterns of even-numbered n-alkanes lead to a higher solid phase stability that is reflected in higher values of melting temperatures and thermodynamic properties of phase transition.



AUTHOR INFORMATION

Corresponding Author

*E-mail: [email protected]. ORCID

José C. S. Costa: 0000-0002-7134-8675 Funding

This work was financially supported by the following projects: (i) POCI-01-0145-FEDER-006939 (Laboratory for Process Engineering, Environment, Biotechnology and Energy, UID/ EQU/00511/2013) funded by the European Regional Development Fund (ERDF), through COMPETE2020: Programa Operacional Competitividade e Internacionalizaçaõ (POCI) and by national funds through FCT: Fundaçaõ para a Ciência e a Tecnologia. (ii) NORTE-01-0145-FEDER-000005-LEPABE-2ECO-INNOVATION, supported by North Portugal Regional Operational Programme (NORTE 2020) under the Portugal 2020 Partnership Agreement through the European Regional Development Fund (ERDF). (iii) Pest-C/QUI/UI0081/2013 and NORTE-01-0145-FEDER-000028, Sustainable Advanced ́ Materials (SAM), CIQUP (Centro de Investigaçaõ em Quimica, Universidade do Porto) funded by Fundaçaõ para a Ciência e Tecnologia (FCT), Lisbon, Portugal, and the European Social Fund (ESF). (iv) J.C. also thanks FCT and the European Social Fund (ESF) under the third Community Support Framework (CSF) for the award of the Research Grant SFRH/BPD/ 116930/2016.



CONCLUSION This study presented an extended data analysis of the thermodynamic properties of phase transition for series of n-alkanes and derivatives. The melting and boiling temperatures, heat capacities, enthalpies, entropies, and Gibbs energies of fusion, vaporization and sublimation data were correlated with the chain length to explore the effect of successive introduction of −CH2− moieties on the relative phase stability of the condensed phases in homologous series. The analysis of this work allows prediction of various thermodynamic properties for a very long-chain compound. In addition, the odd−even alternation detected for many solid-state thermodynamic properties was associated with a different efficiency of packing in odd- and even-numbered n-alkanes.



Tables and figures related to phase transition thermodynamics (PDF)

Notes

The authors declare no competing financial interest.



REFERENCES

(1) Greiner, W.; Neise, L.; Stocker, H. Thermodynamics and Statistical Mechanics; Springer-Verlag: New York, 1997. (2) Callen, H. B. Thermodynamics and an Introduction to Thermostatistics; Wiley: New York, 1985. (3) Kittel, C.; Kroemer, H. Thermal Physics; W. H. Freeman & Co: San Francisco, CA, 1980. (4) Gil, A.; Medrano, M.; Martorell, I.; Lázaro, A.; Dolado, P.; Zalba, B.; Cabeza, L. F. State of the Art on High Temperature Thermal Energy Storage for Power Generation. Part 1-Concepts, Materials and Modellization. Renewable Sustainable Energy Rev. 2010, 14, 31−55.

ASSOCIATED CONTENT

S Supporting Information *

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jced.7b00837. P

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

(5) Porter, D. A.; Easterling, K. E. Phase Transformations in Metal and Alloys, 2nd ed.; Chapman & Hall: London, UK, 1992. (6) Costa, J. C. S.; Rocha, R. M.; Vaz, I. C. M.; Torres, M. C.; Mendes, A.; Santos, L. M. N. B. F. Description and Test of a New Multilayer Thin Film Vapor Deposition Apparatus for Organic Semiconductor Materials. J. Chem. Eng. Data 2015, 60, 3776−3791. (7) Costa, J. C. S.; Azevedo, J.; Santos, L. M. N. B. F.; Mendes, A. On the Deposition of Lead-Halide Perovskite Precursors by Physical Vapor Method. J. Phys. Chem. C 2017, 121, 2080−2087. (8) Costa, J. C. S.; Lima, C. F. R. A. C.; Santos, L. M. N. B. F. Electron Transport Materials for Organic Light-Emitting Diodes: Understanding the Crystal and Molecular Stability of the Tris(8hydroxyquinolines) of Al, Ga, and. J. Phys. Chem. C 2014, 118, 21762− 21769. (9) Costa, J. C. S.; Santos, L. M. N. B. F. Hole Transport Materials Based Thin Films: Topographic Structures and Phase Transition Thermodynamics of Triphenylamine Derivatives. J. Phys. Chem. C 2013, 117, 10919−10928. (10) Mattox, D. M. Handbook of Physical Vapor Deposition (PVD) Processing, 2nd ed.; Elsevier: Oxford, 2010. (11) Costa, J. C. S.; Mendes, A.; Santos, L. M. N. B. F. Morphology of Imidazolium-Based Ionic Liquids as Deposited by Vapor Deposition: Micro-/Nanodroplets and Thin Films. ChemPhysChem 2016, 17, 2123−2127. (12) Chickos, J. S.; Acree, W. E. Enthalpies of Sublimation of Organic and Organometallic Compounds. 1910−2001. J. Phys. Chem. Ref. Data 2002, 31, 537−698. (13) Chickos, J. S.; Acree, W. E. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015. part 2. C11-C192. J. Phys. Chem. Ref. Data 2017, 46, 013104. (14) Chickos, J. S.; Acree, W. E. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1-C10. J. Phys. Chem. Ref. Data 2016, 45, 033101. (15) Domalski, E. S.; Hearing, E. D. Estimation of the Thermodynamic Properties of C-H-N-O-S-Halogen Compounds at 298.15 K. J. Phys. Chem. Ref. Data 1993, 22, 805−1159. (16) Domalski, E. S. Selected Values of Heats of Combustion and Heats of Formation of Organic Compounds Containing the Elements C, H, N, 0, P, and S. J. Phys. Chem. Ref. Data 1972, 1, 221−277. (17) Zábranský, M.; Kolská, Z.; Ruzicka, V.; Domalski, E. S. Heat Capacity of Liquids: Critical Review and Recommended Values. Supplement II. J. Phys. Chem. Ref. Data 2010, 39, 013103. (18) Majer, V.; Svoboda, V. Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation; Blackwell Scientific Publications: Oxford, 1985; p 300. (19) Badea, E.; Della Gatta, G.; D'Angelo, D.; Brunetti, B.; Recková, Z. Odd-Even Effect in Melting Properties of 12 Alkane-α,ω-Diamides. J. Chem. Thermodyn. 2006, 38, 1546−1552. (20) Badea, E.; Nowicka, B.; Della Gatta, G. Thermodynamics of Fusion and Sublimation for a Homologous Series of Eleven Alkaneα,ω-diols HO-(CH2)n-OH: Structure-Related Odd-Even Effect. J. Chem. Thermodyn. 2014, 68, 90−97. (21) Constantinou, L.; Gani, R. New Group Contribution Method for Estimating Properties of Pure Compounds. AIChE J. 1994, 40, 1697−1710. (22) Benson, S. W.; Cruickshank, F. R.; Golden, D. M.; Haugen, G. R.; O’Neal, H. E.; Rodgers, A. S.; Shaw, R.; Walsh, R. Additivity Rules for the Estimation of Thermochemical Properties. Chem. Rev. 1969, 69, 279−324. (23) Cohen, N.; Benson, S. W. Estimation of Heats of Formation of Organic Compounds by Additivity Methods. Chem. Rev. 1993, 93, 2419−2438. (24) Chickos, J. S.; Acree, W. E., Jr.; Liebman, J. F. Estimating SolidLiquid Phase Change Enthalpies and Entropies. J. Phys. Chem. Ref. Data 1999, 28, 1535−1673.

(25) Domalski, E. S.; Hearing, E. D. Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K. J. Phys. Chem. Ref. Data 1988, 17, 1637−1678. (26) Shehatta, I. Heat Capacity at Constant Pressure of Some Halogen Compounds. Thermochim. Acta 1993, 213, 1−10. (27) Gurvich, L. V.; Veyts, I. V.; Alcock, C. B. Thermodynamic Properties of Individual Substances, 4th ed.; Hemisphere: New York, 1989; Vols. 1 and 2. (28) Chao, J. Ideal Gas Thermodynamic Properties of Ethane and Propane. J. Phys. Chem. Ref. Data 1973, 2, 427−438. (29) Chen, S. S. Ideal Gas Thermodynamic Properties and Isomerization of n-Butane and Isobutane. J. Phys. Chem. Ref. Data 1975, 4, 859−870. (30) Kharin, V. E. Isobaric Heat Capacity of n-Pentane in the Vapor Phase. Izv. Vyssh. Ucheb. Zaved. Neft. Gaz 1985, 28, 63−66. (31) Scott, D. W. Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K, Bulletin 666; United States Bureau of Mines: Washington, DC, 1974. (32) Boese, R.; Weiss, H.-C.; Blaser, D. The Melting Point Alternation in the Short-Chain n-Alkanes: Single-Crystal X-Ray Analyses of Propane at 30 K and of n-Butane to n-Nonane at 90 K. Angew. Chem., Int. Ed. 1999, 38, 988−992. (33) Chickos, J. S.; Hosseini, S.; Hesse, D. G.; Liebman, J. F. Heat Capacity Corrections to a Standard State: A Comparison of New and Some Literature Methods for Organic Liquids and Solids. Struct. Chem. 1993, 4, 271−278. (34) Costa, J. C. S.; Fulem, M.; Schroder, B.; Coutinho, J. A. P.; Monte, M. J. S.; Santos, L. M. N. B. F. Evidence of An Odd-Even Effect on the Thermodynamic Parameters of Odd Fluorotelomer Alcohols. J. Chem. Thermodyn. 2012, 54, 171−178. (35) Bond, A. D. On the Crystal Structures and Melting Point Alternation of the n-Alkyl Carboxylic Acids. New J. Chem. 2004, 28, 104−114. (36) Zhang, H.; Yin, Q.; Liu, Z.; Gong, J.; Bao, Y.; Zhang, M.; Hao, H.; Hou, B.; Xie, C. An Odd-Even Effect on Solubility of Dicarboxylic Acids in Organic Solvents. J. Chem. Thermodyn. 2014, 77, 91−97. (37) Costa, J. C. S.; Lima, C. F. R. A. C.; Gomes, L. R.; Schroder, B.; Santos, L. M. N. B. F. Phase Stability Trend in Linear α-Polythiophene Oligomers. J. Phys. Chem. C 2011, 115, 23543−23551. (38) Zhang, H.; Xie, C.; Liu, Z.; Gong, J.; Bao, Y.; Zhang, M.; Hao, H.; Hou, B.; Yin, Q. − X. Identification and Molecular Understanding of the Odd−Even Effect of Dicarboxylic Acids Aqueous Solubility. Ind. Eng. Chem. Res. 2013, 52, 18458−18465. (39) Ruzicka, V., Jr.; Zabransky, M.; Majer, V. Heat Capacities of Organic Compounds in Liquid State II. C1 to C18 n-Alkanes. J. Phys. Chem. Ref. Data 1991, 20, 405−444. (40) van Miltenburg, J. C. Fitting the Heat Capacity of Liquid nAlkanes: New Measurements of n-Heptadecane and n-Octadecane. Thermochim. Acta 2000, 343, 57−62. (41) Durupt, N.; Aoulmi, A.; Bouroukba, M.; Rogalski, M. Heat capacities of liquid long-chain alkanes. Thermochim. Acta 1996, 274, 73−80. (42) Messerly, J. F.; Todd, S. S.; Finke, H. L.; Lee-Bechtold, S. H.; Guthrie, G. B.; Steele, W. V.; Chirico, R. D. Heat Capacities of Pent-1ene (10K to 320K), Cis-hex-2-ene (10K to 330K), Non-1-ene (10K to 400K), and Hexadec-1-ene (10K to 400K). J. Chem. Thermodyn. 1990, 22, 1107−1128. (43) McCullough, J. P.; Finke, H. L.; Gross, M. E.; Messerly, J. F.; Waddington, G. Low Temperature Calorimetric Studies of Seven 1Olefins: Effect of Orientational Disorder in the Solid State. J. Phys. Chem. 1957, 61, 289−301. (44) Zabransky, M.; Ruzicka, V., Jr.; Majer, V. Heat Capacities of Organic Compounds in Liquid State I. C1 to C18 n-Alkanols. J. Phys. Chem. Ref. Data 1990, 19, 719−762. (45) Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M. Heat capacity and Corresponding States in Alkan-1-ol-n-Alkane Systems. J. Chem. Soc., Faraday Trans. 1 1988, 84, 3991−4012. Q

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

(67) Weast, R. C, Grasselli, J. G., Eds. CRC Handbook of Data on Organic Compounds, 2nd ed.; CRC Press, Inc.: Boca Raton, FL, 1989; Vol. 1. (68) Streiff, A. J.; Hulme, A. R.; Cowie, P. A.; Krouskop, N. C.; Rossini, F. D. Purification, Purity, and Freezing Points of Sixty-four American Petroleum Institute Standard and Research Hydrocarbons. Anal. Chem. 1955, 27, 411−415. (69) Aldrich Chemical Company Inc. Catalog Handbook of Fine Chemicals;, Aldrich Chemical Company, Inc.: Milwaukee, WI, 1990; Vol. 1. (70) Schmidt, A. W. Physical Properties of Aliphatic Compounds. Ber. Dtsch. Chem. Ges. B 1942, 75, 1399. (71) Geldof, H.; Wibaut, J. P. Recl. Trav. Chim. Pays-Bas 1948, 67, 105−131. (72) Miskiewicz, S.; Rieser, K.; Dorfmüller, T. Thermodynamische Untersuchungen an kondensierten Phasen. Berichte der Bunsengesellschaft für physikalische Chemie 1976, 80 (5), 395−405. (73) Buckingham, J.; Donaghy, S. M. Dictionary of Organic Compounds, 5 ed.; Chapman and Hall: New York, 1982; p 1. (74) Conn, J. B.; Kistiakowsky, G. B.; Smith, E. A. Heats of Organic Reactions. VIII. Some Further Hydrogenations, Including Those of Some Acetylenes. J. Am. Chem. Soc. 1939, 61, 1868−1876. (75) Henne, A. L.; Greenlee, K. W. Preparation and Physical Constants of Acetylenic Compounds. J. Am. Chem. Soc. 1945, 67, 484−485. (76) Lumb, P. B.; Smith, J. C. Higher Aliphatic Compounds. Part X. A Synthesis of Tariric and Petroselinic Acids. J. Chem. Soc. 1952, 5032−5035. (77) Langedijk, S. L.; Stedehouder, P. L. Recl. Trav. Chim. Pays-Bas 1937, 56, 526−528. (78) Farchan Laboratories. Research Chemicals Catalog; Farchan Laboratories: Gainesville, FL, 1990; Vol. 91. (79) van Miltenburg, J. C.; van den Berg, G. J. K. Heat Capacities and Derived Thermodynamic Functions of 1-Propanol Between 10 and 350 K and of 1-Pentanol Between 85 and 370 K. J. Chem. Eng. Data 2004, 49, 735−739. (80) Tschamler, H.; Richter, E.; Wettig, F. Mixtures of Primry Aliphatic Alcohols with Chlorex and Other Organic Substances. Binary Liquid Mixtures XII. Monatsh. Chem. 1949, 80, 749−758. (81) van Miltenburg, J. C.; Gabrielová, H.; Ruzicka, K. Heat Capacities and Derived Thermodynamic Functions of 1-Hexanol, 1Heptanol, 1-Octanol, and 1-Decanol Between 5 and 390 K. J. Chem. Eng. Data 2003, 48, 1323−1331. (82) Gaikwad, B. R.; Subrahmanyam, V. V. Melting Behavior of Fatty Alcohols and their Binary Blends. J. Indian Chem. Soc. 1985, 62, 513− 515. (83) Acree, W. E. Thermodynamic Properties of Organic Compounds. Thermochim. Acta 1993, 219, 97−104. (84) van Miltenburg, J. C.; van den Berg, G. J. K.; Ramirez, M. Heat Capacities and Derived Thermodynamic Functions of 1-Dodecanol and 1-Tridecanol Between 10 and 370 K and Heat Capacities of 1Pentadecanol and 1-Heptadecanol between 300 and 380 K and Correlations for the Heat Capacity and the Entropy of Liquid nAlcohols. J. Chem. Eng. Data 2003, 48, 36−43. (85) Zeng, J. L.; Cao, Z.; Yang, D. W.; Xu, F.; Sun, L. X.; Zhang, L.; Zhang, X. F. Phase Diagram of Palmitic Acid-Tetradecanol Mixtures Obtained by DSC Experiments. J. Therm. Anal. Calorim. 2009, 95 (2), 501−505. (86) Xing, J.; Tan, Z.-C.; Shi, Q.; Tong, B.; Wang, S.-X.; Li, Y.-S. Heat Capacity and Thermodynamic Properties of 1-Hexadecanol. J. Therm. Anal. Calorim. 2008, 92 (2), 375−380. (87) Ventolà, L.; Calvet, T.; Cuevas-Diarte, M. A.; Ramírez, M.; Oonk, H. A. J.; Mondieig, D. Negrier, Ph. Melting Behaviour in the nAlkanol Family. Enthalpy-Entropy compensation. Phys. Chem. Chem. Phys. 2004, 6, 1786−1791. (88) Brandsma, L.; Wijers, H. A Simple Laboratory Scale Preparation Method for Dialkyl Sulfides, Selenides, Telluridles, Thiols and Selenols. Recl. Trav. Chim. Pays-Bas 1963, 82, 68.

(46) McCullough, J. P.; Scott, D. W.; Finke, H. L.; Gross, M. E.; Williamson, K. D.; Pennington, R. E.; Waddington, G.; Huffman, H. M. Ethanethiol (Ethyl Mercaptan): Thermodynamic Properties in the Solid, Liquid and Vapor states. Thermodynamic Functions to 1000K. J. Am. Chem. Soc. 1952, 74, 2801−2804. (47) Pennington, R. E.; Scott, D. W.; Finke, H. L.; McCullough, J. P.; Messerly, J. F.; Hossenlopp, I. A.; Waddington, G. The Chemical Thermodynamic Properties and Rotational Tautomerism of 1Propanethiol. J. Am. Chem. Soc. 1956, 78, 3266−3272. (48) Scott, D. W.; Finke, H. L.; McCullough, J. P.; Messerly, J. F.; Pennington, R. E.; Hossenlopp, I. A.; Waddington, G. 1-Butanethiol and 2-Thiapentane. Experimental Thermodynamic Studies Between 12 and 500 K. Thermodynamic Functions by a Refined Method of Increments. J. Am. Chem. Soc. 1957, 79, 1062−1068. (49) Finke, H. L.; Scott, D. W.; Gross, M. E.; Waddington, G.; Huffman, H. M. The Entropy and Vapor Pressure of 1-Pentanethiol. J. Am. Chem. Soc. 1952, 74, 2804−2806. (50) Finke, H. L.; McCullough, J. P.; Messerly, J. F.; Guthrie, G. B.; Douslin, D. R. Chemical Thermodynamic Properties for 1Alkanethiols. J. Chem. Thermodyn. 1970, 2, 27−41. (51) Tutubalina, V. P.; Gabdrakhmanov, F. G.; Konyukhova, T. M. Study of the Heat Capacity of n-Sulfides; Teplo-Massoobmen Khim: 1982. (52) Finke, H. L.; Messerly, J. F.; Todd, S. S. Thermodynamic Properties of Acrylonitrile, 1-Aminopropane, 2-Aminopropane, and 2Methyl-2-Aminopropane. J. Chem. Thermodyn. 1972, 4, 359−374. (53) Konicek, J.; Wadso, I. Thermochemical Properties of Some Carboxylic Acids, Amines and N-Substituted Amides in Aqueous Solutions. Acta Chem. Scand. 1971, 25, 1541−1551. (54) Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A.; Tasker, I. R. Determination of Ideal Gas Enthalpies of Formation for Key Compounds. 1991 Project Results, DIPPR Project; NIPER-716: 1993; Vol. 871. (55) Jones, W. M.; Giauque, W. F. The Entropy of Nitromethane. Heat Capacity of Solid and Liquid. Vapor Pressure, Heats of Fusion and Vaporization. J. Am. Chem. Soc. 1947, 69, 983−987. (56) Liu, K. F.; Ziegler, W. T. Heat Capacity from 80° to 300 K. Melting Point and Heat of Fusion of Nitroethane. J. Chem. Eng. Data 1966, 11, 187−189. (57) Tanaka, R.; Toyama, S. Excess Molar Volumes and Excess Molar Heat Capacities for Binary Mixtures of Ethanol with Chlorocyclohexane, 1-Nitropropane, Dibutyl Ether, and Ethyl Acetate at the Temperature of 298.15 K. J. Chem. Eng. Data 1996, 41, 1455− 1458. (58) Shorthose, D. N. G. B. Dep. Sci. Ind. Res., Food Invest. Board, Spec. Rep. 1924, 19, 1−16. (59) Jenkin, C. F.; Shorthose, D. N. Thermal Properties of Ethyl Chloride 1924, 347−349. (60) von Reis, M. A. Die Specifische Wärme Flüssiger Organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht. Ann. Phys. 1881, 249, 447−465. (61) Grolier, J.-P. E.; Roux-Desgranges, G.; Berkane, M.; Jimenez, E.; Wilhelm, E. Heat Capacities and Densities of Mixtures of Very Polar Substances 2. Mixtures Containing N,N-dimethylformamide. J. Chem. Thermodyn. 1993, 25, 41−50. (62) Vogt, G. J.; Pitzer, K. S. Entropy and Heat capacity of Methane, Spin-Species Conversion. J. Chem. Thermodyn. 1976, 8, 1011−1031. (63) Domalski, E. S.; Hearing, E. D. Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III. J. Phys. Chem. Ref. Data 1996, 25, 1−525. (64) Streng, A. G. Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature. J. Chem. Eng. Data 1971, 16, 357−359. (65) Acree, W. E. Thermodynamic Properties of Organic Compounds: Enthalpy of Fusion and Melting Point Temperature Compilation. Thermochim. Acta 1991, 189 (1), 37−56. (66) Krafft, F. On Nineteen Higher Normal Paraffins and a Simple Volume Law for Liquids that form Drops I. Ber. Dtsch. Chem. Ges. 1882, 15, 1687−1711. R

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

(89) Lange, N. A. Lange’s Handbook of Chemistry, 13th ed.; Dean, J.A., Ed.; McGraw-Hill: New York, NY, 1985; p 1792. (90) Roberts, E. R.; Emeleus, H. J.; Briscoe, H. V. A. Preparation and Prop. of Ethyldideuteramine and Dimethyldeuteramine. J. Chem. Soc. 1939, 0, 41−52. (91) Favier, R.; Rosso, J.; Carbonnel, L. Bull. Soc. Chim. Fr. 1981, 1981, 225−236. (92) Jaeger, F. M. Z. Anorg. Allg. Chem. 1917, 101, 1−214. (93) Timmermans, J.; Mattaar, J. F. Freezing Points of Organic Substances VI. New Experimental Determinations. Bull. Soc. Chim. Belg. 1921, 30, 213. (94) Zvejnieks, A. Preparation and Properties of Some Pure Fatty and Rosin Amines. Sven. Kem. Tidskr. 1954, 66, 316. (95) Richet, H. On the Chlorides, Amides, and Amines of the Fatty Acids. Bull. Soc. Chim. Fr. 1946, 13, 52. (96) Staudinger, H.; Roessler, K. Highly Polymerized Compounds. CXXIII. Viscosity Measurements on Long- Chain Aliphatic Amines. Ber. Dtsch. Chem. Ges. B 1936, 69B, 49−60. (97) American Tokyo Kasei. TCI American Organic Chemical 88/89 Catalog; American Tokyo Kasei: Portland, OR, 1988; p 1610. (98) Naegeli, C.; Gruntuch, L.; Lendorff, P. A Modified Curtius Degradation III. The Degradation of Saturated Fatty Acids and Benzoic Acid. Helv. Chim. Acta 1929, 12, 227. (99) Toops, E. E. Physical Properties of High Purity Nitroparaffins. J. Phys. Chem. 1956, 60, 304−306. (100) Ganeff, J. M.; Jungers, J. C. Vapor Pressures of the Chloromethane + Dichloromethane System. Bull. Soc. Chim. Belg. 1948, 57, 82. (101) Van de Vloed, A. Bull. Soc. Chim. Belg. 1939, 48, 229. (102) Timmermans, J. The Freezing Points of Organic Substances IV. New Exp. Determinations. Bull. Soc. Chim. Belg. 1921, 30, 62. (103) Timmermans, J. Freezing Points of Organic compounds. VVI New Determinations. Bull. Soc. Chim. Belg. 1952, 61, 393. (104) Timmermans, J. Researches in Stoichiometry. I. The Heat of Fusion of Organic Compounds. Bull. Soc. Chim. Belg. 1935, 44, 17−40. (105) Crowe, R. W.; Smyth, C. P. Thermal and Dielectric Evidence of Polymorphism in Some Long-Chain n-Alkyl Bromides. J. Am. Chem. Soc. 1950, 72, 1098−1106. (106) Hesse, J. E. Melting Point and Index of Refraction Data for nAlkyl Bromides, Thiols, and Disulfides. J. Chem. Eng. Data 1967, 12, 266−266. (107) Doolittle, A. K.; Peterson, R. H. Preparation of Physical Properties of a Series of n-Alkanes. J. Am. Chem. Soc. 1951, 73, 2145− 2151. (108) Cason, J.; Wolfhagen, H. J.; Tarpey, W.; Adams, R. E. Branched-Chain Fatty Acids: Synthesis of Acids with Branching Methyl Groups near the Carboxyl. J. Org. Chem. 1949, 14, 147−154. (109) Timmermans, J. Researches on the Freezing Point of Organic Liquid Compounds. Bull. Soc. Chim. Belg. 1911, 25, 300. (110) Wibaut, J. P.; Overhoff, J.; Jonker, E. W. On the Preparation of Some Hydrocarbons of the Mixed Aliphatic-Aromatic and AliphaticAlicyclic Type Containing 22 to 30 C-atoms. Recl. Trav. Chim. PaysBas 1943, 62, 31−45. (111) Shirley, D. A.; Reedy, W. H. Alkylation with Long Chain pToluenesulfonates. III. Reaction of n-Octadecyl p-Toluenesulfonate with p-Tolylmagensium Bromide. J. Am. Chem. Soc. 1951, 73, 4886− 4888. (112) Finke, H. L.; Gross, M. E.; Waddington, G.; Huffman, H. M. Low-Temperature Thermal Data for the Nine Normal Paraffin Hydrocarbons from Octane to Hexadecane. J. Am. Chem. Soc. 1954, 76, 333−341. (113) Haida, O.; Suga, H.; Seki, S. Calorimetric Study of the Glassy State. XII. Plural Glass-Transition Phenomena of Ethanol. J. Chem. Thermodyn. 1977, 9, 1133−1148. (114) van Miltenburg, J. C.; Oonk, H. A. J.; Ventola, L. Heat Capacities and Derived Thermodynamic Functions of 1-Octadecanol, 1-Nonadecanol, 1-Eicosanol, and 1-Docosanol between 10 and 370 K. J. Chem. Eng. Data 2001, 46, 90−97.

(115) Domanska, U.; Marciniak, M. Experimental Solid−Liquid Equilibria for Systems Containing Alkan-1-ol + 1,3-Diaminopropane. Heat Capacities of Alkan-1-ols and Amines-Thermodynamic Functions of Dissociation and Enthalpies of Melting of the Congruently Melting Compounds for the Systems (Alkan-1-ol + Amine). Fluid Phase Equilib. 2005, 235, 30−41. (116) Wren, D. J.; Vikis, A. C. Vapour Pressure of CH3I in the temperature range 176 to 227 K. J. Chem. Thermodyn. 1982, 14, 435− 437. (117) Carruth, G. F.; Kobayashi, R. Vapor Pressure of Normal Paraffins Ethane Through n-Decane from their Triple Points to About 10 mm Mercury. J. Chem. Eng. Data 1973, 18, 115−126. (118) Helgeson, N. L.; Sage, B. H. Latent Heat of Vaporization of Propane. J. Chem. Eng. Data 1967, 12, 47−49. (119) Reid, R. C. Handbook on Vapor Pressure and Heats of Vaporization of Hydrocarbons and Related Compounds, Wilhort, R. C. and Zwolinski, B. J. Texas A Research Foundation. College Station, Texas 1971. 329 pages. AIChE J. 1972, 18, 1278−1278. (120) Osborn, A. G.; Douslin, D. R. Vapor-Pressure Relations for 15 Hydrocarbons. J. Chem. Eng. Data 1974, 19, 114−117. (121) Chirico, R. D.; Nguyen, A.; Steele, W. V.; Strube, M. Vapor Pressure of n -Alkanes Revisited. New High-Precision Vapor Pressure Data on n-Decane, n-Eicosane, and n-Octacosane. J. Chem. Eng. Data 1989, 34, 149−156. (122) Camin, D. L.; Rossini, F. D. Physical Properties of Fourteen API Research Hydrocarbons, C9 to C15. J. Phys. Chem. 1955, 59, 1173−1179. (123) Willingham, C. B.; Taylor, W. J.; Pignocco, J. M.; Rossini, F. D. Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons. J. Res. Natl. Bur. Stand. (U.S.) 1945, 35, 219−244. (124) Chickos, J. S.; Webb, P.; Nichols, G.; Kiyobayashi, T.; Cheng, P.-C.; Scott, L. The Enthalpy of Vaporization and Sublimation of Corannulene, Coronene, and Perylene at T = 298.15 K. J. Chem. Thermodyn. 2002, 34, 1195−1206. (125) Ruzicka, K.; Majer, V. Simultaneous Treatment of Vapor Pressures and Related Thermal Data Between the Triple and Normal Boiling Temperatures for n-Alkanes C5-C20. J. Phys. Chem. Ref. Data 1994, 23, 1−39. (126) Chickos, J. S.; Hanshaw, W. Vapor Pressures and Vaporization Enthalpies of the n -Alkanes from C 21 to C 30 at T = 298.15 K by Correlation Gas Chromatography. J. Chem. Eng. Data 2004, 49, 77− 85. (127) Egan, C. J.; Kemp, J. D. Ethylene. The Heat Capacity from 15 K to the Boiling Point. The Heats of Fusion and Vaporization. The Vapor Pressure of the Liquid. The Entropy from Thermal Measurements Compared with the Entropy from Spectroscopic Data. J. Am. Chem. Soc. 1937, 59, 1264−1268. (128) Powell, T. M.; Giauque, W. F. Propylene. The Heat Capacity, Vapor Pressure, Heats of Fusion and Vaporization. The Third Law of Thermodynamics and Orientation Equilibrium in the Solid. J. Am. Chem. Soc. 1939, 61, 2366−2370. (129) Aston, J. G.; Fink, H. L.; Bestul, A. B.; Pace, E. L.; Szasz, G. J. The Heat Capacity and Entropy, Heats of Fusion and Vaporization and the Vapor Pressure of Butene-1. The Zero Point Entropy of the Glass. The Entropy of the Gas from Molecular Data. J. Am. Chem. Soc. 1946, 68, 52−57. (130) Forziati, a. F.; Camin, D. L.; Rossini, F. D. Density, Refractive Index, Boiling Point, and Vapor Pressure of Eight Monoolefin (1Alkene), Six Pentadiene, and Two Cyclomonoolefin Hydrocarbons. J. Res. NBS 1950, 45, 406−410. (131) Bent, H. E.; Cuthbertson, G. R.; Dorfman, M.; Leary, R. E. Single Bond Energies. I. The C-C Bond in Hexaphenylethane. J. Am. Chem. Soc. 1936, 58, 165−170. (132) Ambrose, D.; Townsend, R. Vapour Pressure of Acetylene. Trans. Faraday Soc. 1964, 60, 1025−1029. (133) van Hook, W. A. Vapor Pressures of the Methylacetylenes, H3CCCH, H3CCCD, D3CCCH, and D3CCCD. J. Chem. Phys. 1967, 46 (5), 1907−1918. S

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX

Journal of Chemical & Engineering Data

Review

(134) Aston, J. G.; Mastrangelo, S. V. R.; Moessen, G. W. The Thermodynamics of 1-Butyne from Calorimetric and Spectroscopic Data. J. Am. Chem. Soc. 1950, 72, 5287−5291. (135) Ambrose, D.; Sprake, C. H. S.; Townsend, R. Thermodynamic Properties of Organic Oxygen Compounds. XXXVII. Vapour Pressures of Methanol, Ethanol, Pentan-1-ol, and Octan-1-ol from the Normal Boiling Temperature to the Critical Temperature. J. Chem. Thermodyn. 1975, 7, 185−190. (136) Ambrose, D.; Sprake, C. H. S. Thermodynamic Properties of Organic Oxygen Compounds XXV. Vapour Pressures and Normal Boiling Temperatures of Aliphatic Alcohols. J. Chem. Thermodyn. 1970, 2, 631−645. (137) Kemme, H. R.; Kreps, S. I. Vapor Pressure of Primary n-Alkyl Chlorides and Alcohols. J. Chem. Eng. Data 1969, 14, 98−102. (138) Ambrose, D.; Ellender, J. H.; Sprake, C. H. S. Thermodynamic Properties of Organic Oxygen Compounds XXXV. Vapour Pressures of Aliphatic Alcohols. J. Chem. Thermodyn. 1974, 6, 909−914. (139) Nichols, G.; Kweskin, S.; Frericks, M.; Reiter, S.; Wang, G.; Orf, J.; Carvallo, B.; Hillesheim, D.; Chickos, J. Evaluation of the Vaporization, Fusion, and Sublimation Enthalpies of the 1-Alkanols: The Vaporization Enthalpy of 1-, 6-, 7-, and 9-Heptadecanol, 1Octadecanol, 1-Eicosanol, 1-Docosanol, 1-Hexacosanol, and Cholesterol at T = 298.15 K by Correlation Gas Chromatography. J. Chem. Eng. Data 2006, 51, 475−482. (140) Stull, D. R. Vapor Pressure of Pure Substances. Organic and Inorganic Compounds. Ind. Eng. Chem. 1947, 39, 517−540. (141) Osborn, A. G.; Douslin, D. R. Vapor Pressure Relations of 36 Sulfur Compounds Present in Petroleum. J. Chem. Eng. Data 1966, 11, 502−509. (142) Good, W. D.; De Prater, B. L. The Enthalpies of Combustion and Formation of the 1-Alkanethiols. The Methylene Increment to the Enthalpy of Formation. J. Phys. Chem. 1966, 70, 3606−3609. (143) Aston, J. G.; Siller, C. W.; Messerly, G. H. Heat Capacities and Entropies of Organic Compounds. III. Methylamine from 12K to the Boiling Point. Heat of Vaporization and Vapor Pressure. The Entropy from Molecular Data. J. Am. Chem. Soc. 1937, 59, 1743−1751. (144) Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A.; Smith, N. K.; Tasker, I. R. Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Cyclohexene, Phthalan (2,5-dihydrobenzo-3,4-furan), Isoxazole, Octylamine, Dioctylamine, Trioctylamine, Phenyl Isocyanate, and 1,4,5,6-Tetrahydropyrimidine. J. Chem. Eng. Data 1996, 41, 1269−1284. (145) Berman, H. A.; West, E. D. Density and Vapor Pressure of Nitromethane 26 Degree to 200 Degree. J. Chem. Eng. Data 1967, 12, 197−199. (146) Holcomb, D. E.; Dorsey, C. L., Jr. Thermodynamic Properties of Nitroparaffins. Ind. Eng. Chem. 1949, 41, 2788−2792. (147) Dreisbach, R. R.; Shrader, S. A. Vapor Pressure - Temperature Data on Some Organic Compounds. Ind. Eng. Chem. 1949, 41 (12), 2879−2880. (148) Chickos, J. S.; Hosseini, S.; Hesse, D. G. Determination of Vaporization Enthalpies of Simple Organic Molecules by Correlations of Changes in Gas Chromatographic Net Retention Times. Thermochim. Acta 1995, 249, 41−62. (149) Verevkin, S. P. Thermochemistry of Nitro Compounds. Experimental Standard Enthalpies of Formation and Improved GroupAdditivity Values. Thermochim. Acta 1997, 307, 17−25. (150) Hsu, C. C.; McKetta, J. J. Pressure-Volume-Temperature Properties of Methyl Chloride. J. Chem. Eng. Data 1964, 9, 45−51. (151) Gordon, J.; Giauque, W. F. The Entropy of Ethyl Chloride. Heat Capacity from 18 to 287 K. Vapor Pressure. Heats of Fusion and vaporization. J. Am. Chem. Soc. 1948, 70, 1506−1510. (152) Manion, J. A. Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons. J. Phys. Chem. Ref. Data 2002, 31, 123−172. (153) Boublik, T.; Fried, V.; Hala, E. The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low-Pressure Region, 2nd ed.; Elsevier: New York, 1984; p 972.

(154) Beersmans, J.; Jungers, J. C. Synthese et Etude des Chlorure, Bromure et Iodure de Deuteromethyle. Bull. Soc. Chim. Belg. 1947, 56, 238−250. (155) Zmaczynski, M. A. Recherches Ebullioscopiques et Tonometriques Comparatives de 8 Substances Organiques Etalons. J. Chim. Phys. Phys.-Chim. Biol. 1930, 27, 503−517. (156) Milazzo, G. Tensioni di Vapore di Alcune Sostanze Organiche a Bassa Temperatura. Ann. Chim. (Rome) 1956, 46, 1105−1111. (157) Bolotnikov, M. F.; Neruchev, Y. A. Enthalpies of Vaporization of a Series of the 1-odoalkanes. Fluid Phase Equilib. 2006, 243, 121− 125. (158) Ambrose, D.; Stephenson, R. M.; Malanowski, S. Handbook of the Thermodynamics of Organic Compounds; Elsevier: New York, 1987.

T

DOI: 10.1021/acs.jced.7b00837 J. Chem. Eng. Data XXXX, XXX, XXX−XXX