5 Characterization and Chemical Reactions of
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch005
Surfactant Monolayer Films
STEVEN J. VALENTY General Electric Company Corporate Research and Development, Schenectady, NY 12301
The study of chemical reactions of suitably functionalized surfactant monolayer films is suggested as a corollary ap proach toward understanding the chemistry of bonding modifiers to electrode and catalytic surfaces. Liquid- and vapor-phase chromatography have been used in conjunc tion with absorption, fluorescence, and IR spectrometry to detect and quantitate the chemistry occurring in such films containing aldehyde or ester molecules. Carboxylic acid surfactant derivatives of ruthenium(II)tris(2,2'-bipyridine) have been used to assess solid surface acidity. The obser vation of methylene blue adsorption to photogalvanic elec trodes is related to the orientation and absorption spectra of its surfactant analogs in monolayer films. The effect of counterion on luminescence properties of derivatives of ruthenium(II)tris(2,2'-bipyridine) are unique to the posi tively charged interface.
The
s t u d y of i n t e r f a c i a l photoprocesses e m p h a s i z i n g energy c o n v e r s i o n
a n d c h e m i c a l synthesis is p r e d i c a t e d u p o n t h e e x p e c t a t i o n t h a t c o n s t r a i n i n g s p e c i a l l y t a i l o r e d r e a c t i o n centers t o a surface w i l l
produce
r e a c t i o n p r o d u c t s o r k i n e t i c s different f r o m w h a t is o b s e r v e d i n either of t h e a d j o i n i n g h o m o g e n e o u s phases
alone.
I n some experimental a p
p r o a c h e s , a surface is m o d i f i e d b y c o v a l e n t l y a t t a c h i n g s p e c i a l i z e d m o l e cules w h o s e v a r i e d f u n c t i o n s i n c l u d e selective e l e c t r o n transfer w i t h a specific r e d o x c o u p l e i n a n a d j o i n i n g e l e c t r o l y t e s o l u t i o n , p r e v e n t i o n o f electrode corrosion, a n d preferential b i n d i n g of reactant molecules. 0-8412-0474-8/80/33-184-069$07.25/0 © 1980 American Chemical Society Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
It
70
INTERFACIAL
PHOTOPROCESSES
is c l e a r t h a t t h e c h e m i s t r y i n v o l v e d i n c o u p l i n g t h e m o d i f y i n g m o l e c u l e t o t h e surface a n d t h e n a t u r e of the c o v a l e n t b o n d so f o r m e d are i m p o r t a n t to b o t h t h e m e c h a n i s m of t h e m o d i f i e r s a c t i o n a n d its o p e r a t i o n a l lifetime.
A v a r i e t y of t e c h n i q u e s , i n c l u d i n g e l e c t r o n spectroscopy
c h e m i c a l analysis ( E S C A ) , a t o m i c e m i s s i o n spectroscopy o p t i c a l spectroscopy,
for
( A E S ) , IR,
a n d electroanalytical methods, have been used to
c h a r a c t e r i z e a surface b e f o r e a n d after c h e m i c a l m o d i f i c a t i o n . W h e r e a p p l i c a b l e the s t u d y of c h e m i c a l reactions of s u i t a b l y f u n c Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch005
tionalized surfactant monolayer
films
at t h e g a s - w a t e r i n t e r f a c e
another approach towards understanding this chemistry.
offers
O p e r a t i n g at
t h e a i r - w a t e r i n t e r f a c e a n d , hence, w i t h i n t h e c o n s t r a i n t of
aqueous-
b a s e d c h e m i s t r y , this t e c h n i q u e a l l o w s the p r e p a r a t i o n of a v a r i e t y of f u n c t i o n a l i z e d surfaces b y f o r m i n g a m o n o l a y e r f r o m selected s y n t h e t i c surfactant monomers.
F u r t h e r , the use of this p a r t i c u l a r
methodology
a l l o w s e x p e r i m e n t a l c o n t r o l , to v a r y i n g degrees, of t h e r e s u l t i n g t w o d i m e n s i o n a l films' c o m p o s i t i o n , o r i e n t a t i o n , a n d e l e c t r i c a l charge.
Be
cause a m o n o m o l e c u l a r l y t h i n l a y e r is b e i n g d e a l t w i t h here, a c h e m i c a l l y m o d i f i e d film c a n b e r e c o v e r e d f r o m the interface a n d separated i n t o its m o l e c u l a r constituents, e a c h of w h i c h c a n t h e n b e q u a n t i t a t e d a n d c h a r a c t e r i z e d . S u c h is n o t the case w h e r e a t t a c h m e n t is m a d e to a b u l k material. Since the monolayer
film
can be transferred from the
gas-water
i n t e r f a c e o n t o a v a r i e t y of s o l i d s u p p o r t s , t h e w e l l - k n o w n surface a n a l y s i s t e c h n i q u e s m e n t i o n e d e a r l i e r c a n b e u s e d for c h a r a c t e r i z i n g these as w e l l .
films
I n some instances, s u c h a p r o c e d u r e w o u l d a l l o w q u a n t i t a t i v e
c a l i b r a t i o n of the surface analysis because t h e exact a m o u n t of m a t e r i a l t r a n s f e r r e d to t h e s o l i d surface is k n o w n . T h e efficiency of procedures
subsequent
to p h y s i c a l l y a d s o r b or c o v a l e n t l y a t t a c h s i m i l a r b u t n o n
s u r f a c t a n t modifiers to this s o l i d surface b y other means c o u l d b e d e t e r m i n e d d i r e c t l y b y reference to the m o n o l a y e r
experiment.
F u r t h e r , t h e response of a s p e c i a l l y t a i l o r e d surfactant, say t o p H as o b s e r v e d b y o p t i c a l spectroscopy, i n a m o n o l a y e r at t h e w e l l - c h a r a c t e r i z e d g a s - w a t e r i n t e r f a c e c o u l d b e u s e d to p r o b e t h e same surface p r o p e r t y of less k n o w n m a t e r i a l s ( i n this case, necessarily t r a n s p a r e n t to t h e o p t i c a l r a d i a t i o n u s e d ) u p o n t r a n s f e r r i n g the m o n o l a y e r t o t h a t surface. I n s u p p o r t of t h e p r e c e e d i n g statements, I s h o u l d l i k e to work done i n characterizing monolayer
films
and chemical
describe reactions
o c c u r r i n g i n t h e m at t h e g a s - w a t e r i n t e r f a c e a n d o n s o l i d surfaces
by
c l a s s i c a l t e c h n i q u e s as w e l l as b y a p p l y i n g n e w e r a n a l y t i c a l m e t h o d s
to
detect a n d q u a n t i t a t e the s m a l l a m o u n t s of m a t e r i a l c o n t a i n e d t h e r e i n . W h i l e no n e w photochemistry mediated b y monolayers w i l l be discussed, a s t r i k i n g e x a m p l e of h o w c o n s t r a i n i n g a m o l e c u l e to a n i n t e r f a c e alters its p h o t o p h y s i c a l b e h a v i o r w i l l b e p r e s e n t e d .
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
5.
VALENTY
Surfactant
Monolayer
71
Films
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch005
Experimental T h e synthesis a n d c h a r a c t e r i z a t i o n of C o m p o u n d s I - X h a v e b e e n described (1,2,3). Stearaldehyde ( S t A l d ) (Supelco, 9 9 + % ) , stearyl a l c o h o l ( S t O H ) ( S i g m a , 9 8 % ) , p o l y - l - l y s i n e ( P L ) (as H B r salt, S i g m a ) , 3-methyl-2-benzothiazolinone hydrazone hydrochloride (reagent, A i d r i c h ) , s o d i u m b o r o h y d r i d e ( A l d r i c h ) , i n o r g a n i c reagents ( a n a l y t i c a l g r a d e ) , a n d o r g a n i c solvents ( B u r d i c k a n d J a c k s o n ) w e r e u s e d w i t h o u t further purification. T r i p l y distilled water from a quartz still was used i n the p r e p a r a t i o n of the m o n o l a y e r s u b p h a s e solutions. M o n o l a y e r s of S t A l d a n d m e t h y l e n e b l u e / r u t h e n i u m b i p y r i d y l s u r f a c t a n t c o m p l e x e s w e r e s p r e a d f r o m d i l u t e n-hexane a n d c h l o r o f o r m solutions, r e s p e c t i v e l y . S u r f a c e p r e s s u r e - a r e a isotherms ( I ) , surface v i s c o s i t y ( 4 ) , o p t i c a l s p e c t r o m e t r y of g l a s s - s u p p o r t e d m o n o l a y e r s ( J ) , e m i s s i o n s p e c t r o m e t r y of m o n o l a y e r s at the a i r - w a t e r i n t e r f a c e ( I ) , h i g h - p e r f o r m a n c e l i q u i d c h r o m a t o g r a p h i c ( H P L C ) analyses ( 5 ) , v a p o r - p h a s e c h r o m a t o g r a p h y ( V P C ) analyses f o r H d i s s o l v e d i n w a t e r ( 6 ) a n d f o r S t A l d / S t O H ( 4 ) were done using apparatus a n d procedures previously described. T h e F o u r i e r t r a n s f o r m I R ( F T I R ) s p e c t r a of m o n o l a y e r s or I o n h y d r o p h i l i c g e r m a n i u m a t t e n u a t e d t o t a l reflectance ( A T R ) plates ( H e r r i c k Scientific, 50 X 20 X 1 m m , 0 = 4 5 ° , single-pass p a r a l l e l - p i p e d , 50 reflections) w e r e r e c o r d e d w i t h a N i c o l e t 7199. T h e A T R - I R s p e c t r a of the S t A l d P L system w e r e o b t a i n e d as d e s c r i b e d e a r l i e r ( 4 ) . T h e field d e s o r p t i o n mass s p e c t r a ( F D M S ) w e r e r e c o r d e d o n a V a r i a n - M a t 731 mass spec t r o m e t e r . T h e c o n s t r u c t i o n d e t a i l s a n d o p e r a t i o n of t h e m u l t i c o m p a r t m e n t t r o u g h have been discussed elsewhere ( 7 ) . 2
Results and
Discussion
Chemical Reactions and the Multicompartment Monolayer T r o u g h . T h e m e c h a n i c s of p e r f o r m i n g a c h e m i c a l r e a c t i o n o n a m o n o l a y e r
film
r e q u i r e s e v e r a l o p e r a t i o n s : ( a ) t h e film m u s t b e s p r e a d at t h e g a s - w a t e r i n t e r f a c e a n d c o m p r e s s e d t o t h e d e s i r e d surface p r e s s u r e ; ( b )
the reac
t i o n m u s t o c c u r u n d e r c o n d i t i o n s w h e r e t h e surface pressure c a n
be
m o n i t o r e d a n d h e l d constant
be
if desired;
(c)
the reaction must
q u e n c h e d to o b t a i n a c h e m i c a l l y stable s y s t e m s u c h t h a t later analysis w i l l reflect t h e c o m p o s i t i o n of t h e film w h i l e i t w a s s t i l l at the g a s - w a t e r interface; a n d ( d )
t h e film m u s t b e r e c o v e r e d as q u a n t i t a t i v e l y as p o s
s i b l e f r o m t h e i n t e r f a c e . I n o r d e r to satisfy these r e q u i r e m e n t s , a m u l t i c o m p a r t m e n t t r o u g h has b e e n u s e d t o a l l o w a series of c h e m i c a l reactions to b e p e r f o r m e d u p o n a w e l l - d e f i n e d m o n o l a y e r . T h e m u l t i c o m p a r t m e n t t r o u g h u s e d h e r e is s h o w n i n F i g u r e 1. t r o u g h s u b p h a s e is d i v i d e d i n t o a n u m b e r of i n d i v i d u a l
The
compartments
b y s u b m e r g e d h y d r o p h i l i c glass b a r r i e r s t h a t e x t e n d t h e w i d t h of t h e t r o u g h a n d are c o v e r e d b y c a . 0.5 c m w a t e r . T h e s e v e r a l c o m p a r t m e n t s can
be
filled
and emptied independently.
Surfactant monolayers
are
c o n s t r a i n e d b e t w e e n t h e h y d r o p h o b i c sides of t h e t r o u g h a n d t w o m o t o r -
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
COMPARTMENT
10 20 SCALE (cm)
DIPPING WELL'
0
- 76 cm i
ABLE SURFACE BARRIERS -
Multicompartment
WASH
monolayer
COMPARTMENT 2 TROUGH SIDE WALLS
SUPPORT TABLE
WASH
• DIPPING WELL
COMPARTMENT 3
61 cm
^BARRIER DRIVE CABLE
trough
VcUBSl -SUBSURFACE COMPARTMENT WALLSHSaHh 61cm Hhl5cmHK
Figure 1.
ACRYLIC TROUGH BASE
WILHELMY PLATE-LVOT ASSEMBLY
tut
BARRIER OISTANCE POTENTIOMETER ASSEMBLY
TROUGH SIDE WALLS
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch005
/
BARRIER DRIVE \ - CABLE- MOTOR ASSEMBLY
50.9 cm
w CO
» o o w
x
Q >
to
5.
VALENTY
Surfactant
Monolayer
73
Films
i z e d h y d r o p h o b i c surface barriers w h i c h c a n be d r i v e n independently to c o n t r o l t h e surface pressure (as m e a s u r e d b y a W i l h e l m y b a l a n c e )
or
s i m u l t a n e o u s l y t o l a t e r a l l y t r a n s p o r t t h e film at c o n s t a n t a r e a f r o m t h e surface of one c o m p a r t m e n t t o a n o t h e r o v e r t h e s u b m e r g e d b a r r i e r . Borohydride Reduction of S t A l d . b y aqueous N a B H
4
T h e r e d u c t i o n of S t A l d t o S t O H
i l l u s t r a t e s t h e use of t h i s t r o u g h . A m o n o l a y e r of
S t A l d (3.2 /xmol, 0.86 m g )
was formed on Compartment 1 containing
5.0 X 1 0 " M b o r a t e buffer ( p H 9.0) a n d c o m p r e s s e d t o n — 3
10 d y n / c m .
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch005
T h e film w a s m o v e d t o C o m p a r t m e n t 2 ( t r a n s f e r t i m e , 1 m i n ) , w h i c h c o n t a i n e d f r e s h l y p r e p a r e d 1.0 X 1 0 ' M N a B H 2
4
i n a q u e o u s b o r a t e buffer.
A f t e r 30 m i n , t h e film w a s m o v e d b a c k t o C o m p a r t m e n t 1, c o m p r e s s e d u n t i l i t c o l l a p s e d i n t o t h r e a d s , s c r a p e d off t h e surface a n d d i s s o l v e d i n c h l o r o f o r m . V P C a n a l y s i s i n d i c a t e d S t O H c o r r e s p o n d i n g t o 84 m o l % the initially spread S t A l d w i t h 1 m o l % e x p e r i m e n t s h a v e s h o w n 85 ±
unreduced aldehyde.
of
Control
2 m o l % r e c o v e r y of e i t h e r t h e o r i g i n a l
S t A l d s p r e a d a n d m a n i p u l a t e d i n t h e a b s e n c e of N a B H
4
or the S t O H
s p r e a d a n d m a n i p u l a t e d i n t h e presence of N a B H . 4
Sequential Chemical Reactions.
A m o r e c o m p l e x series of r e a c t i o n s
is s h o w n b y t h e c o v a l e n t a t t a c h m e n t of a d y e t o a p r e f o r m e d m o n o l a y e r film.
I n t h e presence of a n a l d e h y d e a n d f e r r i c c h l o r i d e , 3 - m e t h y l - 2 - b e n -
z o t h i a z o l i n o n e h y d r a z o n e ( M B T H ) forms a d e e p - b l u e - c o l o r e d c a t i o n v i a o x i d a t i v e c o u p l i n g of t h e i n i t i a l l y f o r m e d a l d i m i n e w i t h a s e c o n d of M B T H
(8,9).
CH
+
3
QCs>= N
MBTH
N H
^
+
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
mole
74
INTERFACIAL
PHOTOPROCESSES
A m o n o l a y e r of S t A l d (3.0 / r n i o l ) w a s f o r m e d o n 5 X buffer ( p H 9 ) i n C o m p a r t m e n t 1 a n d c o m p r e s s e d The
film
MBTH
=
(n
1 0 " M borate 3
10
dyn/cm).
w a s s h i f t e d o n t o t h e surface of C o m p a r t m e n t 2 c o n t a i n i n g (1.1 X
1 0 M i n p H 9 borate buffer)
a n d a l l o w e d to s t a n d f o r
- 2
30 m i n . T h e film w a s r e t u r n e d to C o m p a r t m e n t 1, c o m p r e s s e d to c o l l a p s e t h e film i n t o w h i t e t h r e a d s , a n d s c r a p e d off t h e surface t o g i v e a h o m o geneous s o l u t i o n i n C C 1 . V P C analysis s h o w e d less t h a n 0.5 m o l
%
4
u n r e a c t e d S t A l d a n d t w o m a j o r c o m p o n e n t s e l u t i n g at m u c h l o n g e r r e
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch005
tention times.
VPC-MS
(mass spectrometry)
c o m p o n e n t s h a v e the same m o l e c u l a r i o n (m/e
s h o w e d t h a t these
two
= 420) a n d f r a g m e n t a t i o n
patterns s i m i l a r to the f o r m a t i o n of i s o m e r i c i m i n e s . I n a s e c o n d r e a c t i o n u s i n g i d e n t i c a l c o n d i t i o n s , the film is s h i f t e d f r o m t h e M B T H c o n t a i n i n g subphase directly (no intervening w a s h compartment) freshly prepared w i t h F e C l
3
onto a subphase
d i s s o l v e d i n d i s t i l l e d w a t e r (1.8 X
10" M). 3
A f t e r s t a n d i n g 30 m i n , t h e film is c o l l a p s e d ( a b l u e c o l o r a t i o n is a p p a r e n t ) a n d s c r a p e d off t h e surface to g i v e a d e e p - b l u e h o m o g e n e o u s s o l u tion i n C H C 1 . V P C analysis i n d i c a t e d 3 m o l % S t A l d unreacted a n d the 3
v i s i b l e a b s o r p t i o n s p e c t r u m s h o w e d a m a x i m u m at 673 n m w i t h a s h o u l d e r at 630 n m (1.00:0.83 o.d. r a t i o ) as r e p o r t e d for s i m i l a r c o m p o u n d s (8,9). Using
c
6 7 3
=
5.2 X
1 0 f r o m the l i t e r a t u r e ( 8 ) , t h e y i e l d of t h e 4
r e a c t i o n is 9 m o l % b a s e d o n S t A l d . T h e b l u e c o l o r c a n b e b l e a c h e d b y dithionite a n d recovered b y F e
3 +
oxidation. Since the i m i n e appears to be
p r o d u c e d i n h i g h y i e l d i n the initial reaction a n d remains i n the b l u e c o l o r e d f i l m b y V P C a n a l y s i s , its c o n v e r s i o n to the r e l a t i v e l y l a r g e r s t r u c t u r e of the d y e c a t i o n is l i m i t i n g o v e r a l l r e a c t i o n y i e l d . I n c r e a s i n g t h e surface a r e a a v a i l a b l e p e r m o l e c u l e b y u s i n g o n e - t h i r d the a m o u n t S t A l d i n c r e a s e d t h e y i e l d of d y e c a t i o n to c a . 1 5 % . T h e taining monolayer
film
can be
transferred w i t h the
of
dye-cation-con two-dimensional
s t r u c t u r e i n t a c t to a glass s l i d e a n d its a b s o r p t i o n s p e c t r u m c a n b e r e corded.
T h e v i s i b l e s p e c t r u m of t h e d y e c a t i o n i n t h e m o n o l a y e r
is
c o m p a r e d w i t h t h a t i n h o m o g e n e o u s s o l u t i o n i n F i g u r e 2. Polycondensation Chemistry.
I n an experimental approach seeking
t o synthesize p l a n a r , u l t r a t h i n p o l y m e r films possessing r u b b e r e l a s t i c i t y a n d f u n c t i o n a l sites t h a t m i g h t p r o v e u s e f u l i n m o d e l l i n g b i o l o g i c a l m e m b r a n e s t r u c t u r e a n d selective t r a n s p o r t c a p a b i l i t y , p o l y c o n d e n s a t i o n r e a c tions i n m o n o l a y e r
films
obtain such a
grafts s u r f a c t a n t m o n o m e r s of
monolayer
film
were studied (4).
T h e s y n t h e t i c strategy
to
StAld formed i n a
array onto linear, b u t r a n d o m l y coiled, water-soluble
PL
c h a i n s . A sufficient n u m b e r of u n r e a c t e d l y s y l a m i n o g r o u p s are left t o f o r m the interchain crosslinkage u p o n further condensation w i t h a d i a l d e h y d e s u c h as g l u t a r a l d e h y d e . T h u s , t h e t w o d i m e n s i o n a l surface a c t i v e n e t w o r k is a c h i e v e d . T h e m e a s u r e m e n t of i n t r i n s i c v i s c o s i t y p r o v i d e s a c o n v e n i e n t i n d i c a t i o n of b u l k - p h a s e p o l y m e r i z a t i o n s . M o s t of t h e l i t e r a t u r e c l a i m i n g t o
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
2
710
2
s
674
3
s
4
652
Figure 2. Absorption spectra of StAld-MBTH reaction product as a monohyer coating both sides of a hydrophilic glass slide ( , transferred from 1.8 X 10~ M FeCl at Π = 30 dyn/cm, A = 5.6 X JO" , A = 4.5 X 10' ); and in CHCl solution ( , ε = 5.2 X J O , intensity arbitrarily scaled).
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch005
1
150
200 60 100 AREA, A / MOLECULE
^
X
PHOTOPROCESSES
I ^.
U
150
200
2
Figure
11.
II-A curves for I and IX on aqueous subphases 0.01 M in NaX, 22-24°C
strongly condensing
counterions
(e.g.
C 1 0 " ) , s o m e surface 4
pressure
d e c a y is o b s e r v e d after r a p i d c o m p r e s s i o n to h i g h n a n d t h e r e is a s m a l l a m o u n t of c o m p r e s s i o n - e x p a n s i o n hysteresis i n c y c l i n g . T h i s hysteresis is l a r g e l y r e v e r s i b l e , since a s e c o n d c o m p r e s s i o n c u r v e close a p p r o x i mates t h e i n i t i a l c o m p r e s s i o n .
F o r t h e ions e x h i b i t i n g i n t e r m e d i a t e b e
h a v i o r ( S C N " , I " ) , there is also some hysteresis, b u t t h e shape of compression
c u r v e persists w i t h e x p a n s i o n a n d r e c o m p r e s s i o n
the
cycles.
A l t h o u g h t h e i r m o l e c u l a r areas are a p p r o x i m a t e l y t w i c e as l a r g e , t h e r u t h e n i u m surfactants h a v e n - A curves s i m i l a r i n shape to a n d s h o w i n g t h e same c o u n t e r i o n specificity as those of s u c h s i n g l y c h a r g e d c a t i o n i c surfactants as d o c o s y l t r i m e t h y l a m m o n i u m b r o m i d e
(18).
W h e n films of I are s p r e a d o n m i x e d c h l o r i d e - p e r c h l o r a t e solutions, a h i g h s e l e c t i v i t y is o b s e r v e d .
T h u s , the curve on 10" M C I " + 2
C I C V is i d e n t i c a l to t h a t o n C 1 C V a l o n e ; f o r 1 0 " M C I " + 2
10~ M 3
10" M C10 " a 4
4
s m a l l e x p a n s i o n at n < 5 d y n / c m occurs, b u t at h i g h e r n t h e c u r v e a g a i n
I X m a t c h e s t h a t o n C 1 0 " ; o n 1 0 " M C I " + 1 0 " M CIO4", t h e c o m p r e s s i o n c u r v e agrees w i t h t h a t o b t a i n e d o n C I " a l o n e , b u t a hysteresis l o o p is o b s e r v e d o n e x p a n s i o n i n t h e r a n g e 30 > n > 17 d y n / c m . 4
2
5
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
5.
VALENTY
Surfactant
Monolayer
Films
89
T h e s p e c i f i c i t y o f these d o u b l y c h a r g e d c o m p l e x e s f o r CIO4" o v e r C I " c a n also b e d e m o n s t r a t e d b y F T I R analysis o f m o n o l a y e r films o f I t r a n s f e r r e d off m i x e d a n i o n subphases
onto h y d r o p h i l i c g e r m a n i u m A T R
plates. A s s h o w n i n F i g u r e 12, e v e n a t C 1 0 " : C 1 " — 1:1000, t h e a b s o r p 4
t i o n a t 1100 c m "
1
attributable t o C 1 0 " is observed. 4
L i t t l e difference i n
r e l a t i v e intensities o f t h e C 1 C V is n o t e d f o r C 1 0 " : C 1 " > 1:100. 4
T h e more tightly b o u n d nature of
CIO4"
r e l a t i v e t o C I " is e m p h a s i z e d
i n t h e field d e s o r p t i o n mass s p e c t r a ( F D M S ) o f s o l i d I X as b o t h t h e Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch005
p e r c h l o r a t e a n d c h l o r i d e salt (see F i g u r e 1 3 ) . T h e m o l e c u l a r i o n o f t h e c h l o r i d e salt s h o w s t h e loss o f b o t h a n i o n s ; t h e m o l e c u l a r i o n o f t h e p e r c h l o r a t e c o m p o u n d shows o n l y a loss o f one a n i o n . MONOLAYER L
LIGHT
Ge
CRYSTAL MONOLAYER
~7~
;c*o
DETECTOR
CIO4"
SUBPHASE ciof/cr c r ONLY
M000
M00
:|0
CIO4" ONLY Ru(C00C|8)(CI)2 2
ir=30 DYN/CM 3000 2900 2800 1800 1700 1600 1200 1100 1000 WAYENUMBERS
2 1 #
c
Figure 12. Partial FTIR of I transferred from 10~ M NaCI, I 0 M NaCI/ 10~ M NaClO , I0~ M NaCl/10~ M NaClO 10 M NaCl/l&M NaClO and 10~ M NaClO aqueous subphases at IT = 30 dyn/cm, 2VC as a single monolayer on both sides of a hydrophilic Ge ATR plate. 3
6
3
h
3
5
k9
3
3
k
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
h
Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch005
90
INTERFACIAL
i
r
i
1090
92
94
•
i
96
1
1
r
1
1
98
1100
02
04
06
PHOTOPROCESSES
r—
5
08 1110
MASS
Ru (C,.) (CI0 ) -1 CI0 2
'
i
1190
4
l
2
4
*
l
92
94
I
l
96
98
\
1200
1
1
02
04
"
MASS Figure 13.
FDMS
T
06
of the perchlorate and chloride salts of solid IX
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
"
^
5.
VALENTY
Surfactant
LUMINESCENCE.
Monolayer
91
Films
T h e m o s t s t r i k i n g effect of c o u n t e r i o n s is t h e i r m a j o r
i n f l u e n c e o n m o n o l a y e r l u m i n e s c e n c e at t h e a i r - w a t e r i n t e r f a c e (see ure
14).
Fig
S u c h differences are u n i q u e t o t h e i n t e r f a c e a n d are n o t f o u n d
e i t h e r i n h o m o g e n e o u s a q u e o u s o r g a n i c solutions of I ( o r I X ) w i t h a d d e d salts or i n w h o l l y aqueous solutions of I I a n d I I I at levels of 4M K C 1 a n d N a C 1 0 . B e c a u s e of t h e i n a b i l i t y to estimate t h e q u a n t u m y i e l d of l u m i 4
nescence i n t h e m o n o l a y e r fluorimeter, i t is not p o s s i b l e t o d e c i d e w h e t h e r t h e difference i n l u m i n e s c e n c e i n t e n s i t y results f r o m a r e d u c t i o n i n y i e l d b y ions s u c h as C I " , or a n e n h a n c e m e n t b y C 1 0 " , as c o m p a r e d w i t h y i e l d s Downloaded by UNIV OF CALIFORNIA SAN DIEGO on April 5, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch005
4
i n o t h e r e n v i r o n m e n t s . T h e l a r g e solvent effects o n l u m i n e s c e n c e y i e l d of Ru(bpy)
3
2 +
d e r i v a t i v e s (19,20,21)
suggest t h a t t h e e n v i r o n m e n t c h a n g e
i n d u c e d b y i n t e r a c t i o n w i t h t h e s t r o n g l y c o n d e n s i n g C 1 0 * ions m i g h t 4
e n h a n c e l u m i n e s c e n c e . A n o t h e r case of a n i o n a l t e r a t i o n ( i n c r e a s e d l i f e t i m e , r e d u c e d n o n r a d i a t i v e d e c a y r a t e ) of l u m i n e s c e n c e p r o p e r t i e s for a t r a n s i t i o n m e t a l b i p y r i d y l c o m p l e x has b e e n
reported recently
(22),
a l t h o u g h since i n t h a t s i t u a t i o n a different t y p e of e x c i t e d state is affected and
t h e effect is o b s e r v e d i n aqueous s o l u t i o n , t h e observations m a y b e
unrelated. Forster theory calculations based on the small overlap between ab s o r p t i o n a n d e m i s s i o n s p e c t r a of I i n C H C 1 c e n c e q u a n t u m y i e l d , — L
R
0
=
solution (using a lumines
3
0.18) leads to a n e n e r g y transfer d i s t a n c e ,
15 A ( I f this v a l u e is c o r r e c t e d f o r t h e m o n o l a y e r e n v i r o n m e n t b y
i n t r o d u c i n g