26 Characterization of Mixed-Metal Catalysts by Iron-57 and Ruthenium-99 Mössbauer
Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
Spectroscopy M . L. GOOD , M. D. PATIL, J. T . DONNER, and C. P. MADHUSUDAHAN 1
2
Division of Engineering Research, Louisiana State University, Baton Rouge, LA 70803
99
Iron-57 and Ru Mössbauer spectroscopy have been used to assess the chemical composition of an iron-ruthenium bimetallic catalyst system as a function of preparation and treatment. Supplementary data from ESCA spectroscopy and x-ray powder diffraction made it possible to completely characterize the material from the initial salt mixture through a hydrogen reduction and a subsequent calcination step. RuCl • xH O and FeSO • xH O were mixed in a 1:2 mole ratio in the solid state, slurried with a small amount of water, and evaporated to dryness. The product contained a mixture of iron(II) and iron(III) salts and some anhydrous RuCl . This material was reduced under flowing H at 400°C for 4 h. Surprisingly, the "reduced" product con tained ruthenium metal, RuO , bulk γ-Fe O (some FeS), and a fraction of small-particle paramagnetic γ-Fe O . After calcination the product was unchanged except for the loss of the FeS and an increase in the average particle size. The study indicates the special application of Ru Mössbauer spectroscopy to such solid-state problems and the extra versatility gained by "double Mössbauer labeling." 3
2
h
2
3
2
2
2
3
2
3
99
r
phe
complete physical a n d chemical
description
o f heterogeneous
m e t a l l i c catalysts a n d t h e r e l a t i o n s h i p b e t w e e n t h e i r p r o p e r t i e s a n d t h e i r c a t a l y t i c a c t i v i t y has b e c o m e t h e g o a l o f n u m e r o u s groups of i n v e s t i Current address: Universal Oral Products, Inc., Des Plaines, IL 60016. * Current address: Englehard Industries Division, Menlo Park, Edison, NJ 08817. 1
0065-2393/81 /0194-0553$05.00/0 © 1981 American Chemical Society In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
554 gators.
MOSSBAUER
S P E C T R O S C O P Y A N D ITS C H E M I C A L A P P L I C A T I O N S
T h e o v e r a l l t h e m e of t h e i r w o r k is to u n d e r s t a n d b e t t e r
interrelationships among
electronic
a n d c a t a l y t i c a c t i v i t y so t h a t m o r e effective rather than discovered.
the
structures, p h y s i c a l c h a r a c t e r i s t i c s , catalysts c a n be
designed
S i n c e most heterogeneous c a t a l y s t systems are
c o m p l e x solid-state m i x t u r e s of m e t a l a n d s u p p o r t , t h e c o m p l e t e
descrip
t i o n i n b o t h c h e m i c a l a n d p h y s i c a l terms is v e r y difficult, i f n o t i m p o s s i b l e to a c h i e v e .
H o w e v e r , d u r i n g the p a s t d e c a d e n e w p h y s i c a l tools
have
b e c o m e a v a i l a b l e to p r o b e these m a t e r i a l s , a n d o u r d e t a i l e d k n o w l e d g e of t h e i r m o l e c u l a r a n d solid-state structures is i m p r o v i n g at a r a p i d rate. E l e c t r o n m i c r o s c o p y has b e c o m e a r o u t i n e t o o l ( j o i n i n g t h e l o n g a v a i l a b l e Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
x-ray diffraction techniques)
f o r accessing t h e p h y s i c a l state of
hetero
geneous catalysts, a n d t h e i m p r o v e m e n t i n r e s o l u t i o n d o w n to a
few
angstroms has m a d e i t p o s s i b l e to "see" e v e n s m a l l clusters of m e t a l atoms highly dispersed
on
a support
material ( 1 , 2 ) .
New
and
improved
spectroscopic t e c h n i q u e s , p a r t i c u l a r l y E S C A , A u g e r , a n d m a g n e t i c reso nance
methods,
are n o w
used
r o u t i n e l y for
probing
the
electronic
p r o p e r t i e s a n d e l e m e n t a l c o m p o s i t i o n of t h e surface a n d b u l k of s u p p o r t e d a n d m i x e d - m e t a l catalysts (3,4,5).
A r e l a t i v e l y recent a d d i t i o n to t h i s
arsenal of p h y s i c a l m e t h o d s is M o s s b a u e r spectroscopy,
w h i c h can pro
v i d e u n i q u e i n f o r m a t i o n i n s p e c i a l cases i n v o l v i n g a m e t a l h a v i n g a nucleus
t h a t is
Mossbauer
active.
The
utility
of
this m e t h o d
has
p r o g r e s s e d to t h e p o i n t w h e r e M o s s b a u e r spectroscopy is i n c l u d e d i n a n y g e n e r a l d i s c u s s i o n of spectroscopic m e t h o d s for e v a l u a t i n g heterogeneous catalyst systems (6).
I n those cases w h e r e i t is a p p l i c a b l e , this t e c h n i q u e
has several advantages f o r heterogeneous c a t a l y s t c h a r a c t e r i z a t i o n . I t is b a s i c a l l y a solid-state m e a s u r e m e n t w h i c h i n the t r a n s m i s s i o n m o d e c a n p e n e t r a t e s o l i d substrates t h a t are o p a q u e to energies i n t h e o p t i c a l or v i b r a t i o n a l s p e c t r a l ranges, a n d i n t h e b a c k s c a t t e r m o d e c a n
provide
i n f o r m a t i o n a b o u t surface species. T h e m e t h o d p r o v i d e s c h e m i c a l s p e c i a tion information t h r o u g h "fingerprint" spectra, a n d structural a n d particle size information b y
analysis of
quadrupole
splitting parameters
and
m a g n e t i c s p e c t r a . U s e d i n c o n j u n c t i o n w i t h other m e t h o d s s u c h as E S C A , x-ray, a n d electron
diffraction, Mossbauer
spectroscopy
can
provide
d e f i n i t i v e c h e m i c a l a n d p h y s i c a l p a r a m e t e r s f o r heterogeneous c a t a l y s t systems, b o t h s u p p o r t e d a n d u n s u p p o r t e d .
P a r t i c u l a r l y significant meas
u r e m e n t s c a n b e m a d e i n those f e w cases w h e r e m i x e d - m e t a l catalysts c o n t a i n m o r e t h a n one M o s s b a u e r - a c t i v e n u c l i d e . T h i s c h a p t e r reports t h e results of s u c h a case w h e r e a n u n s u p p o r t e d catalyst system of i r o n a n d r u t h e n i u m w a s c h a r a c t e r i z e d as a f u n c t i o n of catalyst t r e a t m e n t .
Bimetallic Catalyst Systems—The Special Case of Ruthenium—Iron U n t i l q u i t e r e c e n t l y , m o s t b i m e t a l l i c o r a l l o y catalysts h a v e b e e n b u l k m a t e r i a l s w i t h l o w surface areas, u s u a l l y f o r m u l a t e d as p r e s s e d
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
26.
GOOD
E T
Mixed-Metal
AL.
p o w d e r s , w i r e s , or foils.
555
Catalysts
H o w e v e r , the ever i n c r e a s i n g n e e d f o r m o r e
efficient a n d m o r e selective catalysts has s t i m u l a t e d a n u m b e r of studies of b i m e t a l l i c m a t e r i a l s of h i g h surface area d i s p e r s e d o n a v a r i e t y of supports. M o s s b a u e r s p e c t r o s c o p y has b e e n e s p e c i a l l y effective i n d e t e r m i n i n g the c h e m i c a l states of these d i s p e r s e d m a t e r i a l s w h e r e techniques provide only l i m i t e d information. t h e p l a t i n u m - i r o n alloys o n g r a p h i t e ( 7 ) ;
I l l u s t r a t i v e examples
other are
t h e p a l l a d i u m - i r o n alloys o n
a l u m i n a ( 8 , 9 ) ; the r u t h e n i u m - i r o n alloys o n s i l i c a ( 1 0 ) ; a n d the n i c k e l i r o n alloys o n s i l i c a
(11,12,13).
I n e a c h case, o n l y i r o n
Mossbauer
s p e c t r o s c o p y w a s c a r r i e d out, a n d the c h e m i c a l state of the s e c o n d m e t a l Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
w a s i n f e r r e d f r o m t h e i r o n d a t a or d e t e r m i n e d b y other, u s u a l l y less definitive, methods. T h e M o s s b a u e r d a t a p r o v i d e d a d d i t i o n a l i n f o r m a t i o n of c a t a l y t i c significance b y e x h i b i t i n g s u p e r p a r a m a g n e t i c spectra associ a t e d w i t h the v e r y s m a l l p a r t i c l e s d i s p e r s e d o n the supports. A n analysis of this feature of the v a r i o u s spectra a l l o w e d the d e t e r m i n a t i o n of t h e p a r t i c l e sizes of
the active catalyst m a t e r i a l s .
The
success of
these
studies, a n d p a r t i c u l a r l y the i n f o r m a t i o n o b t a i n e d f r o m just the i r o n M o s s b a u e r spectra f o r the r u t h e n i u m - i r o n system, suggested t h a t s i m i l a r studies w h e r e b o t h metals w e r e s u s c e p t i b l e to M o s s b a u e r s p e c t r a l analysis m i g h t be
quite productive
and indeed, might have
the potential to
e l i m i n a t e c e r t a i n a m b i g u i t i e s left b y the fact t h a t so f a r o n l y the i r o n i n t h e b i m e t a l l i c m i x t u r e s has b e e n s t u d i e d . S e v e r a l classic studies u s i n g other M o s s b a u e r - a c t i v e n u c l e i to s t u d y alloys h a v e b e e n r e p o r t e d , a l t h o u g h i n g e n e r a l these h a v e b e e n d i r e c t e d t o w a r d u n d e r s t a n d i n g the e l e c t r o n i c effects i n p u r e m e t a l l i c alloys i n s t e a d of f o l l o w i n g the c h e m i c a l a n d p h y s i c a l changes that o c c u r d u r i n g t h e p r e p a r a t i o n a n d m a n i p u l a t i o n of catalyst m a t e r i a l s . T h e e l e c t r o n i c a n d m a g n e t i c p r o p e r t i e s of the h i g h - p r e s s u r e h e x a g o n a l phase of i r o n ( c phase) have been probed by alloying iron w i t h ruthenium and osmium, a n d o b s e r v i n g t h e i r o n M o s s b a u e r spectra (14,15,16).
S i m i l a r studies to
observe i n t e r n a l h y p e r f i n e fields a n d a l l o y electronic structures h a v e b e e n c a r r i e d out o n i r o n - r h o d i u m alloys alloys (19,20).
a n d other
(17,18)
ferromagnetic
A f e w systems h a v e b e e n i n v e s t i g a t e d b y p r o b i n g w i t h
other M o s s b a u e r n u c l e i . I r o n - p l a t i n u m alloys h a v e b e e n s t u d i e d b o t h i n t r a n s m i s s i o n a n d b a c k s c a t t e r experiments u s i n g t h e 9 9 - k e V t r a n s i t i o n in
1 9 5
Pt
(21,22,23).
T h e results of these
studies h a v e p r o v i d e d
the
necessary d a t a for c o n s t r u c t i n g a n d e v a l u a t i n g t h e o r e t i c a l m o d e l s of t h e e l e c t r o n i c s t r u c t u r e of these alloys at the a t o m i c l e v e l , a n d h a v e a l l o w e d t h e d e d u c t i o n of the m e c h a n i s m of t r a n s f e r r e d h y p e r f i n e fields i n these m a t e r i a l s . O n e s i m i l a r s t u d y has b e e n r e p o r t e d u s i n g the 7 3 - k e V M o s s bauer line in
1 9 3
I r for o b s e r v i n g the h y p e r f i n e
i r i d i u m alloys (24).
field
in iron-platinum-
T h e s e reports i n d i c a t e the p o t e n t i a l u t i l i t y of t h e
M o s s b a u e r effect i n p r o b i n g t h e c h e m i s t r y , m a g n e t i c
properties,
p a r t i c l e s t r u c t u r e of " d o u b l e - l a b e l e d " b i m e t a l l i c systems.
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
and
556
MOSSBAUER
S P E C T R O S C O P Y A N D ITS C H E M I C A L A P P L I C A T I O N S
T h e p r o v e n u t i l i t y of the " R u M o s s b a u e r p r o b e f o r assessing t h e c o m p l e x c h e m i s t r y of a v a r i e t y of r u t h e n i u m c o m p o u n d s
(25)
d e s c r i b i n g the c h e m i c a l transformations t h a t a c c o m p a n y
various treat
a n d for
ments of r u t h e n i u m species o n c a t a l y t i c supports ( 2 6 - 2 9 ) w o u l d i n d i c a t e t h a t i t m a y be a n u c l i d e of c h o i c e f o r e x a m i n i n g b i m e t a l l i c catalysts i n g e n e r a l . T h i s is q u i t e fortuitous since b o t h i r o n a n d r u t h e n i u m a r e k n o w n to
be
effective
F i s c h e r - T r o p s c h catalysts
(30),
and
their bimetallic
systems e x h i b i t i n t e r e s t i n g s e l e c t i v i t y i n h y d r o c a r b o n p r o d u c t i o n CO/H
(10,31)
2
systematic
and i n nitrogen
s t u d y of
both
T h i s c h a p t e r represents t h e first c o m p l e t e
s t u d y of a n u n s u p p o r t e d system w h e r e b o t h spectroscopy
from
Thus w e have begun a
(32).
i r o n - r u t h e n i u m b i m e t a l l i c c a t a l y s t systems,
supported and unsupported. Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
fixation
5 7
F e and " R u Mossbauer
h a v e b e e n a p p l i e d to the same samples.
i n f o r m a t i o n f r o m E S C A spectroscopy
Supplementary
a n d x - r a y d i f f r a c t i o n has m a d e i t
p o s s i b l e to define c o m p l e t e l y the solid-state reactions t h a t a c c o m p a n y t h e p h y s i c a l a n d c h e m i c a l t r e a t m e n t of the b i m e t a l l i c m a t e r i a l s . P r e l i m i n a r y results of a s i m i l a r s t u d y o n the b i m e t a l l i c system o n a z e o l i t e s u p p o r t h a v e b e e n r e p o r t e d separately
(33).
Details of the Acquisition and Interpretation of "Ru Mossbauer Spectra T h e e x p e r i m e n t a l c o n d i t i o n s necessary f o r the c o l l e c t i o n of quality
5 7
good-
F e M o s s b a u e r d a t a a n d m e t h o d s for t h e i r subsequent i n t e r p r e
t a t i o n are n o w w e l l k n o w n a n d easily accessible secondary
literature.
T h u s no
technique w i l l be presented.
i n the p r i m a r y a n d
detailed background
material on
this
H o w e v e r , s i m i l a r i n f o r m a t i o n f o r the " R u
system is n o t r e a d i l y a v a i l a b l e , a n d a s u b s t a n t i a l o u t l i n e of t h e p r o b l e m w i l l b e p r e s e n t e d here for the readers' c o n v e n i e n c e . and
1 0 1
R u M o s s b a u e r spectroscopy
A r e v i e w of
"Ru
t h r o u g h 1973 is a v a i l a b l e , a n d is
r e c o m m e n d e d r e a d i n g f o r the serious e x p e r i m e n t a l i s t
(25).
T h e 9 0 - k e V M o s s b a u e r t r a n s i t i o n i n " R u w a s first d i s c o v e r e d
by
Kistner a n d co-workers w h o reported the spectrum for a m e t a l absorber at 85 K (34).
T h e s e w o r k e r s o b s e r v e d a s i n g l e - l i n e resonance of
0.37-
m m / s l i n e w i d t h w i t h a c a l c u l a t e d l i f e t i m e f o r t h e 9 0 - k e V l e v e l of 8 10"
9
s as a l o w e r l i m i t .
k n o w n v a l u e f o r the 1 4 - k e V M o s s b a u e r l e v e l i n u s i n g the d e l a y e d - c o i n c i d e n c e ±
1) X
(both
10" s (35). 9
source
5 7
Fe.
Subsequent w o r k
m e t h o d p r o d u c e d a l i f e t i m e v a l u e of
(20
F u r t h e r experiments at l i q u i d - h e l i u m t e m p e r a t u r e
and absorber)
n u c l e a r parameters
X
T h i s value compared favorably w i t h the w e l l -
of
the
provided detailed information about Mossbauer
t r a n s i t i o n (36,37).
r u t h e n i u m a l l o y e x h i b i t e d a w e l l - r e s o l v e d , 18-line, m a g n e t i c
An
the iron-
hyperfine
s p e c t r u m t h a t w a s u n i q u e l y fit b y a m o d e l a s s u m i n g a m i x e d
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
dipole-
26.
GOOD
E T
quadrupole
AL.
Mixed-Metal
557
Catalysts
( M 1 - E 2 ) transition from I =
analysis p r o d u c e d a v a l u e of
3/2
to I —
5/2.
Further
—0.19 db 0.05 f o r the m a g n e t i c
g-factor
( g i ) of the 9 0 - k e V state a n d a v a l u e of 2.7 db 0.6 for t h e E 2 / M 1 m i x i n g r a t i o S , w i t h t h e assignment of a n e g a t i v e s i g n to the m i x i n g p a r a m e t e r 8. 2
A
close e x a m i n a t i o n of
the
q u a d r u p o l e - s p l i t spectra of
[ R u ( C H ) ] and ruthenium dioxide ( R u 0 ) 5
5
2
2
ruthenocene
i n d i c a t e d t h a t the o b s e r v e d
d o u b l e t w a s a c o n s e q u e n c e of t h e d o m i n e n c e of the n u c l e a r q u a d r u p o l e m o m e n t of the e x c i t e d 3 / 2 state, w i t h a v a l u e of Qi/Qo
>
3.
These
e a r l y studies b y K i s t n e r a n d c o - w o r k e r s p r o v i d e d the necessary n u c l e a r p a r a m e t e r s a n d the v e r i f i c a t i o n of l a r g e c h e m i c a l i s o m e r shifts f o r n o n Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
m e t a l l i c absorbers that l e d to the e x p l o i t a t i o n of " R u M o s s b a u e r spectra to elucidate the complex unique compounds
c h e m i s t r y of r u t h e n i u m systems.
Thus both
a n d v a r i o u s m i x t u r e s of c h e m i c a l interest c a n
be
addressed. Experimentally, good-quality
" R u M o s s b a u e r spectra are difficult
a n d expensive to o b t a i n . T h e 16-day " R h p r e c u r s o r of t h e e x c i t e d state of " R u w a s first p r o d u c e d b y 1 0 - M e V p r o t o n b o m b a r d m e n t of m e t a l l i c ruthenium
i n the c y c l o t r o n .
ruthenium
(12.7%
"Ru).
"Ru)
Sources
can be
prepared
from
or from metal enriched w i t h " R u
natural (>98%
T h e n a t u r a l m e t a l sources are o n l y u s a b l e b e t w e e n t w o a n d six
w e e k s after b o m b a r d m e n t
because of short- a n d l o n g - l i v e d
1 0 1
R h con
t a m i n a n t s . H i g h specific a c t i v i t y sources h a v i n g l o n g e r u s e f u l lives c a n b e p r e p a r e d f r o m a n e n r i c h e d target b y c h e m i c a l l y s e p a r a t i n g t h e r e s u l t i n g " R h a n d c o - p r e c i p i t a t i n g i t w i t h a s m a l l a m o u n t of n a t u r a l r u t h e n i u m m e t a l ( 3 6 , 3 7 ) . W h e r e r u t h e n i u m m e t a l serves as the host l a t t i c e , single resonance l i n e w i d t h s close to the n a t u r a l l i n e w i d t h h a v e b e e n a c h i e v e d , a l t h o u g h the m e t a l has a h e x a g o n a l c r y s t a l structure. T h e a c t u a l p r e p a r a t i o n of the source is s o m e w h a t of a n art r a t h e r t h a n a science,
and
q u a l i t y has b e e n a v a r i a b l e f r o m source to source, e v e n f r o m t h e same vendor.
I n e v e r y case, the h i g h - e n e r g y ( 9 0 - k e V )
Mossbauer transition
a n d the l o w D e b y e - W a l l e r factors f o r most r u t h e n i u m c o m p o u n d s
(as
c o m p a r e d to r u t h e n i u m m e t a l ) h a v e m a d e i t necessary to o b t a i n " R u Mossbauer
spectra at l o w
temperatures, preferably
having both
the
source a n d a b s o r b e r c o o l e d to 4.2 K . T h e l i f e t i m e of the e x c i t e d state of " R u a n d the m a g n i t u d e of the c h e m i c a l i s o m e r shifts are c o m p a r a b l e to those of
5 7
F e , thus m a k i n g i t p o s s i b l e to u t i l i z e
5 7
F e instrumentation
w i t h o u t m o d i f i c a t i o n , except f o r t h e g a m m a detector
w h i c h must
be
o p t i m i z e d for the h i g h e r e n e r g y 9 0 - k e V x-ray. M o s t w o r k e r s h a v e u s e d large
glass
or
metal liquid-helium Dewars, where
the
spectrometer
v e l o c i t y d r i v e m o t o r is m o u n t e d v e r t i c a l l y o n top of the D e w a r
and
a t t a c h e d to the source v i a a l o n g d r i v e r o d e x t e n d i n g i n t o the l i q u i d h e l i u m b a t h (36-39).
F o r most r e p o r t e d spectra, a N a l ( T l ) s c i n t i l l a t i o n
detector has b e e n u s e d ( a 3 - m m t h i c k c r y s t a l is o p t i m a l ) to assay t h e
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
558
MOSSBAUER
S P E C T R O S C O P Y A N D ITS C H E M I C A L A P P L I C A T I O N S
9 0 - k e V g a m m a r a y s , a l t h o u g h a g e r m a n i u m - l i t h i u m d r i f t e d detector c a n provide improved resolution (26). t h e u s u a l w a y , either u s i n g a n
5 7
V e l o c i t y c a l i b r a t i o n is p r o v i d e d i n
F e source a n d p u r e i r o n f o i l
absorbers
o r u s i n g laser i n t e r f e r o m e t r y f o r absolute v e l o c i t y measurements All
isomer
shift values h a v e
been
r e p o r t e d w i t h respect
(40).
to m e t a l l i c
r u t h e n i u m , a l t h o u g h this m a t e r i a l is subject t o some u n r e s o l v e d q u a d r u pole
splitting.
Cohen
and Kalvius
(41)
a n d the N a t i o n a l Research
C o u n c i l A d H o c P a n e l o n M o s s b a u e r D a t a (42)
have recommended
the
use of K 4 [ R u ( C N ) ] • 3 H 0 as a n i s o m e r shift s t a n d a r d . T h i s c y a n i d e 6
2
c o m p l e x has the a d v a n t a g e of a s y m m e t r i c r u t h e n i u m site t h a t p r o v i d e s Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
a s i n g l e , n a r r o w l i n e just s l i g h t l y b r o a d e r t h a n t h e n a t u r a l l i n e w i d t h ; h o w e v e r , i t suffers f r o m a l o w recoil-free f r a c t i o n t h a t r e q u i r e s l o n g r u n t i m e s to p r o v i d e d a t a w i t h s u i t a b l e statistics. T y p i c a l " R u M o s s b a u e r spectra are of o v e r a l l p o o r e r q u a l i t y t h a n analogous
5 7
F e spectra b e c a u s e
of the s m a l l e r recoil-free f r a c t i o n a n d t h e n e e d f o r l a r g e samples 5 0 - 1 0 0 m g of r u t h e n i u m p e r c m
2
signal-to-noise ratios i n the o b s e r v e d
are t y p i c a l l y r e q u i r e d f o r
(i.e.,
adequate
spectrum).
T h e r e l a t i v e l y l a r g e i s o m e r shifts c o m p a r e d to t h e o b s e r v e d l i n e w i d t h s r e p o r t e d for " R u M o s s b a u e r s p e c t r a i m p l i e d t h a t t h e t e c h n i q u e s h o u l d have
significant p o t e n t i a l f o r
providing chemical
information
about
r u t h e n i u m systems. T h i s w a s a n e x c i t i n g p r o s p e c t i n v i e w of t h e c o m p l e x c h e m i s t r y of r u t h e n i u m , a n element
w h i c h exhibits formal
oxidation
states f r o m zero to p o s i t i v e e i g h t i n a l a r g e v a r i e t y of c o m p o u n d s
and
w h i c h has a t e n d e n c y to f o r m m u l t i n u c l e a r complexes w i t h m i x e d - m e t a l o x i d a t i o n states, m e t a l - m e t a l b o n d s , a n d b r i d g i n g l i g a n d s . T h e
mecha
n i s m s of c o m p l e x r u t h e n i u m reactions a n d the s t r u c t u r e of r u t h e n i u m complexes
have
t a x e d t h e skills a n d i n s i g h t of
numerous ruthenium
chemists since t h e e a r l y e x p e r i m e n t s o n the m a t e r i a l i n t h e l a t t e r p a r t of the last c e n t u r y . T h u s t h e r e w a s a n a l r e a d y e s t a b l i s h e d c l i e n t e l e f o r the a p p l i c a t i o n of " R u M o s s b a u e r spectroscopy Kistner a n d co-workers
(36,37)
to c h e m i c a l p r o b l e m s .
p r o v i d e d the first c o r r e l a t i o n of
M o s s b a u e r p a r a m e t e r s w i t h c h e m i c a l b o n d i n g b y r e l a t i n g the splitting i n R u 0
2
and ruthenocene
doublet
to the s i g n a n d m a g n i t u d e of
e l e c t r i c field g r a d i e n t at t h e r u t h e n i u m n u c l e u s i n these t w o
"Ru the
compounds.
T h e d o u b l e t s p e c t r u m r e p o r t e d f o r these c o m p o u n d s is t y p i c a l for r u t h e n i u m spectra of systems e x p e c t e d to h a v e q u a d r u p o l e i n t e r a c t i o n i n t h e absence of
magnetic
hyperfine interactions.
E a c h component
of
the
d o u b l e t consists of a n u n r e s o l v e d t r i p l e t w h i c h is a c o n s e q u e n c e of t h e I =
3 / 2 -> I =
5 / 2 transition, where the large
s i m p l e q u a d r u p o l e s p l i t t i n g of the e x c i t e d I =
Q 3 / 2 / Q 5 / 2
a l l o w s the
3 / 2 state to p r e d o m i n a t e .
F o r spectra of this t y p e , the i s o m e r shift u s u a l l y is r e p o r t e d as the center of the d o u b l e t , a n d the d o u b l e t s p l i t t i n g is r e f e r r e d to as A E . T h i s s i m p l e Q
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
26.
GOOD
E T
Mixed-Metal
A L .
559
Catalysts
e x t r a c t i o n of M o s s b a u e r p a r a m e t e r s is o v e r - s i m p l i f i e d for v e r y values and
precise
b u t is q u i t e p r a c t i c a l f o r r o u t i n e c h e m i c a l analysis
(43,44,45),
fingerprinting
of p a r t i c u l a r r u t h e n i u m species.
I s o m e r shift trends i n several series of r u t h e n i u m c o m p o u n d s h a v e been reported. co-workers
T h e first extensive s t u d y b y W a g n e r , indicated that a monatomic
(46)
Mossbauer,
shift
occurred w i t h increasing oxidation number.
This indicated a positive
nuclear factor
the a s s u m p t i o n
(AR /R)
for
2
" R u based
on
that
s-electron d e n s i t y at the r u t h e n i u m n u c l e u s i n c r e a s e d as the s h i e l d i n g w a s r e d u c e d w i t h i n c r e a s i n g o x i d a t i o n states. was
Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
and
increase i n i s o m e r
further substantiated b y
calculated
the
total charge
Clausen, Prados, a n d density
at t h e
the
d-electron
This assumption Good
(38)
who
r u t h e n i u m nucleus
using
r e s t r i c t e d H a r t r e e - F o c k w a v e f u n c t i o n s of the s-electron d e n s i t y at the n u c l e u s for specific
o x i d a t i o n states.
B o t h o f these
studies
identified
m o r e subtle c h e m i c a l effects b y o b s e r v i n g t h a t t h e e l e c t r o n d e r e a l i z a t i o n effected b y c e r t a i n l i g a n d s s u c h as n i t r o s y l ( N O ) c o u l d b e s e m i - q u a n t i +
t a t i v e l y d e s c r i b e d b y c o m p a r i n g i s o m e r shifts w i t h i n a h o m o l o g o u s series of c o m p o u n d s .
T h i s c o n c e p t has b e e n e x p l o i t e d f u r t h e r b y r e l a t i n g t h e
i s o m e r shifts i n a series of r u t h e n i u m ( I I )
pentaamines
([Ru(NH ) X] 3
± n
5
where X = N O , C O , S 0 , N , pyrazine, C H C N , C H C N , pyridine, and +
2
2
3
6
5
NH )
to the r e l a t i v e a- a n d 7r-bonding c a p a b i l i t i e s of t h e s i x t h l i g a n d
(47).
The
3
utility
o f the " R u
Mossbauer
parameters
for
describing
c h e m i c a l b o n d i n g a n d s t r u c t u r e i n s i m p l e r u t h e n i u m c o m p l e x e s c a n best be i l l u s t r a t e d b y e x a m i n i n g the values o b t a i n e d f o r a series of r u t h e nium (II)-cyanide
c o m p l e x e s (48).
( C N ) ] ; IS = - 0 . 2 5 m m / s ; A E e
Q
These parameters are: (1) = 0.0 m m / s ; ( 2 )
2 H 0 ; IS = + 0 . 0 3 m m / s ; A E = 0.49 m m / s ; a n d ( 3 ) 2
Q
K [Ru4
K [Ru(CN) NO] • 2
5
K [Ru(CN) N0 ] 4
5
2
• 2 H 0 ; IS = - 0 . 4 0 m m / s ; A E = 0.35 m m / s . F i r s t , t h e i s o m e r shift f o r 2
Q
the h e x a c y a n o c o m p l e x is s i g n i f i c a n t l y l a r g e r t h a n the c o m p a r a b l e f o r the r u t h e n i u m ( I I ) - h e x a a m i n e
value
—0.25 vs. —0.92 m m / s ,
(46,47,49),
i n d i c a t i n g the effective
d e r e a l i z a t i o n of t w o d-electrons
f r o m the t
l e v e l of r u t h e n i u m ( I I )
i n t o the c y a n i d e o r b i t a l s . N o t e t h a t t h e i s o m e r
6
2g
shifts decrease i n the o r d e r of l i g a n d s u b s t i t u t i o n as N O > C N ' > N 0 ~ , +
a n d the q u a d r u p o l e s p l i t t i n g is greater f o r N O increase i n i s o m e r shift for N O
(from
+
2
t h a n for N 0 " . T h e l a r g e
+
2
—0.25 to + 0 . 0 3 m m / s )
f r o m the l a r g e , extra T r - d e l o c a l i z a t i o n of d-electrons f r o m t h e t
6
2g
results configu
r a t i o n i n t o the ? r * o r b i t a l of N O . T h e decrease of the i s o m e r shift i n +
t h e N 0 " case ( f r o m 2
—0.25 to —0.40 m m / s )
is a t t r i b u t a b l e to t h e f a c t
t h a t N 0 ~ is a p o o r 7 r - d e l o c a l i z a t i n g l i g a n d as c o m p a r e d 2
A E
q
to C N " .
The
v a l u e s i n d i c a t e the s y m m e t r y of the e l e c t r i c field g r a d i e n t a b o u t t h e
r u t h e n i u m n u c l e u s i n e a c h case, t h a t i s , A E electronic configuration i n R u ( C N )
6
4
Q
" ; and A E
= 0.0 for t h e Q
symmetric
for [ R u ( C N ) N O ] 5
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
2 +
>
560 AE
MOSSBAUER
q
for [ R u ( C N ) N 0 ] 5
2
4 +
S P E C T R O S C O P Y A N D ITS C H E M I C A L A P P L I C A T I O N S
b e c a u s e of l a r g e r d i s t o r t i o n c a u s e d b y greater
d e r e a l i z a t i o n i n t h e R u — N O b o n d as c o m p a r e d to t h e R u — N 0
2
entity.
T h i s t y p e of analysis has n o w b e e n a p p l i e d to m a n y s i m p l e r u t h e n i u m c o m p l e x e s a n d to some b i n u c l e a r systems (50,51).
T h e success of t h e
" R u spectral parameters i n elucidating such chemical b o n d i n g problems has l e d to the use of the t e c h n i q u e to define c h e m i c a l species i n v o l v e d i n solid-state catalysts, as m e n t i o n e d e a r l i e r i n this c h a p t e r . T h e p r o b l e m o u t l i n e d here is y e t another instance of t h e u n i q u e c o n t r i b u t i o n to m a d e b y M o s s b a u e r spectroscopy
be
to the u n d e r s t a n d i n g of r u t h e n i u m
Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
c h e m i s t r y , b o t h i n c o m p l e x m o l e c u l a r systems a n d i n c a t a l y t i c m a t e r i a l s . Experimental Materials. Ferrous sulfate (hydrated) was purchased from Fischer Sci entific Co. and ruthenium trichloride trihydrate from Engelhard Industries. Hydrogen gas was obtained from Matheson (grade = 99.9%). All materials were used without subsequent purification. Preparation of the Catalyst Material. Ruthenium trichloride trihydrate and ferrous sulfate (hydrated) were mixed in a 1:2 mole ratio in the solid state. A few drops of sulfuric acid and a few grains of ascorbic acid (to maintain the ferrous state by oxidation retardation) were added to the mixture. A minimum amount of distilled water was added to prepare a reasonable slurry, and the ingredients were thoroughly mixed. The mixture was heated in a porcelain dish on a steam bath for 2 h with constant stirring. The residue was filtered, washed with water, and dried in a vacuum desiccator at a pressure of approxi mately 10" torr for 5 h. A small sample of the resulting material was removed for analysis and designated F e - R u (initial). The remainder of the F e - R u (initial) material was placed in a porcelain boat and reduced in flowing hydrogen at 400°C for 4 h. During reduction, copious amounts of white fumes were evolved. The reduced sample was cooled to room temperature in a stream of hydrogen. Again a small sample was re moved for analysis. This reduced residue was designated F e - R u (reduced). The larger portion of the F e - R u (reduced) sample was exposed to air at room temperature for 24 h. A small sample was removed for analysis and designated as F e - R u (exposed). The remainder of the material was heated to 400°C in air for 4 h. The sample was cooled slowly to room temperature and designated as F e - R u (calcined). Physical Methods. The ruthenium and iron Mossbauer spectra were obtained with an Austin Science Associates Mossbauer spectrometer operating in the constant-acceleration mode. Calibration of the spectrometer was accom plished by laser interferometery using the Austin Science Associates ruby laser system (38, 40). Isomer shifts for ruthenium were referenced to the single-line resonance of pure (99.9%) ruthenium metal powder. An NBS-certified iron foil was used for the reference standard for the iron isomer shift. The physical arrangement of the Mossbauer spectrometer and the Kontes/ Martin glass liquid-helium Dewar for studying ruthenium catalyst samples has been described previously (26). Sample and absorber were immersed in the liquid helium at 4.2 K. For the results reported here, a scintillation detector with a 3-mm thick Harshaw Nal ( T l ) crystal was used. The ruthenium source 3
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
26.
GOOD
E T
AL.
Mixed-Metal
561
Catalysts
was approximately 8 m C i of 16-day " R h contained i n a host lattice of ruthe nium metal. T h e source was prepared b y the N e w E n g l a n d Nuclear C o r p . of Boston, M A by separating the " R h activity from an enriched " R u target that h a d been proton bombarded i n the Oak Ridge National Laboratory cyclotron. T h e " R h activity was subsequently coprecipitated w i t h 8 m g of natural r u thenium metal and annealed at 1000°C i n hydrogen for 20 m i n . T h e source, as received, exhibited a linewidth of 0.22-0.25 m m / s for a natural ruthenium metal absorber. T h e iron Mossbauer data were collected w i t h the source at room tempera ture and the absorber at liquid-nitrogen (77 K ) temperature. Corrections for second-order Doppler shifts were not made. T h e source was 54.3 m C i of C o i n a host lattice of rhodium metal purchased from the Spire Corp., Bedford, M A . This source exhibited a linewidth of 0.28 m m / s for a K F e ( C N ) • 3 H 0 absorber. D a t a reduction for both the iron and ruthenium spectra was carried out by a conventional least-squares Lorentzian line shape program on a D E C P D P - 1 0 or P e r k i n - E l m e r Interdata 8/32 computer. T h e x-ray photoelectron spectra were taken on a P H I - 5 4 8 E S C A / A E S spectrometer. Powder samples were pressed onto a pure indium foil, and spectra were scanned w i t h the neutralizer (zero kinetic energy electrons) on. T h e samples were sputtered w i t h argon ions, and the indium peaks were used as internal reference standards for the assignment of sample b i n d i n g energies. X - r a y powder diffraction spectra were taken on a Phillips' diffractometer equipped w i t h an X R G - 3 0 0 0 x-ray generator and an A P D - 3 5 0 0 data controller and processor. The scan rate was 2°/min. Average surface areas for the catalyst particles i n the power samples were determined using the gas-adsorption method. A continuous gas flow on a P e r k i n - E l m e r Shell M o d e l 2 1 2 D spectrometer was used. Measurements were made i n triplicate for each sample and the B E T equation was used for the average surface area calculation ( 5 2 ) . 5 7
Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
4
Results
and
6
2
Discussion
T h e i n t e n t of this s t u d y w a s to evaluate o u r a b i l i t y to c h a r a c t e r i z e i n d e t a i l the c h e m i c a l ( a n d p h y s i c a l ) transformations t h a t
accompany
the v a r i o u s p r e p a r a t i v e steps i n f o r m u l a t i n g a b u l k b i m e t a l l i c catalyst. T h e c h o i c e of the p a r t i c u l a r s t a r t i n g m a t e r i a l s w a s s o m e w h a t a r b i t r a r y , other t h a n the fact t h a t w e w a n t e d to i n v e s t i g a t e a defined i r o n - r u t h e n i u m system. T h e r a t i o n a l e for the p a r t i c u l a r m e t a l salts u s e d w a s b a s e d o n our p r e v i o u s experience w i t h R u C l
3
• * H 0 on a l u m i n a a n d silica 2
supports ( 2 6 ) , a n d the fact t h a t o x i d a t i o n - r e d u c t i o n reactions of F e S 0
4
• x H 0 o n zeolites h a d b e e n i n v e s t i g a t e d extensively b y other w o r k e r s 2
(53).
I t has b e e n r e c o g n i z e d t h a t the anions associated w i t h the m e t a l
i n the i n i t i a l m i x c a n i n f l u e n c e the final p r o d u c t s ( 5 4 ) , a n d f u t u r e studies are p l a n n e d w h e r e t h e c h e m i c a l transformations are m o n i t o r e d f u n c t i o n of i n i t i a l a n i o n ( s )
present.
T h e actual treatment
as a
procedures
w e r e c h o s e n to c o r r e s p o n d to those u s e d p r e v i o u s l y i n o u r l a b o r a t o r y for the o x i d a t i o n - r e d u c t i o n of s u p p o r t e d r u t h e n i u m catalysts o n a l u m i n a , s i l i c a , a n d zeolites (26,28).
P r o d u c t s at e a c h stage of t r e a t m e n t w e r e
c h a r a c t e r i z e d as f u l l y as p o s s i b l e , as o u t l i n e d later. R u t h e n i u m - 9 9 a n d
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
562 5 7
MOSSBAUER
S P E C T R O S C O P Y A N D ITS C H E M I C A L A P P L I C A T I O N S
F e M o s s b a u e r spectra w e r e o b t a i n e d for e a c h s a m p l e , a n d t h e results
are g i v e n i n T a b l e s I a n d I I a n d F i g u r e s 1-5.
ESCA
spectra for a l l
samples, b o t h as r e m o v e d f r o m the r e a c t i o n sequence a n d after
extensive
s p u t t e r i n g w i t h a r g o n ions (to p r o b e the b u l k properties of the m a t e r i a l s ) , are s h o w n i n F i g u r e 6 a n d 7. X - r a y d i f f r a c t i o n patterns f o r the i n d i v i d u a l samples are d i s p l a y e d i n F i g u r e 8. Fe-Ru
(Initial).
The
Mossbauer
t h a t it contains a m i x t u r e of i r o n ( I I I )
d a t a for
this s a m p l e
and iron (II)
indicates
and a ruthenium
e n t i t y w i t h a n isomer shift of —0.61 m m / s a n d a A E v a l u e of 0.69 m m / s .
Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
Q
Table I. Sample* Fe-Ru (initial)
Fe-Ru (reduced)
Iron-57 Mossbauer Parameters of Bimetallic Catalysts
Iron-Ruthenium
Absorption
Comments
Lines"
0
0.01;
Peak 1
2.63 ±
0.01
Fe
I S = 1.32 2.63 =b 0.01
Peak 2 Peak 3
0.97 0.00:
0.01 0.01
Fe
I S — 0.49 ± 0.01; AE 0.97 ± 0.01
Peak 1
8.39 ±
0.02
Peak 2
4.85 ±
0.02
Peak Peak Peak Peak
3 4 5 6
2.56 1.32 0.49 -0.27
± =b db ±
0.03 0.02 0.02 0.02
Peak Peak Peak Peak Peak
7 8 9 10 11
-1.22 -2.60 -3.92 -4.71 -8.22
± ± ± ± ±
0.02 0.03 0.03 0.02 0.02
8.49 ±
0.02
2 +
AE
=
Q
3 +
—
Q
y-FesOa (magnetic) I S = 0 . 0 7 : 0.02; H I — 522 k G F e S (magnetic) I S — 0.50 db 0.02; H I = 281 k G
y - F e 0 (supermagnetic) I S = 0.11 ± 0 . 0 2 ; AE = 0.76 ± 0.02 2
3
Q
Fe-Ru (calcined)
Peak 1 Peak Peak Peak Peak
2 3 4 5
Peak 6 Peak 7 Peak 8
4.89 1.37 0.45 -0.12
± db ± ±
0.02 0.05 0.02 0.02
y - F e 0 (magnetic I S = 0.02; H I = 525 k G 2
3
y - F e 0 (supermagnetic) I S = 0.16 =b 0.02; AE 0.57 ± 0.02 2
0.09 :
3
Q
=
- 1 . 2 4 ± 0.03 - 4 . 7 0 db 0.02 - 8 . 3 0 =b 0.02
° See text for preparative conditions. Error estimates are from computer least^squares fits to Lorentzian lines. Pre cision (reproducibility) from two mirror-image spectra is ± 0.04 mm/s. IS == Isomer shift in mm/s; Ai£ = quadrupole splitting in mm/s; HI = inter nal field in kG calculated from Mossbauer magnetic splitting. 6
0
Q
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
26.
GOOD
E T
Mixed-Metal
AL.
563
Catalysts
Table II. Ruthenium-99 Mossbauer Parameters of Iron—Ruthenium Bimetallic Catalysts
Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
Linewidth (mm/s)
Isomer Shift* (mm/s)
Sample* Fe-Ru (initial)
P e a k l -0.27 Peak 2 -0.96
± 0.01 ± 0.01
0.38 0.38
0.01 0.01
Fe-Ru (reduced)
Peakl 0.01 Peak 2 -0.48
± 0.01 ± 0.01
0.21 0.39
0.01 0.02
Fe-Ru (exposed)
Peakl 0.01 Peak 2 - 0 . 4 9
± 0.01 ± 0.01
0.22 0.36
0.01 0.02
Fe-Ru (calcined) R u (metal)
P e a k l -0.02 Peak 2 - 0 . 4 8 0.00
± 0.01 ± 0.01 ± 0.00
0.24 0.39 0.21
Ru0
Peak 1 0.02 Peak 2 - 0 . 4 9
± 0.01 ± 0.01
0.38 0.38
-0.67
± 0.05
0.35
2
/?-RuCl
3
± ± ± ±
0.01 0.02 0.01 0.01 0.01 0.05 A #
Q
—
0.79 ±
0.05
See text for preparative conditions. Error estimates are from computer least-squares fits to Lorentzian lines, Precision (reproducibility) from two mirror-image spectra is ± 0.04 mm/s. a
b
A n a l t e r n a t i v e assignment for the r u t h e n i u m s p e c t r u m w o u l d be
two
r u t h e n i u m species, b o t h w i t h no q u a d r u p o l e s p l i t t i n g a n d a n isomer shift of
—0.27 a n d —0.96 m m / s , r e s p e c t i v e l y .
The E S C A
spectra of
the
s a m p l e i n d i c a t e that b o t h c h l o r i d e a n d sulfate are present i n the surface a n d b u l k of the s a m p l e . T h u s t h e r u t h e n i u m entity ( i e s )
present c o u l d
b e a r u t h e n i u m ( I I I ) - c h l o r i d e c o m p o u n d or a m i x t u r e of the h e x a h a l i d e complexes value(s)
of
ruthenium (II)
are c o m p a t i b l e w i t h
and
ruthenium ( I V ) .
either of these t w o
isomer
shift
possibilities
The
(25).
H o w e v e r , the m a t e r i a l is i n s o l u b l e i n w a t e r a n d a l c o h o l , w h i c h is c h a r a c teristic of the i n s o l u b l e , a n h y d r o u s t r i h a l i d e s s u c h as « - R u C l . 3
We
do
not h a v e M o s s b a u e r p a r a m e t e r s f o r « - R u C l for c o m p a r i s o n , b u t t h e v a l u e s 3
f o r / ? - R u C l are s h o w n i n T a b l e I I a n d i n F i g u r e 2. T h e x - r a y d i f f r a c t i o n 3
p a t t e r n s h o w n i n F i g u r e 8 is i n c o n c l u s i v e for F e - R u
( i n i t i a l ) since n o
definitive assignments c o u l d be m a d e . T h u s , t h e most p r o b a b l e c h e m i c a l c o m p o s i t i o n of the d r i e d F e - R u ( i n i t i a l ) s a m p l e is a m i x t u r e of i r o n ( I I ) and iron (III) anhydrous R u C l
salts, p r o b a b l y 3
mixed
chlorides
a n d sulfates, a n d
an
species.
F e - R u (Reduced).
T h e c h e m i c a l c h a r a c t e r of t h e s a m p l e c h a n g e d
d r a s t i c a l l y after the F e - R u ( i n i t i a l ) w a s r e d u c e d i n h y d r o g e n at 4 0 0 ° C , as is i n d i c a t e d i n the M o s s b a u e r a n d E S C A spectra. A first t r i a l f o r t h e d a t a analysis of the
5 7
F e M o s s b a u e r spectra fit the d a t a to e i g h t lines as
s h o w n i n F i g u r e 3. H o w e v e r , the fit w a s not p a r t i c u l a r l y g o o d a n d o t h e r
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
564
MOSSBAUER
S P E C T R O S C O P Y A N D ITS C H E M I C A L
APPLICATIONS
s m a l l u n r e s o l v e d p e a k s a r e c l e a r l y v i s i b l e . A r e r u n o f these d a t a r e s o l v e d the s p e c t r u m i n t o 11 lines w i t h t h e p e a k positions l i s t e d i n T a b l e I . T h e d a t a c o u l d b e sorted into t w o s i x - l i n e m a g n e t i c spectra a n d a p a r a m a g netic doublet.
T h e lower intensity six-line doublet w i t h a n internal
field
of 281 k G is most p r o b a b l y F e S ( 5 6 , 5 7 ) . T h i s a s s i g n m e n t is s u b s t a n t i a t e d b y t h e E S C A d a t a w h i c h e x h i b i t t w o s u l f u r peaks o n t h e surface of t h e r e d u c e d s a m p l e , o n e w h i c h c a n b e assigned to sulfate a n d t h e o t h e r t o sulfide ( 5 8 ) . A f t e r s p u t t e r i n g o n l y t h e sulfide p e a k r e m a i n s , i n d i c a t i n g the presence of a sulfide i n t h e b u l k . T h e m o r e intense s i x - l i n e s p e c t r u m w a s first t h o u g h t t o b e a - F e 0 2
3
Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
w i t h the center d o u b l e t r e p r e s e n t i n g a f r a c t i o n o f s m a l l p a r t i c l e s t h a t a r e p a r a m a g n e t i c (11, 56). N o c o n f i g u r a t i o n c o u l d b e o b t a i n e d f r o m t h e x - r a y d i f f r a c t i o n d a t a since t h e y c o n t a i n e d o n l y a s m a l l n u m b e r of resonance p e a k s , i n d i c a t i n g v e r y s m a l l p a r t i c l e sizes. G a s a b s o r p t i o n measurements c o n f i r m e d this f a c t b y s h o w i n g t h a t t h e average p a r t i c l e size w a s a b o u t 300 A o r less as c a l c u l a t e d f r o m t h e surface area o f 18.6 m / g - H o w e v e r , 2
t h e x - r a y d i f f r a c t i o n p a t t e r n f o r t h e c a l c i n e d samples, as discussed l a t e r , i n d i c a t e d the presence o f y - F e 0 2
3
rather than « - F e 0 . 2
3
T h e " R u Mossbauer spectrum for the reduced sample w a s p a r t i c u l a r l y i n t e r e s t i n g i n t h a t t h e r u t h e n i u m salt i n t h e i n i t i a l s a m p l e d i d n o t r e d u c e a l l t h e w a y t o r u t h e n i u m m e t a l as h a d b e e n o b s e r v e d p r e v i o u s l y for r u t h e n i u m trichloride supported o n silica a n d a l u m i n a or a r u t h e n i u m c a t i o n e x c h a n g e d onto a Y - t y p e zeolite (26,28).
T h e ruthenium spectrum
c o u l d b e a n a l y z e d as t w o signals, o n e r a t h e r intense p e a k a t a p p r o x i m a t e l y zero v e l o c i t y (as c o m p a r e d to a r u t h e n i u m m e t a l s t a n d a r d ) a n d
100.00 i
98.00
g
96.00
^
z
94.00
5 Q.
92.00
f
UJ
f
-4.0
-3.0
-2.0
-1.0
0
DOPPLER VELOCITY
Figure 1.
1.0
IN
2.0
3.0
MM/SEC
Iron-57 Mossbauer spectrum of Fe-Ru
(initial)
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
4.0
26.
GOOD E T A L .
Mixed-Metal
565
Catalysts
loaoo
i
99.90
(A
" Y
A /
99.80
1 99.70 99.00 »z g s
z ^
7
' ' * • • • • '
v
"
FE-RU
99.50
\f
99.40
-3.0
-2.0
-1.0
y
(INITIAL)
0
1.0
2.0
34
Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
OOPPLER VELOCITY IN MM/SEC
•»
*
4i
+
+
-5.0
-4.0
-3.0
-2.0
-1.0
+
0
+
+
+
1.0
2.0
3.0
*
*
4.0
5.0
DOPPLER VELOCITY IN MM/SEC
Figure 2.
Ruthenium-99
Mossbauer spectrum of Fe-Ru
(initial)
a d o u b l e t w i t h p a r a m e t e r s c h a r a c t e r i s t i c of R u 0 . N o t e t h a t o n e h a l f o f 2
the R u 0
2
d o u b l e t is b u r i e d i n t h e m o r e intense m e t a l p e a k .
appears that t h e c h e m i c a l c o m p o s i t i o n of t h e r e d u c e d
y - F e 0 , small-particle paramagnetic y - F e 0 , F e S (small 2
3
2
3
Thus it
sample is b u l k component),
r u t h e n i u m m e t a l , a n d R u 0 . T h i s a s s i g n m e n t is f u r t h e r c o r r o b o r a t e d b y 2
the Mossbauer a n d x-ray data cited later for the calcined sample. Fe-Ru
(Exposed).
Previous work
on reduced
ruthenium metal
dispersed o n a zeolite support indicated that the material w a s quite r e a c t i v e a n d c h a n g e d c h e m i c a l c o m p o s i t i o n o n exposure t o a i r , e v e n a t r o o m t e m p e r a t u r e ( 2 8 ) . T o test t h e r e a c t i v i t y of t h e m i x e d - m e t a l system, the F e - R u
( r e d u c e d ) s a m p l e w a s exposed t o a i r a t r o o m t e m p e r a t u r e .
T h e Mossbauer a n d E S C A spectra indicated that the sample composition d i d not change from that reported earlier for the reduced sample. A g a i n this b e h a v i o r is q u i t e different f r o m t h a t o b s e r v e d f o r r u t h e n i u m a l o n e o n a s u p p o r t system.
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
566
MOSSBAUER
Fe-Ru
(Calcined).
S P E C T R O S C O P Y A N D ITS C H E M I C A L A P P L I C A T I O N S
The
5 7
F e a n d " R u Mossbauer parameters
t h e c a l c i n e d s a m p l e are g i v e n i n t h e T a b l e s a n d i n F i g u r e s 3 a n d 5.
for The
m a i n differences b e t w e e n these s p e c t r a a n d those f o r t h e r e d u c e d s a m p l e are t h e a b s e n c e of t h e F e S p a t t e r n a n d t h e m o r e c l e a r l y r e s o l v e d p e a k s for y - F e 0 . 2
3
N o t e t h a t t h e p a r a m a g n e t i c f r a c t i o n of
the i r o n
oxide
r e m a i n s . T h e t r e a t m e n t w i t h o x y g e n a p p a r e n t l y t r a n s f o r m s a n y F e S to y-Fe 0 2
3
a n d p r o d u c e s p a r t i c l e s of l a r g e r sizes. T h e a v e r a g e surface area
of t h e F e - R u ( c a l c i n e d ) p a r t i c l e s w a s r e d u c e d to 6 m / g , w h i c h c o r r e 2
Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
sponds to a n average p a r t i c l e size of 900 A . T h e E S C A spectra s u b s t a n -
1
I
-12.0
-10J0
-&0
-OX
-4.0
H H T
-2.0
0
'
1
2.0
4.0
1
6.0
8.0
10.0
12.C
DOPPLER VELOCITY IN MM/SEC
Figure
3. Iron-57 Mossbauer spectra for Fe-Ru (reduced) and (calcined). (Spectrum for iron foil is shown for comparison.)
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Fe-Ru
26.
GOOD
E T
Mixed-Metal
A L .
567
Catalysts
Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
\FeS
+
+ + + -12.0
-10.0
+ +
-8.0
+ +
-6.0
+
-4.0
+
4.
-2.0 -4-—+—4— 0 2.0
4.0
+
6.0
+
+
* 4 .
8.0
+
10.0
4.
12.0
OOPPLER VELOCITY IN MM/SEC
Figure 4. Iron-57 Mossbauer spectrum of Fe-Ru (reduced) rerun with 11 resolved lines. (Note that most of the magnetically split spectrum for FeS can be resolved although it is a minor component of the total spectrum.)
t i a t e d the loss of F e S since t h e s p u t t e r e d samples i n F i g u r e 7 s h o w
no
sulfide peaks i n the b u l k s a m p l e . the
I t is i n t e r e s t i n g that the " R u M o s s b a u e r spectra are u n c h a n g e d
by
calcination.
of
The
spectra
still can
be
assigned
to
a mixture
r u t h e n i u m m e t a l a n d R u 0 . T h e s e assignments of the c h e m i c a l species 2
of t h e b i m e t a l l i c m a t e r i a l are e n h a n c e d b y the o b s e r v e d x - r a y d i f f r a c t i o n p o w d e r patterns.
S i n c e t h e average p a r t i c l e sizes w e r e i n c r e a s e d , the
p o w d e r p a t t e r n is n o w c l e a r l y assignable as s h o w n i n F i g u r e 8. c o r r e s p o n d i n g to r u t h e n i u m m e t a l , R u 0 , a n d y - F e 0 2
T h e assignment of y - F e 0 2
3
2
3
Peaks
are c l e a r l y v i s i b l e .
is p a r t i c u l a r l y significant since t h e M o s s b a u e r
p a r a m e t e r s c o u l d h a v e b e e n assigned to the m o r e c o m m o n « - F e 0 2
3
(56).
H o w e v e r , the x - r a y peaks c o u l d not b e fit to those r e p o r t e d f o r a - F e 0 2
b u t d i d c o r r e s p o n d w e l l to those r e p o r t e d for y - F e 0 2
3
3
(59).
Summary T h e d a t a o u t l i n e d i n this c h a p t e r c l e a r l y i n d i c a t e the u t i l i t y
of
M o s s b a u e r spectroscopy as a p r o b e for assessing the c h e m i c a l c o m p o s i t i o n of solid-state catalyst m a t e r i a l s a n d f o r f o l l o w i n g t h e i r solid-state reactions. T h e a b i l i t y to " d o u b l e l a b e l " a b i m e t a l l i c s y s t e m is p a r t i c u l a r l y effective. T h e a d v a n t a g e of s u p p l e m e n t a r y d a t a s u c h as E S C A s p e c t r a a n d x - r a y
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
568
MOSSBAUER
*— -3.0
SPECTROSCOPY
»
»
-2.0
-1.0
A N D ITS C H E M I C A L
+
+
0
1.0
APPLICATIONS
*— 2.0
+
3.0
00PPLER VELOCITY IN MM/SEC
Figure Fe-Ru
5. Ruthenium-99 Mossbauer spectra for Fe-Ru (reduced) and (calcined). (Spectrum for pure Ru0 is shown for comparison.) 2
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
GOOD
E T A L .
300
Mixed-Metal
250 2O0 60 BINDING ENERGY (tV)
Catalysts
569
Figure 6. ESC A spectra for Fe-Ru samples as a function of treatment
A L L SAMPLES ARE SPUTTERED FOR T E N MINUTES
F E - R U (CALCINED)
FE-RU(EXPOSED)
B/NCHNG ENERGY (eV)
Figure 7. ESC A spectra for Fe-Ru samples as a function of treatment. (Samples were first sputtered with argon ions for 10 min to remove surface contamination.)
In Mössbauer Spectroscopy and Its Chemical Applications; Stevens, J., et al.; Advances in Chemistry; American Chemical Society: Washington, DC, 1981.
570
MOSSBAUER
SPECTROSCOPY AND
ITS
CHEMICAL
APPLICATIONS
FE-RU (INITIAL)
47
45
40
35 26
30
25
21
Downloaded by SUNY STONY BROOK on October 24, 2014 | http://pubs.acs.org Publication Date: July 1, 1981 | doi: 10.1021/ba-1981-0194.ch026
FE-RU (REDUCED)
47
45
) • .1. )• •
40
35 20
25
30
FE-RU (CALCMED)
Ru
****
Ru
r 45
Figure 8.
40
35 20
25
30
X-ray powder patterns for the Fe-Ru treatment
samples as a function
of
d i f f r a c t i o n p a r a m e t e r s i n p r o v i d i n g c o m p l e m e n t a r y details f o r t h e
com
p l e t e c h a r a c t e r i z a t i o n of
dem
s u c h solid-state systems
also has b e e n
onstrated. T h e a c t u a l c h e m i c a l n a t u r e of t h i s p a r t i c u l a r i r o n - r u t h e n i u m b i metallic
system
is m o s t
i n t e r e s t i n g i n l i g h t of
i n f o r m a t i o n f o r r e l a t e d systems.
previously
reported
T h e overall reaction scheme can
s u m m a r i z e d as f o l l o w s : steam bath
Fe S0 n
4
+ Ru ^Cl -zH 0 m
3
> Fe , Fe 1 1
2
1 1 1
+
Ru iCl (anh) n
3
100°C in air
H
2
400°C 4h
O -400°C 2
Ru, Ru0 , y-Fe 0 2
2
3