9 Charge Transfer at Illuminated Semiconductor-Electrolyte Interfaces 1
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch009
A. J. NOZIK , D. S. BOUDREAUX,
and R. R. CHANCE
Corporate Research Center, Allied Chemical Corporation, Morristown, NJ 07960 FERD WILLIAMS Department of Physics, University of Delaware, Newark, D E 19711
A new heterojunction model for the semiconductor-electro lyte interface is presented that considers the electrolyte as a doped semiconductor and that predicts that hot photogen erated minority carriers can be infected into the electrolyte. Preliminary calculations are presented in support of the hot carrier injection hypothesis. Recent experimental results on the photoenhanced reduction of N on p-GaP cathodes are discussed and they appear to provide experimental evidence for hot electron injection. The importance of hot carrier injection for photoelectrochemical cells is also discussed. 2
In
r e c e n t years a great d e a l o f interest h a s d e v e l o p e d i n t h e field o f photoelectrochemistry
based
o n photoactive
semiconducting
trodes, e s p e c i a l l y i n t h e a p p l i c a t i o n o f these systems t o solar c o n v e r s i o n a n d c h e m i c a l synthesis ( 1 - 9 ) .
elec energy
I n F i g u r e 1, a c l a s s i f i c a t i o n
scheme i s p r e s e n t e d f o r t h e v a r i o u s types o f p h o t o e l e c t r o c h e m i c a l cells. T h e first d i v i s i o n is i n t o : ( a ) cells w h e r e i n t h e free e n e r g y c h a n g e i n t h e e l e c t r o l y t e i s zero
( e l e c t r o c h e m i c a l p h o t o v o l t a i c c e l l s ) , a n d ( b ) cells
w h e r e i n t h e free e n e r g y i n the e l e c t r o l y t e i s n o n z e r o
(photoelectrosyn-
t h e t i c c e l l s ) . I n t h e f o r m e r c e l l , o n l y one effective r e d o x c o u p l e i s p r e s e n t i n t h e e l e c t r o l y t e — t h e o x i d a t i o n a n d r e d u c t i o n reactions a t t h e a n o d e a n d c a t h o d e a r e i n v e r s e t o e a c h other. T h e n e t photoeffect 1
is thus t h e
Present address: Solar Energy Research Institute, Golden, CO 80401. 0-8412-0474-8/80/33-184-155$05.00/0 © 1980 American Chemical Society Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
156
INTERFACIAL
PHOTOPROCESSES
ELECTROCHEMICAL PHOTOVOLTAIC CELLS ' (LIQUID JUNCTION SOLAR CELLS)
/
AG=0
/ \
PHOTOELECTROCHEMICAL CELLS \
PHOTOELECTROLYSIS CELLS (ENERGY STORING)
/
AG#0
r(t*.H 0-H +tC^) 1 I
8
[CC^+HgO-CHgO+OgJ
PHOTOELECTROSYNTHETIC CELLS
PHOTOCATALYTIC CELLS (e.g.,N +3H —2NH )
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch009
2
Figure 1.
Classification scheme for photoelectrochemical
2
3
cells
c i r c u l a t i o n o f c h a r g e e x t e r n a l to t h e c e l l , p r o d u c i n g a n e x t e r n a l p h o t o voltage a n d photocurrent
( a l i q u i d j u n c t i o n solar c e l l ) ; n o c h e m i c a l
change occurs i n the electrolyte. I n t h e p h o t o e l e c t r o s y n t h e t i c c e l l , t w o effective r e d o x c o u p l e s a r e p r e s e n t i n t h e e l e c t r o l y t e a n d a net c h e m i c a l c h a n g e o c c u r s u p o n i l l u m i n a t i o n . I f t h e free e n e r g y c h a n g e o f t h e n e t e l e c t r o l y t e r e a c t i o n is p o s i t i v e , optical energy
is c o n v e r t e d i n t o c h e m i c a l e n e r g y
labeled photoelectrolysis.
a n d t h e process i s
O n t h e other h a n d , i f t h e net electrolyte
r e a c t i o n has a n e g a t i v e free e n e r g y c h a n g e , o p t i c a l e n e r g y p r o v i d e s t h e a c t i v a t i o n e n e r g y f o r t h e r e a c t i o n , a n d t h e process
is labeled
photo-
catalysis. E n e r g y l e v e l d i a g r a m s f o r these three t y p e s o f cells a r e s h o w n i n F i g u r e s 2 a n d 3. T h e m o s t i m p o r t a n t aspects o f a l l p h o t o e l e c t r o c h e m i c a l cells a r e the nature of the semiconductor-electrolyte
junction a n d the photo
i n d u c e d c h a r g e t r a n s f e r process across t h e j u n c t i o n . A n e w m o d e l f o r
ANODE
e
C +h
+
C
+
CATHODE
C++ e~—•C
AG = 0
Figure 2. Energy level diagram for electrochemical photovoltaic cells. C / C is a redox couple in the electrolyte that produces the indicated anodic and cathodic reactions such that no net chemical change occurs. +
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980. T
AG
C"+2A
NET:
+
B"+ A — • B + A >0
PHOTOELECTROLYSIS
AG
+
A +e~-*A
A +e"-*A +
CATHODE
0*+ 2A T
d
T
H> TT,
, TgE, T . A s c h e m a t i c r e p r e s e n t a t i o n o f these c o m p e t i n g r
processes is d e p i c t e d i n F i g u r e 6 for n - t y p e s e m i c o n d u c t o r s . »-Ti0 .
H O L E TUNNELING TIMES.
2
Quantum mechanical tunneling
times w e r e c a l c u l a t e d f r o m t h e q u a s i c l a s s i c a l f r e q u e n c y f a c t o r o f t h e q u a n t i z e d states i n t h e d e p l e t i o n l a y e r a n d t h e i r t u n n e l i n g p r o b a b i l i t i e s (13). and
T h e c a l c u l a t i o n s d e p e n d u p o n t h e m i n o r i t y c a r r i e r effective mass the b a r r i e r t h i c k n e s s . D e t a i l e d c a l c u l a t i o n s h a v e b e e n m a d e f o r t h e
case o f n - T i 0
2
i n w h i c h d is t a k e n as 10 A , a n d v a l u e s o f 0.01 a n d 0.1
are u s e d f o r t h e h o l e effective mass ( r a * ) . h
A d o f 10 A represents a n u p p e r l i m i t t h a t y i e l d s v e r y c o n s e r v a t i v e estimates o f the t u n n e l i n g t i m e ; m o r e p r o b a b l e values o f d are f r o m 2 - 4 A.
T h e c o r r e c t v a l u e o f m * for T i 0 h
2
is not k n o w n , b u t i t is e x p e c t e d t o
b e l o w because the v a l e n c e b a n d o f T i 0 a v a l u e o f m * = 10" for T i 0 h
2
2
2
is a v e r y w i d e 2 p o x y g e n b a n d ;
has b e e n p u b l i s h e d (14). P r e s e n t c a l c u -
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
162
INTERFACIAL
PHOTOPROCESSES
lations u s e v a l u e s of 0.1 a n d 0.01 f o r ra * to test t h e s e n s i t i v i t y o f t h e h
results to m * . T h e d i m e n s i o n s o f t h e p o t e n t i a l w e l l f o r t h e case of n - T i 0 h
i n a q u e o u s e l e c t r o l y t e are U = 3 e V (10), V The
results of c a l c u l a t i o n s f o r n - T i 0
2
— 1 e V , w = 200 A (10).
B
that were made b y s i m p l y
2
m u l t i p y l i n g t h e f r e q u e n c y f a c t o r of t h e q u a n t i z e d state i n t h e d e p l e t i o n l a y e r b y t h e t r a n s m i s s i o n coefficient f o r t h e p o t e n t i a l b a r r i e r s h o w t h a t f o r t h e case w h e r e m * — 0.1, q u a n t i z e d states n e a r t h e b o t t o m o f t h e h
w e l l h a v e a t u n n e l i n g t i m e of a b o u t 5 X 10"
13
sec; t h e s p a c i n g b e t w e e n
levels is a b o u t 0.04 e V . Q u a n t i z e d states n e a r t h e t o p of t h e w e l l s h o w t u n n e l i n g times of a b o u t 1 X
10"
12
sec, a n d are s p a c e d a b o u t 0.01 e V
apart. W h e n t h e v a l u e of m * is r e d u c e d to 0.01, o n l y o n e state appears Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch009
h
i n t h e w e l l w i t h a n energy l e v e l 0.56 e V f r o m t h e w e l l b o t t o m ; f o r t h i s state r — 1 X 10" T
14
sec.
C a l c u l a t i o n s b a s e d o n resonance t u n n e l i n g b e t w e e n t h e s e m i c o n d u c t o r a n d e l e c t r o l y t e p o t e n t i a l w e l l s s h o w t h a t f o r m * — 0.1 T h
X
10'
13
t
=
2
sec at t h e b o t t o m of t h e s e m i c o n d u c t o r w e l l ; f o r a state of 0.5 e V
f r o m t h e b o t t o m of t h e s e m i c o n d u c t o r w e l l T — 3 X 10" T
13
sec. R e d u c t i o n
of t h e h o l e effective mass to 0.05 reduces t h e t u n n e l i n g t i m e f o r t h e state n e a r t h e b o t t o m of t h e s e m i c o n d u c t o r w e l l t o 1 X 10"
13
sec.
T h u s , i f i t is a s s u m e d t h a t m * lies b e t w e e n 0.1 a n d 0.05, t h e n o n e h
w o u l d e x p e c t T T ' S t o b e of t h e o r d e r of 5 X 10"
sec f o r cTs of 10 A , a n d
13
e n e r g y l e v e l spacings to b e o f t h e o r d e r of 0.1 e V . V a l u e s of d less t h a n 10 A decrease t h e T ' S a c c o r d i n g l y . F o r a d of T
3 A and with m * = h
T
T
= 3 X 10"
13
0.1, T
T
— 3 X 10'
sec f o r s i m p l e t u n n e l i n g , a n d
14
sec f o r resonance t u n n e l i n g f o r states n e a r t h e t o p of t h e
semiconductor well.
I f m * is r e d u c e d to 0.01, t h e n t h e r e s p e c t i v e T ' S h
T
f o r t h e 3 - A b a r r i e r a r e r e d u c e d t o 3 X 10"
sec a n d 4 X 10"
15
14
sec f o r t h e
s i n g l e state i n t h e s e m i c o n d u c t o r w e l l . T h u s , i f m * lies b e t w e e n 0.1 a n d h
0.01, t h e n one w o u l d expect T ' S to b e of t h e o r d e r of a b o u t 5 X T
10"
14
sec f o r a d of 3 A . HOLE
DIFFUSION
TIMES.
The
time
for
photogenerated
minority
carriers to diffuse across t h e d e p l e t i o n l a y e r u n d e r t h e i n f l u e n c e o f t h e i n t e r n a l e l e c t r i c field ( T ) , a n d b e t r a n s f e r r e d to t h e e l e c t r o l y t e across d
the semiconductor electrolyte interface ( T E ) c a n be estimated u s i n g a S
classical m o d e l a n d compared w i t h the q u a n t u m m e c h a n i c a l t u n n e l i n g t i m e . T h e d r i f t v e l o c i t y ( V ) i n t h e d e p l e t i o n l a y e r is V D
— fiE, w h e r e
D
E is t h e e l e c t r i c field ( E = V / u ; ) i n t h e d e p l e t i o n l a y e r , a n d p is m i n o r i t y B
carrier mobility. Hence, T
D
— w/V
D
— u; //i,V . 2
cross t h e s e m i c o n d u c t o r - e l e c t r o l y t e i n t e r f a c e ( T
B
s e
T h e time required to ) is d/V , T
where V
T
is
t h e t h e r m a l v e l o c i t y of t h e c a r r i e r . I f i t is a s s u m e d t h a t t h e h o l e m o b i l i t y , / i , for T i 0 h
2
is at least 100 c m / V sec (14), a n d t h a t V 2
10 A , a n d w — 200 A , t h e n t h e results y i e l d T
D
B
— 4 X
— 1 eV, d — 10"
14
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
sec, a n d
NOZIK E T A L .
9.
TSE =
3 X 10"
1 5
Charge
Transfer
163
at Interfaces
sec. T h u s , t h e c l a s s i c a l d i f f u s i o n t i m e s a r e o f t h e s a m e
o r d e r o f m a g n i t u d e as t h e t u n n e l i n g times f o r b a r r i e r thicknesses o f t h e o r d e r o f 3 - 5 A , a n d effective h o l e masses b e t w e e n 0.01 a n d 0.1. HOLE THERMALIZATION TIMES.
I f i t is a s s u m e d t h a t t h e r m a l i z a t i o n
of m i n o r i t y carriers i n t h e d e p l e t i o n l a y e r o c c u r s v i a c o n s e c u t i v e
single
p h o n o n - c a r r i e r c o l l i s i o n s , t h e n T H w i l l b e e q u a l to t h e n u m b e r of s u c h T
collisions r e q u i r e d to dissipate the b a n d b e n d i n g potential energy m u l t i p l i e d b y the characteristic time between c a r r i e r - p h o n o n collisions. T h e latter t i m e is c a l l e d t h e s c a t t e r i n g t i m e ( T m *fi/e. h
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch009
to b e 0.06 e V ( 1 5 ) , t h e n T V m V/0.06e. B
8 c a
t ) a n d b y definition, T
8 c a
t
=
I f t h e e n e r g y loss p e r s i n g l e p h o n o n - c a r r i e r c o l l i s i o n i s t a k e n For n-Ti0
h
c m / V sec, this y i e l d s T 2
T
H
2
T
H v i a single p h o n o n interactions is T T H
with V
B
— 1 e V , m * — 0.1, a n d ^ h
— 1 X 10"
13
=
h
—
100
sec.
C o n s i d e r a t i o n o f t h e q u a n t i z a t i o n of e n e r g y levels i n t h e d e p l e t i o n l a y e r leads to l o n g e r T tized
levels
T H
is greater
S.
T h i s occurs w h e n the spacing between
than the phonon
energy,
such
quan
that multiple
p h o n o n - c a r r i e r interactions are r e q u i r e d to dissipate energy.
T h e prob
a b i l i t y o f m u l t i p l e p h o n o n - c a r r i e r c o l l i s i o n s is m u c h s m a l l e r t h a n t h a t o f single p h o n o n - c a r r i e r
collisions, a n d the corresponding
t i m e constants a r e l o n g e r .
s p a c i n g s of a b o u t 0.1 e V p r o d u c e T Thus, for n - T i 0
2
characteristic
I n i t i a l estimates i n d i c a t e t h a t q u a n t i z e d l e v e l T H
' S o f t h e o r d e r o f 1 0 " 1 1 sec.
i n aqueous electrolyte, the
T H'S T
i n the semicon
ductor, i n v o l v i n g either single p h o n o n - c a r r i e r collisions ( T T H ~ 1 0 " or m u l t i p l e p h o n o n - c a r r i e r collisions ( T H ~ T
10"
11
be longer than either the expected tunneling time ( T T ^ c l a s s i c a l d i f f u s i o n t i m e across t h e d e p l e t i o n l a y e r ( T ^ d
T h i s means t h a t h o t p h o t o g e n e r a t e d Ti0
2
surface.
r
b e i n g faster t h a n
T
T
sec)
10" ) or the 14
4 X 10"
14
sec).
holes c a n b e e x p e c t e d to r e a c h t h e
T h e i r i n j e c t i o n i n t o t h e e l e c t r o l y t e as h o t holes w i l l
depend upon T
1 3
s e c ) , are e x p e c t e d t o
finally
H «
RELAXATION TIMES INELECTROLYTE.
F o r complete dipolar relaxation
i n a q u e o u s e l e c t r o l y t e , t h e c h a r a c t e r i s t i c t i m e constant i s 1 0 " sec ( 1 6 , 1 7 ) ; this is t h e t i m e r e q u i r e d f o r H
2
11
to 1 0 "
1 2
0 molecules to reorient t h e m
selves i n t o a n e w e q u i l i b r i u m s o l v a t i o n s t r u c t u r e a r o u n d a d o n o r o r a c c e p t o r species after t h e species h a s p a r t i c i p a t e d i n a c h a r g e
transfer
process. H o w e v e r , c o m p l e t e r e l a x a t i o n is n o t r e q u i r e d t o p r e v e n t reverse c h a r g e transfer f r o m t h e e l e c t r o l y t e t o t h e s e m i c o n d u c t o r . need
o n l y b e sufficient t o p r o d u c e
T h e relaxation
misalignment w i t h the quantized
e n e r g y levels i n t h e d e p l e t i o n l a y e r , o r at m o s t t o b r i n g t h e e l e c t r o l y t e energy level outside the energy range of the depletion layer. F o r t h e case of n - T i 0
2
w i t h large separation between the q u a n t i z e d
levels i n the depletion layer ( T T H ~ t o b e faster (13)
1 0 " s e c ) , t h e effective T 11
r
is e x p e c t e d
t h a n T T H , SO h o t c a r r i e r i n j e c t i o n is f e a s i b l e .
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
F o r the
164
INTERFACIAL
case w h e r e t h e r m a l i z a t i o n occurs ( T T H ~ 10"
13
PHOTOPROCESSES
v i a single p h o n o n - c a r r i e r
s e c ) , i t has n o t y e t b e e n e s t a b l i s h e d i f T
r
collisions
is faster t h a n T T H ;
c a l c u l a t i o n s o n t h i s p r o b l e m a r e i n progress ( 1 3 ) . H o t h o l e i n j e c t i o n f r o m m e t a l electrodes i n t o l i q u i d e l e c t r o l y t e h a s b e e n e x p e r i m e n t a l l y o b s e r v e d ( 1 8 ) . T h i s s u p p o r t s t h e i d e a t h a t effective r e l a x a t i o n processes i n l i q u i d e l e c t r o l y t e c a n b e fast c o m p a r e d t o elec t r o n i c r e l a x a t i o n processes i n solids. £-GaP.
T h e o c c u r r e n c e of h o t e l e c t r o n i n j e c t i o n f r o m p - G a P p h o t o -
cathodes i n t o v a c u u m is w e l l k n o w n i n s o l i d state p h y s i c s
(19,20,21).
T h i s effect is p r o d u c e d i n s e m i c o n d u c t o r s t h a t h a v e a s u r f a c e l a y e r w i t h a s m a l l w o r k f u n c t i o n (e.g., C s o r C s 0 ) s u c h t h a t a l a r g e d e g r e e of b a n d
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch009
2
b e n d i n g is i n d u c e d i n t h e s e m i c o n d u c t o r ; s u c h systems a r e l a b e l e d " n e g a t i v e e l e c t r o n affinity p h o t o c a t h o d e s "
I n F i g u r e 7, a n e n e r g y
(19,20,21).
l e v e l d i a g r a m is s h o w n f o r a p - G a P p h o t o c a t h o d e layer.
with a C s 0
surface
2
T h e large b a n d b e n d i n g p r o d u c e d b y the C s 0 layer places t h e 2
e n e r g y of t h e c o n d u c t i o n b a n d ( E ) of b u l k p - G a P a b o v e t h e v a c u u m c
l e v e l ( t h i s creates a c o n d i t i o n of n e g a t i v e e l e c t r o n a f f i n i t y ) .
Photogen
e r a t e d electrons s u b s e q u e n t l y i n j e c t e d i n t o v a c u u m suffer o n l y a f e w e l e c t r o n - p h o n o n c o l l i s i o n s a n d are e m i t t e d w i t h a h o t e n e r g y d i s t r i b u t i o n as s h o w n i n F i g u r e 7. I n t h e n e x t section, e x p e r i m e n t a l results a r e r e p o r t e d f o r a p - G a P electrode
that provide qualitative support
h o t e l e c t r o n i n j e c t i o n process. t h e p - G a P is 5 X 1 0
1 7
cm
- 3
for a
photoelectrochemical
I n this e x p e r i m e n t , t h e c a r r i e r d e n s i t y o f
and V
B
= 2.5 e V . T h e r e f o r e , t h e f o l l o w i n g
c a l c u l a t i o n s o n d i f f u s i o n a n d t h e r m a l i z a t i o n times a r e b a s e d o n these p a r a m e t e r s . T u n n e l i n g times h a v e n o t y e t b e e n c a l c u l a t e d f o r t h e p - G a P case. ELECTRON DIFFUSION TIMES.
For p-GaP,
c m / V sec ( 2 2 ) ; w i t h N — 5 X 1 0 2
Hence, T
D
— w /fxV 2
B
= 2 X IO
- 1 8
1 7
ra * e
cm" and V 3
sec. A l s o , T
S
E
B
=
0.5 a n d /* —
100
= 2.5 e V , w — 7 0 0 A .
— d/V
T
= 7 X 10"
15
sec
f o r d = 10 A . ELECTRON THERMALIZATION TIMES.
F o r consecutive single p h o n o n -
e l e c t r o n c o l l i s i o n s , t h e e n e r g y loss p e r c o l l i s i o n is 0.05 e V (20). —
T T H
IO"
14
(VB/0.05)
T e a t S
—
V *m */0.05e — 2 X IO" B /
12
e
sec; w
Hence, —
3 X
sec. T h u s , f o r t h e p - G a P case, T H is l o n g e r t h a n t h e T , a n d h o t electrons d
T
arrive at the semiconductor-electrolyte
interface.
F o r t h i s case, t h e
actual n u m b e r of single phonon-electron collisions resulting f r o m diffusion across t h e d e p l e t i o n l a y e r is e q u a l to
T
D
/ T
8
C
a t
=
7 collisions; hence only
a b o u t 0.35 e V of t h e 2.5 e V a v a i l a b l e f r o m t h e b a n d - b e n d i n g p o t e n t i a l is d i s s i p a t e d .
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch009
9.
NOZIK E T A L .
Charge
Transfer
at Interfaces
165
CSgO LAYER Figure 7.
Hot electron injection from a negative electron affinity cathode (Cs 0 on p-GaP) (19)
photo-
2
T h e T T H f o r single phonon-electron
collisions ( 2 X
10"
1 2
sec) is
s l o w e r t h a n that f o r the n - T i 0 case, a n d q u a n t i z a t i o n effects c o u l d s l o w 2
i t d o w n e v e n f u r t h e r as p r e v i o u s l y discussed. T h e r e f o r e , T
r
i n t h e elec
t r o l y t e c a n b e faster t h a n t h e T H i n t h e s e m i c o n d u c t o r f o r t h e reasons T
d i s c u s s e d earlier. T h i s means t h a t h o t e l e c t r o n i n j e c t i o n f r o m p - G a P electrodes i n t o l i q u i d electrolyte s h o u l d b e p o s s i b l e . Photoenhanced Reduction
of N
2
on p - G a P Cathodes
R e c e n t e x p e r i m e n t s (23) o n t h e p h o t o e n h a n c e d r e d u c t i o n o f N
2
in
a photoelectrochemical cell appear to provide qualitative evidence for a h o t e l e c t r o n i n j e c t i o n process.
T h e system s t u d i e d i s a p h o t o e l e c t r o
c h e m i c a l cell w h i c h contains a p - G a P cathode a n d a n A l - m e t a l
anode
i m m e r s e d i n a n o n a q u e o u s electrolyte of t i t a n i u m t e t r a i s o p r o p o x i d e a n d
Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.
166
INTERFACIAL
AICI3 d i s s o l v e d i n g l y m e
(1,2-dimethoxyethane).
When N
t h r o u g h t h e e l e c t r o l y t e a n d t h e p - G a P electrode band
g a p l i g h t , the N
2
is p a s s e d
is i l l u m i n a t e d
is r e d u c e d a n d is r e c o v e r e d
2
PHOTOPROCESSES
with
as N H ; A l is 3
c o n s u m e d i n t h e process a n d acts as t h e r e d u c i n g agent. A l t h o u g h t h e r e d u c t i o n of N
to N H w i t h A l is t h e r m o d y n a m i c a l l y f a v o r e d ( A G