Charge Transfer at Illuminated Semiconductor-Electrolyte Interfaces

potential well of the depletion layer into the electrolyte. .... ductor and electrolyte potential wells show that for m h * — 0.1 T t = 2 ..... Spic...
1 downloads 0 Views 1MB Size
9 Charge Transfer at Illuminated Semiconductor-Electrolyte Interfaces 1

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch009

A. J. NOZIK , D. S. BOUDREAUX,

and R. R. CHANCE

Corporate Research Center, Allied Chemical Corporation, Morristown, NJ 07960 FERD WILLIAMS Department of Physics, University of Delaware, Newark, D E 19711

A new heterojunction model for the semiconductor-electro­ lyte interface is presented that considers the electrolyte as a doped semiconductor and that predicts that hot photogen­ erated minority carriers can be infected into the electrolyte. Preliminary calculations are presented in support of the hot carrier injection hypothesis. Recent experimental results on the photoenhanced reduction of N on p-GaP cathodes are discussed and they appear to provide experimental evidence for hot electron injection. The importance of hot carrier injection for photoelectrochemical cells is also discussed. 2

In

r e c e n t years a great d e a l o f interest h a s d e v e l o p e d i n t h e field o f photoelectrochemistry

based

o n photoactive

semiconducting

trodes, e s p e c i a l l y i n t h e a p p l i c a t i o n o f these systems t o solar c o n v e r s i o n a n d c h e m i c a l synthesis ( 1 - 9 ) .

elec­ energy

I n F i g u r e 1, a c l a s s i f i c a t i o n

scheme i s p r e s e n t e d f o r t h e v a r i o u s types o f p h o t o e l e c t r o c h e m i c a l cells. T h e first d i v i s i o n is i n t o : ( a ) cells w h e r e i n t h e free e n e r g y c h a n g e i n t h e e l e c t r o l y t e i s zero

( e l e c t r o c h e m i c a l p h o t o v o l t a i c c e l l s ) , a n d ( b ) cells

w h e r e i n t h e free e n e r g y i n the e l e c t r o l y t e i s n o n z e r o

(photoelectrosyn-

t h e t i c c e l l s ) . I n t h e f o r m e r c e l l , o n l y one effective r e d o x c o u p l e i s p r e s e n t i n t h e e l e c t r o l y t e — t h e o x i d a t i o n a n d r e d u c t i o n reactions a t t h e a n o d e a n d c a t h o d e a r e i n v e r s e t o e a c h other. T h e n e t photoeffect 1

is thus t h e

Present address: Solar Energy Research Institute, Golden, CO 80401. 0-8412-0474-8/80/33-184-155$05.00/0 © 1980 American Chemical Society Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

156

INTERFACIAL

PHOTOPROCESSES

ELECTROCHEMICAL PHOTOVOLTAIC CELLS ' (LIQUID JUNCTION SOLAR CELLS)

/

AG=0

/ \

PHOTOELECTROCHEMICAL CELLS \

PHOTOELECTROLYSIS CELLS (ENERGY STORING)

/

AG#0

r(t*.H 0-H +tC^) 1 I

8

[CC^+HgO-CHgO+OgJ

PHOTOELECTROSYNTHETIC CELLS

PHOTOCATALYTIC CELLS (e.g.,N +3H —2NH )

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch009

2

Figure 1.

Classification scheme for photoelectrochemical

2

3

cells

c i r c u l a t i o n o f c h a r g e e x t e r n a l to t h e c e l l , p r o d u c i n g a n e x t e r n a l p h o t o voltage a n d photocurrent

( a l i q u i d j u n c t i o n solar c e l l ) ; n o c h e m i c a l

change occurs i n the electrolyte. I n t h e p h o t o e l e c t r o s y n t h e t i c c e l l , t w o effective r e d o x c o u p l e s a r e p r e s e n t i n t h e e l e c t r o l y t e a n d a net c h e m i c a l c h a n g e o c c u r s u p o n i l l u m i n a ­ t i o n . I f t h e free e n e r g y c h a n g e o f t h e n e t e l e c t r o l y t e r e a c t i o n is p o s i t i v e , optical energy

is c o n v e r t e d i n t o c h e m i c a l e n e r g y

labeled photoelectrolysis.

a n d t h e process i s

O n t h e other h a n d , i f t h e net electrolyte

r e a c t i o n has a n e g a t i v e free e n e r g y c h a n g e , o p t i c a l e n e r g y p r o v i d e s t h e a c t i v a t i o n e n e r g y f o r t h e r e a c t i o n , a n d t h e process

is labeled

photo-

catalysis. E n e r g y l e v e l d i a g r a m s f o r these three t y p e s o f cells a r e s h o w n i n F i g u r e s 2 a n d 3. T h e m o s t i m p o r t a n t aspects o f a l l p h o t o e l e c t r o c h e m i c a l cells a r e the nature of the semiconductor-electrolyte

junction a n d the photo­

i n d u c e d c h a r g e t r a n s f e r process across t h e j u n c t i o n . A n e w m o d e l f o r

ANODE

e

C +h

+

C

+

CATHODE

C++ e~—•C

AG = 0

Figure 2. Energy level diagram for electrochemical photovoltaic cells. C / C is a redox couple in the electrolyte that produces the indicated anodic and cathodic reactions such that no net chemical change occurs. +

Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980. T

AG

C"+2A

NET:

+

B"+ A — • B + A >0

PHOTOELECTROLYSIS

AG

+

A +e~-*A

A +e"-*A +

CATHODE

0*+ 2A T

d

T

H> TT,

, TgE, T . A s c h e m a t i c r e p r e s e n t a t i o n o f these c o m p e t i n g r

processes is d e p i c t e d i n F i g u r e 6 for n - t y p e s e m i c o n d u c t o r s . »-Ti0 .

H O L E TUNNELING TIMES.

2

Quantum mechanical tunneling

times w e r e c a l c u l a t e d f r o m t h e q u a s i c l a s s i c a l f r e q u e n c y f a c t o r o f t h e q u a n t i z e d states i n t h e d e p l e t i o n l a y e r a n d t h e i r t u n n e l i n g p r o b a b i l i t i e s (13). and

T h e c a l c u l a t i o n s d e p e n d u p o n t h e m i n o r i t y c a r r i e r effective mass the b a r r i e r t h i c k n e s s . D e t a i l e d c a l c u l a t i o n s h a v e b e e n m a d e f o r t h e

case o f n - T i 0

2

i n w h i c h d is t a k e n as 10 A , a n d v a l u e s o f 0.01 a n d 0.1

are u s e d f o r t h e h o l e effective mass ( r a * ) . h

A d o f 10 A represents a n u p p e r l i m i t t h a t y i e l d s v e r y c o n s e r v a t i v e estimates o f the t u n n e l i n g t i m e ; m o r e p r o b a b l e values o f d are f r o m 2 - 4 A.

T h e c o r r e c t v a l u e o f m * for T i 0 h

2

is not k n o w n , b u t i t is e x p e c t e d t o

b e l o w because the v a l e n c e b a n d o f T i 0 a v a l u e o f m * = 10" for T i 0 h

2

2

2

is a v e r y w i d e 2 p o x y g e n b a n d ;

has b e e n p u b l i s h e d (14). P r e s e n t c a l c u -

Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

162

INTERFACIAL

PHOTOPROCESSES

lations u s e v a l u e s of 0.1 a n d 0.01 f o r ra * to test t h e s e n s i t i v i t y o f t h e h

results to m * . T h e d i m e n s i o n s o f t h e p o t e n t i a l w e l l f o r t h e case of n - T i 0 h

i n a q u e o u s e l e c t r o l y t e are U = 3 e V (10), V The

results of c a l c u l a t i o n s f o r n - T i 0

2

— 1 e V , w = 200 A (10).

B

that were made b y s i m p l y

2

m u l t i p y l i n g t h e f r e q u e n c y f a c t o r of t h e q u a n t i z e d state i n t h e d e p l e t i o n l a y e r b y t h e t r a n s m i s s i o n coefficient f o r t h e p o t e n t i a l b a r r i e r s h o w t h a t f o r t h e case w h e r e m * — 0.1, q u a n t i z e d states n e a r t h e b o t t o m o f t h e h

w e l l h a v e a t u n n e l i n g t i m e of a b o u t 5 X 10"

13

sec; t h e s p a c i n g b e t w e e n

levels is a b o u t 0.04 e V . Q u a n t i z e d states n e a r t h e t o p of t h e w e l l s h o w t u n n e l i n g times of a b o u t 1 X

10"

12

sec, a n d are s p a c e d a b o u t 0.01 e V

apart. W h e n t h e v a l u e of m * is r e d u c e d to 0.01, o n l y o n e state appears Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch009

h

i n t h e w e l l w i t h a n energy l e v e l 0.56 e V f r o m t h e w e l l b o t t o m ; f o r t h i s state r — 1 X 10" T

14

sec.

C a l c u l a t i o n s b a s e d o n resonance t u n n e l i n g b e t w e e n t h e s e m i c o n ­ d u c t o r a n d e l e c t r o l y t e p o t e n t i a l w e l l s s h o w t h a t f o r m * — 0.1 T h

X

10'

13

t

=

2

sec at t h e b o t t o m of t h e s e m i c o n d u c t o r w e l l ; f o r a state of 0.5 e V

f r o m t h e b o t t o m of t h e s e m i c o n d u c t o r w e l l T — 3 X 10" T

13

sec. R e d u c t i o n

of t h e h o l e effective mass to 0.05 reduces t h e t u n n e l i n g t i m e f o r t h e state n e a r t h e b o t t o m of t h e s e m i c o n d u c t o r w e l l t o 1 X 10"

13

sec.

T h u s , i f i t is a s s u m e d t h a t m * lies b e t w e e n 0.1 a n d 0.05, t h e n o n e h

w o u l d e x p e c t T T ' S t o b e of t h e o r d e r of 5 X 10"

sec f o r cTs of 10 A , a n d

13

e n e r g y l e v e l spacings to b e o f t h e o r d e r of 0.1 e V . V a l u e s of d less t h a n 10 A decrease t h e T ' S a c c o r d i n g l y . F o r a d of T

3 A and with m * = h

T

T

= 3 X 10"

13

0.1, T

T

— 3 X 10'

sec f o r s i m p l e t u n n e l i n g , a n d

14

sec f o r resonance t u n n e l i n g f o r states n e a r t h e t o p of t h e

semiconductor well.

I f m * is r e d u c e d to 0.01, t h e n t h e r e s p e c t i v e T ' S h

T

f o r t h e 3 - A b a r r i e r a r e r e d u c e d t o 3 X 10"

sec a n d 4 X 10"

15

14

sec f o r t h e

s i n g l e state i n t h e s e m i c o n d u c t o r w e l l . T h u s , i f m * lies b e t w e e n 0.1 a n d h

0.01, t h e n one w o u l d expect T ' S to b e of t h e o r d e r of a b o u t 5 X T

10"

14

sec f o r a d of 3 A . HOLE

DIFFUSION

TIMES.

The

time

for

photogenerated

minority

carriers to diffuse across t h e d e p l e t i o n l a y e r u n d e r t h e i n f l u e n c e o f t h e i n t e r n a l e l e c t r i c field ( T ) , a n d b e t r a n s f e r r e d to t h e e l e c t r o l y t e across d

the semiconductor electrolyte interface ( T E ) c a n be estimated u s i n g a S

classical m o d e l a n d compared w i t h the q u a n t u m m e c h a n i c a l t u n n e l i n g t i m e . T h e d r i f t v e l o c i t y ( V ) i n t h e d e p l e t i o n l a y e r is V D

— fiE, w h e r e

D

E is t h e e l e c t r i c field ( E = V / u ; ) i n t h e d e p l e t i o n l a y e r , a n d p is m i n o r i t y B

carrier mobility. Hence, T

D

— w/V

D

— u; //i,V . 2

cross t h e s e m i c o n d u c t o r - e l e c t r o l y t e i n t e r f a c e ( T

B

s e

T h e time required to ) is d/V , T

where V

T

is

t h e t h e r m a l v e l o c i t y of t h e c a r r i e r . I f i t is a s s u m e d t h a t t h e h o l e m o b i l i t y , / i , for T i 0 h

2

is at least 100 c m / V sec (14), a n d t h a t V 2

10 A , a n d w — 200 A , t h e n t h e results y i e l d T

D

B

— 4 X

— 1 eV, d — 10"

14

Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

sec, a n d

NOZIK E T A L .

9.

TSE =

3 X 10"

1 5

Charge

Transfer

163

at Interfaces

sec. T h u s , t h e c l a s s i c a l d i f f u s i o n t i m e s a r e o f t h e s a m e

o r d e r o f m a g n i t u d e as t h e t u n n e l i n g times f o r b a r r i e r thicknesses o f t h e o r d e r o f 3 - 5 A , a n d effective h o l e masses b e t w e e n 0.01 a n d 0.1. HOLE THERMALIZATION TIMES.

I f i t is a s s u m e d t h a t t h e r m a l i z a t i o n

of m i n o r i t y carriers i n t h e d e p l e t i o n l a y e r o c c u r s v i a c o n s e c u t i v e

single

p h o n o n - c a r r i e r c o l l i s i o n s , t h e n T H w i l l b e e q u a l to t h e n u m b e r of s u c h T

collisions r e q u i r e d to dissipate the b a n d b e n d i n g potential energy m u l t i ­ p l i e d b y the characteristic time between c a r r i e r - p h o n o n collisions. T h e latter t i m e is c a l l e d t h e s c a t t e r i n g t i m e ( T m *fi/e. h

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch009

to b e 0.06 e V ( 1 5 ) , t h e n T V m V/0.06e. B

8 c a

t ) a n d b y definition, T

8 c a

t

=

I f t h e e n e r g y loss p e r s i n g l e p h o n o n - c a r r i e r c o l l i s i o n i s t a k e n For n-Ti0

h

c m / V sec, this y i e l d s T 2

T

H

2

T

H v i a single p h o n o n interactions is T T H

with V

B

— 1 e V , m * — 0.1, a n d ^ h

— 1 X 10"

13

=

h



100

sec.

C o n s i d e r a t i o n o f t h e q u a n t i z a t i o n of e n e r g y levels i n t h e d e p l e t i o n l a y e r leads to l o n g e r T tized

levels

T H

is greater

S.

T h i s occurs w h e n the spacing between

than the phonon

energy,

such

quan­

that multiple

p h o n o n - c a r r i e r interactions are r e q u i r e d to dissipate energy.

T h e prob­

a b i l i t y o f m u l t i p l e p h o n o n - c a r r i e r c o l l i s i o n s is m u c h s m a l l e r t h a n t h a t o f single p h o n o n - c a r r i e r

collisions, a n d the corresponding

t i m e constants a r e l o n g e r .

s p a c i n g s of a b o u t 0.1 e V p r o d u c e T Thus, for n - T i 0

2

characteristic

I n i t i a l estimates i n d i c a t e t h a t q u a n t i z e d l e v e l T H

' S o f t h e o r d e r o f 1 0 " 1 1 sec.

i n aqueous electrolyte, the

T H'S T

i n the semicon­

ductor, i n v o l v i n g either single p h o n o n - c a r r i e r collisions ( T T H ~ 1 0 " or m u l t i p l e p h o n o n - c a r r i e r collisions ( T H ~ T

10"

11

be longer than either the expected tunneling time ( T T ^ c l a s s i c a l d i f f u s i o n t i m e across t h e d e p l e t i o n l a y e r ( T ^ d

T h i s means t h a t h o t p h o t o g e n e r a t e d Ti0

2

surface.

r

b e i n g faster t h a n

T

T

sec)

10" ) or the 14

4 X 10"

14

sec).

holes c a n b e e x p e c t e d to r e a c h t h e

T h e i r i n j e c t i o n i n t o t h e e l e c t r o l y t e as h o t holes w i l l

depend upon T

1 3

s e c ) , are e x p e c t e d t o

finally

H «

RELAXATION TIMES INELECTROLYTE.

F o r complete dipolar relaxation

i n a q u e o u s e l e c t r o l y t e , t h e c h a r a c t e r i s t i c t i m e constant i s 1 0 " sec ( 1 6 , 1 7 ) ; this is t h e t i m e r e q u i r e d f o r H

2

11

to 1 0 "

1 2

0 molecules to reorient t h e m ­

selves i n t o a n e w e q u i l i b r i u m s o l v a t i o n s t r u c t u r e a r o u n d a d o n o r o r a c c e p t o r species after t h e species h a s p a r t i c i p a t e d i n a c h a r g e

transfer

process. H o w e v e r , c o m p l e t e r e l a x a t i o n is n o t r e q u i r e d t o p r e v e n t reverse c h a r g e transfer f r o m t h e e l e c t r o l y t e t o t h e s e m i c o n d u c t o r . need

o n l y b e sufficient t o p r o d u c e

T h e relaxation

misalignment w i t h the quantized

e n e r g y levels i n t h e d e p l e t i o n l a y e r , o r at m o s t t o b r i n g t h e e l e c t r o l y t e energy level outside the energy range of the depletion layer. F o r t h e case of n - T i 0

2

w i t h large separation between the q u a n t i z e d

levels i n the depletion layer ( T T H ~ t o b e faster (13)

1 0 " s e c ) , t h e effective T 11

r

is e x p e c t e d

t h a n T T H , SO h o t c a r r i e r i n j e c t i o n is f e a s i b l e .

Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

F o r the

164

INTERFACIAL

case w h e r e t h e r m a l i z a t i o n occurs ( T T H ~ 10"

13

PHOTOPROCESSES

v i a single p h o n o n - c a r r i e r

s e c ) , i t has n o t y e t b e e n e s t a b l i s h e d i f T

r

collisions

is faster t h a n T T H ;

c a l c u l a t i o n s o n t h i s p r o b l e m a r e i n progress ( 1 3 ) . H o t h o l e i n j e c t i o n f r o m m e t a l electrodes i n t o l i q u i d e l e c t r o l y t e h a s b e e n e x p e r i m e n t a l l y o b s e r v e d ( 1 8 ) . T h i s s u p p o r t s t h e i d e a t h a t effective r e l a x a t i o n processes i n l i q u i d e l e c t r o l y t e c a n b e fast c o m p a r e d t o elec­ t r o n i c r e l a x a t i o n processes i n solids. £-GaP.

T h e o c c u r r e n c e of h o t e l e c t r o n i n j e c t i o n f r o m p - G a P p h o t o -

cathodes i n t o v a c u u m is w e l l k n o w n i n s o l i d state p h y s i c s

(19,20,21).

T h i s effect is p r o d u c e d i n s e m i c o n d u c t o r s t h a t h a v e a s u r f a c e l a y e r w i t h a s m a l l w o r k f u n c t i o n (e.g., C s o r C s 0 ) s u c h t h a t a l a r g e d e g r e e of b a n d

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch009

2

b e n d i n g is i n d u c e d i n t h e s e m i c o n d u c t o r ; s u c h systems a r e l a b e l e d " n e g a ­ t i v e e l e c t r o n affinity p h o t o c a t h o d e s "

I n F i g u r e 7, a n e n e r g y

(19,20,21).

l e v e l d i a g r a m is s h o w n f o r a p - G a P p h o t o c a t h o d e layer.

with a C s 0

surface

2

T h e large b a n d b e n d i n g p r o d u c e d b y the C s 0 layer places t h e 2

e n e r g y of t h e c o n d u c t i o n b a n d ( E ) of b u l k p - G a P a b o v e t h e v a c u u m c

l e v e l ( t h i s creates a c o n d i t i o n of n e g a t i v e e l e c t r o n a f f i n i t y ) .

Photogen­

e r a t e d electrons s u b s e q u e n t l y i n j e c t e d i n t o v a c u u m suffer o n l y a f e w e l e c t r o n - p h o n o n c o l l i s i o n s a n d are e m i t t e d w i t h a h o t e n e r g y d i s t r i b u t i o n as s h o w n i n F i g u r e 7. I n t h e n e x t section, e x p e r i m e n t a l results a r e r e p o r t e d f o r a p - G a P electrode

that provide qualitative support

h o t e l e c t r o n i n j e c t i o n process. t h e p - G a P is 5 X 1 0

1 7

cm

- 3

for a

photoelectrochemical

I n this e x p e r i m e n t , t h e c a r r i e r d e n s i t y o f

and V

B

= 2.5 e V . T h e r e f o r e , t h e f o l l o w i n g

c a l c u l a t i o n s o n d i f f u s i o n a n d t h e r m a l i z a t i o n times a r e b a s e d o n these p a r a m e t e r s . T u n n e l i n g times h a v e n o t y e t b e e n c a l c u l a t e d f o r t h e p - G a P case. ELECTRON DIFFUSION TIMES.

For p-GaP,

c m / V sec ( 2 2 ) ; w i t h N — 5 X 1 0 2

Hence, T

D

— w /fxV 2

B

= 2 X IO

- 1 8

1 7

ra * e

cm" and V 3

sec. A l s o , T

S

E

B

=

0.5 a n d /* —

100

= 2.5 e V , w — 7 0 0 A .

— d/V

T

= 7 X 10"

15

sec

f o r d = 10 A . ELECTRON THERMALIZATION TIMES.

F o r consecutive single p h o n o n -

e l e c t r o n c o l l i s i o n s , t h e e n e r g y loss p e r c o l l i s i o n is 0.05 e V (20). —

T T H

IO"

14

(VB/0.05)

T e a t S



V *m */0.05e — 2 X IO" B /

12

e

sec; w

Hence, —

3 X

sec. T h u s , f o r t h e p - G a P case, T H is l o n g e r t h a n t h e T , a n d h o t electrons d

T

arrive at the semiconductor-electrolyte

interface.

F o r t h i s case, t h e

actual n u m b e r of single phonon-electron collisions resulting f r o m diffusion across t h e d e p l e t i o n l a y e r is e q u a l to

T

D

/ T

8

C

a t

=

7 collisions; hence only

a b o u t 0.35 e V of t h e 2.5 e V a v a i l a b l e f r o m t h e b a n d - b e n d i n g p o t e n t i a l is d i s s i p a t e d .

Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

Downloaded by CORNELL UNIV on September 2, 2016 | http://pubs.acs.org Publication Date: June 1, 1980 | doi: 10.1021/ba-1980-0184.ch009

9.

NOZIK E T A L .

Charge

Transfer

at Interfaces

165

CSgO LAYER Figure 7.

Hot electron injection from a negative electron affinity cathode (Cs 0 on p-GaP) (19)

photo-

2

T h e T T H f o r single phonon-electron

collisions ( 2 X

10"

1 2

sec) is

s l o w e r t h a n that f o r the n - T i 0 case, a n d q u a n t i z a t i o n effects c o u l d s l o w 2

i t d o w n e v e n f u r t h e r as p r e v i o u s l y discussed. T h e r e f o r e , T

r

i n t h e elec­

t r o l y t e c a n b e faster t h a n t h e T H i n t h e s e m i c o n d u c t o r f o r t h e reasons T

d i s c u s s e d earlier. T h i s means t h a t h o t e l e c t r o n i n j e c t i o n f r o m p - G a P electrodes i n t o l i q u i d electrolyte s h o u l d b e p o s s i b l e . Photoenhanced Reduction

of N

2

on p - G a P Cathodes

R e c e n t e x p e r i m e n t s (23) o n t h e p h o t o e n h a n c e d r e d u c t i o n o f N

2

in

a photoelectrochemical cell appear to provide qualitative evidence for a h o t e l e c t r o n i n j e c t i o n process.

T h e system s t u d i e d i s a p h o t o e l e c t r o ­

c h e m i c a l cell w h i c h contains a p - G a P cathode a n d a n A l - m e t a l

anode

i m m e r s e d i n a n o n a q u e o u s electrolyte of t i t a n i u m t e t r a i s o p r o p o x i d e a n d

Wrighton; Interfacial Photoprocesses: Energy Conversion and Synthesis Advances in Chemistry; American Chemical Society: Washington, DC, 1980.

166

INTERFACIAL

AICI3 d i s s o l v e d i n g l y m e

(1,2-dimethoxyethane).

When N

t h r o u g h t h e e l e c t r o l y t e a n d t h e p - G a P electrode band

g a p l i g h t , the N

2

is p a s s e d

is i l l u m i n a t e d

is r e d u c e d a n d is r e c o v e r e d

2

PHOTOPROCESSES

with

as N H ; A l is 3

c o n s u m e d i n t h e process a n d acts as t h e r e d u c i n g agent. A l t h o u g h t h e r e d u c t i o n of N

to N H w i t h A l is t h e r m o d y n a m i c a l l y f a v o r e d ( A G