1 Some Mechanistic Aspects of N-Chelated Organolithium Catalysis A. W. LANGER, JR.
Downloaded by RMIT UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch001
Corporate Research Laboratories, Esso Research and Engineering Co., Linden, N.J. 07036 Chelating tertiary polyamines have a dramatic effect on the reactivity and properties of organolithium compounds. The unusual properties of the chelates have led to their extensive use as unique catalysts and chemical reagents. Some general aspects related to structure and properties are discussed including the nature of the chelating agent, chelate/LiR ratio, aggregation, and metalation. These are examined as they relate to ion pairing of the lithium-carbon bond, reactivity, and some aspects of polymerization. Metalations produce kinetically favored products with very slow rearrangement to the thermodynamically more stable products. The effects of ion pair structure and steric hindrance in the chelating agent are illustrated in butadiene polymerization. Chain transfer mechanisms in ethylene polymerization are presented to explain cyclopentane rings in the product. " D e f o r e 1964 there w a s extensive l i t e r a t u r e o n the effects of m o n o f u n c t i o n a l L e w i s bases o n the r e a c t i v i t y of o r g a n o h t h i u m particularly i n the polymerization
field
(I).
However
no
compounds, information
was a v a i l a b l e o n the effects of c h e l a t i n g bases. S i n c e c h e l a t i n g polyethers w e r e i n w i d e use, one c a n o n l y speculate t h a t t h e y h a d b e e n t r i e d a n d w e r e d i s c a r d e d b e c a u s e t h e y r a p i d l y d e c o m p o s e d the a l k y l l i t h i u m . C h e l a t i n g t e r t i a r y p o l y a m i n e s h a v e a d r a m a t i c effect o n the r e a c t i v i t y a n d properties of o r g a n o l i t h i u m c o m p o u n d s . T h e chelates are n e w c o m positions w h i c h are r a p i d l y
finding
w i d e use as u n i q u e catalysts
and
c h e m i c a l reagents. N - c h e l a t e d a l k a l i m e t a l c o m p o u n d s w e r e d i s c o v e r e d i n 1960 at E s s o Research and Engineering C o . w h e n b u t y l l i t h i u m was complexed w i t h TMED
(NjNjN^JV'-tetramethylethylenediamine)
polymerization (2).
for
use
in
ethylene
A t that t i m e t h e o b j e c t i v e w a s to m a k e n e w 1
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
non-
2
P O L Y A M I N E - C H E L A T E D A L K A L I M E T A L COMPOUNDS
t r a n s i t i o n m e t a l p o l y m e r i z a t i o n catalysts, a n d the q u e s t i o n w a s
raised
whether t r i e t h y l a l u m i n u m c o u l d be simulated b y complexing an a l k y l l i t h i u m w i t h a chelating tertiary diamine. AlEt adds
3
Z i e g l e r (3)
h a d s h o w n that
d i m e r dissociates to a n e l e c t r o n deficient m o n o m e r i c species w h i c h to e t h y l e n e
reaction).
to f o r m l o n g e r
chain a l u m i n u m alkyls (the
growth
P r e s u m a b l y the ethylene coordinates w e a k l y w i t h the a l u m i
n u m a n d is p o l a r i z e d b y
the p a r t i a l l y i o n i c A l - C b o n d
to
facilitate
a d d i t i o n , s h o w n at the top of F i g u r e 1.
Downloaded by RMIT UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch001
Al
Al
8l-N
/R,
^ Ν η
/\
^
/\
Figure 1.
Γ Ν
χ
β
/\
Λ δ-
Trialkylaluminum simulation with an organolithium chelate
B u t y l l i t h i u m w a s also k n o w n to p o l y m e r i z e e t h y l e n e (4, 5, 6 ) ,
but
it was less a c t i v e t h a n t r i e t h y l a l u m i n u m . C o n c e p t u a l l y it was felt that B u L i s h o u l d b e m o r e a c t i v e because of the s m a l l e r c a t i o n a n d m o r e i o n i c m e t a l - c a r b o n b o n d , b u t the l o w p o l y m e r i z a t i o n a c t i v i t y c o u l d b e b y greater d i f f i c u l t y i n b r e a k i n g d o w n the strong aggregates.
caused
Solvation
b y T M E D w a s v i s u a l i z e d to g i v e d i m e r a n d m o n o m e r structures w h i c h w e r e d i r e c t l y r e l a t e d to A l E t , s h o w n at the b o t t o m of F i g u r e 1. A t the 3
same t i m e , s o l v a t i o n of l i t h i u m b y T M E D w a s e x p e c t e d to f u r t h e r increase t h e i o n i c c h a r a c t e r of t h e L i - C b o n d . T M E D w a s u s e d r a t h e r t h a n ethers b e c a u s e i t was e x p e c t e d to b e less r e a c t i v e t o w a r d B u L i . T h e s e expectations w e r e r e a l i z e d b y the p r e p a r a t i o n of h i g h m o l e c u l a r w e i g h t p o l y e t h y l e n e at 2 5 ° - 5 0 ° C whereas A l E t b e l o w a b o u t 90 ° C .
3
a c t i v i t y is n e g l i g i b l e
T h e i n c r e a s e d i o n i c c h a r a c t e r of the catalyst c a u s e d
a n increase i n m e t a l a t i o n c a p a b i l i t y a n d l e d to the d i s c o v e r y of t e l o m e r i z a t i o n reactions
(7)
a n d n e w o r g a n o m e t a l l i c syntheses
(8).
T h e extra
o r d i n a r y r e a c t i v i t y of the N - c h e l a t e d o r g a n o l i t h i u m complexes s t i m u l a t e d extensive
r e s e a r c h d i r e c t e d t o w a r d d e f i n i n g the s c o p e of
the
catalyst
system, finding n e w a p p l i c a t i o n s , a n d e x a m i n i n g the r e l a t i o n s h i p of s t r u c t u r e to chelate p r o p e r t i e s
(9,10,11).
I n 1962 a n d 1963 t h e c h e l a t e d o r g a n o l i t h i u m c o m p l e x e s a n d t h e i r a p p l i c a t i o n i n ethylene t e l o m e r i z a t i o n w e r e d i s c o v e r e d i n d e p e n d e n t l y e a c h o t h e r b y E b e r h a r d t (12) patents (13,
14)
at S u n O i l C o .
of
T h i s r e s e a r c h l e d to t w o
i n w h i c h the c l a i m s i n v o l v i n g c h e l a t e d catalysts w e r e
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
3
N-Chelated Organolithium Catalysis
LANGER
o v e r t u r n e d b y interference p r o c e d u r e s (2, 7,15,16). p u b l i s h e d (12, 17, 18)
S e v e r a l papers w e r e
w h i c h h e l p e d s t i m u l a t e interest i n the catalysts.
In addition Eberhardt discovered
t h e i r use for the t e l o m e r i z a t i o n of
e t h y l e n e w i t h h i g h e r olefins c o n t a i n i n g a l l y l i c h y d r o g e n s
(19).
Eber-
hardt's a n d his c o - w o r k e r s ' research r e s u l t e d i n patents of c h e l a t e d o r g a n o l i t h i u m catalysts u s e d for i s o m e r i z a t i o n of olefins (20), ethylene w i t h b e n z y l d i a l k y l a m i n e s (21), 100 ° C (22),
t e l o m e r i z a t i o n of
ethylene polymerization above
a n d p r e p a r a t i o n of t e l o m e r waxes
(23).
T h e scope of t h e c h e l a t e d a l k a l i m e t a l system a n d the m a n y uses for these n e w complexes are c o v e r e d t h o r o u g h l y i n this v o l u m e .
T h e r e are
several g e n e r a l aspects r e l a t e d to s t r u c t u r e a n d properties w h i c h are
Downloaded by RMIT UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch001
i m p o r t a n t i n a l l p r e p a r a t i o n s a n d a p p l i c a t i o n s . T h e s e i n c l u d e the r a t i o of c h e l a t i n g agent to the o r g a n o l i t h i u m c o m p o u n d , the n a t u r e of
the
c h e l a t i n g agent, a g g r e g a t i o n o f t h e complexes, a n d the s h a r p l y i n c r e a s e d metalation reactivity compared w i t h uncomplexed organolithium com pounds.
T h i s p a p e r discusses these features i n r e l a t i o n to the l i t h i u m -
c a r b o n b o n d , the c h e m i c a l r e a c t i v i t y of the complexes, a n d some aspects of p o l y m e r i z a t i o n . Structure
of Lithium
Chelates
Alkyllithium compounds
exist as tetramers or hexamers i n h y d r o
c a r b o n solvents d e p e n d i n g p r i m a r i l y u p o n the b u l k i n e s s a n d size of the a l k y l groups (24, 25).
O t h e r l a r g e l y covalent o r g a n o l i t h i u m c o m p o u n d s
p r o b a b l y h a v e s i m i l a r degrees of association a l t h o u g h one m i g h t expect h i g h e r aggregates f r o m d i p o l e interactions for those h a v i n g m o r e i o n i c L i - C bonds.
S u p p o r t for this i d e a c a n b e f o u n d i n w o r k b y M a k o w s k i
a n d L y n n (26)
w h o s h o w e d that l o w m o l e c u l a r w e i g h t p o l y b u t a d i e n y l -
l i t h i u m has a degree of association c o n s i d e r a b l y greater t h a n six i n the absence of solvent.
T h e y also s h o w e d that association t h e n decreases
w i t h i n c r e a s i n g m o l e c u l a r w e i g h t to a l i m i t i n g v a l u e of t w o . h y d r o f u r a n b o t h p o l y i s o p r e n y l l i t h i u m (27)
I n tetra-
a n d p o l y s t y r y l l i t h i u m (28)
w e r e r e p o r t e d to b e m o n o m e r i c a l t h o u g h t h e y are d i m e r i c i n h y d r o c a r b o n solvents
(29).
n - B u t y l l i t h i u m is h e x a m e r i c i n b e n z e n e a n d c y c l o h e x a n e (30)
a n d at t h e i r f r e e z i n g points (31),
but no cryoscopic
h a v e b e e n r e p o r t e d i n paraffinic solvents.
at 25 ° C
measurements
In our laboratory
cryoscopic
studies i n b e n z e n e , toluene, a n d η-heptane s h o w e d that it w a s a h e x a m e r i n b e n z e n e a n d t o l u e n e b u t a tetramer i n η-heptane at concentrations b e t w e e n 0 . 2 M a n d 1 . 0 M (32).
T h e h e p t a n e result m i g h t b e a t t r i b u t e d
to stronger s o l v a t i o n of the b u t y l groups at t h e f r e e z i n g p o i n t ( — 9 0 . 7 ° C ) , t h e r e b y s t a b i l i z i n g a s m a l l e r aggregate. M a n y chelated organolithium compounds
c a n b e o b t a i n e d as
1:1
complexes, b u t o n l y c e r t a i n l i t h i u m aggregates a p p e a r to f o r m i n s o l u b l e
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
4
POL Y A M I N E - C H E L A T E D A L K A L I M E T A L COMPOUNDS
c o m p l e x e s ( 8 , 10).
T M E D , irarw-^N^^N'-tetramethyl-l^-cyclohexane-
diamine ( f r a r w - T M C H D ) and tetramethyl-l,3-propanediamine
(TMPD)
formed
tetramer.
c r y s t a l l i n e complexes w i t h b u t y l l i t h i u m d i m e r
and
A t t e m p t s to isolate complexes h a v i n g 3 : 1 , 5 : 1 , or 6:1 B u L i : c h e l a t e ratios w e r e unsuccessful.
T h u s the stable aggregate structures i n b u t y l l i t h i u m
persist i n c o m p l e x e s f o r m e d w i t h b i d e n t a t e c h e l a t i n g agents.
However
a n e q u i m o l a r a m o u n t of a strong c h e l a t i n g agent w i l l p r o d u c e 1:1 c o m plexes i n d i l u t e solutions. tions at b o t h 1:1
B u L i : T M E D is m o n o m e r i c at l o w
(10, 32, 33)
a n d 1:2
concentra-
B u L i / T M E D ratios a n d
(33)
d i m e r i c at 1:1 r a t i o at h i g h concentrations. T M E D p r o d u c e s a c r y s t a l l i n e c o m p l e x w i t h m e t h y l l i t h i u m tetramer,
Downloaded by RMIT UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch001
b u t e v e n a large excess of T M E D does not b r e a k d o w n t h e tetramer to d i m e r or m o n o m e r ( 8 ) .
T h i s result shows that m e t h y l b r i d g e s are stronger
t h a n t e r t i a r y a m i n e c o m p l e x a t i o n to l i t h i u m . complexes w i t h b i d e n t a t e
chelating
agents also c o n t a i n e d l i t h i u m d i m e r a n d tetramer species ( 8 ) .
V a r i o u s other
organolithium
However
p r e l i m i n a r y attempts to p r e p a r e ( C H L i ) 6
5
4
· T M E D f r o m solutions
con-
t a i n i n g 4:1 a n d 6:1 m o l a r ratios y i e l d e d o n l y crystals h a v i n g the u n u s u a l r a t i o of t h r e e p h e n y l h t h i u m p e r T M E D ( 8 ) .
A t r i m e r i c l i t h i u m species
has b e e n r e p o r t e d for l i t h i u m bis ( t r i m e t h y l s i l y l ) a m i d e i n x-ray studies (34)
a l t h o u g h K i m u r a a n d B r o w n (35)
i n t e r p r e t e d the s o l u t i o n b e h a v i o r
as a n e q u i l i b r i u m b e t w e e n d i m e r a n d tetramer.
It w o u l d be i n t e r e s t i n g
to d e t e r m i n e w h e t h e r the p h e n y l anions b r i d g e i n a s i m i l a r m a n n e r to a m i d e ions or w h e t h e r a c h e l a t i n g agent p r o d u c e s a different aggregate structure.
Molecular weight
(C H Li) 6
5
3
d a t a are n e e d e d to d i s t i n g u i s h b e t w e e n
· T M E D and ( C H 5 L i ) · 2 T M E D . 6
6
W i t h the u n u s u a l r a t i o ,
this w o r k m u s t be c o n s i d e r e d tentative u n t i l it is repeated. T h e r e w a s also e v i d e n c e for c o m p l e x f o r m a t i o n w i t h p h e n y l h t h i u m d i m e r w h i c h w o u l d b e analogous to the p h e n y l h t h i u m d i m e r complexes i n ether reported b y West and W a a c k W i t h the exception
of
c o m p o u n d s h a v e y i e l d e d 1:1
solvents
(36). m e t h y l l i t h i u m , a l l types
of
organolithium
complexes w i t h b i d e n t a t e , t r i d e n t a t e , or
tetradentate c h e l a t i n g t e r t i a r y p o l y a m i n e s (16).
M o s t are c r y s t a l l i n e b u t
B u L i · T M E D is a n o i l . Stable complexes c o n t a i n i n g t w o molecules
of c h e l a t i n g agent per
o r g a n o h t h i u m are o b t a i n e d o n l y w h e n solvent separated i o n p a i r f o r m a t i o n is f a v o r a b l e .
T h i s occurs w i t h i o n i c l i t h i u m c o m p o u n d s h a v i n g a
large, soft a n i o n . F o r e x a m p l e c r y s t a l l i n e complexes have b e e n i s o l a t e d having
the
compositions
(C H )2CHLi · ( T M E D ) , 6
5
2
(C H )sCLi· e
6
( T M E D ) , a n d ( C H ) C H L i · H M T T , w h e r e H M T T is h e x a m e t h y l t r i 2
e
5
ethylenetetramine ( 8 ) .
2
S u c h structures s h o u l d b e g e n e r a l for a l l l i t h i u m
c o m p o u n d s i n w h i c h t h e negative c h a r g e o n t h e a n i o n is m o r e t h a n i n the b e n z y l a n i o n .
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
diffuse
1.
5
Ν-Chelated Organolithium Catalysis
LANGER
I n o r d e r to a v o i d chelate d e c o m p o s i t i o n t h e c a r b a n i o n m u s t b e less r e a c t i v e t h a n b e n z y l a n i o n , o r i t w i l l metalate t h e c h e l a t i n g agent w i t h subsequent d e c o m p o s i t i o n .
F i g u r e 2 illustrates c r y s t a l l i n e complexes of
b e n z y l l i t h i u m w i t h b i - , t r i - , a n d tetradentate c h e l a t i n g agents.
While
the first t w o a r e stable, t h e t e t r a m i n e c o m p l e x decomposes extensively i n 24 hours. I n contrast, a l l three complexes w i t h d i p h e n y l m e t h y l l i t h i u m a r e stable. F o r t h e first t w o complexes w i t h b e n z y l h t h i u m , t h e U V s p e c t r u m i n b e n z e n e shows o n l y o n e a b s o r p t i o n a t 3 3 0 n m f o r t h e contact i o n p a i r . T h e t e t r a m i n e c o m p l e x also shows a s m a l l a b s o r p t i o n at 3 6 7 n m , p r e s u m a b l y f r o m a loose or separated i o n p a i r structure. I n t h e c r y s t a l lattice where
i o n pair separation should be more
favorable,
decomposition
Downloaded by RMIT UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch001
o c c u r r e d r a p i d l y via b e n z y l i o n attack o n a n Ν — C H (C H )2CHLi · H M T T 6
5
3
group. F o r
c o m p l e x t h e U V a b s o r p t i o n at 4 6 0 n m f o r t h e
separated i o n p a i r is l a r g e r t h a n that at 4 2 0 n m f o r t h e contact i o n p a i r , i n d i c a t i n g a h i g h e r p r o p o r t i o n of separated i o n pairs t h a n i n t h e b e n z y l l i t h i u m complex.
T h i s is consistent w i t h t h e greater resonance s t a b i l i z a
t i o n o f d i p h e n y l m e t h y l c o m p a r e d w i t h b e n z y l a n i o n . I n this case, h o w ever, t h e c o m p l e x is stable to d e c o m p o s i t i o n because t h e less r e a c t i v e c a r b a n i o n cannot m e t a l a t e the c h e l a t i n g agent despite the greater c o n c e n t r a t i o n of separated i o n p a i r s . T h e s e results i n d i c a t e that t h e t e t r a m i n e complexes exist i n t w o forms : ( a ) a contact i o n p a i r i n w h i c h o n l y three nitrogens solvate l i t h i u m a n d the f o u r t h is u n c o o r d i n a t e d a n d ( b ) a sepa r a t e d i o n p a i r i n w h i c h t h e f o u r t h n i t r o g e n displaces t h e c a r b a n i o n to t h e outer sphere. TMED \/ r- Ν
Ν
PMDT
HMTT
\ /
YELLOW STABLE
λ max 330 nm
YELLOW STABLE
YELLOW-ORANGE D E C / 2 4 HRS.
330 nm
330 ; 367 nm
STABLE
STABLE
λ max 420 nm
420 nm
Figure 2.
STABLE 420
460 nm
Organolithium chelates.
Top: Crystalline benzyllithium complexes. Bottom: Crystalline diphenyl methyllithium complexes.
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
6
P O L Y A M I N E - C H E L A T E D A L K A L I M E T A L COMPOUNDS
#
X - r a y structures for v a r i o u s c r y s t a l l i n e o r g a n o l i t h i u m complexes are
c o v e r e d i n C h a p t e r 3 w h i c h p r o v i d e s p r o o f for chelate r i n g structures as o p p o s e d to o p e n c h a i n p o l y m e r i c structures. It also supports the N M R finding
of i n c r e a s e d i o n i c c h a r a c t e r i n the L i - C b o n d u p o n s o l v a t i o n of
the l i t h i u m
(10).
T h e resistance of o r g a n o l i t h i u m aggregates to d i s s o c i a t i o n b y d o n o r solvents or c h e l a t i n g L e w i s bases is u n d o u b t e d l y r e l a t e d to the lattice e n e r g y of the aggregates just as was f o u n d for the c o m p l e x a t i o n of i n o r g a n i c salts (see C h a p t e r 6, K l e m a n n et ah).
A s s t a b i l i t y increases, m o r e
p o w e r f u l s o l v a t i n g agents are r e q u i r e d to o v e r c o m e this lattice energy. I f s t a b i l i t y is too h i g h for 1:1 c o m p l e x a t i o n b y p e r m e t h y l a t e d p o l y e t h y l -
Downloaded by RMIT UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch001
enetetramines, the l a t t i c e energy of the aggregate is a b o v e a b o u t kcals/mole
at 25 ° C .
Methyllithium
tetramer appears
to
be
200
i n this
category. A l l of the a b o v e d i s c u s s i o n deals w i t h the r a t i o of c h e l a t i n g agent to o r g a n o l i t h i u m c o m p o u n d i n v a r i o u s complexes.
I n most cases m o l e c u -
lar w e i g h t has either not b e e n d e t e r m i n e d or i t w a s d e t e r m i n e d at a single c o n c e n t r a t i o n i n a single solvent. It s h o u l d be u n d e r s t o o d that a l l of the chelates h a v e a strong t e n d e n c y to aggregate because of t h e i r i n c r e a s e d i o n i c character.
T h e d i p o l e - d i p o l e interactions are d e p e n d e n t o n t e m -
p e r a t u r e , c o n c e n t r a t i o n , solvent, etc. T h u s the degree of a g g r e g a t i o n for a n y specific system s h o u l d b e d e t e r m i n e d w h e n e v e r i t is suspected i n f l u e n c i n g properties.
of
I n d i l u t e solutions, as i n catalysis, t h e chelates
are b e l i e v e d to be m o n o m e r i c .
W h e r e c o n c e n t r a t i o n studies w e r e m a d e
( T M E D · LiCH ο -I
ο >
20
/
800 μ
12
n-HEPTANE, 25°C. Φ 0.1M BuLi, 820 mm H
8
2
A 0.5M BuLi
400
1 0.5
1 1.0
CO
4 1
1
1.5
2.0
0
TMED/BuLi MOLE RATIO
Figure 3.
Parallel between BuLi hydrogenolysis rate and α-methylene proton chemical shift
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
8
POL Y A M I N E - C H E L A T E D A L K A L I M E T A L COMPOUNDS
h y d r o g e n a n d 25 ° C i n η-heptane, the 1:1 c o m p l e x r e a c t e d a p p r o x i m a t e l y 7000 times faster t h a n u n c o m p l e x e d B u L i to p r o d u c e b u t a n e a n d l i t h i u m hydride.
G i l m a n r e p o r t e d that b u t y l l i t h i u m r e a c t e d c o m p l e t e l y
h y d r o g e n o n l y after 61 h o u r s at 100 p s i g (40).
with
F u r t h e r m o r e the r e a c t i v i
ties of p h e n y l h t h i u m a n d p h e n y l p o t a s s i u m t o w a r d h y d r o g e n o l y s i s benzene were compared.
in
P h e n y l h t h i u m c o m p l e t e l y r e a c t e d i n 32.2 hrs
at 100 p s i g whereas the r e a c t i o n w i t h p h e n y l p o t a s s i u m was 9 0 % i n 0.54 hrs at s l i g h t l y a b o v e a t m o s p h e r i c pressure (40).
complete
A n increased
r a t e of h y d r o g e n o l y s i s of p h e n y l h t h i u m has also b e e n r e p o r t e d a d d i t i o n of ether solvents (41).
upon
T h e a b o v e facts t a k e n together p r o v i d e
a d d i t i o n a l e v i d e n c e that c h e l a t i o n increases the i o n i c c h a r a c t e r of the
Downloaded by RMIT UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch001
M-C
bond. R e a c t i v i t y of b u t y l l i t h i u m f u r t h e r increases w h e n T M E D is r e p l a c e d
b y a t r i d e n t a t e ( P M D T ) or a tetradentate ( H M T T ) c h e l a t i n g agent. I n these complexes r e a c t i v i t y is excessively h i g h a n d leads to r a p i d m e t a l a t i o n of the c h e l a t i n g agent.
T h u s , m o r e effective
or m o r e
extensive
s o l v a t i o n of l i t h i u m b y n i t r o g e n bases gives the L i - C b o n d i o n p a i r p r o p e r t i e s s i m i l a r to u n c o m p l e x e d a l k y l s o d i u m or a l k y l p o t a s s i u m . H o w ever the l i t h i u m chelates h a v e advantages i n s o l u b i l i t y a n d m u c h l o w e r a g g r e g a t i o n i n h y d r o c a r b o n solvents. T h i s r e l a t i o n s h i p to i o n i c character a p p l i e s o n l y to a g i v e n o r g a n o l i t h i u m c o m p o u n d , h o w e v e r , a n d not to a c o m p a r i s o n of different c a r banions.
F o r e x a m p l e h y d r o g e n o l y s i s of 1:1 complexes of T M E D
with
butyllithium, benzyllithium, diphenylmethyllithium, and triphenylmethyll i t h i u m gives s h a r p l y d e c r e a s i n g rates i n the o r d e r s h o w n (42). butyllithium complex
Y e t the
a l m o s t c e r t a i n l y has s o m e c o v a l e n t c o n t r i b u t i o n
whereas the t r i p h e n y l m e t h y l l i t h i u m c o m p l e x is a n i o n p a i r . H e r e w e are c o n c e r n e d w i t h t h e i n t r i n s i c r e a c t i v i t y of the c a r b a n i o n ; i n this r e a c t i o n it is the n u c l e o p h i l i c i t y of the c a r b a n i o n t o w a r d h y d r o g e n w h i c h correlates w i t h r e a c t i o n rates. T h e b e n z y l i c c a r b a n i o n s are w e a k e r n u c l e o p h i l e s to the extent that the n e g a t i v e charge is d e l o c a l i z e d i n t o the a r o m a t i c rings. A t the same t i m e this resonance s t a b i l i z a t i o n also favors i o n p a i r i n g r a t h e r than covalent bonding.
F o r the r e a c t i o n w i t h h y d r o g e n there w i l l b e a
b a s i c i t y cut-off p o i n t b e l o w w h i c h a c a r b a n i o n w i l l not react at a p r a c t i c a l rate. T h i s p r i n c i p l e also a p p l i e s to the a d d i t i o n of e t h y l e n e to organo l i t h i u m reagents. (43)
F a i l u r e to r e c o g n i z e this l e a d B a r t l e t t a n d c o w o r k e r s
to c o n c l u d e t h a t i o n i c c h a r a c t e r i n the L i - C b o n d is u n f a v o r a b l e
a l t h o u g h the opposite c o n c l u s i o n w a s d r a w n for T M E D complexes
(44).
O t h e r factors w h i c h m u s t b e c o n s i d e r e d i n c l u d e t h e i n t r i n s i c r e a c t i v i t y of the c a r b a n i o n , a g g r e g a t i o n , c o o r d i n a t i v e u n s a t u r a t i o n , a n d p o l a r i z i n g a b i l i t y of the m e t a l c a t i o n . Q u a l i t a t i v e l y this cut-off p o i n t appears to b e s l i g h t l y b e l o w t r i p h e n y l m e t h y l c a r b a n i o n , at a b o u t a pK
b
M S A D scale (45).
T h i s places the p K
f f
of 30-31 o n the
of h y d r o g e n at a b o u t 29-31 ( s a m e
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
scale).
9
N-Chelated Organolithium Catalysis
LANGER
C h e l a t e d a l k y l l i t h i u m c a n metalate a n y c o m p o u n d h a v i n g a n
a c i d i t y greater t h a n m e t h a n e (less t h a n a b o u t 40 p K ) . t t
A g g r e g a t i o n adversely affects m e t a l a t i o n r e a c t i v i t y . W i t h f o r m e d c o m p a r e d w i t h 9 0 % Li at e q u i l i b r i u m . T h e s e results s h o w the r e m a r k a b l y h i g h k i n e t i c a c i d i t y of t e t r a m e t h y l s i l a n e a n d also i n d i c a t e that its t h e r m o d y n a m i c a c i d i t y falls b e t w e e n that of b e n z e n e and T M E D .
T h i s latter o b s e r v a t i o n is c o n t r a r y to p r e d i c t i o n s b a s e d
on
e l e c t r o n e g a t i v i t y a n d suggest c a r b a n i o n s t a b i l i z a t i o n b y ρττ-άπ o v e r l a p . Table I.
Kinetic and Thermodynamic Product Yields from Metalation Reactions W i t h T M E D · Ser-BuLi Chelated Products
Reactants TMED-sec-BuLi
+ TMS
Li-TMS Initial
>95%
Li—CtH*
-C-C-N^
C
> 750
300
550
230
420
145
290
80
260
40
65
30
C-C ^N-C-C-N^ C
C
C-C ^N-C-C-N" "C-C
C
C-C >-C-C-N' C-C ^C-C
C
C-C
/C-C N-C-C-N
C-C" NONE
Figure 5.
2
is b e l i e v e d to b e u n f a v o r a b l e
C-C
Effect of diamine substituents on polymerization rates, 0.002M BuLi-Diamine, n - C , 25°C 7
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
N-Chetoted Organolithium Catalysis
LANGER
15
I n the p r e c e d i n g section a
Steric Effects of the Chelating Agent.
t r i a m i n e chelate w a s s h o w n to h a v e l o w a c t i v i t y i n b u t a d i e n e p o l y m e r i z a t i o n c o m p a r e d w i t h t h e d i a m i n e chelate.
T h e effects of m o r e g r a d u a l
changes i n chelate s t r u c t u r e o n the rates of p o l y m e r i z a t i o n f o r b u t a d i e n e a n d styrene are s h o w n i n F i g u r e 5. T h e steric b u l k of t e t r a m e t h y l e t h y l e n e d i a m i n e w a s s y s t e m a t i c a l l y i n c r e a s e d b y successive r e p l a c e m e n t of m e t h y l groups b y e t h y l groups, a n d a c t i v i t y decreased a c c o r d i n g l y .
W i t h both
m o n o m e r s , h o w e v e r , the a c t i v i t y of b u t y l l i t h i u m alone w a s l o w e r t h a n that w i t h the most h i n d e r e d c h e l a t i n g agent, t e t r a e t h y l e t h y l e n e d i a m i n e (TEED). Instead of steric h i n d r a n c e to p r o p a g a t i o n , a n a l t e r n a t i v e e x p l a n a t i o n
Downloaded by RMIT UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch001
is dissociation of the c h e l a t i n g agent f r o m the l i t h i u m c a u s e d b y i n c r e a s i n g h i n d r a n c e to c o m p l e x a t i o n .
the
D i s s o c i a t i o n definitely is a c o n -
t r i b u t i n g factor w i t h c h e l a t i n g agents h a v i n g larger a l k y l substituents l i k e t e t r a p r o p y l e t h y l e n e d i a m i n e , p a r t i c u l a r l y at h i g h e r p o l y m e r i z a t i o n t e m peratures because the p e r cent 1,2-polybutadiene structure decreases s u b stantially.
H o w e v e r T E E D a n d T M E D p r o d u c e d n e a r l y the same p e r
cent 1,2-polybutadiene structure at 25 ° C i n d i c a t i n g that the p o l y m e r w a s p r o d u c e d at a c h e l a t e d l i t h i u m site. T h e s e d a t a a n d the d a t a f r o m P M D T ( a t r i a m i n e ) suggest that m o n o m e r a p p r o a c h to the i o n p a i r site is h i n d e r e d b y substituents o n the c h e l a t i n g agents. A q u a n t i t a t i v e measure of the steric factor o n p o l y m e r i z a t i o n rates can b e o b t a i n e d w i t h o u t a s t u d y of chelate dissociation e q u i l i b r i a u n d e r p o l y m e r i z a t i o n c o n d i t i o n s a n d a knowledge
of the specific p r o p a g a t i o n rate constants for the
covalent,
contact i o n p a i r a n d separated i o n p a i r species. T h e results are easily r a t i o n a l i z e d b y a s s u m i n g p r o p a g a t i o n
takes
p l a c e at a T M E D · L i R " contact i o n p a i r site w h e r e the b u l k i e r c h e l a t i n g f
agents c o u l d h i n d e r m o n o m e r a p p r o a c h to the i o n p a i r . H o w e v e r H a y c o n c l u d e d that the a c t i v e site is ( T M E D ) L i R ~ e v e n at a 1:1 m o l e r a t i o 2
of B u L i / T M E D ( 3 3 ) .
+
O n e w o u l d not expect steric h i n d r a n c e to m o n o m e r
j u d g i n g f r o m the b u l k i n e s s of the c h e l a t i n g agents i n s u c h a
chelate
separated i o n p a i r unless the a l l y l a n i o n is b u r i e d i n the chelate h y d r o c a r b o n s h e l l or s t r o n g l y h y d r o g e n b o n d e d to the shell. M o r e l i k e l y , the h i n d e r e d c h e l a t i n g agents w o u l d h a v e greater difficulty f o r m i n g the active d i c h e l a t e d l i t h i u m species. L o w e r a c t i v i t y w i t h h i n d e r e d c h e l a t i n g agents is also consistent w i t h p o o r e r a b i l i t y to b r e a k the l i t h i u m d i m e r a n d f o r m the a c t i v e 1:1
complex.
Increased steric b u l k i n the c h e l a t i n g agent a d v e r s e l y affects catalyst a c t i v i t y . H o w e v e r there are several m e c h a n i s m s b y w h i c h steric h i n d r a n c e c o u l d affect a c t i v i t y , b u t w e cannot d i s t i n g u i s h t h e m at present. Chain Transfer Mechanisms.
C h e l a t e d a l k a l i m e t a l catalysts c a n
u n d e r g o a v a r i e t y of c h a i n transfer reactions d e p e n d i n g p r i m a r i l y u p o n the i o n i c character of t h e m e t a l - c a r b o n b o n d a n d the n a t u r e of the c a r -
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
POLY A M I N E - C H E L A T E D A L K A L I M E T A L COMPOUNDS
16
b a n i o n . I n g e n e r a l , c h a i n transfer reactions increase w i t h catalyst s t r u c t u r a l changes i n the o r d e r covalent
LiC H
4
2
5
= CHR
2
+
>LiCH = C H
4
R'H
>LiR' +
CH 2
+
2
(1)
= CHR
(2)
RH
(3)
RH
(4)
B o t h R e a c t i o n 1 a n d R e a c t i o n 2 are w e l l k n o w n w i t h other a l k y l metals l i k e AIR3 whereas
R e a c t i o n 3 a n d R e a c t i o n 4 are e x p e c t e d of
strong
c a r b a n i o n catalysts. R e a c t i o n 1 appears to result solely i n t e r m i n a t i o n . I n h y d r o g e n o l y s i s experiments
w i t h v a r i o u s chelates
we
have observed
l i t h i u m h y d r i d e i n a l l cases at r o o m t e m p e r a t u r e .
precipitation
A t t e m p t s to
of
generate
c h e l a t e d L i H in situ b y a d d i n g h y d r o g e n d u r i n g e t h y l e n e p o l y m e r i z a t i o n also c a u s e d a r a p i d , i r r e v e r s i b l e loss of a c t i v i t y . S i n c e there is n o e v i d e n c e that l i t h i u m h y d r i d e c a n a d d to e t h y l e n e u n d e r m o d e r a t e p o l y m e r i z a t i o n c o n d i t i o n s , i t is u n l i k e l y that a n y significant c h a i n transfer occurs via this mechanism.
P o t a s s i u m a l k y l s r e a d i l y e l i m i n a t e olefin w i t h the f o r m a t i o n
of m e t a l h y d r i d e , a n d s o d i u m a l k y l s d o so at e l e v a t e d temperatures
(56).
It w a s n o t e d earlier that c h e l a t i o n of l i t h i u m a l k y l s makes t h e m m o r e l i k e s o d i u m or p o t a s s i u m c o m p o u n d s ,
so i t is q u i t e p r o b a b l e that some
t e r m i n a t i o n occurs b y e l i m i n a t i n g L i H . It is c o n c e i v a b l e that this c o u l d be a c h a i n transfer m e c h a n i s m w i t h m o r e r e a c t i v e m o n o m e r s t h a n e t h y l ene b e c a u s e a d d i t i o n to l i t h i u m h y d r i d e w o u l d b e m o r e f a v o r a b l e . E b e r h a r d t (57)
r e p o r t e d that olefins w e r e o b t a i n e d u s i n g c h e l a t e d
b u t y l l i t h i u m catalysts a n d assumed t h a t t h e y w e r e p r o d u c e d b y R e a c t i o n 2. H o w e v e r olefins are p o t e n t i a l l y a v a i l a b l e f r o m three different reactions. T h e a m o u n t of olefin p r o d u c e d b y E b e r h a r d t is n o t k n o w n to b e i n excess of that f r o m the catalyst so R e a c t i o n 1 c a n n o t b e e x c l u d e d .
Reaction 2
must be considered plausible b y analogy w i t h a l u m i n u m alkyls. B r o a d d u s (49)
has s h o w n that B u L i · T M E D c a n m e t a l a t e a n a l p h a
olefin at the v i n y l i c h y d r o g e n s as w e l l as at t h e a l l y l i c positions.
This
r e a c t i o n m u s t also take p l a c e w i t h ethylene as s h o w n i n R e a c t i o n 3.
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
If
1.
17
N-Chehted Organolithium Catalysis
LANGER
t h e v i n y l l i t h i u m a d d e d t o ethylene a n d t h e n c h a i n t r a n s f e r r e d via t r a n s m e t a l a t i o n , o n e w o u l d a g a i n o b t a i n l i n e a r a l p h a olefins.
However we
h a v e i d e n t i f i e d allcylcyclopentanes as t h e m a j o r p r o d u c t t y p e ( o v e r 9 5 % ) i n e t h y l e n e p o l y m e r i z a t i o n studies w i t h B u L i / 2 T M E D i n it-heptane at 100 ° C a n d 1000 p s i g ethylene. T h e s e c y c l i c structures a r e p r o d u c e d a t t h e h e x e n y l l i t h i u m stage d u r i n g p o l y m e r i z a t i o n i n i t i a t e d b y v i n y l l i t h i u m : LiCH CH . C H CH =CHCH 2
LiCH=CH
+ 2C H —
2
2
4
2
2
LiCH CH | CH
CH2 | CH
2
_
2
^
2
2
2
Downloaded by RMIT UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch001
^ C H
Li (CH CH ) CH CH 2
2
n
CH
2
" 2 4 , * C
I CH
H
I CH
2
/ CH
H (CH CH ) CH CH 2
2
n
CH
2
CH*5
2
2
C H 2
4 |
LiCH=CHo +
2
2
2
CHo CH
2
If t h e r i n g s t r u c t u r e w e r e p r o d u c e d b y m e t a l a t i o n o f olefinic p r o d u c t s a n d c y c l i z a t i o n after a d d i t i o n o f t w o molecules o f ethylene, t h e y w o u l d be cyclohexane derivatives: ^ C H LiR + RCH CH=CH -»-RH + RCH -CH
2C H
N
2
2
j©
RCH I CH, I CH 2
2
2
4
-RCHCH=CH
2
CH CH CH CH Li 2
2
2
2
CHCH,Li I CH I CH ά
2
2
M a s s spectroscopic analysis o f s e p a r a t e d p r o d u c t s i n t h e Ce-50 r a n g e s h o w e d o n l y c y c l o p e n t a n e rings. T h e r e f o r e t h e m a j o r c y c l i z a t i o n r e a c t i o n
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
P O L Y A M I N E - C H E L A T E D A L K A L I M E T A L COMPOUNDS
18
m u s t p r o c e e d via v i n y l l i t h i u m a n d the major c h a i n transfer process i n the absence of a c i d i c solvents m u s t be R e a c t i o n 3.
A previously
proposed
c y c l i c e l i m i n a t i o n m e c h a n i s m (53, 58) m u s t b e c o n s i d e r e d less p r o b a b l e because one
w o u l d expect b o t h
five
a n d six m e m b e r e d
r i n g s to
be
produced. W h e n c o m p o u n d s are present w h i c h are m o r e a c i d i c t h a n ethylene, R e a c t i o n 4 is the p r e f e r r e d c h a i n transfer r e a c t i o n . T h i s is c l e a r l y the case when
aromatic
solvents
are
used
to
obtain
alkylaromatic
telomers.
A l t h o u g h a l k y l a r o m a t i c s w e r e the major p r o d u c t s , some a l k y l c y c l o p e n t a n e p r o d u c t s w e r e also p r o d u c e d .
T h i s is consistent w i t h a s l i g h t l y l o w e r
a c i d i t y for ethylene c o m p a r e d w i t h b e n z e n e
(about 1ρΚ
α
unit)
(59).
Downloaded by RMIT UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch001
R e p l a c i n g p a r t of the a r o m a t i c solvent b y a n inert saturated solvent l i k e heptane decreased the rate of c h a i n transfer to a r o m a t i c a n d i n c r e a s e d t h e p r o p o r t i o n of a l k y l c y c l o p e n t a n e s i n the p r o d u c t ( 6 0 ) . M a s s spectro s c o p i c analysis of
these
products
also
indicated small quantities
of
molecules h a v i n g t w o n a p h t h e n i c rings a n d some h a v i n g a n a r o m a t i c r i n g a n d a n a p h t h e n e r i n g . S u c h molecules i n d i c a t e that a s m a l l a m o u n t of c y c l i z a t i o n occurs either i n a c h a i n transfer step, s u c h as c y c l i c e l i m i n a t i o n , or via m e t a l a t i o n of olefinic p r o d u c t s .
T h e latter seems m o r e p r o b
a b l e since there are three reactions w h i c h c o u l d p r o d u c e olefins. I f one naphthene ring i n each two ring molecule
c o u l d b e s h o w n to b e six
m e m b e r e d , i t w o u l d a d d strong s u p p o r t for the m e c h a n i s m i n v o l v i n g olefins i n the f o r m a t i o n of the second r i n g . Appendix Bibliography of U.S. Patents on N-Chelated A l k a l i Metal
Compounds
3,206,519° E b e r h a r d t , G . G . 3,257,364 3,321,479
6
T e l o m e r i z a t i o n of ethylene w i t h aromatics Eberhardt, G . G . T e l o m e r i z a t i o n of ethylene w i t h olefins E b e r h a r d t , G . G . a n d B u t t e , W . Α., J r . P r e p a r a t i o n of o r g a n o l i t h i u m a m i n e complexes
3,329,736 3,402,144
B u t t e , W . Α., J r . a n d M o r r i s , J . W . , I l l I s o m e r i z a t i o n of Olefins Hay, A S . L i t h i a t i o n of p o l y p h e n y l e n e ethers
3,404,042
Langer, A . W . and Forster, E . O. O r g a n i c b a t t e r y electrolytes
3,450,795 3,451,988
Langer, A W . P r e p a r a t i o n of b l o c k c o p o l y m e r s Langer, A W . C o m p o s i t i o n s a n d uses for p o l y m e r i z a t i o n
3,458,586
Langer, A . W . T e l o m e r i z a t i o n of ethylene w i t h aromatics
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
LANGER
Ν-Chelated Organolithium Catalysis
3,474,143
B u t t e , W . Α., J r . T e l o m e r i z a t i o n of ethylene w i t h C6H5CH2NR2
3,498,960
Woiford, C. F.
3,502,731
Peterson, D . J .
19
R a n d o m c o p o l y m e r i z a t i o n of dienes a n d styrenes L i t h i a t i o n of methylsulfides 3,509,188
c
Halasa, A . F . and Tate, D . P. P o l y l i t h i a t i o n of f errocenes
3,511,865
Peterson, D . J .
3,517,042
Peterson, D . J .
3,522,326
B o s t i c k , Ε. E . , H a y , A . S. a n d C h a l k , A . J .
L i t h i a t i o n of methylsilanes
Downloaded by RMIT UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch001
L i t h i a t e d methylsilanes G r a f t i n g o n l i t h i a t e d p o l y p h e n y l e n e ethers 3,532,772
de l a M a r e , H . a n d N e u m a n n , F . E . Polymerizations using chelated L i P R
3,536,679 3,541,149 3,567,703 3,579,492 3,584,056
2
Langer, A . W . L i t h i a t e d c h e l a t i n g agents Langer, A W . C r y s t a l l i n e o r g a n o l i t h i u m chelates Eberhardt, G . G . E t h y l e n e p o l y m e r i z a t i o n at 101-150 ° C Smith, W . N . , Jr. N a r r o w m o l e c u l a r w e i g h t d i s t r i b u t i o n p o l y e t h y l e n e at 0-75 ° C Peterson, D . J . Uses for l i t h i a t e d methylsulfides
3,594,396
Langer, A . W . L i t h i a t e d m e t h y l s i l a n e chelates
3,597,463
Peterson, D . J . Uses for l i t h i a t e d methylsulfides
3,598,793
K o c h , R. W . P r e p a r a t i o n of c a r b o x y l a t e d r u b b e r s
3,624,260
Peterson, D . J . Uses for l i t h i a t e d methylsulfides
3,626,019
Black, E . P. E t h y l e n e - p s e u d o c u m e n e telomer w a x
3,627,837
Webb,F.J. P r e p a r a t i o n of graft c o p o l y m e r s
3,632,658
Halasa, A . F. P o l y l i t h i a t i o n of aromatics
3,634,548
H a r w e l l , Κ. E . a n d G a l i a n o , F . R . P r e p a r a t i o n of graft c o p o l y m e r s
3,646,219
Peterson, D . J . Uses for l i t h i a t e d methylsulfides
3,647,803
Schlott, R . F . , H o e g , D . W . a n d P e n d l e t o n , J . F . P r e p a r a t i o n of o r g a n o s o d i u m chelates
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
20
P O L Y A M I N E - C H E L A T E D A L K A L I M E T A L COMPOUNDS
3,652,696 3,657,373
H o n e y c u t t , S. C . E t h y l e n e - a r o m a t i c telomer w a x Peterson, D . J . O l e f i n p r e p a r a t i o n u s i n g l i t h i a t e d methylsilanes
3,658,925
E r m a n , W . F . and Broaddus, C. D . L i t h i a t i o n of l i m o n e n e
3,663,585 3,666,618
Langer, A . W . L i t h i a t i o n of ferrocene Black, E . P. Uses for telomer l a m i n a t i n g w a x
3,666,744
Black, E . P.
Downloaded by RMIT UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch001
Process for p r e p a r i n g telomer l a m i n a t i n g w a x 3,674,895
Gaeth, R. H . a n d Farrar, R. C . Polymerizations using m u l t i l i t h i u m initiators
3,678,088
Hedberg, F . L . and Rosenberg, H . L i t h i a t i o n of metallocenes
3,678,121
3,679,650
M c E l r o y , B. J . and Merkley, H . N a r r o w molecular weight distribution polydienes using d i l i t h i u m initiators Schott, H . a n d H e r w i g , W . P o l y m e r i z a t i o n of
3,691,241
alpha-methylstyrene
Kamienski, C. W . and Merkley, J. H . Uses for a l k a l i m e t a l m a g n e s i u m
3,734,963 3,737,458 3,742,057
organohydrides
Langer, A . W . and Whitney, T. A . I n o r g a n i c l i t h i u m chelates Langer, A W . G r i g n a r d reactions of l i t h i a t e d c h e l a t i n g agents Bunting, W . M . and Langer, A . W . Chelated organosodium compositions
3,755,484
Langer, A . W . T e l o m e r w a x finishing process
3,755,447
Klemann, L . P., Whitney, T. A . and Langer, A . W . S e p a r a t i o n a n d p u r i f i c a t i o n of c h e l a t i n g p o l y a m i n e s
3,755,533 3.751.384 3,758,580 3,758,585 3,763,131 3.764.385 3,767,763
Langer, A . W . and Whitney, T. A . S e p a r a t i o n a n d r e c o v e r y of l i t h i u m salts Langer, A . W . Chelated organolithium compositions Langer, A . W . , Whitney, T. A . and Klemann, L . P. S e p a r a t i o n a n d p u r i f i c a t i o n of t e r t i a r y p o l y a m i n e s Bunting, W . M . and Langer, A . W . I n o r g a n i c s o d i u m chelates Langer, A . W . T e l o m e r w a x process a n d c o m p o s i t i o n Langer, A . W., Whitney, T. A . E l e c t r i c b a t t e r y u s i n g c h e l a t e d i n o r g a n i c l i t h i u m salts Bunting, W . B., Langer, A . W . S e p a r a t i o n a n d r e c o v e r y of s o d i u m c o m p o u n d s
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
1.
LANGER
Ν-Chelated Organolithium Catalysis
3,769,345
Langer, A . W . P r e p a r a t i o n o f o r g a n o l i t h i u m a m i n e complexes
3,770,827
Langer, A . W., Whitney, T. A . Separation of chelating tertiary polyamines
a
6
c
21
Claims lost to 3,451,988 and 3,458,586. Claims lost to 3,769,345. Claims lost to 3,663,585.
Downloaded by RMIT UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch001
Literature Cited 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39.
Bywater, S., Advan. Polym. Sci. (1965) 4, 66. Langer, A. W., Jr., U.S. Patent 3,451,988. Ziegler, K., Angew. Chem. (1959) 71, 623. Ziegler, K., Gellert, H., Ann. (1950) 567, 195. Bartlett, P. D., Friedman, S., Stiles, M., J. Amer. Chem. Soc. (1953) 75, 1771. Hanford, W. E., Roland, J. R., Young, H. S., U.S. Patent 2,377,779. Langer, A. W., Jr., U.S. Patent 3,458,586. Langer, A. W., Jr., U.S. Patent 3,541,149. Langer, A. W., Jr., Trans. Ν.Y. Acad. Sci. (1965) 27, 741. Langer, A. W., Jr., Polym. Prepr., Amer. Chem. Soc., Div. Polym. Chem. (1966) 7 (1), 132. Langer, A. W., Jr., Gordon Conf. (Polym.), July, 1965. Eberhardt, G. G., Butte, W. Α., J. Org. Chem. (1964) 29, 2928. Eberhardt, G. G., U.S. Patent 3,206,519. Eberhardt, G. G., U.S. Patent 3,321,479. Langer, A. W., Jr., U.S. Patent 3,541,149. Langer, A. W., Jr., U.S. Patent 3,769,345. Eberhardt, G. G., Davis, W. R., J. Polym. Sci. (1965) A3, 3753. Butte, W. Α., Hydrocarbon Process. (1966) 45 (9), 277. Eberhardt, G. G., U.S. Patent 3,257,364. Butte, W. Α., Morris, J. W., III, U.S. Patent 3,329,736. Butte, W. Α., U.S. Patent 3,474,143. Eberhardt, G. G., U.S. Patent 3,567,703. Black, E. P., U.S. Patents 3,626,019; 3,666,618; 3,666,744. Brown, T. L., Pure Appl. Chem. (1971) 23, 447. Margerison, D., Pont, J. D., Trans. Faraday Soc. (1971) 67, 353. Makowski, H. S., Lynn, M., J. Macromol. Chem. (1966) 1 (3), 443. Morton, M., Bostick, Ε. E., Livigni, R. Α., J. Polym. Sci., PartA-1(1963) 1, 1735. Bywater, S., Worsfold, D. J., Can. J. Chem. (1962) 40, 1564. Morton, M., Fetters, L. J., J. Polym. Sci., Part A-2 (1964 ) 2, 3311. Margerison, D., Newport, J. P., Trans. Faraday Soc. (1963) 59, 2058. Lewis, H. L., Brown, T. L., J. Amer. Chem. Soc. (1970) 92, 4664. Findeis, A. F., Langer, A. W., Jr., unpublished data. Hay, J. N., McCabe, J. F., Robb, J. C., Trans. Faraday Soc. (1972) 68, 1. Mootz, V. D., Zinnius, Α., Boettcher, B., Angew. Chem. (1969) 81, 398. Kimura, Β. Y., Brown, T. L., J. Organometal. Chem. (1971) 26, 57. West, P., Waack, R., J. Amer. Chem. Soc., (1967) 89, 4395. Melchior, M. T., Klemann, L. P., Langer, A. W., Jr., Int. Congr. Organo metal. Chem., 6th, Aug. 1973, Prepr. Forster, E. O., Langer, A. W., Jr., U.S. Patent 3,404,042. Klemann, L. P., Melchior, M. T., Langer, A. W., Jr., Int. Congr. Organo metal. Chem., 6th, Aug. 1973, Prepr.
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.
Downloaded by RMIT UNIV on July 19, 2016 | http://pubs.acs.org Publication Date: June 1, 1974 | doi: 10.1021/ba-1974-0130.ch001
22
POLYAMINE-CHELATED ALKALI METAL COMPOUNDS
40. Gilman, H., Jacoby, A. L., Ludeman, H., J. Amer. Chem. Soc. (1938) 60, 2336. 41. CIauss,V. K., Bestian, H., Ann. (1962) 654, 8. 42. Langer, A. W., Jr., unpublished data. 43. Bartlett, P. D., Tauber, S. J., Weber, W. P., J. Amer. Chem. Soc. (1969) 91, 6362. 44. Bartlett, P. D., Goebel, C. V., Weber, W. P., J. Amer. Chem. Soc. (1969) 91, 7425. 45. Cram, D. J., "Fundamentals of Carbanion Chemistry," p. 19, Academic, New York, 1965. 46. Langer, A. W., Jr., unpublished data. 47. Melchior, M. T., Klemann, L. P., Whitney, T. Α., Langer, A. W., Jr., Polym. Prepr., Amer. Chem. Soc., Div. Polym. Chem. (1972) 13 (2), 649. 48. Broaddus, C. D., J. Org. Chem. (1970) 35, 10. 49. Broaddus, C. D., Amer. Chem. Soc., Div. Petrol. Chem. Prepr. (1970) 15 (2), E82. 50. Langer, A. W., Jr., U.S. Patent 3,737,458. 51. Langer, A. W., Jr., U.S. Patent 3,536,679. 52. Morton, M., Sanderson, R. D., Sakata, R., J. Polym. Sci., Part C (1971) 9, 61. 53. Langer, A. W., Jr., Akron Summit Polym. Conf., 1st, June 1970. 54. Hay, J. Ν., McCabe, J. F., J. Polym. Sci., PartA-1(1972) 10, 3451. 55. Shimomura, T., Toile, Κ. J., Smid, J., Szwarc, M., J. Amer. Chem. Soc. (1967) 89, 796. 56. Finnegan, R. Α., Trans. Ν.Ύ. Acad. Sci. (1965) 27 (7), 730. 57. Eberhardt, G. G., Organometal. Chem. Rev. (1966) 1, 491. 58. Langer, A. W., Jr., Sixth Middle Atlantic Meeting, Amer. Chem. Soc., Feb., 1971. 59. Maskornick, M. J., Streitweiser, Α., Tetrahedron Lett. (1972) (17), 1625. 60. Langer, A. W., Jr., U.S. Patent 3,763,131. RECEIVED September 4, 1973.
Langer; Polyamine-Chelated Alkali Metal Compounds Advances in Chemistry; American Chemical Society: Washington, DC, 1974.