Chemical and Biological Modification of Antibiotics of the Gentamicin

Jul 23, 2009 - P. J. L. DANIELS, D. F. RANE, S. W. McCOMBIE, R. T. TESTA, J. J. WRIGHT, and T. L. NAGABHUSHAN. Research Division, Schering Plough ...
3 downloads 0 Views 1MB Size
20 Chemical and Biological Modification of Antibiotics of the Gentamicin Group

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

P. J. L. DANIELS, D. F. RANE, S. W. McCOMBIE, R. T. TESTA, J. J. WRIGHT, and T. L. NAGABHUSHAN Research Division, Schering Plough Corporation, Bloomfield, NJ 07003 The aminocyclitol antibiotic gentamicin was first reported in 1963 by Weinstein and co-workers (1). Since 1968, clinical use of the antibiotic has increased dramatically and gentamicin is now the most extensively used aminocyclitol antibiotic in the world. Gentamicin is produced by fermentation of species of the genus Micromonospora and is used as a complex of three compo­ nents, C, C and C , which differ from one another only in the extent of methylation of the 2,6-diaminosugar portion of the molecule. Since the discovery of gentamicin, a substantial num­ ber of other antibiotics have been isolated from fermentation of Micromonospora species, both in our own laboratories and by others (2). Among many such antibiotics, sisomicin (3) has been of particular interest to us. Sisomicin, structurally an unsat­ urated derivative of gentamicin C (4), is now also in clinical use in a number of countries. In the past few years, a relative­ ly large number of novel aminocyclitols related to gentamicin and sisomicin have been prepared in our laboratories and some of these studies form the subject matter of this paper. The initial objective of our program was the preparation of compounds which would be unable to serve as substrates for the modifying enzymes which give rise to clinical resistance to amino­ cyclitol antibiotics (5). Such mechanisms have proliferated in the past few years, concomitant with the increased use of these agents. The presently known modes of bacterial enzymatic inact­ ivation of compounds of the gentamicin-kanamycin group are shown in Figure 1. The mechanisms involve N-acetylation, O-phosphoryla­ tion, and O-nucleotidylation of the substrate antibiotics. The enzymes are referred to by the shorthand nomenclature shown in the Figure. Thus, AAC(3) designates aminoglycoside N-acetyl transferase at the 3-position, ANT(2") represents aminoglycoside O-nucleotidyltransferase at the 2" position and ΑΡΗ, aminoglyco­ side O-phosphotransferase. Of the mechanisms depicted in the Figure, the one occurring most frequently involves phosphoryla­ tion of a 3'-hydroxyl group. The most important inactivation 1

2

1a

1a

0-8412-0554-X/80/47-125-371$05.50/0 © 1980 American Chemical Society

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

372

AMINOCYCLITOL ANTIBIOTICS

AAC(2') ACETYLATION

ANT(4") NUCLEOTIDYL ATI ON

NUOEOTOYLATON PHOSPHORYLATION ΑΡΗ (2")

HdN

APHO*) , PHOSPHORYLATION

ACETYLATION ΑΑΟβ')

Figure 1. Aminoglycoside-modifying enzymes

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

20.

DANIELS E T A L .

Antibiotics of the Gentamicin Group

373

mechanisms among compounds devoid of t h i s f u n c t i o n a l i t y i n v o l v e 2 " - 0 - n u c l e o t i d y l a t i o n and 3 - N - a c e t y l a t i o n . ANT(2") enzymes occur i n a number of organisms, p a r t i c u l a r l y K l e b s i e l l a s p e c i e s . AAC(3) enzymes are found a l s o i n s e v e r a l b a c t e r i a l genera, but are p a r t i c u l a r l y common i n s t r a i n s of Pseudomonas. Enzymatic a c e t y l a t i o n a t the 2 ' - p o s i t i o n [AAC(2')] i s r e s t r i c t e d t o s t r a i n s of P r o v i d e n c i a and i n d o l e - p o s i t i v e Proteus, whereas AAC(6') enzymes are found predominantly i n Pseudomonas and S e r r a t i a . Enzymes i n v o l v e d i n 4 ' - 0 - n u c l e o t i d y l a t i o n and 2'-(^-phosphorylat i o n have been found only i n Staphylococcus and are r e l a t i v e l y l e s s important, s i n c e these s t r a i n s are not normally t r e a t e d w i t h aminoglycosides (_6). Many of the problems a s s o c i a t e d w i t h a m i n o c y c l i t o l r e s i s tance were resolved w i t h the d i s c o v e r y of the s e m i s y n t h e t i c a n t i b i o t i c amikacin [BB-K8] by the B r i s t o l - B a n y u group (7)· This a n t i b i o t i c proved t o be a non-substrate f o r the most important aminoglycoside-modifying enzymes, and consequently was a c t i v e against s t r a i n s harboring these enzymes. The spectrum of amikacin, i n terms of r e s i s t a n c e mechanisms, i s shown by the blocked arrows i n the s t r u c t u r a l formula. Since the advent of amikacin, the o b j e c t i v e s of our s t u d i e s have changed somewhat and, although a m i n o c y c l i t o l s w i t h very broad s p e c t r a of a c t i v i t y are s t i l l of i n t e r e s t , our c h i e f focus has been the p r e p a r a t i o n of compounds having reduced t o x i c i t y compared t o agents i n current use. The s i d e - e f f e c t s a s s o c i a t e d w i t h a m i n o c y c l i t o l therapy a r e n e p h r o t o x i c i t y , u s u a l l y r e v e r s i b l e when the drug i s withdrawn, and o t o t o x i c i t y which tends to be i r r e v e r s i b l e . The p r e p a r a t i o n of s a f e r compounds comprises, i n our o p i n i o n , the most important goal i n a m i n o c y c l i t o l a n t i b i o t i c research today. A s u b s i d i a r y goal of a l l work i n t h i s area i s that candidate compounds should have high potency. This g o a l i s simply economic, s i n c e semi-synt h e t i c a m i n o c y c l i t o l s are expensive and the u n i t dose cost can become p r o h i b i t i v e f o r compounds of low potency. Our work along these o b j e c t i v e l i n e s has i n v o l v e d m o d i f i c a t i o n of every f u n c t i o n a l i t y of gentamicin and s i s o m i c i n ; t h i s r e p o r t , however, i s r e s t r i c t e d t o m o d i f i c a t i o n s of the aminoc y c l i t o l part of the molecule. Compounds i n t h i s s e r i e s were made both c h e m i c a l l y and m i c r o b i o l o g i c a l l y by the process of mutasynthesis (8)· Among the a m i n o c y c l i t o l m o d i f i c a t i o n s we have c a r r i e d out, that l e a d i n g to n e t i l m i c i n (_9) i s now the best known. N e t i l m i c i n , the 1-N-ethyl d e r i v a t i v e of s i s o m i c i n , i s a potent broad-spectrum compound (10) which i s r e f r a c t o r y t o 2"-0-modifying and c e r t a i n 3-N-acetylating enzymes, as i n d i c a t e d i n the s t r u c t u r a l formula. More i m p o r t a n t l y , however, n e t i l m i c i n i s markedly l e s s nephrotoxic and o t o t o x i c than gentamicin i n a l l species of l a b o r a t o r y animals so f a r t e s t e d (11). N e t i l m i c i n i s now i n phase I I I c l i n i c a l t r i a l s and e f f i c a c y i n man has been c l e a r l y demonstrated. D e f i n i t i v e s t u d i e s , designed t o assess a c c u r a t e l y i t s r e l a t i v e t o x i c i t y i n man, are i n progress.

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

374

A M I N O C Y C L I T O L ANTIBIOTICS

The o r i g i n a l s y n t h e s i s of n e t i l m i c i n i s shown i n Figure 2. This s y n t h e s i s depended upon the p r e d i c t i o n that the r e l a t i v e r e a c t i v i t y of the amino groups of s i s o m i c i n towards r e d u c t i v e a l k y l a t i o n , using an aldehyde and a hydride reducing agent, would be pH dependent. Under c o n d i t i o n s of low pH, the 1-amino f u n c t i o n proved to be most r e a c t i v e and was a l k y l a t e d f a i r l y s e l e c t i v e l y to g i v e n e t i l m i c i n i n one step i n 25% y i e l d (9)· Recently, however, a s u b s t a n t i a l advance i n the p r e p a r a t i o n of n e t i l m i c i n , and i n s e l e c t i v e r e a c t i o n s of aminoglycosides i n g e n e r a l , has been made i n our l a b o r a t o r i e s . I t was recognized that the presence of s e v e r a l types of v i c i n a l and n o n - v i c i n a l amino-hydroxy group p a i r s i n aminoglycoside molecules might a l l o w s e l e c t i v e complexing w i t h d i v a l e n t t r a n s i t i o n metal c a t i o n s , l e a v i n g other more weakly complexed amino f u n c t i o n s i n the molecule a v a i l a b l e f o r s e l e c t i v e p r o t e c t i o n (12). This concept l e d to an extensive s e r i e s of s t u d i e s , as a r e s u l t of which i t i s now p o s s i b l e to carry out s e l e c t i v e r e a c t i o n s at any amino group i n an aminoglycoside molecule i n high y i e l d . For example, s i s o m i c i n can be s e l e c t i v e l y a c y l a t e d at the 3, 2' and 6' p o s i t i o n s v i a a cobaltous complex of the type shown i n Figure 3. This r e a c t i o n i s e s s e n t i a l l y q u a n t i t a t i v e and chromatography i s unnecessary to i s o l a t e pure product. Reductive a l k y l a t i o n then proceeds at the l e s s hindered primary amino f u n c t i o n and, a f t e r de-N-protection, n e t i l m i c i n can be i s o l a t e d i n 60% o v e r a l l y i e l d from s i s o m i c i n . Our work on m o d i f i c a t i o n of the a m i n o c y c l i t o l u n i t of a n t i b i o t i c s d i d not s t a r t w i t h the s y n t h e s i s of n e t i l m i c i n , however, but w i t h experiments i n mutasynthesis 08). For t h i s purpose mutants of the organism Micromonospora inyoensis were chosen s i n c e the w i l d - t y p e s t r a i n produces predominantly only the s i n g l e a n t i b i o t i c component, s i s o m i c i n . A mutant of M. inyoensis was prepared, f o l l o w i n g the methods described by S h i e r , et_ a l . (13), as o u t l i n e d i n Figure 4. M. i n y o e n s i s mutant 1550F produced no a n t i b i o t i c when fermented alone, but gave s i s o m i c i n when fermented i n the presence of 2-deoxystreptamine (14). Our f i r s t experiment w i t h t h i s mutant was to feed the a m i n o c y c l i t o l streptamine, which gave a new a n t i b i o t i c complex comprising a n t i b i o t i c s Mu-1, Mu-la and Mu-lb ( o r i g i n a l l y named mutamicins, Figure 5 ) . The s t r u c t u r e of Mu-1, the major component of t h i s fermentation, proved to be the expected streptamine analog of s i s o m i c i n , i . e . , 2-hydroxysisomicin. I t was, however, necessary to prove t h i s point s i n c e , i n a number of cases, the products of mutasynthesis have been shown not to be the expected products of simple a m i n o c y c l i t o l replacement. The s t r u c t u r e s of a l l mutas y n t h e t i c a n t i b i o t i c s described i n t h i s work were proven simply, but r i g o r o u s l y , using mass spectrometry and proton and carbon magnetic resonance spectroscopy at both a c i d i c and b a s i c pH.

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

20.

DANIELS

ET AL.

375

Antibiotics of the Gentamicin Group

CH3CHO, N 0 C N B H 3 . HgO. P H 5

CH HN-^

^

3

«

'

SISOMICIN

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

CHROMATOGRAPHY ON SILICA

S

_ -\ ^** \^I CHx-CHo-N-Λ-^*^Η^ 2 HI 3 C H

> >

ΝΗ

l-N-ETHYLSISOMICJN ( NETILMICIN ) Figure 2.

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

AMINOCYCLITOL

Figure 4.

a (Ref. 3); b (Ref. 14)

OH

STREPTAMINE ANTIBIOTIC Mu-1 ANTIBIOTIC Mu - la ANTIBIOTIC Mu-lb

R « CH R « CH3CO R« Η 3

Figure 5.

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

ANTIBIOTICS

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

20.

DANIELS

ET AL.

Antibiotics of the Gentamicin Group

377

I n c o r p o r a t i o n of 2,5-dideoxystreptaraine by M. i n y o e n s i s 1550F afforded a n t i b i o t i c Mu-2 complex (Figure 6 ) . Chromatography a f f o r d e d a minor, l e s s p o l a r component, a n t i b i o t i c Mu-2, and a major, more p o l a r component, Mu-2a. Mu-2 was shown t o be the expected 5-deoxysisomicin, however, Mu-2a, the major component of the fermentation, proved t o be 5-deoxygentamicin A, an unexpected product. The i n v i t r o a n t i b a c t e r i a l a c t i v i t i e s of a n t i b i o t i c s Mu-1 and Mu-2 have been published (14). Both compounds are exc e l l e n t broad spectrum a n t i b i o t i c s ; Mu-1 i s somewhat l e s s potent than s i s o m i c i n but has improved a c t i v i t y against s i s o m i c i n r e s i s t a n t s t r a i n s c o n t a i n i n g ANT(2") enzymes, whereas Mu-2 i s more potent than Mu-1 and shows greater a c t i v i t y than s i s o m i c i n a g a i n s t b a c t e r i a l s t r a i n s c o n t a i n i n g AAC(3) enzymes. I n a l i m i t ed study, a n t i b i o t i c Mu-1 was compared t o s i s o m i c i n f o r t o x i c i t y (15). At a dose of 40 mg/kg/day, a n t i b i o t i c Mu-1 produced no a t a x i a or elevated blood urea n i t r o g e n (BUN) a f t e r 22 days. Under the same regimen, s i s o m i c i n produced a t a x i a on average on day 15, w i t h s u b s t a n t i a l p r i o r i n c r e a s e i n BUN. This study was terminated due to l a c k of compound. However, reduced t o x i c i t y of Mu-1 compared t o s i s o m i c i n was c l e a r l y demonstrated. S i m i l a r f i n d i n g s have been reported by Daum, e t aJL. (16) f o r the analogous 2-hydroxygentamicins, a l s o prepared by mutasynthesis. Attempts to prepare s u f f i c i e n t a n t i b i o t i c Mu-2 f o r t o x i c o logy s t u d i e s using fermentation techniques were u n s u c c e s s f u l due to i n e f f i c i e n t b i o c o n v e r s i o n of the a m i n o c y c l i t o l s u b s t r a t e . We t h e r e f o r e turned t o chemical methods of deoxygenation, i n p a r t i c u l a r that developed by Barton and McCombie (17), i n v o l v i n g reduct i o n of t h i o e s t e r s w i t h t r i - n - b u t y l s t a n n a n e . As shown i n Figure 7, a protected d e r i v a t i v e of s i s o m i c i n can be converted i n t o i t s 5-0-thioformyl d e r i v a t i v e and reduced w i t h t r i - n - b u t y l s t a n n a n e i n a m o d i f i c a t i o n of the procedure p r e v i o u s l y reported (17). Removal of the p r o t e c t i n g groups using sodium i n ammonia, f o l lowed by base, a f f o r d e d 5-deoxysisomicin [Mu-2] i n approximately 60% o v e r a l l y i e l d (18). This deoxygenation method, v i a t h i o f o r mates, proceeds w e l l only f o r hindered secondary a l c o h o l s , i n which the i n i t i a l adduct r a d i c a l undergoes C-0 bond homolysis r a t h e r than quenching by Bu^SnH. Since the completion of t h i s work, other reports of the s y n t h e s i s of 5-deoxyaminoglycosides have appeared Q 9 , 20, 21). The a v a i l a b i l i t y of a convenient method f o r preparing 5deoxyaminoglycosides made p o s s i b l e the p r e p a r a t i o n of f u r t h e r analogs of these compounds, p a r t i c u l a r l y t h e i r 1-N-substituted d e r i v a t i v e s . This was accomplished using the s e l e c t i v e t r a n s i t i o n metal b l o c k i n g procedure p r e v i o u s l y described f o r the s y n t h e s i s of n e t i l m i c i n . As shown i n F i g u r e 8, 5-deoxysisomicin i s a c y l a t e ^ s e l e c t i v e l y a t the 3, 2', and 6' p o s i t i o n s v i a a Cu / N i complex of the type shown. Y i e l d s i n t h i s process were i n excess of 90%. S e l e c t i v e r e d u c t i v e a l k y l a t i o n then y i e l d ed the l - N - a l k y l - 5 - d e o x y s i s o m i c i n s i l l u s t r a t e d i n the F i g u r e .

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

378

AMINOCYCLITOL

ANTIBIOTICS

CH NH

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

2

HO^V^^T "

'

0

HgN A ^ - ^ ^

N

H

'

ANTIBIOTIC Mu-2

M INY0ENS S

2

U

OH

1550F

2,5-DI DEOXYSTREPTAMINE

ANTIBIOTIC Mu-2o Figure 6.

5-DEOXYSISOMICIN (Mu-2 ) Figure 7.

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

2

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

20.

Antibiotics of the Gentamicin Group

DANIELS E T A L .

379

The a n t i b a c t e r i a l a c t i v i t y of these compounds u n f o r t u n a t e l y proved to be q u i t e s i m i l a r t o t h a t of t h e i r 5-oxygenated p r e c u r s o r s . The 1-N-ethyl d e r i v a t i v e , 5 - d e o x y n e t i l m i c i n , i n s t u d i e s i n the r a t showed the low chronic n e p h r o t o x i c i t y t y p i c a l of n e t i l m i c i n . I n extended s t u d i e s , however, t h i s s e r i e s of compounds d i d not show s u f f i c i e n t advantage to warrant f u r t h e r development. Our c o n c l u s i o n , t h e r e f o r e , i s that deoxygenation a t the 5 - p o s i t i o n o f f e r s only minor improvements i n a m i n o c y c l i t o l a n t i b i o t i c s of t h i s group. Returning to mutasynthesis, 2-epistreptamine was i n c o r p o r a ted by M. i n y o e n s i s 1550F t o g i v e a n t i b i o t i c Mu-4 complex (Figure 9 ) . This proved t o be a r e l a t i v e l y poor fermentation and the products were c h a r a c t e r i z e d only by t h e i r i n v i t r o a n t i b a c t e r i a l a c t i v i t i e s . A n t i b i o t i c Mu-4 showed a c t i v i t y predomi n a n t l y a g a i n s t s i s o m i c i n - s e n s i t i v e organisms, w i t h only s l i g h t a c t i v i t y a g a i n s t r e s i s t a n t s t r a i n s . Because of problems i n p r e p a r i n g t h i s a n t i b i o t i c i n s u i t a b l e y i e l d , and i n view of the spectrum and potency of the crude product, no f u r t h e r work was done w i t h t h i s complex. I n c o r p o r a t i o n of l , 3 , 5 - t r i a m i n o - l , 2 , 3 , 5 t e t r a d e o x y - s c y l l o - i n o s i t o l (5-amino-2,5-dideoxystreptamine) by the 1550F mutant produced a n t i b i o t i c Mu-5 complex (Figure 9 ) . Once again, the y i e l d i n t h i s fermentation was poor and the products were c h a r a c t e r i z e d only by d i s c assay, which showed i n v i t r o a c t i v i t y s o l e l y against s i s o m i c i n - s e n s i t i v e b a c t e r i a l s t r a i n s . Synthesis of the p u t a t i v e a n t i b i o t i c Mu-5 l a t e r confirmed t h i s spectrum of a c t i v i t y (vide i n f r a ) . 2-Deoxy-5-epistreptamine was incorporated by M. i n y o e n s i s 1550F t o g i v e a n t i b i o t i c Mu-6. This proved t o be a r e l a t i v e l y e f f i c i e n t conversion, a t l e a s t on a s m a l l s c a l e , and so f a r only one mutasynthetic a n t i b i o t i c has been i s o l a t e d from the ferment a t i o n (Figure 10). The product was shown t o be 5 - e p i s i s o m i c i n by the u s u a l s p e c t r o s c o p i c techniques, and a l s o by s y n t h e s i s . The compound has now been e x t e n s i v e l y evaluated under the code d e s i g n a t i o n Sch 22591. The s y n t h e s i s of 5 - e p i s i s o m i c i n can be c a r r i e d out q u i t e e f f i c i e n t l y (22) and i s shown i n F i g u r e 11. The f u l l y protected 5-0-mesylate, prepared i n near q u a n t i t a t i v e y i e l d by s e l e c t i v e p r o t e c t i o n of s i s o m i c i n , on displacement w i t h tetra-n-butylammonium a c e t a t e , f o l l o w e d by removal of the p r o t e c t i n g groups, afforded 5 - e p i s i s o m i c i n i n 60% o v e r a l l y i e l d from s i s o m i c i n . A number of papers have described the a c t i v i t y of t h i s compound (2J3, 2A 2_5, _26, ). I t i s remarkably potent, with g r e a t e r a c t i v i t y than gentamicin or tobramycin against Pseudomonas aeruginosa, P r o v i d e n c i a spp., Proteus r e t t g e r i and other organisms. Representative minimal i n h i b i t o r y concentrations (MIC) of t h i s compound are shown i n Table 1. I n terms of aminog l y c o s i d e - r e s i s t a n c e mechanisms, 5 - e p i s i s o m i c i n has e x c e l l e n t a c t i v i t y toward a l l s t r a i n s possessing 2"- and 2'- modifying enzymes, as w e l l as many s t r a i n s harboring 3-N-acetylating enzymes (see arrows, F i g u r e 10). 9

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

380

AMINOCYCLITOL

OH

OH HgN-y

CH3

ANTIBIOTICS

^

0

HgΜN.\

^ * \ ~ Η *

OMSO

2

HÏNX

3

^VNHAC

Ac 0 9

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

RCHO N0CNBH3

pH 4.5 OH H3C

NH

2

W
16

ESCHERICHIA COLI

AAC(6'H

ORGANISM

AAC(3)-I

5-FLU0R05-DEOXYSISOMICIN

8.0

16

16

PSEUDOMONAS AERUGINOSA

AAC(6')-II

>16

>16

>16

PSEUDOMONAS AERUGINOSA

PERMEABILITY

8

> 16

>16

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

2

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

386

A M I N O C Y C L I T O L ANTIBIOTICS

to serve as good s u b s t r a t e s f o r a m i n o g l y c o s i d e - i n a c t i v a t i n g enzymes. Carbon magnetic resonance s t u d i e s have shown the conformation of 5 - a x i a l l y s u b s t i t u t e d a n t i b i o t i c s to be d i f f e r e n t from that of t h e i r e q u a t o r i a l l y s u b s t i t u t e d c o u n t e r p a r t s . I t i s reasonable to propose that t h i s conformational d i f f e r e n c e , i n v o l v i n g r o t a t i o n around the C ^ - g l y c o s i d i c oxygen bond, d i f f e r e n t i a t e s the a x i a l l y - s u b s t i t u t e d compounds from the n a t u r a l isomers i n t h e i r a b i l i t y to serve as enzyme s u b s t r a t e s . In most cases, i n v e r s i o n of stereochemistry a t p o s i t i o n 5 i n a n t i b i o t i c s of t h i s c l a s s provides a r e l i a b l e means of improving a n t i b a c t e r i a l spectrum. Attempts to prepare N - s u b s t i t u t e d a m i n o c y c l i t o l a n t i b i o t i c s by mutasynthesis have met w i t h l i m i t e d success i n our hands. (+)2-Deoxy-îi-ethylstreptamine, f o r example, was not i n c o r p o r a t e d by M. i n y o e n s i s 1550F to g i v e n e t i l m i c i n . (+)-2-Deoxy-N-methylstreptamine, however, was transformed i n t o a n t i b i o t i c complex Mu-7 (Figure 15). The b i o c o n v e r s i o n i n t h i s process was poor, a c t i v i t y of the complex was low and pure components were not i s o l a t e d . The observed low a c t i v i t y i s l i k e l y r e l a t e d to the f a c t that the p r e d i c t e d products, 3-N-alkyl s u b s t i t u t e d a n t i b i o t i c s , have been confirmed to have low potency by unambiguous chemical semisynthes i s (9, 28). (+)-2,5-Dideoxy-IJ-methylstreptamine was a l s o b i o converted, a l b e i t w i t h very low e f f i c i e n c y , i n t o a n t i b i o t i c complex Mu-8 (Figure 15). The a c t i v i t y of t h i s complex by d i s c assay i n d i c a t e d good potency a g a i n s t both s i s o m i c i n - s e n s i t i v e and r e s i s t a n t s t r a i n s . In view of the very poor y i e l d s obtained i n the mutasynthetic process, however, we were compelled to prepare the expected products, i . e . l-N-alkyl-5-deoxyaminoglycosides, using the s y n t h e t i c method a l r e a d y o u t l i n e d i n F i g u r e 8. In view of our l i m i t e d success i n the e f f i c i e n t p r e p a r a t i o n of 1-N-substituted a n t i b i o t i c s by mutasynthesis, we explored t h i s d e s i r e d group of compounds v i a chemical semisynthesis. We e s p e c i a l l y concentrated on d e r i v a t i v e s of 5 - e p i s i s o m i c i n (Mu-6) from which many d e r i v a t i v e s have now been made. Once again these syntheses, shown i n F i g u r e 16, were accomplished by the s e l e c t i v e t r a n s i t i o n metal b l o c k i n g procedure described p r e v i o u s l y . Some of the range of compounds made are shown i n the F i g u r e . A l l were e x c e l l e n t a n t i b i o t i c s w i t h high potency and broad a n t i b a c t e r i a l s p e c t r a . Of p a r t i c u l a r i n t e r e s t are l - N - e t h y l - 5 - e p i s i s o m i c i n and l-N-(^-3-amino-2-hydroxypropionyl)-5-episisomicin. The i n v i t r o a n t i m i c r o b i a l a c t i v i t y of these compounds i s shown i n the t a b l e s . In Table 4, the a c t i v i t y of l - N - e t h y l - 5 - e p i s i s o m i c i n , i d e n t i f i e d by the code d e s i g n a t i o n Sch 22703, i s compared to gentamicin and n e t i l m i c i n . Sch 22703 has very broad spectrum a n t i b a c t e r i a l a c t i v i t y and i s s u p e r i o r i n t h i s regard to n e t i l m i c i n and gentamicin. E s p e c i a l l y noteworthy i s the a c t i v i t y of t h i s compound a g a i n s t organisms c o n t a i n i n g N - a c e t y l a t i n g enzymes. Against these s t r a i n s the compound i s s u p e r i o r to n e t i l m i c i n , and a g a i n s t AAC(6') c o n t a i n i n g b a c t e r i a i s s u p e r i o r to amikacin (data not shown). In terms of potency, Sch 22703 i s , on average,

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

20.

387

Antibiotics of the Gentamicin Group

DANIELS E T A L .

OH - - T - O H

2 N - i ^ ^ -

H

N

H

M. C

3

H

invoensis

1550F

ANTIBIOTIC Mu-7

(+) -Α/-Μ ETHYL-2-DEOXY­ STREPTAMI NE ^T**^,—"T-OH

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

C H 3 HU N - ^ ^ \ ^

M.

NH

2

inyoensi 1550

F

/?,5-/V-METHYL-2,5-DIDE0XYSTREPTAMINE

Figure 15.

90%

ACYLATKM OR REDUCTIVE ALKYLATION

OH

\ ^ T \

CMROMATOfllAPNV

50-60 %



C H

3

- . C2M5-.

C

NH -CH -CH 2

2

2

3

2

7

2

·C H

N ^ Î O

2

-

C H

HO^ CH3C0-, NH

/

OVERALL

H

C H

0

2

— , H C O -

H ''/co-

Figure 16.

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

388

AMINOCYCLITOL

ANTIBIOTICS

Table IV. In Vitro Antibacterial Activity of l-N-Ethyl-5-episisomicin (SCH 22703) Compared to Gentamicin and Netilmicin

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

ORGANISM ENTE ROBACTER, S P P ESCHERICHIA COLI KLEBSIELLA PNEUMONIAE PROVIDENCIA, S P P PSEUDOMONAS AERUGINOSA PROTEUS MIRABILIS PROTEUS RETTGERI ENTEROBACTER CLOACAE ESCHERICHIA COLI KLEBSIELLA PNEUMONIAE PSEUDOMONAS AERUGINOSA PSEUDOMONAS AERUGINOSA PSEUDOMONAS AERUGINOSA SERRATIA MARCESCENS PROVIDENCIA, S P P PROTEUS RETTGERI PSEUDONOMAS AERUGINOSA

RESISTANCE MECHANISM

MIC

(uqm/ml) IN M U E L L E R-H IN TON

GENTAMICIN

>SENS

J \ >ΑΝΤ(2')

1 AAC(3)-I AAC(3)-la AAC(6')-II* AAC(6'H** )AAC(2') PERMEABILITY

0.25 0.25 0.25 4.0 1.0 0.25 1.0 16 3.0 32 16 64 64 1.0 16 32 64

NETILMICIN 0.25 0.25 0.25 4.0 2.0 0.25 0.5 0.25 1,0 0.5 1.0 64 64 32 16 32 64

SCH

AGAR 22703

0.25 0.25 0.25 0.5 1.0 0.25 0.25 0.25 1.0 0.25 0.5 1.0 4.0 8.0 1.0 2.0 64

"•^Amikacin sensitive. **Amikacin resistant.

Table V . In Vitro Activity of l-N-(S-3-Amino-2-hydroxypropionyl) 5-episisomicin (SCH 27082) Compared to Gent amy cin

ORGANISM

ENTEROBACTER, SPP ESCHERICHIA COLI KLEBSIELLA PNEUMONIAE PROTEUS MIRABILIS PSEUDOMONAS AERUGINOSA ENTEROBACTER CLOACAE ESCHERICHIA COLI KLEBSIELLA PNEUMONIAE PSEUDOMONAS AERUGINOSA PSEUDOMONAS AERUGINOSA SERRATIA MARCESCENS PSEUDOMONAS AERUGINOSA SERRATIA MARCESCENS STAPHYLOCOCCUS AUREUS STAPHYLOCOCCUS AUREUS PSEUDOMONAS AERUGINOSA

RESISTANCE MECHANISM

1 ι

> SENS

J 1 ANT(2") J AAC(3)-I AAC(3)-la AAC(3)-II AAC(6')-II AAC(6'H* ANT(4')* APH(3'HV* PERMEABILITY*

MIC (ugm/ml) IN MUELLER-HINTON AGAR GENTAMICIN

SCH 27082

0.25 0.25 0.25 0.5 1.0 32 64 16 64 128 >128 128 2.0 0.5 0.5 32

0.25 0.125 0.125 1.0 1.0 0.25 0.125 0.125 2.0 0.5 2.0 2.0 1.0 1.0 1.0 32

^Amikacin resistant.

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

20.

DANIELS E T A L .

Antibiotics of the Gentamicin Group

389

two-fold more potent than n e t i l m i c i n and two t o f o u r - f o l d more potent than amikacin (data not shown). P r e l i m i n a r y experiments have shown Sch 22703 t o have about the same nephrotoxic p o t e n t i a l i n animals as n e t i l m i c i n or amikacin (29). The g r e a t e r potency of Sch 22703» however, would lead one to p r e d i c t that t h i s compound should have an improved t h e r a p e u t i c index compared t o these l a t t e r a n t i b i o t i c s . I n Table 5, the i n v i t r o a n t i m i c r o b i a l a c t i v i t y of l-N-(^-3-amino-2-hydroxypropionyl)-5-episisomiçin, a l s o designated Sch 27082, i s shown i n comparison t o gentamicin. Against s e n s i t i v e s t r a i n s t h i s compound i s a t l e a s t as a c t i v e as gentamicin; against r e s i s t a n t s t r a i n s , however, Sch 27082 i s remarkable, e x h i b i t i n g e x c e l l e n t a c t i v i t y against a l l aminoglycos i d e - r e s i s t a n t s t r a i n s c o n t a i n i n g i n a c t i v a t i n g enzymes. These f i n d i n g s have been confirmed i n extended s t u d i e s using over 200 recent c l i n i c a l i s o l a t e s (30). The only b a c t e r i a l r e s i s t a n c e to Sch 27082 that we have found i n v o l v e s s t r a i n s impermeable to aminoglycosides. Studies are c u r r e n t l y underway t o determine the chronic t o x i c i t y of t h i s compound. To complete the d i s c u s s i o n of our work on m o d i f i c a t i o n of the a m i n o c y c l i t o l u n i t of compounds i n the gentamicin group, mention should be made of l-N-(j>-3-amino-2-hydroxypropionyl)gentamicin B, a l s o known as Sch 21420 (Figure 17). We r e c e n t l y described t h i s a n t i b i o t i c (31) as a very broad spectrum compound, not s u s c e p t i b l e t o i n a c t i v a t i o n by the most important aminoglycoside-modifying enzymes. The a n t i b a c t e r i a l spectrum of Sch 21420 i s i d e n t i c a l t o that of amikacin and the potency of the two compounds i s very s i m i l a r . Of greater i n t e r e s t , however, the n e p h r o t o x i c i t y of Sch 21420 i n animal t e s t s t o date, has proved s i g n i f i c a n t l y lower than amikacin (32). Sch 21420 i s , t h e r e f o r e , promising as a s a f e r drug. In Figure 18, other s t r u c t u r a l m o d i f i c a t i o n s i n v o l v i n g the a m i n o c y c l i t o l u n i t , which have been c a r r i e d out i n our l a b o r a t o r i e s , are summarized. M o d i f i c a t i o n s of _N-3 are of p a r t i c u l a r i n t e r e s t , s i n c e t h i s i s an important p o s i t i o n of enzymatic modif i c a t i o n . U n f o r t u n a t e l y , the molecule i s i n t o l e r a n t t o change at t h i s p o s i t i o n and a l l modified compounds l i s t e d on the l e f t hand s i d e of Figure 18 are devoid of u s e f u l a n t i b a c t e r i a l a c t i v i t y . These m o d i f i c a t i o n s i n c l u d e îi-aIkylation ( 9 ) , epimerizat i o n , or replacement of the amino group w i t h a hydroxyl f u n c t i o n (33). On the other hand, f a i r l y s u b s t a n t i a l m o d i f i c a t i o n s a t N-l of the a m i n o c y c l i t o l u n i t can be accomplished w h i l s t maint a i n i n g , o r enhancing a n t i b i o t i c p r o p e r t i e s . Thus _ N - a l k y l a t i o n , as already discussed, e p i m e r i z a t i o n , or replacement of the amino group w i t h hydroxy (34) produced compounds w i t h a n t i b a c t e r i a l a c t i v i t y s i m i l a r t o , or b e t t e r than the parent compounds.

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

AMINOCYCLITOL

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

390

SCH

ANTIBIOTICS

21420

Figure 17.

HO CH3 CH HN 3

R = NH , Rj « H

GENTAMICIN C

2

R»NHC H , R 2

R * H, R

5

=NH

x

R=.0H, R

x

x

=H

R « H , R, =0H

2

=H

3-EPIGENTAMICIN

R-NH , R - H

SISOMICIN

R=H, R » N H

1-EPISISOMICIN

2

l a

3-A/-ETHYL GENTAMICIN 0 C

χ

x

X

2

R = NHC H , R j « H 2

l a

R = H,

3-DESAMIN0-3-HYDR0XYGENTAMICIN C , °la

5

Rj-NH^Hg

R = OH, R j = Η

-EPII 3-DESAMIN0-3-EPIHYDR0XY GENTAMICIN C , la C

= 0H

NETILMICIN 1-EPINETILMICIN 1-DESAMINO-l-HYDROXYSISOMICIN 1-OESAMINO -1-EPIHYDROXYSISOMICIN

Figure 18.

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

20.

DANIELS ET AL.

Antibiotics of the Gentamicin Group

391

Acknowledgement The antibacterial activities of the compounds described in this work were determined by Drs. J.A. Waitz, G.H. Miller and co-workers. Animal nephrotoxicity referred to was determined by Drs. P.J.S. Chiu, G.H. Miller and co-workers. The assistance of Mr. A.S. Yehaskel is gratefully acknowledged. Literature Cited

Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

13. 14. 15. 16. 17. 18. 19.

Weinstein, M.J., Luedemann, G.M., Oden, E.M. and Wagman, G.H., Antimicrobial Agents and Chemotherapy-1963, (1964), 1. Nara, T . , Kawamoto, I., Okachi, R. and Tetsue, O., J. Antibiot., (1977), 30, S-174. Weinstein, M.J., Marquez, J . Α . , Testa, R.T., Wagman, G.H., Oden, E.M. and Waitz, J . Α . , J. Antibiot., (1970), 23, 551. Reimann, Η., Cooper, D.J., Mallams, A.K., Jaret, R.S., Yehaskel, Α., Kugelman, Μ., Vernay, H.F. and Schumacher, D., J. Org. Chem., (1974), 39, 1451. Davies, J. and Smith, D.I., Ann. Rev. of Microbiol., (1978), 32, 464. Miller, G.H., Sabatelli, F.J., Hare, R.S. and Waitz, J . Α . , Developments in Industrial Microbiology, (1980), 21, (in press). Kawaguchi, H . , Naito, T . , Nakagawa, S. and Fujisawa, Κ., J. Antibiot., (1972), 25, 695. Rinehart, Jr., K.L., Pure Appl. Chem., (1977), 49, 1361. Wright, J.J., J. Chem. Soc. Chem. Commun., (1976), 206. Miller, G.H., Arcieri, G., Weinstein, M.J. and Waitz, J . Α . , Antimicrob. Agents Chemother., (1976), 10, 827. Luft, F.C., J. Int. Med. Research, (1978), 6, 286. Nagabhushan, T . L . , Cooper, A.B., Turner, W.N., Tsai, Η., McCombie, S., Mallams, A.K., Rane, D., Wright, J.J., Reichert, P., Boxler, D.L. and Weinstein, J., J. Am. Chem. Soc., (1978), 100, 5253. Shier, W.T., Rinehart, Jr., K.L. and Gottlieb, D., Proc. Natl. Acad. Sci. USA., (1969), 63, 198. Testa, R.T., Wagman, G.H., Daniels, P.J.L. and Weinstein, M.J., J. Antibiot., (1974), 27, 917. Waitz, J . Α . , unpublished observations. Daum, S.J., Microbiology 1979, (1979), 312. Barton, D.H.R. and McCombie, S.W., J. Chem. Soc. Perkin Trans. 1., (1975), 1574. Daniels, P.J.L. and McCombie, S.W., U.S. Patent 4,053,591; Chem. Abstr., (1978), 88, 2338x. Hayashi, T . , Iwaoka, T . , Takeda, N. and Oki, Ε . , Chem. Pharm. Bull. Jpn., (1978), 26, 1786.

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.

392

20· 21. 22. 23. 24. 25. Downloaded by FUDAN UNIV on December 5, 2016 | http://pubs.acs.org Publication Date: August 4, 1980 | doi: 10.1021/bk-1980-0125.ch020

26. 27. 28. 29. 30. 31. 32. 33. 34.

AMINOCYCLITOL ANTIBIOTICS

Suami, T., Nishiyama, S., Ishikawa, Y. and Umemura, E . , Bull. Chem. Soc. Jpn., (1978), 51, 2354. Kavadias, G., Dextraze, P., Masse, R. and Belleau, B., Can. J. Chem., (1978), 56, 2086. Daniels, P.J.L., U.S. Patent 4,000,261; Chem. Abstr., (1977), 86, 5776t. Waitz, J . Α . , Miller, G.H., Moss, Jr., E. and Chiu, P.J.S., Antimicrob. Agents Chemother., (1978), 13, 41. Sanders, C.C., Sanders, Jr., W.E. and Goering, R.V., Antimicrob. Agents and Chemother., (1978), 14, 178. Fu, K.P. and Neu, Η., Antimicrob. Agents Chemother., (1978), 14, 194. Kabins, S.A. and Nathan, C., Antimicrob. Agents Chemother., (1978), 14, 391. Middleton, W.J., J. Org. Chem., (1974), 40, 574. Nakagawa, S., Toda, S., Abe, Y., Yamashita, Η., Fujisawa, Κ., Naito, T. and Kawaguchi, Η., J.Antibiot., (1978), 31, 675. Chiu, P.J.S. and Miller, G.H., unpublished observations. Miller, G.H. and co-workers, unpublished observations. Nagabhushan, T . L . , Cooper, A.B., Tsai, Η., Daniels, P.J.L. and Miller, G.H., J. Antibiot., (1978), 31, 681. Miller, G.H., Chiu, P.J.S. and Waitz, J . Α . , J. Antibiot., (1978), 31, 688. McCombie, S.W., Abstracts, 9th International Symposium on Carbohydrate Chemistry, London, (1978), Abstract B39. Mallams, A.K., Davies, D.H., Boxler, D.L., Vernay, H.F. and Reichert, P., Abstracts, 17th Interscience Conference on Antimicrobial Agents and Chemotherapy, New York, (1977), Abstract 251.

RECEIVED November 15, 1979.

Rinehart and Suami; Aminocyclitol Antibiotics ACS Symposium Series; American Chemical Society: Washington, DC, 1980.