8 Chemical Speciation of Copper i n River Water Effect of Total Copper, p H , Carbonate, and Dissolved Organic Matter
WILLIAM G. SUNDA and PETER J. HANSON
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
National Marine Fisheries Service, Southeast Fisheries Center, Beaufort Laboratory, Beaufort, NC 28516 There i s i n c r e a s i n g evidence that the a v a i l a b i l i t y of a q u e o u s t r a c e m e t a l s t o a number o f o r g a n i s m s i s d e t e r m i n e d by f r e e metal i o n a c t i v i t y r a t h e r than t h e t o t a l c o n c e n t r a t i o n o f metal i n s o l u t i o n (]_-6j. The c h e m i c a l a s s o c i a t i o n s o f t r a c e metals with inorganic and organic ligands a r e major f a c t o r s that c o n t r o l metal i o n a c t i v i t i e s and thus bioavailability. I n t h i s s t u d y , we i n v e s t i g a t e t h e c o m p l e x a t i o n o f c o p p e r b y i n o r g a n i c and o r g a n i c l i g a n d s i n t h e water o f two r i v e r s i n coastal North C a r o l i n a . An i o n - s e l e c t i v e e l e c t r o d e was used t o d i f f e r e n t i a t e between f r e e a n d bound c u p r i c i o n i n t i t r a t i o n s o f r i v e r w a t e r s a n d model s o l u t i o n s . S t a b i l i t y c o n s t a n t s were determined i n chemically defined solutions f o r complexation of c o p p e r by h y d r o x i d e and c a r b o n a t e i o n s , t h e two m a j o r i n o r g a n i c c o p p e r c o m p l e x i n g l i g a n d s i n most n a t u r a l waters ( 7 ) . From t h e s e r e s u l t s , t o t a l c o p p e r i n t h e r i v e r w a t e r was p a r t i t i o n e d into o r g a n i c and i n o r g a n i c forms and s t a b i l i t y constants f o r complexa t i o n o f c o p p e r by n a t u r a l o r g a n i c l i g a n d s were c a l c u l a t e d . F i n a l l y , models were c a l c u l a t e d which p r e d i c t t h e v a r i a t i o n s i n chemical s p e c i a t i o n o f copper r e s u l t i n g from changes i n t h e c h e m i cal parameters: pH, carbonate a l k a l i n i t y , concentration of d i s s o l v e d o r g a n i c m a t t e r , and c o n c e n t r a t i o n o f t o t a l d i s s o l v e d copper. The r i v e r s s a m p l e d were t h e N e w p o r t a n d N e u s e . The Newport R i v e r i s a s m a l l c o a s t a l p l a i n r i v e r (mean d i s c h a r g e a p p r o x i m a t e l y 0 . 4 t o 11.2 m 3 s e c " 1 ) w i t h a w a t e r s h e d o f a p p r o x i m a t e l y 3 4 0 k m ? . T h e N e u s e R i v e r , i n c o n t r a s t , i s a l a r g e r r i v e r (mean d i s c h a r g e a p p r o x i m a t e l y 130 m 3 s e c - 1 ) , o r i g i n a t i n g i n t h e piedmont r e g i o n w i t h a d r a i n a g e b a s i n o f a p p r o x i m a t e l y 1.1 χ 10^ k m 2 . The Newport R i v e r w a t e r u s e d i n t h i s i n v e s t i g a t i o n i s c h a r a c t e r i z e d by a h i g h c o n c e n t r a t i o n o f d i s s o l v e d o r g a n i c c a r b o n ( 1 5 mgC l o w pH ( 6 . 0 ) , l o w c a r b o n a t e a l k a l i n i t y ( 0 . 0 6 mM) a n d r e l a t i v e l y l o w c o n c e n t r a t i o n s o f a l k a l i n e e a r t h c a t i o n s T Ï Ï . 1 4 mM C a a n d 0 . 0 3 mM M g ) . The Neuse w a t e r h a d an a p p r e c i a b l y l o w e r c o n c e n t r a t i o n o f d i s s o l v e d o r g a n i c c a r b o n ( 3 . 0 mgC £ - ' ) , h i g h e r pH ( 6 . 8 ) , h i g h e r
American Chemical ^^(M^/EîlifSr^3"14^08'50/0 c
r
s
e
This fr|Pte /^ WJ Çf *Λ^·5· copyright P u b l i s l M P ¥ 9 # Î B n » i c & C h e m i c a l Society
Washington, D. C.
20035
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMICAL MODELING IN AQUEOUS SYSTEMS
148
c a r b o n a t e a l k a l i n i t y ( 0 . 1 5 mM), and a b o u t t h e o f c a l c i u m a n d m a g n e s i u m ( 0 . 1 3 mM C a a n d 0 . 0 4 Materials
and
Water
same c o n c e n t r a t i o n s mM M g ) .
Methods
samples were
c o l l e c t e d from
the
Newport
River
upstream
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
f r o m N e w p o r t , N o r t h C a r o l i n a and from t h e Neuse R i v e r s e v e r a l m i l e s downstream from K i n s t o n , North C a r o l i n a . Standard procedures f o r h a n d l i n g water samples were adopted to m i n i m i z e changes in the natural s t a t e of the samples during sampling P o r t i o n s o f the samples were f i l t e r e d through g l a s s (Gelman A-E) w i t h i n 24 h r o f c o l l e c t i o n . A portion t e r e d r i v e r w a t e r was e x p o s e d t o h i g h i n t e n s i t y u l t r a t i o n ( L a J o l l a S c i e n t i f i c Model PO-14 Photooxidation
and s t o r a g e . fiber filters of the f i l aviolet radiUnit) to
photooxidize organic matter (8). C a l c i u m and magnesium c o n c e n t r a t i o n s were d e t e r m i n e d i n f i l t e r e d s a m p l e s by f l a m e a t o m i c absorption spectrophotometry (Perkin Elmer 403). D i s s o l v e d o r g a n i c c a r b o n w a s d e t e r m i n e d u s i n g a CHN a n a l y s e r ( F a n d M 1 8 5 ) o n t h e r e s i d u e l e f t a f t e r f r e e z e d r y i n g samples of a c i d i f i e d , filtered r i v e r water. Carbonate a l k a l i n i t y s a m p l e s w a s c a l c u l a t e d f r o m pH a n d librated with a i r . The
chemical
speciation
of
o f f i l t e r e d and U V - t r e a t e d PQQ2 d a t a f o r s a m p l e s e q u i -
copper
in
river
water
and
model
s o l u t i o n s was i n v e s t i g a t e d by a t i t r a t i o n t e c h n i q u e i n w h i c h c u p r i c i o n a c t i v i t i e s w e r e m e a s u r e d a t c o n s t a n t pH a s t h e t o t a l c o p p e r c o n c e n t r a t i o n ( [ C U J Q J ] ) w a s v a r i e d by i n c r e m e n t a l a d d i t i o n s o f CUSO4. p C u ( - l o g c u p r i c i o n a c t i v i t y ) was m e a s u r e d w i t h a c u p r i c i o n - s e l e c t i v e e l e c t r o d e ( O r i o n 9 4 - 2 9 ) a n d pH w i t h a g l a s s e l e c t r o d e (Beckman 39301) b o t h c o u p l e d t o a s i n g l e j u n c t i o n Ag/AgCl reference e l e c t r o d e (Orion 90-01) i n a temperature c o n t r o l l e d (25 + 0 . 5 ° C ) w a t e r b a t h . Total copper concentrations in t h e t i t r a t e d s o l u t i o n s were d e t e r m i n e d d i r e c t l y by a t o m i c a b s o r p tion spectrophotometry ( P e r k i n Elmer 603) u s i n g a g r a p h i t e furnace (Perkin Elmer 2200). Measurement of t o t a l copper c o n c e n t r a t i o n s i s necessary because of a d s o r p t i v e l o s s of copper from s o l u t i o n onto
container
The tions at
and/or
electrode
surfaces.
f o l l o w i n g p r o c e d u r e was f o l l o w e d 2 5 ° C and c o n s t a n t pH. The t h r e e
f o r a l l copper t i t r a e l e c t r o d e s were f i r s t
p r e c o n d i t i o n e d f o r 3 0 m i n i n a s o l u t i o n a t pH 8 c o n t a i n i n g 0 . 1 M T r i s b a s e , 0 . 0 5 M HC1 a n d s u f f i c i e n t C U S O 4 t o a c h i e v e a p C u o f 13.0 to 13.5. The e l e c t r o d e s w e r e t h e n r i n s e d s e v e r a l t i m e s w i t h d i s t i l l e d w a t e r and p l a c e d f o r 30 min i n a p o r t i o n o f t h e s o l u t i o n t o be t i t r a t e d . T h e e l e c t r o d e s w e r e t h e n p l a c e d i n a f r e s h 7 0 m& p o r t i o n o f t h e same s o l u t i o n c o n t a i n e d i n a 1 0 0 m i l b o r o s i l i c a t e g l a s s b e a k e r and t i t r a t e d w i t h CUSO4. S u f f i c i e n t t i m e was a l l o w e d f o r the e l e c t r o d e s to r e a c h steady s t a t e p o t e n t i a l s a f t e r each copper a d d i t i o n . A t no c o p p e r a d d i t i o n , 6 0 m i n w a s a l l o w e d . For c o p p e r c o n c e n t r a t i o n s 2 χ 1 0 " 5 M) i t w a s n e c e s s a r y t o a d d s u f f i c i e n t q u a n t i t i e s o f NaOH t o n e u t r a l i z e h y d r o g e n i o n s r e l e a s e d by t h e c o m p l e x a t i o n o f weak a c i d f u n c t i o n a l groups. T i t r a t i o n s w e r e p e r f o r m e d on u n t r e a t e d , f i l t e r e d , a n d UVt r e a t e d f i l t e r e d r i v e r w a t e r s a m p l e s a t i n s i t u a n d a d j u s t e d pH values. T h e e f f e c t o f pH o n c o p p e r s p e c i a t i o n w a s i n v e s t i g a t e d by t i t r a t i o n o f f i l t e r e d N e w p o r t R i v e r w a t e r a t pH 7 . 0 a n d f i l t e r e d N e w p o r t a n d N e u s e w a t e r s a t pH 8 . 0 . Newport R i v e r water w a s a d j u s t e d t o pH 7 . 0 b y d e c r e a s i n g t h e p a r t i a l p r e s s u r e o f CO? f r o m t h e i n i t i a l a m b i e n t v a l u e o f a b o u t 10 t i m e s t h e a t m o s p h e r i c level. To a d j u s t t h e pH t o 8 . 0 , s o d i u m b i c a r b o n a t e w a s a d d e d t o b r i n g t h e r i v e r w a t e r s a m p l e s t o a c o n c e n t r a t i o n o f 0 . 5 mM w i t h s u b s e q u e n t a d j u s t m e n t o f Ρ(χ)2· T i t r a t i o n s were a l s o c o n d u c t e d a t pH 7 . 0 i n m o d e l s o l u t i o n s c o n s i s t i n g o f 0 . 0 1 M KNO3 a n c l 0 e l !0Îi NaHC03 w i t h a n d w i t h o u t t h e a d d i t i o n o f 0 . 7 5 μΜ h i s t i d i n e t o t e s t e l e c t r o d e b e h a v i o r i n s o l u t i o n s o f known c h e m i s t r y . S t a b i l i t y c o n s t a n t s f o r t h e c o m p l e x a t i o n o f c o p p e r by h y d r o x i d e i o n (Cu h y d r o l y s i s ) were d e t e r m i n e d f r o m m e a s u r e m e n t s o f pCu a n d P L C U J O J ] a s a f u n c t i o n o f pH i n s o l u t i o n s c o n t a i n i n g 0 . 0 1 M KNO3 a n d ! - 0 a n d 2 · 5 μ Μ C U S O 4 . These s o l u t i o n s were f i r s t p u r g e d w i t h n i t r o g e n a t pH < 6 t o r e m o v e CO2 a n d t h e n c l o s e d t o the atmosphere. M e a s u r e m e n t s w e r e made u n d e r a n i t r o g e n a t m o s p h e r e a s t h e s o l u t i o n s w e r e t i t r a t e d w i t h s m a l l q u a n t i t i e s ( < 2 5 \ii per a d d i t i o n ) of a concentrated s o l u t i o n of Κ0Η. For the d e t e r mination of s t a b i l i t y constants f o r carbonate complexes, measure a s a m e n t s o f pCu a n d P [ C U J Q T ] *e f u n c t i o n o f pH i n a s o l u t i o n c o n t a i n i n g 0 . 0 1 M NaHC03 a n d 5 μΜ CUSO4. T h e pH a n d t h u s t h e c a r b o n a t e i o n a c t i v i t y was v a r i e d by a d j u s t i n g P c 0 2 W
E
R
E
m(
C u p r i c i o n a c t i v i t i e s and c u p r i c i o n c o n c e n t r a t i o n s were determined using the Nernst equation from the d i f f e r e n c e s i n p o t e n t i a l between t h e t e s t s o l u t i o n s and a s t a n d a r d s o l u t i o n c o n s i s t i n g o f Ι Ο " 5 M CUSO4 a n d 0 . 0 1 M KNO3 a t pH 5 . 4 + 0 . 3 . V a l u e s o f c u p r i c i o n a c t i v i t y i n t e s t s o l u t i o n s w e r e b a s e d on a c u p r i c ion a c t i v i t y c o e f f i c i e n t of 0 . 6 8 in the standard s o l u t i o n as c a l c u l a t e d from the extended Debye-Huckel equation. For measure m e n t s i n d e f i n e d s o l u t i o n s c o n t a i n i n g 0 . 0 1 M KNO3 o r 0 . 0 1 M NaHC03 c u p r i c i o n c o n c e n t r a t i o n s c o u l d be d i r e c t l y c o m p u t e d v i a t h e N e r n s t e q u a t i o n b e c a u s e a c t i v i t y c o e f f i c i e n t s w e r e t h e same in both t e s t and s t a n d a r d s o l u t i o n s . Total copper c o n c e n t r a t i o n s i n a l i q u o t samples o f the t i t r a t i o n s o l u t i o n s w e r e m e a s u r e d by e l e c t r o t h e r m a l a t o m i c a b s o r p t i o n u s i n g d i r e c t i n j e c t i o n o f t h e a c i d i f i e d (HNO3) s a m p l e i n t o t h e graphite furnace. S t a n d a r d s w e r e p r e p a r e d a t t h e same a c i d s t r e n g t h a s t h e s a m p l e s and c o p p e r v a l u e s were o b t a i n e d by t h e comparator method. Copper c o n c e n t r a t i o n s i n f i l t e r e d (Gelman A E) N e w p o r t a n d Neuse w a t e r s w e r e 0 . 0 1 1 μΜ and 0 . 0 2 5 μ Μ , r e s p e c t i v e l y , and were w e l l w i t h i n a n a l y t i c a l c a p a b i l i t y . T h u s , no
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMICAL MODELING IN AQUEOUS SYSTEMS
150
s a m p l e p r e c o n c e n t r a t i o n was r e q u i r e d . The p r e c i s i o n a s e s t i m a t e d by r e p l i c a t e a n a l y s e s was a b o u t + 0 . 0 0 0 6 2 μ Μ , ( r e p o r t e d a s one s t a n d a r d d e v i a t i o n ) w h i c h i s e q u i v a l e n t t o a 1% r e l a t i v e standard d e v i a t i o n a t the midrange of the standards. Computation of S t a b i l i t y Constants f o r Hydroxo and Carbonato Complexes. S t a b i l i t y c o n s t a n t s f o r the f o r m a t i o n o f hydroxo com p l e x e s w e r e c o m p u t e d by l i n e a r r e g r e s s i o n f r o m t h e f o l l o w i n g equation: [Cu
T 0 T
]
-
[Cu2+] =
0H"
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
a
3
Cu(0H)9
[Cu2+]
a
0H"
+
K
Cu0H+
(
1
)
2
2+ where [CUJOJ] and [Cu ] a r e the measured c o n c e n t r a t i o n s o f t o t a l d i s s o l v e d c o p p e r and c u p r i c i o n r e s p e c t i v e l y and aoH~ i s t h e a c t i v i t y o f h y d r o x i d e i o n ^ s c o m p u t e d ^ f r o m t h e m e a s u r e d pH a n d t h e ion product of water. Kcu0H+ and 3Cu(0H)2 a r e s t a b i l i t y constants f o r t h e f o r m a t i o n o f mono a n d d i h y d r o x o c o m p l e x e s a s d e f i n e d b y the equations: [Cu0H+]
[Cu(0H)2]
(3)
Mass
balance
[Cu
Equation and 4 . The ([Cu a
2 +
0H"-
],
]
T Q T
1
for
total
= [Cu2+]
+
i s derived
left
term
of
[CUTQT]* P h )
soluble
copper
[Cu0H+]
+ [Cu(0H)2]
by a l g e b r a i c equation a
The y - i n t e r c e p t
n
d
t
h
e
i s expressed
by t h e
.
combination
1 was c o m p u t e d
(4)
of
equations
f o r each data
regressed as a l i n e a r
n
and t h e s l o p e
of
equation:
2, set
function
the regression
line
3
of
are
Cu0H+ a n d 3cu(0H)2' respectively. A s i m i l a r l i n e a r r e g r e s s i o n p r o c e d u r e was u s e d f o r t h e determination of carbonato s t a b i l i t y constants. Here t h e e q u a t i o n regressed was: 2 K
([Cu
T 0 T
]
-
([Cu2+]
+ [Οι
2 +
a j
]Σ 1
e
Cu(C03)|-
a
C0§"
+
K
CuC03
H
. β*))/ [Cu2+]
a
C Q
2
-
=
3
.
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
(
'
8.
1
Ο
The
term
[Cu2+]
a
Σ
151
Copper in River Water
SUNDA A N D HANSON
Q H
* _ $.
represents
the concentration
of
mono
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
p l u s d i h y d r o x o complexes as comptued from s t a b i l i t y c o n s t a n t s ( T a b l e I ) . The a c t i v i t y o f c a r b o n a t e i o n was computed f r o m t h e c o n c e n t r a t i o n o f a d d e d NaHCU3 ( 0 . 0 1 M) a n d c a r b o n a t e a c i d i t y c o n s t a n t s a t i n f i n i t e d i l u t i o n a n d 2 5 ° C r e p o r t e d i n Stumm a n d Morgan ( 9 J . The s t a b i l i t y c o n s t a n t s o b t a i n e d f r o m t h e s l o p e a n d y - i n t e r c e p t of the r e g r e s s i o n of equation 6 a r e d e f i n e d i n terms a n d t h e of t h e c o n c e n t r a t i o n s o f C u 2 + , CUCO3, and Cu(003)2 a c t i v i t y of carbonate i o n . S t a b i l i t y c o n s t a n t s f o r hydroxo and c a r b o n a t o complexes were c o r r e c t e d t o i n f i n i t e d i l u t i o n u s i n g a c t i v i t y c o e f f i c i e n t s c a l c u l a t e d from the extended Debye-Huckel equation. Scatchard plots. S t a b i l i t y c o n s t a n t s f o r t h e b i n d i n g o f Cu by a m o d e l l i g a n d ( h i s t i d i n e ) a n d by n a t u r a l o r g a n i c l i g a n d s i n r i v e r w a t e r were computed u s i n g S c a t c h a r d p l o t diagrams as d e s c r i b e d p r e v i o u s l y by M a n t o u r a a n d R i l e y ( 1 0 ) . The g e n e r a l equation f o r t h i s analysis was: [CuL.] - — — [Cu2+]
=
Κ [L c ι
lui
]
-
Κ [CuL ] c ι
(1
where LCuL-i] and [LJ_JQT] a r e t h e c o n c e n t r a t i o n s o f copper l i g a n d complex and t o t a l l i g a n d . Κς i s a c o n d i t i o n a l s t a b i l i t y c o n s t a n t v a l i d f o r a given set of chemical c o n d i t i o n s of pH, i o n i c strength and c o n c e n t r a t i o n o f c o m p e t i n g metal i o n s ( C a , M g , e t c ) :
K
c
-
^ [Cu
]
([L.]
(7,
+ Σ [H L] + Σ N
[MeL])
Σ [HnL] i s t h e c o n c e n t r a t i o n o f a l l p r o t o n a t e d f o r m s o f a weak a c i d l i g a n d a n d Σ [ M e L ] i s t h e sum o f a l l c o m p l e x e s o f t h e l i g a n d w i t h m e t a l s o t h e r t h a n c o p p e r , p a r t i c u l a r l y Ca a n d M g . The c o n c e n t r a t i o n o f o r g a n i c a l l y bound c o p p e r was c o m p u t e d t o be e q u a l to the t o t a l measured c o n c e n t r a t i o n of copper i n s o l u t i o n minus the computed c o n c e n t r a t i o n s of i n o r g a n i c s p e c i e s : C u 2 + , CuOH+, C u ( 0 H ) 2 , CUCO3 a n d C u ( C 0 3 ) £ ~ . C o n c e n t r a t i o n s o f t h e s e s p e c i e s were c a l c u l a t e d from hydroxo and carbonato s t a b i l i t y c o n s t a n t s determined i n t h i s study (Table I ) . A c t i v i t y c o e f f i c i e n t s used i n t h e s e c a l c u l a t i o n s were computed from t h e extended DebyeHuckel e q u a t i o n u s i n g e s t i m a t e s o f i o n i c s t r e n g t h based on t h e measured c o n c e n t r a t i o n s of C a 2 + , M g 2 + , carbonate a l k a l i n i t y a n d ,
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
152
CHEMICAL MODELING IN AQUEOUS SYSTEMS
where of
applicable The
Scatchard
histidine one
is
complex
[CuL] plots
of
plot
straight formed.
should
tration
at
pH
be
linear
histidine
derived
from
8.0)
curves
different
stripping
the
added
sites)
and
a
was
concentration
copper is
the
to
for
-Kc.
river
presence to
likely
stability
a
equal
of
a
to
the
showed
several
estimate groups
total
of
one-to-
function
However,
Here an
of
single
as
water
constants.
adopted
titration
only
[CuL]/[Cu2+]
equal
data
(more
conditional
of
slope
stability
ligands
the there
an x - i n t e r c e p t
indicating
procedure
individual
plot
with
and
for
since
titration
non-linear with
analyses
forward Here a
sites of
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
(titrations
NaHC03.
of
concen Scatchard markedly
binding iterative
concentration
ligands
or
binding
constants.
Chemical S p e c i a t i o n Models. Using the s t a b i l i t y constants d e r i v e d by us f o r c o p p e r c o m p l e x e s w i t h h y d r o x o and c a r b o n a t o l i g a n d s ( T a b l e I) and f o r n a t u r a l o r g a n i c l i g a n d s ( T a b l e II), t h e Newport and Neuse R i v e r s were modeled f o r c o p p e r s p e c i a t i o n as a f u n c t i o n o f p H , t o t a l c o p p e r , c a r b o n a t e a l k a l i n i t y and t o t a l dissolved organic the equation: [Cu
T Q T
]
=
matter.
[Cu2+]
+
Speciation
[CuOH+]
[Cu(C03)2~]
+
+
[CuL
models
were
[Cu(0H)2]
T Q T
+
calculated
[CuC03]
+
]
(8)
where
[CuOH+]
[Cu(0H)2]
[CuC03]
a
Cu
2 +
1
a
Cu
2 +
a
0H"
K
CuOH+
a
Cu
2 +
a
0H-
3
Cu(0H)2
a
Cu
2 +
a
C02"
Y
Cu
2 +
K
1
Y
CuC03
1
/
CuOH+
Y
Y
Cu(0H)2
C
U
C
0
3
2
[Cu(C03)2-] a
Cu2+
a
Cu
a
C0
3
2
"
3
Cu(C03)2"
1
Y
Cu(C03)2"
Ν 2 +
I
CLi-T0T]
from
K
c - i '
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
8.
Κ and
3 denote
conditional tion
of
ion
the
for
ith
corrected
their
were
not
valid
153
constants,
under
the
[L-J-T0T] i s
ligand
group
(ligand
by
Scatchard
coefficient. considered
Κς_η·
same
determination,
resolved
activity
stability
constants
organic
ligands
complexes in
as
the
Ν total
single
zero
stability
conditions of
Copper in River Water
SUNDA A N D HANSON
or
the
significant
concentra
binding
analyses,
Polynuclear
are
chemical site)
and
γ
and m i x e d
and,
thus,
is
the
ligand
not
included
model.
Results
and
Discussion 2+
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
Hydroxo measured
as
containing Ι.ΟμΜ some o f
0.01
the
be
carbonato
functions
a
PrCu2+j
decrease
accounted
adsorption
of
M KNO3
CUSO4.
could in
and
pH n
in
the by
1).
a
range
approximately
above
this
from
was is
first
plot
separate fold is
(Figure
of
titrations
pH
(Figure
indicative
and
excludes
cupric
of
or
for
the
p[Cu
indicated
the whose
value
the
of
(1θ6·48) (106·
dilution
10
Values 10
1 4
·
in
siderable species error can
constant 11.80) and
U
of
)
at
the
9
natural for
(log
who
of
32
also
of
that
the
range and
constant
at
copper or
pH
was
electrode
found
as
that
the
pH
adsorption
copper
of
of
the
[CU
are
for of
of
the
2 +
species in
a
species in
free
Cu(0H)£
7.7
to
(Cu0H+ Table
monohydroxo
of
10.8 and
I.
Our
complex
previously
published
strength
approaching
ionic
at
]/[CUJOJ]
Analysis
range
given
five
reduction
complexes. pH
three
to
hydrolysis
observed
the
for
up
concentration
ratio
precipitation in
pH
despite
values infinite
U ) .
T4,
constant
are
V5). as
to
waters.
quite
This the
of
this
11.78)
at
importance and
25°C
reported
used
a cupric data
the
(J4)
of
dihydroxo ranging has
and by
Our
Paulson
dilution (J4)
adsorptive
loss
of
con
of
procedures
dihydroxo
infinite
1θ"Ό·7 in
dihydroxo
discusses sources
(log
ion-selective electrode
for
complex
from
resulted
copper
computational
variability.
that
his
for
variable
variability
Paulson
with
corrected
curve
hydrolysis
constant
25°C
a function
the
by pH
experimental =
were
mononuclear
constants
stability
much
to pH
containers
indicating
polynuclear
two
literature ]Z_
onto
dissolved
caused
of
13,
9
the
agreement
also
been
as
behavior
formation
within 6 6
due
increasing
dissolved
adsorption
single
P[CUJQT] and
previous
account
close
·
copper
remained
the
decreased
possibility
uncertainty
in
in
6
(1J_,
3
This
stability
Ql_,
reported
measured
stability
falls
to
0
for
a
in
presence
Cu(0H)2)
on
2).
],
but
and
least
1).
formation 2 +
adsorption
then
fall
have
9.0
μΜ
concentration
dissolved
increased with
92% o f
]/[CUJOT])
2 +
the
the
i o n may
(solid) data
to
P([CU
differences
given
to
values
i n c r e a s e d and
reversible A
due
Consistent
At
ion
were
solutions 2.5
in
to
p[Cujpj] of of
cupric
to
and
i n c r e a s i n g pH.
decrease
Up
J
titrations
measured
7.0
range.
solution
KOH
concentrations
Adsorption
the
lost
the
initial
d
values
surfaces.
for
p[Cu
increased with
for
(Figure
constants.
that
stability is
in
32
=
technique
copper.
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMICAL MODELING IN AQUEOUS SYSTEMS
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
154
pH Figure 1. Loss of copper by surface adsorption as a function of pH for solutions containing lOmM KNO ; (M) and (\J) 10 Μ CuSO, , and (Ο) 2.5 Μ CwS0 ; (U) increasing pH and decreasing pH. pH varied by addition of concentrated KOH and HCl. s
μ
t
μ
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
4
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979. 4
s
^
h
)
μ
/[C-TOTJJ
[Cu2
h
Figure 2. Titration data for complexation of copper by hydroxide. All solutions contained lOmM KNO ; (Α) Ι.ΟμΜ CuSO (Ο) 2.5 Μ CuSO (first run), and (•) 2.5μΜ C w S 0 (second run). Curve calculated according to hydroxo constants determined in this work (Table I).
Ρ
Ρ( V
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
156
CHEMICAL MODELING IN AQUEOUS
Table
I.
Stability C032",
Ligand
Ionic
OH" 2C 0
3
Histidine
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
and
constants
for
reaction
h i s t i d i n e at
strength
of
copper
with
SYSTEMS OH",
25°C.
log
log
0
corr.
6.48
11.78
0
corr.
6.74
10.24
0.01
10.45*
0.01
10.55
18.80
References
e2
This
work
II
II
II
II
S i l l en
& Martel 1,
(12)
*
C a l c u l a t e d from a c o n d i t i o n a l s t a b i l i t y constant at 100.21 ( F i g u r e 5) and f i r s t and second hydrogen i o n t i o n c o n s t a n t s of 1 0 9 · 2 0 and 1 0 6 · 0 0 (12.).
pH 7 . 0 0 of associa-
A n a l y s i s o f d a t a f o r pLCu^"1"], P [ C U T Q T ] a n d pH f o r t h e s o l u t i o n c o n t a i n i n g 0 . 0 1 M N a H C Û 3 a n d 5 μ Μ tubOq a r e c o n s i s t a n t w i t h t h e p r e s e n c e o f b o t h mono a n d d i c a r b o n a t o c o m p l e x e s ( F i g u r e 3 ) . C o n s t a n t s f o r t h e s e complexes computed from t i t r a t i o n data a r e g i v e n i n Table I and a r e i n good agreement w i t h p r e v i o u s l y pub l i s h e d v a l u e s a s r e p o r t e d i n S i l l e n a n d M a r t e l (21), S u n d a (13) and B i l i n s k i e t a K (7J. A d s o r p t i o n o f c o p p e r i n the 0.01 M b i c a r b o n a t e s o l u t i o n s was n o t a s g r e a t (maximum a d s o r p t i o n 50%) as t h a t w h i c h o c c u r e d i n t h e a b s e n c e o f c a r b o n a t e i o n , s u g g e s t i n g t h a t carbonato complexes of copper a r e not as r e a d i l y adsorbed as c u p r i c ion and/or copper hydroxo s p e c i e s . M o d e l s o l u t i o n s : T i t r a t i o n s a t c o n s t a n t pH a n d a v a r i a b l e p[CuTnï\T D a t a f o r t h e Cu t i t r a t i o n o f a m o d e l s o l u t i o n c o n t a i n i n g 0 . 7 5 μ Μ h i s t i d i n e , 0 . 1 mM N a H C 0 3 a n d 0 . 0 1 M KNO3 a t pH 7.0 ( F i g u r e 4T~was a n a l y z e d by l i n e a r r e g r e s s i o n u s i n g a S c a t c h a r d p l o t diagram (Figure 5). This analysis yielded a s t a b i l i t y con s t a n t i n good agreement w i t h p r e v i o u s l y p u b l i s h e d v a l u e s (Table I). A t h e o r e t i c a l c u r v e c a l c u l a t e d f r o m t h i s c o n s t a n t was i n g o o d a g r e e m e n t w i t h t h e m e a s u r e d pCu a n d P [ C U J O T ] d a t a throughout t h e t i t r a t i o n r a n g e o f p [ C u j O T ] ( F i g u r e 4) i n d i c a t i n g good e l e c t r o d e b e h a v i o r e v e n a t c o n c e n t r a t i o n s o f CUJQT a s l o w as 1 0 " 8 · 2 M. pCu a n d PECUJQT] d a t a d i d n o t a g r e e as c l o s e l y w i t h t h e t h e o r e t i c a l l y c a l c u l a t e d curve for a t i t r a t i o n of a s i m i l a r s o l u t i o n c o n t a i n i n g no a d d e d c h e l a t o r . The m e a s u r e d pCu v a l u e s w e r e i n good agreement w i t h v a l u e s c a l c u l a t e d on the b a s i s of i n o r g a n i c c o m p l e x a t i o n f o r t o t a l c o p p e r c o n c e n t r a t i o n s >_ 1 0 " ? M , b u t d e v i ated from p r e d i c t e d values below t h i s c o n c e n t r a t i o n ^ F i g u r e 4 ) . A maximum d i f f e r e n c e b e t w e e n m e a s u r e d a n d c a l c u l a t e d pCu v a l u e s
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
II.
Acid
3.0 5.0
8.00
8.00
6.78
8.00
3
3
...
iî
L
&
L
& 2.7 2.9
2.1 1.9 3.0
1.2 1.1 1.2
8.7 8.6 1.6
7.00
&
5.0 1.8 1.0
Ligand
for
E-6
E-7
Copper
8 8 D . (J 8.0 3.3 4.0
E-4* E-3* E-3* E-3* 2.4 2.4
1.1
Schnitzer II
&
II
II
&
II
g
II
of
II
Khan,(18)
II
Riley,(10)
II II
II
II
II II
II
II II
II
II
II
II II
II
II
II
II
II II
II
II
II
II
II
paper
II
This
Mantoura II
Ligands
Reference
Organic
b i n d i n g s i t e s per on d a t a i n ( 1 8 ) ) .
8.3
4.8
11.2
9.5 7.3 4.9
Κ
E-5 E-4
E-5 E-4 E-3
10.9 8.8 6.9
9.7 7.8 5.6
E-5 E-4 E-2 E-5 E-4 E-3
9.0 6.2 4.6
log
Natural
E-5 E-3 E-3
by
8.9 9.6
7.0 6.4 9.9
8.0 7.5 8.2
E-6 E-5 E-4 E-7 E-6 E-5
5.8 5.7 1.0
3.3 1.2 6.7
E-7 E-6 E-4
E-7 E-5 E-4
of
M o l e s o f Cu Binding Sites g organic carbon
Complexation
Ligand Concentration M
Constants
5.95
pH
Stability
Data c o n v e r t e d f r o m number o f b i n d i n g s i t e s p e r g o f o r g a n i c m a t t e r t o o r g a n i c c a r b o n a s s u m i n g n a t u r a l f u l v i c a c i d s c o n t a i n 46% c a r b o n ( b a s e d
Fulvic
Soil
River
Water
*
Water
Conditional
River
Lake
Neuse
Newport
Natural
Table
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
158
CHEMICAL MODELING IN AQUEOUS
1
Τ
SYSTEMS
1
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
/
/ :
/
3
3
or
o /
•
-
1
pH Figure 3. Titration data for complexation of copper by carbonate. Solution con tained lOmU NaHCOs and 5μΜ CuSOj,. pH varied by adjusting P Curve calculated according to hydroxo and carbonato stability constants determined in this work (Table I). C O r
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Copper
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
SUNDA AND HANSON
in River
P[
C U
Water
TOT]
Figure 4. Copper titrations of model solutions at 25°C and pH 7.00. (•) Solu tion contained 0.01M KN0 and O.lmM NaHC0 in distilled water. (O) Solution contained 0.75μΜ histidine, 0.01M KN0 , and O.lmM NaHC0 . Solid lines through data points are theoretical curves calculated according to constants given in Table I. Dark solid line represents p C w = p[Cu T7· 3
3
3
3
T0
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
160
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
CHEMICAL MODELING IN AQUEOUS SYSTEMS
Figure
5.
Scatchard
plot for histidine model solution. for the data is shown.
The linear regression
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
line
8.
SUNDA AND HANSON
Copper
in River
Water
161
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
T h l s ( 0 . 4 pCu u n i t s ) o c c u r e d a t P [ C U J Q T ] 8 · ° · deviation from i d e a l b e h a v i o r i s a p p a r e n t l y due t o a d i s e q u i l i b r i u m between t h e s o l u t i o n t i t r a t e d a n d t h e membrane s u r f a c e o f t h e c u p r i c i o n selective electrode. Our e x p e r i e n c e h a s shown t h a t 1 0 " ^ M t o t a l copper i s often the lower l i m i t f o r accurate determination of cupric ion activity. However, the exact l i m i t of d e t e c t i o n i s de t e r m i n e d by a v a r i e t y o f f a c t o r s : c o m p l e x i n g c h a r a c t e r i s t i c s o f the s o l u t i o n i n c l u d i n g k i n e t i c s of the complexation r e a c t i o n s , p r e c o n d i t i o n i n g o f the e l e c t r o d e s u r f a c e , and time a l l o w e d t o establish equilibrium. The c u p r i c i o n e l e c t r o d e shows b e s t b e h a v i o r i n w e l l b u f f e r e d s o l u t i o n s i n which the k i n e t i c s of com p l e x a t i o n r e a c t i o n s are f a s t , such as i n the h i s t i d i n e s o l u t i o n .
Copper t i t r a t i o n s o f r i v e r w a t e r . Copper t i t r a t i o n data i n d i c a t e s t h a t c o p p e r i s h i g h l y bound i n both Newport and Neuse River water (Figures 6 and 7 ) . A g e n e r a l l y c l o s e agreement between t i t r a t i o n c u r v e s o f f i l t e r e d and u n f i l t e r e d samples i s c o n s i s t a n t w i t h m i n o r t o n e g l i g i b l e b i n d i n g by p a r t i c u l a t e m a t t e r r e t a i n e d by g l a s s f i b e r f i l t e r s ( t h e mean r e t e n t i o n s i z e o f g l a s s f i b e r f i l t e r s i s a p p r o x i m a t e l y 0 . 7 t o 0 . 9 ym ( ] J o ) . Close agreement between measurements o f background t o t a l dissolved c o p p e r i n u n t r e a t e d Neuse R i v e r w a t e r ( 0 . 0 2 9 μΜ) and f i l t e r e d Neuse R i v e r w a t e r ( 0 . 0 2 5 μΜ) a l s o i n d i c a t e s t h a t o n l y a m i n o r f r a c t i o n o f c o p p e r was a s s o c i a t e d w i t h p a r t i c u l a t e m a t t e r . Non-ideal behavior of the cupric ion electrode occurs at PECUJOJ] > 7 i n t h e t i t r a t i o n s o f both f i l t e r e d and u n f i l t e r e d N e w p o r t R i v e r w a t e r a t pH 5 . 9 5 a n d f i l t e r e d w a t e r a t pH 7 . 0 a n d 8.0. A t l o w t o t a l c o p p e r c o n c e n t r a t i o n s , m e a s u r e d pCu v a l u e s approach a constant value independent of the t o t a l copper i n solution. S i m i l a r b e h a v i o r was o b s e r v e d f o r f i l t e r e d Neuse River w a t e r a t pH 8 . 0 , b u t n o t a t pH 6 . 7 8 . As i n d i c a t e d by t i t r a t i o n d a t a ( F i g u r e s 6 a n d 7 ) , b i n d i n g o f c o p p e r i n b o t h Neuse a n d Newport R i v e r w a t e r d e c r e a s e s w i t h i n c r e a s i n g t o t a l c o p p e r i n a manner c o n s i s t a n t w i t h a s t e p w i s e t i t r a t i o n o f a number o f d i f f e r e n t l i g a n d s a n d / o r b i n d i n g s i t e s . B i n d i n g o f c o p p e r i n c r e a s e s w i t h i n c r e a s i n g pH c o n s i s t a n t w i t h r e a c t i o n s w i t h p r o t o n a t e d weak a c i d s . C o m p a r i s o n s o f Cu t i t r a t i o n s o f n a t u r a l f i l t e r e d r i v e r w a t e r and U V - i r r a d i a t e d f i l t e r e d r i v e r w a t e r show a l a r g e d e c r e a s e i n binding of copper a f t e r photooxidation of organic matter. UVt r e a t m e n t r e s u l t e d i n > 97% d e s t r u c t i o n o f d i s s o l v e d o r g a n i c m a t t e r i n b o t h Neuse a n d Newport R i v e r w a t e r s , b a s e d on l i g h t a b s o r p t i o n m e a s u r e m e n t s i n t h e w a v e l e n g t h r a n g e 3 0 0 - 5 0 0 nm a n d measurements of d i s s o l v e d o r g a n i c c a r b o n . M e a s u r e d pCu v a l u e s i n n a t u r a l f i l t e r e d N e w p o r t R i v e r w a t e r a t pH 5 . 9 5 a r e a p p r e c i a b l y higher than p r e d i c t e d f o r complexation t o i n o r g a n i c l i g a n d s (CO*}" a n d 0 H _ ) a l o n e b y v a l u e s r a n g i n g f r o m 0 . 7 a t P [ C U J Q T ] 4 . 2 t o 2 . 4 a t P[CUJOT] 6 . 9 . From c a l c u l a t i o n s a t PECUJOT] 6 · 9 ο η 1 Υ 0 · 4 % of t h e copper i n s o l u t i o n i s present as i n o r g a n i c s p e c i e s , p r i m a r i l y C u 2 + , w i t h t h e r e m a i n i n g 99% a p p a r e n t l y bound t o o r g a n i c
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMICAL MODELING IN AQUEOUS SYSTEMS
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
162
Figure 6. Copper titrations of Neuse River water at 25°C. (Φ) Untreated water at in situ pH 6.78; (\J) glass-fiber filtered water at pH 6.78; (A) glass-fiber filtered water at pH 8.00; (0 ) UV-treated glass-fiber filtered water at 6.78; ( • ) twice filtered UV-treated water at pH 6.78, first filtration by glass-fiber prior to UVirradiation, second filtration by membrane (0.2 ™ nuclepore) after irradiation. Model curves through data points were calculated according to stability constants determined in this work (Tables I and II). Dotted lines indicate limits on data used for calculation of conditional stability constants for organic binding. μ
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Copper in River Water
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
SUNDA AND HANSON
Figure 7. Copper titration of Newport River water at 25°C. (Φ) Untreated water at in situ pH 5.95; ([J) glass-fiber filtered water at pH 5.95; (O) ghss-fiber filtered water at pH 7.00; (A) glass-fiber filtered water at pH 8.00; (0) UV-treated glass-fiber filtered water at pH 5.95. Model curves through data points were calculated according to stability constants determined in this work (Tables I and II). Dotted lines indicate limits on data used for calculation of conditional sta bility constants.
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
164
CHEMICAL MODELING IN AQUEOUS SYSTEMS
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
ligands. The p r e d o m i n a n c e o f b i n d i n g by o r g a n i c l i g a n d s i s c o n f i r m e d by an a l m o s t c o m p l e t e d e s t r u c t i o n o f b i n d i n g c a p a b i l i t y after UV-photooxidation ( F i g u r e 7 ) . In t h e U V - t r e a t e d Newport R i v e r w a t e r a t pH 5 . 9 5 , m e a s u r e d p C u v a l u e s w e r e i n g o o d a g r e e m e n t w i t h those c a l c u l a t e d from i n o r g a n i c complexation i n the range of P [ C U J O T ] 7 t o 4. A s l i g h t i n c r e a s e i n m e a s u r e d p C u o f u p t o 0.4 u n i t s was o b s e r v e d r e l a t i v e t o t h a t p r e d i c t e d f r o m i n o r g a n i c c o m p l e x a t i o n a t P L C U J Q T ] > 7. T h i s d e v i a t i o n f r o m pCu v a l u e s c a l c u l a t e d from c o n s i d e r a t i o n of i n o r g a n i c complexation a t p [ C u j g y ] > 7 i s s i m i l a r to t h a t o b s e r v e d i n t h e model s o l u t i o n c o n t a i n i n g 0.01 M KNO3 a n d 0.1 mM N a H C Û 3 a t pH 7 ( F i g u r e 4 ) a n d t h u s , may a l s o be d u e t o n o n - i d e a l e l e c t r o d e b e h a v i o r a t l o w t o t a l copper concentrations. U V - t r e a t m e n t o f f i l t e r e d Neuse R i v e r w a t e r a l s o c a u s e d a l a r g e d e c r e a s e i n t h e b i n d i n g o f c o p p e r a t pH 6 . 7 8 a n d p [ C u j o j ] 1_ 7 c o n s i s t a n t w i t h p r e d o m i n a n c e o f b i n d i n g o f c o p p e r b y o r g a n i c ligands in the natural f i l t e r e d r i v e r water. However, at values o f PLCUTQJ] > 7 i n t h e p h o t o o x i d i z e d f i l t e r e d Neuse R i v e r w a t e r (pH 6 . 7 8 ; 9 t h e m e a s u r e d pCu v a l u e s b e h a v e a s i f c o p p e r was h i g h l y bound by a s i t e p r e s e n t a t a l o w c o n c e n t r a t i o n 10 7· M) w i t h a r e l a t i v e l y h i g h s t a b i l i t y c o n s t a n t , a l t h o u g h we r e c o g n i z e t h a t t h e c u p r i c i o n e l e c t r o d e may b e e x h i b i t i n g s o m e d e g r e e o f non-ideal behavior. F i l t r a t i o n of the UV-treated r i v e r water t h r o u g h a 0.2 ym f i l t e r ( N u c l e p o r e ) r e d u c e d t h e b a c k g r o u n d c o n c e n t r a t i o n o f c o p p e r i n t h e w a t e r f r o m 0 . 0 2 5 μΜ t o b e l o w t h e d e t e c t i o n l i m i t o f t o t a l c o p p e r a n a l y s i s (0.001 μ Μ ) i n d i c a t i n g t h a t t h e b a c k g r o u n d c o p p e r was e i t h e r a d s o r b e d t o o r i n c o r p o r a t e d into f i l t r a b l e particles. T i t r a t i o n of t h i s r e f i l t e r e d water a l s o g a v e a c u r v e f o r m e a s u r e d pCu v s P E C U J Q T ] Ί η a g r e e m e n t w i t h a reduced level of copper b i n d i n g . The n a t u r e o f t h e p a r t i c l e s t h a t c o p p e r was a p p a r e n t l y a s s o c i a t e d w i t h i s unknown a s i s t h e nature of the chemical a s s o c i a t i o n . T h e p a r t i c l e s may h a v e b e e n hydrous metal oxides or a small f r a c t i o n of organic matter r é s i s t e n t t o p h o t o o x i d a t i o n . We d o n o t k n o w w h e t h e r t h e p a r t i c l e s were i n i t i a l l y p r e s e n t i n the r i v e r w a t e r o r were formed d u r i n g p h o t o o x i d a t i o n , o r w h e t h e r c o p p e r was a d s o r b e d t o t h e s u r f a c e o f the p a r t i c l e s or incorporated i n t o the p a r t i c l e m a t r i x . All of these p o s s i b i l i t i e s are completely c o n s i s t a n t with the observed data. However, s i n c e the apparent degree of a s s o c i a t i o n of copper with the p a r t i c l e s present in UV-treated water i s small at p [ C u j o j ] 1 7, o u r c o n c l u s i o n t h a t c o p p e r i n t h e n a t u r a l river w a t e r i s p r i m a r i l y b o u n d by o r g a n i c m a t t e r a t P E C U J O T ] 7 i s not affected significantly. _
5
Analysis of Organic Binding. Scatchard p l o t s for the binding o f c o p p e r i n f i l t e r e d r i v e r w a t e r showed n o n - l i n e a r i t y i n d i c a t i v e of the presence of binding s i t e s having d i f f e r e n t s t a b i l i t y cons t a n t s ( F i g u r e 8 ) . S i m i l a r n o n - l i n e a r b e h a v i o r has a l s o been o b s e r v e d i n S c a t c h a r d p l o t s f o r c o p p e r b i n d i n g by n a t u r a l organic
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
1E-6
E[cuLi] , M
4E-6
u
3
1.27E-5
7 E-6 { 1.67E-5
Figure 8. Scatchard plot for glass-fiber filtered Neuse River water at in situ pH 6.78 and 25°C. Linear segments shown for three resolved binding sites, L L,, and L . Model curve through data points was calculated from resolved stability constants and total concentrations for the three binding sites.
5E2
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
CHEMICAL MODELING IN AQUEOUS SYSTEMS
166 ligands (JO). was
from
lake water
Scatchard conducted
plot
and
analysis
soil of
as measured data
for
by
river
gel water
chromatography titrations
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
T h i s was d o n e because o f a p p a r e n t n o n - i d e a l e l e c t r o d e b e h a v i o r a t [CUJOT] < 1 0 " 7 M. Data a t the h i g h e s t c o n c e n t r a t i o n s o f t o t a l copper i n N e w p o r t R i v e r w a t e r a t pH 7 . 0 a n d pH 8 . 0 w e r e a l s o e x c l u d e d b e c a u s e pCu v a l u e s a p p r o a c h t h o s e p r e d i c t e d f o r t h e f o r m a t i o n of s o l i d c o p p e r h y d r o x i d e , i . e . , p C u 6 . 7 a t pH 8 . 0 a n d 4 . 7 a t pH 7.0. I n o u r a n a l y s i s , we m o d e l e d t h e d a t a f o r b i n d i n g o f c o p p e r b y o r g a n i c m a t t e r i n a c c o r d a n c e w i t h t h e f e w e s t number o f binding s i t e s required to account f o r the observed copper t i t r a t i o n data. T h e t i t r a t i o n d a t a f o r e a c h r i v e r a n d pH w e r e a n a l y z e d separately by r e s o l v i n g t h e S c a t c h a r d p l o t s i n t o p o s t u l a t e d o n e , t w o , three and f o u r b i n d i n g s i t e models. The f o u r p o s s i b l e m o d e l s f o r e a c h r i v e r a n d pH w e r e t e s t e d a g a i n s t t h e d a t a u s i n g a r u n s t e s t a n d F - t e s t (17) t o d e t e c t and t e s t t h e s i g n i f i c a n c e o f s y s t e m a t i c d e viations. F r o m t h e s e t e s t s we c o n c l u d e t h a t a t l e a s t t h r e e s e p a r a t e b i n d i n g s i t e s a r e r e q u i r e d t o model t h e Newport t i t r a t i o n d a t a a t pH 5 . 9 5 , 7 . 0 a n d 8 . 0 a n d t h e N e u s e d a t a a t pH 6.78 ( F i g u r e s 6 and 7 ) . Two b i n d i n g s i t e s a r e r e q u i r e d f o r t h e Neuse a t pH 8 . 0 w h i c h i s c o n s i s t e n t w i t h t h e r e s t r i c t e d r a n g e o f the t i t r a t i o n data. T h e a c t u a l n u m b e r o f b i n d i n g s i t e s may b e g r e a t e r t h a n t h e number r e s o l v e d , s i n c e s i t e s h a v i n g s i m i l a r s t a b i l i t y c o n s t a n t s c a n n o t be r e s o l v e d by t h e p r e s e n t t e c h n i q u e . Values for t o t a l c o n c e n t r a t i o n o f b i n d i n g s i t e s and c o n d i t i o n a l stability constants are given in Table II. In g e n e r a l , a c o n s i s t a n t s e t o f c o n d i t i o n a l s t a b i l i t y c o n s t a n t s was o b t a i n e d f o r t h e two r i v e r s i n w h i c h t h e c o n s t a n t s i n c r e a s e w i t h pH a n d d e c r e a s e w i t h t h e r a t i o o f m o l e s o f b i n d i n g s i t e s p e r gram o r g a n i c c a r b o n ( F i g u r e 9 ) . The r e l a t i o n s h i p b e t w e e n s t a b i l i t y c o n s t a n t s a n d pH i s s i m i l a r f o r a l l t h r e e p r o p o s e d b i n d i n g s i t e s i n e a c h r i v e r w i t h v a l u e s o f Δ l o g K c / Δ pH i n t h e t h e range 1.0 to 1 . 3 . M e a n v a l u e s f o r [ί ·_χοτ] " f ° r e a c h ° f i = l , 2 or 3 types of b i n d i n g s i t e s are h i g h e r i n the Newport R i v e r w a t e r r e l a t i v e t o t h o s e f o r t h e Neuse by f a c t o r s r a n g i n g f r o m 4 to 5. T o t a l l i g a n d c o n c e n t r a t i o n Σ [L-J-TOT]» i . e . , t o t a l binding c a p a c i t y , i s h i g h e r i n t h e Newport by a f a c t o r o f 5 w h i c h i s i n agreement w i t h the f i v e f o l d d i f f e r e n c e i n d i s s o l v e d o r g a n i c carbon (DOC): 1 5 mgC i H f o r t h e N e w p o r t a n d 3 . 0 mgC i H f o r the Neuse. T h u s , the g e n e r a l p i c t u r e t h a t emerges i s t h a t the b i n d i n g c h a r a c t e r i s t i c s of the o r g a n i c m a t t e r i n the Newport R i v e r water i s s i m i l a r t o t h a t i n t h e Neuse w i t h t h e m a j o r d i f f e r e n c e b e i n g t h e q u a n t i t y o f b i n d i n g s i t e s p r e s e n t a s i n d i c a t e d by t h e dif f e r e n c e i n the q u a n t i t y of d i s s o l v e d o r g a n i c c a r b o n . Ί
It i s l i k e l y t h a t most i f not a l l of the observed b i n d i n g of copper to o r g a n i c matter r e s u l t s from complexation to f u l v i c or humic a c i d s . Newport R i v e r w a t e r has a p r o n o u n c e d y e l l o w i s h brown c o l o r and shows c o n t i n u o u s l y i n c r e a s i n g l i g h t a b s o r p t i o n w i t h d e c r e a s i n g w a v e l e n g t h (1_3) c o n s i s t e n t w i t h t h e p r e s e n c e o f
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
8.
these
substances.
carbon gH
ratios
From u n p u b l i s h e d
(0.02 gN g C ~ ' ) ,
g C " l ) and c a r b o x y l
the to
dissolved those
of
Similarly, organic United able
The binding copper
complex
plain
mixtures
of
functional binding
of
of
to
1.3.
in binding
A
Binding primarily
with
effects
of metals
to
by c h e l a t i o n
an a d j a c e n t composed
(phthalate
of
( 1 3 mmol
consistent indicates
(18). mmol
there
the observed
binding to
the
pH r a n g e
6 to
1.3
copper
of
9),
since
pH v a l u e s to
whereas
Therefore, humic
binding
show
copper
t h e pH a t w h i c h the t i t r a t i o n that
conditional organic
which
acids
these
often
vary
(Δ l o g in
in
which
group
protonated
be m o s t l y for
at
de-
copper
consistent
with
sites. constants
are highly
c a n be
for
dependent
and the
Published
considerably
differences
and
account
reactions
was c o n d u c t e d
was e x a m i n e d .
apparent
to
sites
stability
ligands
less
is
slopes
mechanisms
a r e most
Newport
organic
a phenolic will
with
rings
binding
be p r i m a r i l y
groups
group
and/or
groups
groups
from
chelation
the measurement
curve
for fulvic
reported
that
This
ion from
our data
by n a t u r a l
of
slightly
data).
In a d d i t i o n ,
will
type
only
by c a r b o x y l
the proposed
salicylate
on
constants
of
in
a n d 8.0 a n d
River
for a l l three
carboxyl
η
occur
on a r o m a t i c
Newport
primarily
groups
compounds,
to
results of
these
sites)
pH 7.0
carboxyl
copper.
observed
type
pH 6 . 8 a r e for
to
a carboxyl
capacities for
unpublished
8 may r e s u l t
of has
at
i o n d i s p l a c e s a hydrogen
Our binding
1.0
of
the ob
the surface
i s thought
gC"l) at
groups of
values
i s that
an i n c r e a s e
or
groups
binding
are sufficient
Δ pH)
pro tona t e d .
of
important.
carboxyl
gC"1)
the binding
Κς/
(equation
copper
indicate
from
(salicylate
Copper
carboxyl
for
of
of
c o n s i s t i n g of
+ 1 mmol
g C " 1 ; Sunda,
with that
of
9)
compounds
sites
two a d j a c e n t
(11+1
the content
copper
compounds
the reaction
molecules
may be
group
matter~Tl0
t h e Neuse
binding
iden
of
(20) a n d / o r
possibility
pH r e s u l t s
humic
with
phenolic
groups)
organic
neutral
and f u l v i c
For
(Figure
Both
copper
sites
groups
HnL,
second
(21_).
a
binding
(9)
Δ l o g Κ ς / Δ pH
1.0
increase
matter
southeastern indistinguish
= C u L + nH
colloids
than
humic
(18).
dissolved
the
individual
site
on p o l y e l e c t r o l y t i c
for
of
for
similar
soils
the
pH i s t y p i c a l
charge
River
are
properties
groups.
negative
sites
river
Postulated
i n l o g Κς w i t h
acid
slopes
the range
and
from
that
on p o l y e l e c t r o l y t i c m o l e c u l e s
a protonated
+ HnL
observed
extracted
has c h e m i c a l
acids.
water
to
(0.11
( 1 3 meq g C " ' )
River
reported
nitrogen
ratios
particles.
t o weak
Cu
acids have
that
carbon
ratios
i n Newport
coastal
fulvic
sites
increase
with
served
of
carbon
167
we know
to
1_2> a n d L 3 m a y r e p r e s e n t
within
colloidal
in
i n another
those
different
and f u l v i c
et_ a l _ . ( 1 9 )
data
hydrogen
to
matter
the S a t i l l a ,
as L ] ,
molecules or
humic Beck
matter
from
group
organic
States,
tified
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
Copper in River Water
SUNDA A N D HANSON
portion
stability
a n d Cheam
(22)
reasonably
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMICAL MODELING IN AQUEOUS SYSTEMS
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
168
Log([Lj. oT]/9C) T
Figure 9. Rehtionship between the log of the conditional stability constant and the log of the binding site concentration per gram dissolved organic carbon for individual binding sites. Newport River pH 8.00; (U) Neuse River pH 8.00; (O) Newport River pH 7.00; (%) Neuse River pH 6.78; (A) Newport River pH 5.95; (£) lake water (10).
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
8.
SUNDA AND HANSON
Copper
in River
Water
169
a c c o u n t e d f o r b y d i f f e r e n c e s i n pH a n d t h e r a t i o o f [ C u T o i J / g r a m organic matter. O u r c o n d i t i o n a l c o n s t a n t s a t pH 8 . 0 f o r t h a t p o r t i o n o f t h e b i n d i n g s i t e s d e s i g n e d a s L_2 a r e i n g o o d agreement w i t h s t a b i l i t y c o n s t a n t s m e a s u r e d by M a n t o u r a a n d R i l e y (10) f o r b i n d i n g o f c o p p e r by o r g a n i c m a t t e r f r o m l a k e w a t e r a t t h e same pH a n d s i m i l a r r a t i o o f m o l e s o f b i n d i n g s i t e s p e r g r a m o r g a n i c carbon (Figure 9 ) . M a n t o u r a a n d R i l e y , who u s e d a g e l f i l t r a t i o n t e c h n i q u e to measure s t a b i l i t y c o n s t a n t s , found t h e i r data c o n s i s t e n t w i t h t h e p r e s e n c e o f two s e p a r a t e b i n d i n g s i t e s . To m o d e l o u r t i t r a t i o n d a t a we u s u a l l y h a d t o p o s t u l a t e t h e e x i s t e n c e o f no f e w e r t h a n t h r e e s e p a r a t e o r g a n i c b i n d i n g s i t e s . The a p p a r e n t d i f f e r e n c e b e t w e e n r e s u l t s o f t h e t w o s t u d i e s c a n be r e s o l v e d i f we n o t e t h a t o u r t i t r a t i o n s u s u a l l y c o v e r e d 2 t o 3 o r d e r s o f m a g n i t u d e change i n bound c o p p e r c o n c e n t r a t i o n w h e r e a s , the e x p e r i m e n t s o f Mantoura and R i l e y (10J c o v e r e d o n l y s l i g h t l y g r e a t e r than one o r d e r o f m a g n i t u d e . T h u s , i t was i m p o s s i b l e f o r these i n v e s t i g a t o r s to determine the c h a r a c t e r i s t i c s of copper binding outside of t h e i r experimental range. C h e m i c a l S p e c i a t i o n Models f o r t h e Neuse and Newport R i v e r Waters. Copper s p e c i a t i o n m o d e l s f o r f i l t e r e d Newport a n d Neuse R i v e r waters as a f u n c t i o n o f t o t a l copper c o n c e n t r a t i o n a t i n s i t u pH v a l u e s ( F i g u r e s 1 0 a a n d 1 1 a ) i n d i c a t e t h a t s o l u b l e c o p p e r i s g r e a t e r t h a n 98% bound t o o r g a n i c l i g a n d s i n t h e r a n g e o f t o t a l copper concentration normally encountered i n r i v e r water, i.e., p [ C u j o j ] — 7. At these c o n c e n t r a t i o n s , copper i s p r i m a r i l y c o m p l e x e d by o r g a n i c b i n d i n g s i t e L ] , a s i t e r e p r e s e n t i n g l i g a n d s present a t low concentrations with high s t a b i l i t y constants. S i t e L-| a c c o u n t s f o r a b o u t 1% o f t h e t o t a l b i n d i n g c a p a c i t y b u t >90% o f t h e b o u n d c o p p e r a t P [ C U J O T ] ϋ 7 . Only a t extremely high c o n c e n t r a t i o n s o f t o t a l c o p p e r , i . e . , PECUTQTJ 1 3 . 7 i n t h e Newport and £ 4 . 5 i n t h e Neuse, would i n o r g a n i c s p e c i e s o f copper become d o m i n a n t . I n c r e a s i n g t h e pH o f t h e N e w p o r t f r o m 5 . 9 5 t o 7 . 0 ( F i g u r e s 10a a n d 10b) w i t h o u t c h a n g i n g c a r b o n a t e a l k a l i n i t y does n o t a l t e r t h e o r d e r o f dominance o f copper s p e c i e s . However, in the n a t u r a l range of t o t a l copper c o n c e n t r a t i o n s (i.e., P L C U T Q J ] ^ 7 ) i n c r e a s i n g pH t o 7 . 0 d o e s i n c r e a s e t h e e x t e n t o f t o t a l organic binding r e l a t i v e to inorganic species. This r e s u l t s f r o m t h e s t r o n g pH d e p e n d e n c e o f c o n d i t i o n a l s t a b i l i t y c o n s t a n t s f o r copper complexes w i t h n a t u r a l o r g a n i c l i g a n d s as d i s cussed previously. A t i n s i t u pH a n d i n s i t u c o n c e n t r a t i o n s o f d i s s o l v e d c o p p e r i n t h e Neusë~TÔ.025 μ Μ ) a n d t h e N e w p o r t ( 0 . 0 1 1 μ Μ ) , t h e m o d e l s p r e d i c t s i m i l a r pCu v a l u e s f o r t h e t w o r i v e r s ( 1 0 . 4 a n d 1 0 . 6 f o r t h e Neuse and N e w p o r t ) . Thus i n c o n s i d e r a t i o n o f t h e m a j o r f a c t o r s c o n t r o l l i n g pCu v a l u e s i n t h e two r i v e r s , t h e h i g h e r c o n c e n t r a t i o n o f o r g a n i c b i n d i n g s i t e s and lower t o t a l dissolved c o p p e r i n t h e Newport a r e a l m o s t e x a c t l y c o m p e n s a t e d f o r by t h e h i g h e r pH o f t h e N e u s e . 1
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Figure 10. Chemical speciation model for dissolved copper in the Newport River at 25°C as a function of total copper concentration, (a) In situ pH 5.95, [Alk] = O.OSmM and I = 0.0005M; (b) pH 1.00, [Alk] = 0.05mU and I = 0.005M; and (c) pH 8.00, [Alk] = 0.55mM and I = 0.001U. D0C^15mgCLK
TOT
p[Cu ]
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
Copper
in River
Water
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
SUNDA AND HANSON
Figure 11. Chemical speciation model for dissolved copper in the Neuse River at 25°C as a function of total copper concentration, (a) In situ pH 6.78, [Alk] = 0.15mM and I = 0.0005M; and (h) pH 8.00, [Alk] = 0.65mM and I = 0.001U. DOC = 3 mgCL . 1
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
172
CHEMICAL MODELING IN AQUEOUS
SYSTEMS
Models f o r copper s p e c i a t i o n as a f u n c t i o n of t o t a l c o n c e n t r a t i o n o f o r g a n i c s i t e s p[Ljoj] ( F i g u r e s 12 a n d 1 3 ) w e r e c a l c u l a t e d a t PCCUJQT] 7 w l t h t h e a s s u m p t i o n t h a t t o t a l o r g a n i c m a t t e r was v a r i e d w i t h o u t a l t e r a t i o n o f t h e r e l a t i v e c o n c e n t r a t i o n s of i n d i v i d u a l binding s i t e s w i t h r e s p e c t to the t o t a l . Copper s p e c i e s a r e a l s o shown v e r s u s d i s s o l v e d o r a a n i c c a r b o n (DOC) u s i n g m e a s u r e d v a l u e s o f 15 a n d 3 . 0 mgC f o r the Newport and Neuse, r e s p e c t i v e l y . A t i n s i t u pH ( F i g u r e s 1 2 a a n d 1 3 a ) , the d o m i n a n c e o f o r g a n i c bound s p e c i e s i s a g a i n d e m o n s t r a t e d by t h e o b s e r v a t i o n t h a t DOC w o u l d h a v e t o d r o p b e l o w a p p r o x i m a t e l y 0.4 a n d 0 . 2 mgC i H f o r t h e Newport and Neuse r e s p e c t i v e l y , before i n o r g a n i c s p e c i e s of copper would dominate. T h e e f f e c t o f pH o n o r g a n i c c o m p l e x a t i o n i s a l s o e v i d e n t a s DOC i n t h e N e w p o r t w o u l d h a v e t o b e r e d u c e d t o a p p r o x i m a t e l y 0 . 1 mgC i H a t pH 7 . 0 a n d 0 . 0 8 mgC i H a t pH 8 . 0 b e f o r e i n o r g a n i c s p e c i e s w o u l d dominate over organic species. S i m i l a r l y , DOC f o r t h e N e u s e w o u l d h a v e t o b e r e d u c e d t o 0 . 1 mgC J T 1 a t pH 8 . 0 . I n a r e c e n t r e v i e w , D u c e a n d D u u r s m a (23) c o n c l u d e t h a t o u r knowledge of d i s s o l v e d o r g a n i c carbon i n the w o r l d ' s r i v e r s i s limited. From a v a i l a b l e d a t a f o r s u c h r i v e r s as t h e A m a z o n , Hudson, M i s s i s s i p p i , M a c K e n z i e and o t h e r s , d i s s o l v e d o r g a n i c c a r b o n w a s f o u n d t o r a n g e f r o m 2 t o 5 mgC £ _ 1 . These v a l u e s are c o m p a r a b l e t o t h a t f o u n d i n t h e N e u s e ( 3 . 0 mgC £ _ 1 ) , b u t l o w e r t h a n i n t h e N e w p o r t ( 1 5 mgC £ _ 1 ) . Comparing t h i s range of DOC c o n c e n t r a t i o n w i t h the r e s u l t s of o u r work and assuming t h a t the complexing c h a r a c t e r i s t i c s of the organic matter remains a p p r o x i m a t e l y t h e s a m e a m o n g w a t e r s h e d s , we w o u l d e x p e c t c o p p e r c h e m i s t r y i n t h e w o r l d ' s r i v e r s t o be d o m i n a t e d b y c o p p e r - o r g a n i c interactions. This c o n c l u s i o n agrees w i t h t h a t of Mantoura et a l . ( 2 4 ) a s b a s e d on t h e i r c o p p e r s p e c i a t i o n model f o r r i v e r water. C o p p e r s p e c i a t i o n i n t h e N e w p o r t and Neuse R i v e r s was c a l c u l a t e d a s a f u n c t i o n o f c a r b o n a t e a l k a l i n i t y a t s e v e r a l pH v a l u e s f o r p [ C u j o j ] 7 and the n a t u r a l s u i t e o f o r g a n i c l i g a n d s d e t e r m i n e d p r e v i o u s l y ( F i g u r e s 14 a n d 1 5 ) . The a l k a l i n i t y r a n g e was s e l e c t e d to r e f l e c t that expected i n the w o r l d ' s r i v e r s . From the data of L i v i n g s t o n e (25), the a l k a l i n i t y of the w o r l d ' s a v e r a g e r i v e r w a s c a l c u l a t e d t o b e a p p r o x i m a t e l y 0 . 9 6 mM. Stumm and Morgan (9J p r e s e n t data t h a t s u g g e s t c a r b o n a t e a l k a l i n i t i e s in the w o r l d ' s freshwater would f a l l i n the approximate range 0.1 t o 8 mM. _1 I n t h e N e w p o r t R i v e r w i t h a DOC o f 15 mgC l~ , o r g a n i c copper s p e c i e s c l e a r l y dominate over the f u l l range of alkalinit i e s ( p [ A l k ] 5 t o 2 ) a t pH 5 . 9 5 , 7 . 0 a n d 8 . 0 . A t P[CU QT] 7 and P[LJQT] 3 . 7 t o 3 . 9 , t h e o r g a n i c b i n d i n g s i t e c o n c e n t r a t i o n s and s t a b i l i t y constants are s u f f i c i e n t l y large for organic matter to s u c c e s s f u l l y outcompete i n o r g a n i c l i g a n d s . Thus, the copper complexes with i n d i v i d u a l f r a c t i o n s of organic binding s i t e s are e s s e n t i a l l y invariant with a l k a l i n i t y (Figures 14a-c). A s pH i s i n c r e a s e d the r e l a t i v e amounts o f i n o r g a n i c s p e c i e s of c o p p e r d e c l i n e e s p e c i a l l y a t low a l k a l i n i t i e s . As a l k a l i n i t y i n c r e a s e s T
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Figure 12. Chemical speciation model for dissolved copper in the Newport River at 25°C as a function of total organic binding site concentration, (a) In situ pH 5.95, [Alk] = O.OSmM and I = 0.0005M; (b) pH 7.00, [Alk] = 0.05m\l and I = 0.0005M; and (c) pH 8.00, [Alk] = 0.55mM and I = 0.001M.
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
00
CHEMICAL MODELING IN AQUEOUS SYSTEMS
174
NEUSE RIVER pH 8.00
NEUSE RIVER pH 6.78
Log DOC (mgC-!" )
Log DOC (mgC'!" )
1
1
-1
0
1
2
0
1
2
3
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
-2
Figure 13. Chemical speciation model for dissolved copper in the Neuse River at 25°C as a function of total organic binding site concentration, (a) In situ pH 6.78, [Alk] = 0.15mM and I = 0.0005M; and (b) pH 8.00, [Alk] = 0.65mM and I = 0.001M.
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
Figure
14.
T0T
Chemical speciation model for dissolved copper in the Newport a function of carbonate alkalinity at v[Cu ] 7.
p[Alk] River
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
at 25°C
as
ι—· οι
CHEMICAL MODELING IN AQUEOUS SYSTEMS
176
pH 6.78
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
NEUSE RIVER
NEUSE RIVER
pH 8.00
p[Alk] Figure
15.
Chemical speciation at 25°C as a function
model for dissolved copper in the Neuse of carbonate alkalinity at tp[Cu t] 7 TO
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
River
8.
the
relative
dominate
importance
the
> 10"3·
14b)
and
5.95
(Figure
[A1K]
species at
For general
the
pattern
8.0.
The
lower
allows
stronger
the
situ
competes
the
In
are
associated these
natural
L3
may
ligands
Newport
River
addition
from
at
a
P[CUTQJ]
organicj)
to
data).
ing
ionic
an
(6.0)
and
an
addition
to
a value
by
less
of
-3.42).
same
of of
than
2.7 0.2
the
value
Since
the
calcium (9j,
the our
that as
pH
omission
of
waters. be
total
value
increasing
electrode
slight
log
at
the
of
(Sunda,
the
calcium
initial same a
the
value
of
to
-3.56
of
increase
to
a
had
mM
value
0.94
by
from
mM c a u s e d
only
0.2
units.
have c o n c e n t r a t i o n s ranges
changing
have
0.26
organic]")
conditions,
of
concentration
should
of
Mg(NÛ3)2 addition
concentration waters
contain
([Cu2+]/[Cu
experimental by
unpub
concentration
log
an
M
]/[Cu-
p[Cujoj]
values
of
10"1 2 +
water
same
ionic
KNO3
([Cu
River
effect
the
by
concentration
influence
ions
a
backgound
concentration
within
copper
a value
of
to also
copper
water
units
M KNO3)
magnesium
Increasing
M to
not
be
will
of
only
River
is
binding
affect
has
10~3
the
(0.1
for
ion-selective
Newport
c o n c l u s i o n from
copper
is over
matter The
the
an
stability
usually
measurements
matter.
^
terrestrial the
complexes
organic
will and
of
At
out-
assumption
alkalinity
0.3
mM t o
copper.
c a l c i u m and
to
the
and
Neuse
concentrations
only
of
investigated
a minor
of
influence
models.
general
organic
river ing
majority
dissolved
solved
0.04
of
copper
of
(from
or
6.78
complexing
would
w h i c h may
(LCu2+]/[Cu-organic])
binding
This
0.2
a
pH
for
same
of
CUCO3 c o m p l e x
sample
from
under
and magnesium
The
only
magnesium of
the
conditional
Newport
caused
(7.7),
and magnesium
calcium on
log
7.7
buffer
units
in
strongly
strength
of
mM d e c r e a s e d
Likewise
with
organic
value
Ca(N03)2
background of
that
using
ionic
same
pH
matter ligands
Increased
filtered
by
strength
increasing values
pH
the
at
the
least
Previous
by
initial
In
the
by
of
increase
2)
alkalinity.
water
copper
and
ini
in
15a).
strength
that
sample
6.0
lished
10~2-8
but
(24).
in
of
inorganic >
compete
binding
of
At
the
5 to
increased a l k a l i n i t y
ionic
strength
(p[Alk]
assumed of
matter.
binding
by
clear
organic
(Figure
organic
the
of
[ΑΙ Κ]
increased
on
b)
increased concentrations
however,
14c). dominant
follows
to
shown,
the
dominance
binding have
is
speciation
have
cations
organic in
(Figure
ion
to
7.0
with
concentrated
because
with two
8.0
pH
copper
independent
valid
pH
increases
t
a
and
and
site
at
complex
> 10"3.2
cupric
9
alkalinities
o u r m o d e l s , we
strictly
result
most
[Alk]
15a
competition 6.78
for
the
concentration
binding
constants
and
pH
177
alkalinities.
River, all
Water
monocarbonato
free
(Figures
species for
organic
14a)
all
Neuse
ganic
in
the
species
(Figure pH
of
in River
inorganic
situ
organic
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
Copper
SUNDA AND HANSON
and
the
principal
copper
to
range
alkalinity
concentration
copper
the
predicted
occur
of
and
concentration.
in
total
values
variables
s p e c i a t i o n models copper,
is
principally pH,
encountered
disin
world
controlling organic
bind-
composition In
rivers
of
organic
c a s e s where
the
matter, toxicity
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
CHEMICAL MODELING IN AQUEOUS SYSTEMS
178 of
dissolved
activity, crease
copper
we w o u l d
with
to organisms predict
decreasing
i s determined
toxicity
dissolved
of
by f r e e
dissolved
organic
matter
copper
cupric to
ion
i n -
and d e c r e a s i n g
pH.
Acknowledgements
Lewis
The a u t h o r s wish to thank L i l l i a n A. Flanagan f o r t h e i r able assistance in the laboratory.
a n d J o Ann M. We t h a n k
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
D a v i d R. C o l b y f o r h e l p f u l d i s c u s s i o n s d u r i n g t h e p r e p a r a t i o n of t h i s paper. The r e s e a r c h on w h i c h t h i s m a n u s c r i p t i s b a s e d was s u p p o r t e d by a n i n t e r a g e n c y a g r e e m e n t b e t w e e n t h e D e p a r t m e n t o f Energy and the N a t i o n a l Marine F i s h e r i e s S e r v i c e . This manuscript i s c o n t r i b u t i o n number 7 8 - 5 3 B , S o u t h e a s t F i s h e r i e s C e n t e r , N a t i o n a l M a r i n e F i s h e r i e s S e r v i c e , NOAA, B e a u f o r t , N . C . , USA. R e f e r e n c e t o t r a d e names d o e s n o t i m p l y e n d o r s e m e n t by t h e N a t i o n a l Marine Fisheries Service,
Abstract The complexation of copper by organic and inorganic ligands was investigated in the Neuse and Newport Rivers, two North Carolina rivers that have widely different concentrations of dissolved organic carbon (3 and 15 mgC l ). Potentiometric titrations with a cupric ion electrode were used to measure complexation of copper by organic and inorganic ligands in river waters and chemically defined solutions. Stability constants for complexation of copper by OH and CO , the dominant inorganic ligands for copper in natural waters, were determined. Constants at infinite dilution for CuOH , CUCO , and Cu(CO )2-2 (10 · , 106.74, and 10 · , respectively) agree favorably with previously published values. However, our constant for Cu(OH) (10 · ) is ~ 2 orders of magnitude lower than values that have been widely used in equilibrium calculations of copper speciation in natural waters. As a result many published equilibrium models for copper appear to have overestimated the importance of the copper dihydroxo species resulting in some cases in an appreciable over-estimation of the total level of copper complexation. Copper was highly complexed by dissolved materials in Neuse and Newport river waters. A marked reduction in complexation following UV-phocoxidation of organic matter indicated that copper was bound predominantly to organic ligands. Binding characteristics of the organic matter in the two rivers was similar and a pronounced increase in binding with pH suggested complexation of copper by protonated weak acids. Scatchard plot analysis of the Cu binding data indicated the presence of at least three organic binding sites in each river whose conditional stability constants increased with increasing pH and decreasing ratio of binding site concentration per gram organic carbon. Copper speciation models were computed for the range of pH, organic matter concentration, alkalinity and total copper typically found in rivers. These -1
-
2-
3
+
6 48
3
3
10 24
11 78
2
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
8.
SUNDA AND HANSON
Copper in River Water
179
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
models predicted that the speciation of copper in the world's rivers will be dominated by complexes with natural organic ligands. Binding of copper by organic ligands should have a marked in fluence on biological and geochemical reactivity of copper in rivers, affecting important processes and phenomena such as toxicity and nutritional availability to organisms, adsorption onto surfaces, precipitation, and solid solution. Computational models for the chemical speciation of copper in natural waters that ignore organic complexation may inaccurately describe the chemistry of copper in terrestrial waters and perhaps marine waters as well. Literature Cited 1. 2. 3.
4. 5.
6.
7.
8.
9. 10.
Sunda, W.G., and Guillard, R.R.L. The relationship between cupric ion activity and the toxicity of copper to phyto plankton. J. Mar. Res. 34, 511-529 (1976). Anderson, D.M. and Morel, F.M.M. Copper sensitivity of Gonyaulax tamarensis. Limnol. Oceanog. 23, 283-295 (1978). Sunda, W.G., Engel, D.W. and Thuotte, R.M. Effect of chemi cal speciation on toxicity of cadmium to grass shrimp, Palaemonetes pugio: importance of free cadmium ion. Environ. Sci. Tech. 12, 409-413 (1978). Andrew, R.W., Biesinger, K.E. and Glass, G.E. Effects of inorganic complexing on the toxicity of copper to Daphnia magna. Water Res. 11, 309-315 (1977). Jackson, G.A. and Morgan, J . J . Trace metal-chelator inter actions and phytoplankton growth in seawater media: Theoretical analysis and comparison with reported observations. Limnol. Oceanog. 23, 268-282 (1978). Sunda, W.G., and Lewis, J.M. Effect of complexation of natural organic ligands on the toxicity of copper to a unicellular alga, Monochrysis lutheri. Limnol. Oceanogr. (in press). Bilinski, Η., Huston, R. and Stumm, W. Determination of the stability constants of some hydroxo and carbonato complexes of Pb(II), Cu(II), Cd(II) and Zn(II) in dilute solutions by anodic stripping voltammetry and differential pulse polarography. Anal. Chim. Acta 84, 157-164 (1976). Armstrong, F . A . J . , Williams, P.M. and Strickland, J.D.H. Photo-oxidation of organic matter in seawater by ultraviolet radiation, analytical and other applications. Nature 211, 481-483 (1966). Stumm, W. and Morgan, J . J . "Aquatic Chemistry," 583 p. Wiley Interscience, New York. 1970. Mantoura, R.F.C. and Riley, J.P. The use of gel filtration in the study of metal binding by humic acids and related compounds. Anal. Chim. Acta 78, 193-200 (1975).
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.
180
11. 12. 13. 14.
Downloaded by FUDAN UNIV on February 17, 2017 | http://pubs.acs.org Publication Date: March 19, 1979 | doi: 10.1021/bk-1979-0093.ch008
15. 16. 17. 18. 19.
20. 21. 22. 23. 24. 25.
CHEMICAL MODELING IN AQUEOUS SYSTEMS
Sillen, L.G. and Martell, A.E. "Stability Constants," 754 p. Special Publication No. 17, The Chemical Society of London, 1964. Sillen, L.G. and Martell, A.E. "Stability Constants," 865 p. Special Publication No. 25, The Chemical Society of London. 1971. Sunda, W.G. "Relationship Between Cupric Ion Activity and the Toxicity of Copper to Phytoplankton." Ph.D. thesis, 168 p. Mass. Inst. Tech., Cambridge. 1975. Paulson, A.J. "Potentiometric Studies of Cupric Hydroxide "Complexation." M.S. thesis, 102 p. Univ. Rh.I., Kingston, 1978. Vuceta, J. and Morgan, J . J . Hydrolysis of Cu(II). Limnol. Oceanog. 22, 742-745 (1977). Sheldon, R.W. Size separation of marine seston by membrane and glass-fiber filters. Limnol. Oceanogr. 17, 494-498 (1972). Draper, N.R. and Smith, H. "Applied Regression Analysis," 407 p. John Wiley, New York. 1966. Schnitzer, M. and Khan, S.U. "Humic Substances in the Environment." 327 p. Marcel Dekker, Inc. New York. 1972. Beck, K.C., Reuter, J.H. and Perdue, E.M. Organic and inorganic geochemistry of some coastal plain rivers of the southeastern United States. Geochim. Cosmochim. Acta 38, 341-364 (1974). Gamble, D.S. Titration curves of fulvic acid: the analytical chemistry of a weak acid polyelectrolyte. Can, J. Chem. 48, 2662-2669 (1970). Wilson, D.E. and Kinney, P.J. Effects of polymeric charge variations on the proton-metal equilibria of humic materials. Limnol Oceanog. 22, 281-289 (1977). Cheam, V. Chelation study of copper (II): fulvic acid system. Can. J. Soil Sci. 53, 377-382 (1973). Duce, R.A. and Duursma, E.K. Inputs of organic matter to the oceans. Mar. Chem. 5, 319-339 (1977). Mantoura, R.F.C., Dickson, A. and Riley, J.P. The complexation of metals with humic materials in natural waters. Est. Coast. Mar. Sci. 6, 387-408 (1978). Livingstone, D.A. Chemical composition of rivers and lakes. U.S. Geological Survey Paper 440G, 64 p.(1963).
Disclaimer: The reviews expressed and/or the products mentioned in this article represent the opinions of the author(s) only and do not necessarily represent the opinions of the National Oceanic and Atmospheric Administration. RECEIVED
November 16,
1978.
Jenne; Chemical Modeling in Aqueous Systems ACS Symposium Series; American Chemical Society: Washington, DC, 1979.