Chemical Reaction Engineering-Houston - ACS Publications

xed on one hand by the liquid kinetic energy and on the other hand by the energy used to overcome the local de- wetting forces. We consider the cataly...
0 downloads 0 Views 2MB Size
34 Modeling of a Trickle-Bed Reactor: The Hydrogenation

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch034

of 2-Butanone on a Ruthenium Catalyst A. G E R M A I N , M. C R I N E , P. M A R C H O T , and G . A . L ' H O M M E Laboratoire de Chimie Industrielle et de Génie Chimique, Université de Liège, Rue A . Stévart, 2, B-4000 Liège, Belgique

It is generally accepted now that the trickle-bed reactor operating mechanisms depend strongly on the vo­ latility of the processed liquid. When its vapor pres­ sure is very low, the chemical reaction can only occur on the irrigated catalyst particles and the reactor production increases with the catalyst wetting effici­ ency i.e. with the liquid flow rate ( L . F . R . ) . In that case the rather empirical models which have been deve­ lopped (1,2) allow the reactor design estimation or at least the correlation and extrapolation of experimental measurements. Such low volatilities are frequently met in hydrotreating heavy petroleum fractions. But when the processed liquid is volatile, the chemical reaction can occur on the non irrigated particles as on the ir­ rigated ones. Because of the comparatively weaker transfer resistance in the gaseous phase, the more ef­ ficient catalyst particles are the non irrigated ones. So it happens that the highest specific reaction rates are observed at the lowest wetting efficiency i.e. at the lowest L . F . R . T h a t paradoxical behaviour appeared during various experimental investigations a b o u t the operation of trickle-bed reactors with test chemical r e a c t i o n s (3_,£, 5_, 6_,7J · these s t u d i e s , the produc­ t i o n i n c r e a s e a t l o w L.F.R. i s e x p l a i n e d b y t h e a p p e a ­ rance o f d r y c a t a l y s t p a r t i c l e s on which t h e r e a c t i o n r a t e c a n be f a s t e r , f o r t h e d i f f u s i o n i n s i d e t h e i r p o ­ res i s e a s i e r . Y e t , t i l l now, a q u a n t i t a t i v e t r e a t m e n t o f t h e s e phenomena i s l a c k i n g . I n a d d i t i o n , s e v e r a l o b s e r v a t i o n s remain c o m p l e t e l y u n e x p l a i n e d : d r y zones f o r m a t i o n even w i t h p r e w e t t e d beds, s t a t i o n n a r y o p e r a t i o n slow s e t t l i n g , h y s t e r e s i s . . . T h a t i s t h e r e a s o n why we h a v e c h o s e n t o i n v e s t i g a t e t h e hydrogénation o f 2 - b u t a n o n e i n t o 2 - b u t a n o l on a r u t h e n i u m s u p p o r t e d c a t a l y s t . I n ­ deed t h i s c h e m i c a l r e a c t i o n c a n be s t u d i e d o v e r a l a r g e I

©

n

0-8412-0401-2/78/47-065-411$05.00/0

In Chemical Reaction Engineering—Houston; Weekman, V., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

CHEMICAL REACTION

412

ENGINEERING—HOUSTON

range o f t e m p e r a t u r e u s i n g a ketone aqueous s o l u t i o n which enables t omodify s t r o n g l y the r e a c t a n t v o l a t i l i ­ ty.

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch034

Experimental

Set-up

A s i m p l i f i e d diagram o f the experimental apparatus i s g i v e n o n F i g u r e 1. I t c o n s i s t s o f a j a c k e t e d r e a c t o r t h r o u g h which hydrogen and t h e k e t o n e aqueous s o l u t i o n f l o w c o c u r r e n t l y down. The r e a c t o r i s p r o v i d e d w i t h a n a x i a l t h e r m o c o u p l e w e l l and a s l i d i n g t h e r m o c o u p l e , and w i t h s a m p l i n g v a l v e s a l l o w i n g t h e i n l e t and o u t l e t f l o w s a n a l y s i s . A n i n e r t b e d , r e a l i z e d w i t h a l u m i n a pel­ l e t s s i m i l a r t o the c a t a l y s t p e l l e t s , ensures the pre­ h e a t i n g and a good d i s t r i b u t i o n o f t h e l i q u i d . S i x s m a l l 1 / 1 6 p i p e s p r o v i d e a good l i q u i d s p r e a d i n g a t the t o p o f t h e c o l u m n . The e s s e n t i a l r e a t o r f e a t u r e s a n d the e x p e r i m e n t a l c o n d i t i o n s v a r i a t i o n range a r e g i v e n i n T a b l e 1. A l l t h e e x p e r i m e n t s w e r e r e a l i z e d o n a com­ p l e t e l y p r e w e t t e d b e d o b t a i n e d b y f l o o d i n g . So i t i s p o s s i b l e t o r e c o r d w e l l r e p r o d u c i b l e measurements, w i t h o u t any h y s t e r e s i s e f f e c t . An o p e r a t i n g s t a t i o n n a r y s t a t e i s reached d u r i n g t h e hour which f o l l o w s t h e s e t t l i n g o f t h e f l o w r a t e s and o f t h e h e a t i n g f l u i d t e m p e r a t u r e . F u r t h e r d e t a i l s a r e g i v e n by Germain ( 8 J . M

Table I. EXPERIMENTAL

VARIABLES

a. BED PARAMETERS DIAMETER, m

0.040

HEIGHT OF LOWER ALUMINA LAYER, m

0.114

HEIGHT OF UPPER ALUMINA LAYER, m

0.086

HEIGHT OF CATALYST LAYER, m

0.250

WEIGHT OF CATALYST LAYER, kg

0.280

b

*

CATALYST

(0,5% Ru on γ - Α Ι ^ ) COATED CYLINDER

BULK FORM BULK DIMENSIONS, HEIGHT, mm DIAMETER, mm PELLET APPARENT DENSITY, kg.m"*3 PELLET POROSITY, % c.

3.2 3.2 1470 54

RANGE OF VARIABLES

TOTAL PRESSURE TEMPERATURE, Κ LIQUID SUPERFICIAL MASS FLOW RATE, k g . m " 2 . s _ 1 (L.F.R.) GAS SUPERFICIAL MASS FLOW RATE, k g . m " " 2 . s _ 1 2-BUTAN0NE CONCENTRATION, mol.ra" 3

atmospheric 269

- 326

0.135 - 1 . 1 3 2.5 10~* - 7.7 10 0.245 - 0.893

In Chemical Reaction Engineering—Houston; Weekman, V., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch034

GERMAIN ET AL.

Figure 1.

2-Butanone Hydrogénation

on Ruthenium Catalyst

Butanone hydrogénation in trickle-bed reactor

In Chemical Reaction Engineering—Houston; Weekman, V., et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 1978.

CHEMICAL REACTION

414

Downloaded by UNIV OF MICHIGAN ANN ARBOR on February 18, 2015 | http://pubs.acs.org Publication Date: June 1, 1978 | doi: 10.1021/bk-1978-0065.ch034

Experimental

ENGINEERING—HOUSTON

Result

We h a v e d e t e r m i n e d t h e i n t r i n s i c r e a c t i o n r a t e e q u a t i o n f o r t h e hydrogénation o f t h e 2 - b u t a n o n e i n t o the 2 - b u t a n o l on R U - A I 2 O 3 i n a p r e l i m i n a r y k i n e t i c i n ­ v e s t i g a t i o n using a p e r f e c t l y agitated s l u r r y reactor. A f t e r some c o r r e c t i o n s due t o a p a r t i a l d i f f u s i o n a l r e ­ sistance a t the l i q u i d - s o l i d i n t e r f a c e , this equation takes t h e form : r

5

= 3.27 1 0 ~ e x p [ 5 3 6 7 . 9 ( 1 / 3 1 3 - 1 / T ) ] . C . p ° ' R

5

[ l ]

H

C o n t r a r y t o w h a t we o b s e r v e d f o r t h e hydrogénation of α - m e t h y l s t y r e n e on Pd-Al203 i n a c o u n t e r c u r r e n t tri­ c k l e - b e d r e a c t o r (_4) , t h e t e m p e r a t u r e c o n t r o l a p p e a r s very easy i n t h e p r e s e n t i n v e s t i g a t i o n . I f the l i q u i d and t h e g a s a r e p r e h e a t e d , t h e j a c k e t h e a t t r a n s f e r i s s u f f i c i e n t t o ensure the i s o t h e r m i c i t y of the c a t a l y t i c bed. Hot s p o t s o r d r y c a t a l y s t p a r t i c l e s a r e n o t o b s e r ­ ved, c o r r o b o r a t i n g t h e assumption t h a t t h e h o t spot for­ m a t i o n i s r e l a t e d t o t h e d r y i n g o f some c a t a l y s t p a r t i ­ cles. As shown on F i g u r e s 2 a n d 3, t h e L.F.R. a p p e a r s t o be a v e r y i m p o r t a n t p a r a m e t e r i n t h e o p e r a t i o n o f t h i s t r i c k l e - b e d r e a c t o r ; however i t s i n f l u e n c e on t h e r e a c ­ t o r p r o d u c t i o n depends on t h e c a t a l y t i c bed t e m p e r a t u r e . A t l o w t e m p e r a t u r e (T