7 Multiplicity, Stability, and Sensitivity of States in Chemically Reacting Systems— A Review
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
R O G E R A. SCHMITZ Department of Chemical Engineering, University of Illinois, Urbana, Champaign, Ill. 61801
Attention
to the topics
of multiplicity,
tivity of states in chemical stemmed
principally
Amundson, studies
from
and Aris in the
through
publications 1950's.
primarily
thermic
reaction.
with
problems
More recently,
borne
out some of the theory,
models
used in mathematical
careful
experimental of
application,
electrochemistry, problems subject
tests.
and area.
This
review
and
in
exo-
research
has
distributed
literature
biology,
considerably the
to
in
other
combustion
and
introducing
surveys
nature,
a single
have not been put
A parallel
emphasis
has
Heerden,
but most of the work
sensi-
subsequent
theoretical
experimental
including
topics with particular
and particles
Van
involving
has developed, broadening
by
These
the 1960's were mainly
dealing
fields
stability
reactors and catalyst
the
a variety scope
literature
on the chemical
of on
of this
these
engineering
literature.
h e essential topics of this r e v i e w are t h e m u l t i p l i c i t y ( o r u n i q u e A
ness)
of steady
states
of o p e n
chemically
reacting
systems, t h e
s t a b i l i t y of states to s m a l l a n d large p e r t u r b a t i o n s , a n d t h e s e n s i t i v i t y of t h e m to p a r a m e t e r or i n p u t changes.
T h e topics h a v e t h e i r p r i n c i p a l
a p p l i c a t i o n i n t h e d e s i g n , s t a r t u p , a n d c o n t r o l of t h e v a r i o u s types o f c o n t i n u o u s - f l o w c h e m i c a l reactors e n c o u n t e r e d i n t h e c h e m i c a l a n d p e t r o l e u m i n d u s t r i e s . O t h e r areas of a p p l i c a t i o n , i n c l u d i n g c o m b u s t i o n , b i o l o g y , a n d e l e c t r o c h e m i s t r y , c e r t a i n l y are n o t n e w ; i n fact, some of t h e m h a v e earlier roots t h a n d o reactor a p p l i c a t i o n s i n t h e p u b l i s h e d l i t e r a t u r e . 156 In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
scHMiTZ
Multiplicity,
Stability,
and
157
Sensitivity
C o m m o n usage of t h e w o r d s m u l t i p l i c i t y , s t a b i l i t y , a n d sensitivity i n the l i t e r a t u r e a n d t h r o u g h o u t this p a p e r is a c c o r d i n g to t h e f o l l o w i n g definitions.
T h e m u l t i p l i c i t y o f steady states is t h e n u m b e r of different
sets of state v a r i a b l e s at w h i c h t h e t i m e rate of c h a n g e
of a l l state
v a r i a b l e s is i d e n t i c a l l y zero f o r a fixed set of c o n d i t i o n s or parameters. G a v a l a s ( 1 ) has s h o w n that o n e s h o u l d expect t h e m u l t i p l i c i t y to b e a n o d d n u m b e r f o r r e a c t i n g systems p r o v i d i n g t h e c h e m i c a l k i n e t i c expressions satisfy some r a t h e r l i b e r a l restrictions. T h e s e states are d e s c r i b e d b y t h e w o r d steady o n l y to s i g n i f y t h a t t h e t i m e rate o f c h a n g e of state v a r i a b l e s at s u c h states is z e r o — n o t to s i g n i f y s t a b i l i t y . A steady state is Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
stable i f p e r t u r b a t i o n s w i t h i n a n a r b i t r a r i l y s m a l l n e i g h b o r h o o d s u r r o u n d i n g t h e state d i e a w a y to zero.
I f e v e n t h e smallest s u c h p e r t u r b a t i o n s
g r o w , t h e steady state is u n s t a b l e . I n k e e p i n g w i t h t h e u s u a l v e r n a c u l a r , s t a b i l i t y so defined s h o u l d p r o p e r l y b e t e r m e d l o c a l a s y m p t o t i c s t a b i l i t y , to d i s t i n g u i s h i t f r o m other types s u c h as g l o b a l s t a b i l i t y , w h i c h i m p l i e s s t a b i l i t y to a n a r b i t r a r i l y l a r g e d i s t u r b a n c e . S e n s i t i v i t y is s o m e w h a t less p r e c i s e l y defined. I t describes a g e n e r a l s i t u a t i o n i n w h i c h s m a l l p e r m a nent changes i n a p a r a m e t e r h a v e a large effect o n the steady state. S e n s i tivity m a y or m a y not be connected
w i t h steady-state m u l t i p l i c i t y a n d
instabilities. T h e i n t e n t i n this r e v i e w is to p o r t r a y as m u c h as possible t h e m a n y p h y s i c o c h e m i c a l situations a n d t h e v a r i e t y of i n t r i g u i n g b e h a v i o r a l c h a r acteristics w h i c h h a v e b e e n d e s c r i b e d i n t h e l i t e r a t u r e . T h e m a j o r t h r u s t is t o w a r d c h e m i c a l reactor a p p l i c a t i o n s , b u t a final section o n other a p p l i cations is i n c l u d e d . M o s t of the papers o n c h e m i c a l reactors h a v e f o c u s e d either o n t h e c o n t i n u o u s - f l o w , w e l l - s t i r r e d reactor ( C S T R ) , o n a single catalyst p a r t i c l e , or o n t u b u l a r or
fixed-bed
reactors.
P a p e r s of a v e r y
g e n e r a l n a t u r e h a v e b e e n rare. A c c o r d i n g l y , separate sections a r e d e v o t e d to e a c h of these three subjects. T h e f o u r t h section contains a m o r e g e n e r a l d i s c u s s i o n o f t h e effects o f m i x i n g a n d m a t h e m a t i c a l m o d e l i n g .
A n at-
t e m p t is m a d e at a p p r o p r i a t e places to p u t t h e papers to b e p r e s e n t e d i n S e s s i o n V I I of t h e s y m p o s i u m v o l u m e
(ADVANCES I N CHEMISTRY
SERIES
N o . 133 ) i n p e r s p e c t i v e . R e v i e w papers f r o m p r e v i o u s s y m p o s i a , p a r t i c u l a r l y t h e one b y R a y (2),
fill
some o f t h e gaps i n t h e present r e v i e w .
I n addition, books
d e v o t e d to this subject b y G a v a l a s ( J ) a n d P e r l m u t t e r ( 3 ) a n d a v o l u m e edited b y Oppelt a n d W i c k e
(4)
are g o o d g e n e r a l references.
Two
a d d i t i o n a l books b y A r i s ( 5 ) a n d D e n n ( 6 ) , b o t h o f w h i c h e m p h a s i z e these topics, w i l l soon b e a v a i l a b l e . A s a n estimate, t h e n u m b e r o f l i t e r a t u r e references
to papers o n
m u l t i p l i c i t y a n d s t a b i l i t y i n c h e m i c a l reactors c o n t a i n e d i n this r e v i e w a m o u n t s to a b o u t 4 0 % o f those p u b l i s h e d i n this area of a p p l i c a t i o n t h r o u g h t h e past t w o decades.
T h e percentage
c i t e d i n o t h e r areas o f
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
158
CHEMICAL
a p p l i c a t i o n is m u c h smaller.
REACTION ENGINEERING REVIEWS
Certainly, some important contributions,
p a r t i c u l a r l y those i n t h e R u s s i a n l i t e r a t u r e , are m i s s e d i n this r e v i e w . The
CSTR I n a d d i t i o n to its p r a c t i c a l r o l e as a n i m p o r t a n t a n d c o m m o n t y p e of
i n d u s t r i a l reactor, the C S T R , or m o r e generally, the i d e a l l y m i x e d o p e n r e a c t i n g system, has b e e n the cornerstone for this area of research.
The
necessary m a t h e m a t i c a l theorems a n d methods of analysis are s t a n d a r d ; l a b o r a t o r y studies are r e l a t i v e l y s i m p l e to c o n d u c t , a n d the results are
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
easily i n t e r p r e t e d .
Consequently, our knowledge
a n d u n d e r s t a n d i n g of
C S T R b e h a v i o r p r o b a b l y set the u p p e r b o u n d o n o u r c a p a b i l i t i e s for e x p l o r i n g a n d u n d e r s t a n d i n g the b e h a v i o r of other o p e n r e a c t i n g systems a n d suggest the questions one n o r m a l l y poses w h e n i n v e s t i g a t i n g m o r e c o m p l e x d i s t r i b u t e d r e a c t i o n models.
[I a m a d h e r i n g to the u s u a l c o n -
v e n t i o n a n d j a r g o n a c c o r d i n g to w h i c h " d i s t r i b u t e d m o d e l s " is t a k e n to m e a n those w h i c h account for s p a t i a l variations of one or m o r e of the d e p e n d e n t v a r i a b l e s — a s i n most models of p o r o u s catalyst p a r t i c l e s a n d t u b u l a r reactors.
I n " l u m p e d m o d e l s , " s u c h as the C S T R p r o b l e m ,
s p a t i a l d e p e n d e n c e is c o n s i d e r e d . ]
I n fact, i t is t e m p t i n g to
no
conjecture
that the q u a l i t a t i v e features of the b e h a v i o r of d i s t r i b u t e d systems m a y a l l b e easily e x p e c t e d b y a n a l o g y to C S T R b e h a v i o r , the l u r e b a s i c a l l y b e i n g the fact that the m a t h e m a t i c a l d e s c r i p t i o n for most d i s t r i b u t e d m o d e l s reduces to that of a C S T R as d i s p e r s i o n parameters b e c o m e large. findings
Those
that d i s p r o v e this conjecture are of the greatest interest i n studies
of d i s t r i b u t e d systems a n d u s u a l l y c a n be t e r m e d s u r p r i s i n g .
Therefore,
a n y n e w c o m e r to this field is a d v i s e d to a c q u a i n t h i m s e l f f u l l y w i t h the status of k n o w l e d g e r e g a r d i n g C S T R b e h a v i o r before e m b a r k i n g o n n e w problems. The Classic Theoretical Problem of a Single Exothermic Reaction. T h e classic C S T R p r o b l e m , i n t r o d u c e d i n papers b y V a n H e e r d e n B i l o u s a n d A m u n d s o n ( 9 ) , a n d A r i s a n d A m u n d s o n (10)
{7,8),
involves a single
homogeneous exothermic reaction occurring i n a well-stirred, continuo u s l y - f e d reactor.
[ T h e p a p e r b y V a n H e e r d e n i n 1953 was n o t a c t u a l l y
the first to treat m u l t i p l i c i t y a n d instabilities i n c h e m i c a l reactors, b u t no p a p e r before i t h a d m a d e a significant i m p a c t b y 1953. L i l j e n r o t h (11)
a n d W a g n e r (12)
Publications by
are a m o n g those w h i c h p r e c e d e d it.]
T h e facts that ( 1 ) so s i m p l e a system c a n e x h i b i t m u l t i p l e steady states, u n s t a b l e states , a n d sustained o s c i l l a t o r y outputs a n d that ( 2 )
the m e t h -
ods of L i a p u n o v a n d Poincaré are w e l l - s u i t e d for i n v e s t i g a t i n g the s t a b i l i t y a n d transient characteristics of s u c h processes w e r e b r o u g h t out i n characteristics w e r e
studied i n
n u m e r o u s subsequent t h e o r e t i c a l papers c o v e r i n g most of the
these
early publications.
These
same
conceivable
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
scHMiTZ
Multiplicity,
Stability,
and
159
Sensitivity
variations of t h e classic p r o b l e m a n d g i v i n g rise t o a l e n g t h y l i t e r a t u r e c u l m i n a t i n g i n recent p u b l i c a t i o n s b y P o o r e (13) Poore
and Uppal, Ray, and
(14).
For
first-order
A r r h e n i u s k i n e t i c s , t h e m a t e r i a l a n d e n e r g y balances
for t h e classic p r o b l e m take t h e dimensionless f o r m of E q u a t i o n s 1 a n d 2. dci = 1 — ci — Da et exp ΊΓθ
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
L ^
= 1 -
U + j8 Da c, exp
(D
-
(l
j^J -
Ο
a(U -
(2)
[ I n t h e equations p r e s e n t e d t h r o u g h o u t this p a p e r , I h a v e i n c o r p o r a t e d first-order
A r r h e n i u s k i n e t i c s w i t h a single c h e m i c a l r e a c t i o n f o r purposes
of d i s c u s s i o n a n d i l l u s t r a t i o n .
T h e vast m a j o r i t y of t h e o r e t i c a l m o d e l s
h a v e u s e d this f o r m ; other k i n e t i c descriptions r e q u i r e o b v i o u s a n d straightforward modifications.] T h e s e equations are expressed i n terms of six p a r a m e t e r groups L, Da, γ, — Stable States — Unstable States • · · Stable Limit Cycles xxx Unstable Limit Cycles
ïïa
fflb
ι (e)
(d) A
C
F
Β
A
A
C J ETb
G
A
B
X
(f)
A "ïïl Va (g)
DIB
y ? A Damkohler
(h)
B
A
Number Chemical Engineering Science
Figure 1. Steady-state and stability results for different regions in parameter space for a CSTR with first-order Arrhenius kinetics; L , γ, and t are fixed (14) a
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
160
CHEMICAL
Conversion
REACTION ENGINEERING REVIEWS
— • Chemical Engineering Science
Figure 2. Classes of phase plots for the different cases indicated in Figure 1. The symbol u designates unstable steady states; s, stable steady states; sic, stable limit cycles; and ulc, unstable limit cycles (14). β, a, a n d f a
P o o r e (13)
a n d U p p a l et al
(14)
e s t a b l i s h e d regions i n t h e
β, 1 + a p a r a m e t e r p l a n e ( f o r fixed values of L , y, a n d t ) &
as s h o w n i n
t h e center p o r t i o n of F i g u r e 1 b y o b t a i n i n g c o n d i t i o n s for the m u l t i p l i c i t y of steady-state solutions, for t h e i r s t a b i l i t y a n d for the existence, a n d s t a b i l i t y of p e r i o d i c orbits ( s u s t a i n e d o s i c i l l a t o r y s t a t e s — l i m i t c y c l e s ) . A l l of this i n f o r m a t i o n is s u m m a r i z e d i n F i g u r e 1, w h i c h is i n t e n d e d to s h o w o n l y q u a l i t a t i v e features.
[ I n c o p y i n g figures f r o m the l i t e r a t u r e , I
h a v e c h a n g e d n o t a t i o n a n d l a b e l i n g f r o m that i n the o r i g i n a l reference to b e consistent w i t h t h e d i s c u s s i o n a n d s y m b o l s t h r o u g h o u t this r e v i e w . ] T h e sketches of steady-state c o n v e r s i o n vs. D a m k o h l e r n u m b e r , w h i c h s u r r o u n d the c e n t r a l figure, t y p i f y t h e b e h a v i o r w i t h i n the v a r i o u s r e g i o n s — I , I I , I l i a , I l l b , etc.
T h e curves b i f u r c a t i n g f r o m the s o l i d a n d
d a s h e d p o r t i o n s of the steady-state curves i n d i c a t e the a m p l i t u d e s of l i m i t cycles; those m a r k e d b y dots r e p r e s e n t stable orbits a n d those b y t h e s y m b o l X , u n s t a b l e ones. N i n e different sections of the steady state curves, e a c h d i s t i n g u i s h e d f r o m a n y of the others b y the m u l t i p l i c i t y a n d s t a b i l i t y of steady states a n d the existence of one or m o r e l i m i t cycles, c a n b e i d e n t i f i e d . T h e s e sections are d e s i g n a t e d A , B , . . . , H , a n d J o n o n t h e abcissas of the steady-state plots i n F i g u r e 1. F o r e a c h of these sections there is a c h a r a c t e r i s t i c phase p o r t r a i t i n the c o n v e r s i o n - t e m -
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
scHMiTz
Multiplicity,
Stability,
and
161
Sensitivity
p e r a t u r e p l a n e . Sketches of these are s h o w n i n F i g u r e 2. If, for e x a m p l e , the p a r a m e t e r s β a n d a ( a g a i n for fixed values of other p a r a m e t e r groups ) c o r r e s p o n d e d to a p o i n t i n r e g i o n H l b of the c e n t r a l s k e t c h i n F i g u r e 1, the b e h a v i o r a l features of t h a t reactor are c h a r a c t e r i z e d b y the s k e t c h i n F i g u r e I d . P h a s e p o r t r a i t s of t y p e A , B , C , a n d F are p o s s i b l e , d e p e n d i n g o n the p a r t i c u l a r v a l u e of the D a m k o h l e r n u m b e r .
A s the D a m k o h l e r
n u m b e r is decreased f r o m l a r g e values, the b r a n c h of h i g h c o n v e r s i o n states is stable t h r o u g h section A a n d bifurcates to a l i m i t c y c l e i n section B.
T h e l i m i t c y c l e persists t h r o u g h section F , e v e n t h o u g h t w o other
states—one
a stable l o w - c o n v e r s i o n state, the other a s a d d l e
point—
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
e m e r g e i n the pase p l a n e . F i n a l l y , the l i m i t c y c l e d i s a p p e a r s as i t i n t e r feres w i t h séparatrices i n t h e phase p l a n e ( a t t h e r i g h t e n d of section C ) , a n d e v e n t u a l l y o n l y l o w c o n v e r s i o n states at l o w values of Da are possible. A sufficient c o n d i t i o n for u n i q u e n e s s of a steady state is that the p o i n t c o r r e s p o n d i n g to g i v e n values of β a n d a l i e b e l o w C u r v e M i n the c e n t r a l s k e t c h of F i g u r e 1. A l l steady states for a n y p o i n t b e l o w C u r v e M satisfy the s o - c a l l e d slope c o n d i t i o n for s t a b i l i t y or static c o n d i t i o n , as i t w a s t e r m e d b y G i l l e s a n d H o f m a n n (15).
( T h i s is the c o n d i t i o n that the d e
t e r m i n a n t of the coefficient m a t r i x i n l i n e a r i z e d transient equations
be
p o s i t i v e or that the slope of the heat r e m o v a l c u r v e e x c e e d t h a t of the heat g e n e r a t i o n c u r v e at the steady state.)
F o r any point above C u r v e M ,
m u l t i p l e states w i l l exist over some r a n g e of Da.
S t a b i l i t y of a l l steady
states c a n be assured i f a n d o n l y i f the p o i n t i n the β, 1 - f « p l a n e lies b e l o w b o t h C u r v e s M a n d S—i.e., i n R e g i o n I. I n fact, i t c a n b e s h o w n that steady states for s u c h cases are g l o b a l l y stable. A l l steady states for p o i n t s b e l o w C u r v e S satisfy the c o n d i t i o n t h a t the trace of the coefficient m a t r i x be n e g a t i v e — c a l l e d the d y n a m i c c o n d i t i o n b y G i l l e s a n d H o f m a n n (15).
I t c a n b e s h o w n that o n l y R e g i o n s I a n d I I are accessible i n the
s p e c i a l case of a n a d i a b a t i c r e a c t o r (i.e., a =
0).
It is not feasible to elaborate here o n the a b u n d a n t a d d i t i o n a l i n f o r m a t i o n c o n t a i n e d i n F i g u r e s 1 a n d 2. T h e p a p e r b y U p p a l et al. contains a m u c h m o r e extensive d i s c u s s i o n of reactor b e h a v i o r for the different cases a n d of the methods of c o n s t r u c t i o n of F i g u r e 1. It also i n c l u d e s n u m e r i c a l examples a n d s i m u l a t i o n s to a d d q u a n t i t a t i v e
fidelity
to the
sketches
s h o w n here. T h e w o r k of P o o r e a n d U p p a l et al. m a i n l y serves to tie together a l l of the p r i o r f r a g m e n t a r y i n f o r m a t i o n r e p o r t e d o n this classic p r o b l e m . M o s t of t h e separate features w h i c h t h e y d e s c r i b e h a v e b e e n s t u d i e d . T h e w o r k of V a n H e e r d e n (7,8)
m a d e i t c l e a r that e i t h e r one or t h r e e
steady states exist, d e p e n d i n g o n p a r a m e t e r v a l u e s , a n d t h a t t h e i n t e r m e d i a t e states are unstable. S u b s e q u e n t studies (10,15,16)
demonstrated
t h a t states other t h a n t h e i n t e r m e d i a t e state c o u l d b e u n s t a b l e i n n o n a d i a b a t i c systems, a n d the phase d i a g r a m s of A r i s a n d A m u n d s o n ( J O )
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
162
CHEMICAL
REACTION ENGINEERING REVIEWS
s h o w e d that b o t h stable a n d u n s t a b l e l i m i t cycles m i g h t b e
expected.
S c h m i t z a n d A m u n d s o n ( 16) s h o w e d that a l l three steady states c o u l d be u n s t a b l e , b u t the f o l l o w i n g facts e s t a b l i s h e d b y U p p a l et al. a p p a r e n t l y h a v e not b e e n expressed i n p r e v i o u s studies of C S T R b e h a v i o r a n d w e r e not g e n e r a l l y a p p r e c i a t e d b y w o r k e r s i n this area.
(1)
F o r parameter
values c o r r e s p o n d i n g to p o i n t s a b o v e C u r v e S i n F i g u r e 1, except for those i n R e g i o n l i b , l i m i t cycles w i l l a l w a y s exist o v e r some r a n g e of values of the D a m k o h l e r n u m b e r ; ( 2 )
the s t a b i l i t y of the l i m i t cycles
near the p o i n t of b i f u r c a t i o n c a n be d e t e r m i n e d b y a n a l g e b r a i c c r i t e r i o n ; ( 3 ) l i m i t cycles m a y d i s a p p e a r as the D a m k o h l e r n u m b e r is c h a n g e d b y
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
(a)
s h r i n k i n g to zero a m p l i t u d e (as, for e x a m p l e , i n m o v i n g a l o n g the
steady-state c u r v e f r o m S e c t i o n Β to Section A i n F i g u r e s I d , l e , If, l i , a n d l h as stable l i m i t cycles s h r i n k to a stable state, or i n m o v i n g f r o m S e c t i o n H to S e c t i o n C i n F i g u r e l c as u n s t a b l e l i m i t cycles s h r i n k to a n u n s t a b l e steady s t a t e ) , ( b ) coalescence of stable a n d u n s t a b l e l i m i t cycles ( as i n m o v i n g f r o m R e g i o n D to R e g i o n A i n F i g u r e s I f a n d l g — g e n e r a l l y r e f e r r e d to as " h a r d " b i f u r c a t i o n s ) , a n d ( c )
interference of a l i m i t c y c l e
w i t h a separatrix (as i n m o v i n g f r o m section H to section Ε i n F i g u r e l c ) . A t least t w o other papers (17,18)
h a v e p r e s e n t e d a n extensive a n a l y
sis of this classic C S T R p r o b l e m i n p a r a m e t e r space.
N e i t h e r is as ex
h a u s t i v e ( p a r t i c u l a r l y i n the treatment of the a p p e a r a n c e a n d d i s a p p e a r a n c e of p e r i o d i c orbits ) as the p u b l i c a t i o n b y U p p a l et al. O t h m e r ( 19 ) r e c e n t l y p r e s e n t e d a s i m i l a r analysis of a s i m p l i f i e d k i n e t i c m o d e l of the i s o t h e r m a l B e l o u s o v - Z h a b o t i n s k i i r e a c t i o n — a n a u t o c a t a l y t i c system i n w h i c h m a l o n i c a c i d is o x i d i z e d i s o t h e r m a l l y b y b r o m a t e i n the presence of a m e t a l i o n .
( Other works w h i c h focused on this fascinating reaction
are c i t e d later. ) A l s o , the d i a g r a m s a n d analyses s i m i l a r to those u s e d b y U p p a l et al. c a n easily b e c o n s t r u c t e d for other t w o - v a r i a b l e p r o b l e m s . W i t h q u i t e different k i n e t i c expressions, n e w q u a l i t a t i v e features
could
b e i n t r o d u c e d . F o r e x a m p l e , U p p a l et al. m e n t i o n e d the p o s s i b i l i t y of a greater n u m b e r of l i m i t cycles existing f o r a g i v e n set of parameters, b u t t h e y f o u n d no e v i d e n c e of these i n t h e i r c o m p u t a t i o n s A r r h e n i u s k i n e t i c s . O t h m e r (19)
for
first-order
p r e d i c t e d the a p p e a r a n c e of three l i m i t
cycles i n a p h a s e p l a n e , t w o of w h i c h w e r e u n s t a b l e orbits a r o u n d stable steady states a n d the t h i r d a stable o r b i t s u r r o u n d i n g a l l three
steady
states. N o s i m u l a t i o n s for s u c h a case w e r e g i v e n . T h e exact c o n s t r u c t i o n of the phase d i a g r a m s s h o w n i n F i g u r e 2 a n d the q u a n t i t a t i v e d e t e r m i n a t i o n of the a m p l i t u d e s of l i m i t cycles ( i n d i c a t e d s c h e m a t i c a l l y b y the dots a n d X ' s i n F i g u r e 1)
still r e q u i r e d i g i t a l or
a n a l o g c o m p u t e r solutions of the n o n l i n e a r E q u a t i o n s 1 a n d 2. A p p l i c a tions of the d i r e c t m e t h o d of L i a p u n o v to establish regions of a s y m p t o t i c s t a b i l i t y i n the phase p l a n e h a v e consistently r e s u l t e d i n v e r y conservative estimates, as w e l l i l l u s t r a t e d i n a recent p a p e r b y S h a s t r y a n d F a n
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
(20).
7.
Multiplicity,
scHMiTZ
Stability,
and
163
Sensitivity
O t h e r references to s u c h studies a n d a d e s c r i p t i o n of m e t h o d s of
con
structing L i a p u n o v functions m a y be found i n the book b y Perlmutter (3).
M e t h o d s of o b t a i n i n g the exact regions of a s y m p t o t i c s t a b i l i t y b y
c o m p u t i n g that separatrix ( b y b a c k w a r d n u m e r i c a l i n t e g r a t i o n ) i n the p h a s e p l a n e w h i c h passes t h r o u g h the s a d d l e p o i n t h a v e b e e n d e s c r i b e d (10,15)
a n d are r e l a t i v e l y easy to a p p l y .
A n u m b e r of papers h a v e b e e n d e v o t e d to m e t h o d s of a p p r o x i m a t i n g the l i m i t cycles i n the phase p l a n e (see, H e b e r l i n g et al. (21)
for e x a m p l e , R e f s . 21, 22,
23).
c o m p a r e d the v a r i o u s a p p r o x i m a t e solutions w i t h
those generated b y n u m e r i c a l s o l u t i o n , i n c l u d i n g u n s t a b l e l i m i t cycles Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
w h i c h w e r e r e n d e r e d stable b y r e v e r s i n g the d i r e c t i o n of t i m e i n the n u m e r i c a l i n t e g r a t i o n . M u c h of the w o r k o n the c o m p u t a t i o n of l i m i t cycles has b e e n m o t i v a t e d b y the f a c t [first p o i n t e d out b y D o u g l a s a n d R i p p i n (24)~\ that the t i m e - a v e r a g e p e r f o r m a n c e g i v e n b y a n o s c i l l a t o r y o u t p u t m a y be better t h a n that of the steady state a b o u t w h i c h t h e o u t p u t oscillates. T a k i n g a l l experiences into account, most researchers i n this field
w o u l d p r o b a b l y r e c o m m e n d s t r a i g h t f o r w a r d n u m e r i c a l or a n a l o g
s i m u l a t i o n s u s i n g the n o n l i n e a r system equations to s t u d y the l a r g e scale transient effects for a g i v e n s i t u a t i o n . [ T h e p e r i o d i c o p e r a t i o n of c h e m i c a l reactors caused b y the d e l i b e r a t e m a n i p u l a t i o n ( c y c l i n g )
of one or
m o r e parameters to i m p r o v e reactor p e r f o r m a n c e is not w i t h i n the scope of this r e v i e w .
A recent r e v i e w b y B a i l e y
(25)
covers this
subject
extensively.] Further Theoretical Work. A m o n g v a r i a t i o n s of or departures f r o m the classic p r o b l e m h a v e b e e n t h e o r e t i c a l studies of systems i n v o l v i n g m o r e t h a n one phase, m o r e t h a n one r e a c t i o n , reactors i n series, a n d others. G e n e r a l l y the features s t u d i e d i n these w o r k s are s i m i l a r to those d e s c r i b e d a b o v e , b u t w h e n the c o m p l e x i t y of the system equations is i n c r e a s e d ( p a r t i c u l a r l y as a result of a n increase i n the o r d e r of t h e sys tem—i.e., i n the n u m b e r of d e p e n d e n t v a r i a b l e s ) , the m u l t i p l i c i t y steady states is often i n c r e a s e d .
S c h m i t z a n d A m u n d s o n (16)
of
showed,
for e x a m p l e , that a single e x o t h e r m i c r e a c t i o n m a y g i v e rise to as m a n y as n i n e steady states w h e n i t occurs i n b o t h phases of a system w i t h t w o fluid phases a n d w i t h transfer resistances b e t w e e n the phases. I n a s i m i l a r situation involving multiphase polymerization, Goldstein and A m u n d s o n (26)
e n c o u n t e r e d as m a n y as 25 different steady states.
( I n connection
w i t h m u l t i p h a s e C S T R systems, there h a v e b e e n a f e w t h e o r e t i c a l studies of steady-state m u l t i p l i c i t y a n d s t a b i l i t y i n t w o - p h a s e p h a s e (28)
m o d e l s of
fluidized-bed
(27)
and three-
reactors w i t h the dense p h a s e p e r
f e c t l y m i x e d a n d of a p e r f e c t l y m i x e d s p r a y reactor ( 2 9 ) , a l l for exo t h e r m i c processes. ) A systematic analysis of t w o s e q u e n t i a l reactions A —» Β - » C , b o t h e x o t h e r m i c , i n a single-phase C S T R has b e e n r e p o r t e d b y H l a v a c e k , K u b i -
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
164
CHEMICAL
REACTION ENGINEERING REVIEWS
cek, a n d V i s n a k ( 3 0 ) ; they s h o w e d that five steady states are p o s s i b l e , as are s u s t a i n e d o s c i l l a t o r y outputs for a n o n a d i a b a t i c s i t u a t i o n .
The
s t r u c t u r e of the t h r e e - d i m e n s i o n a l phase space for this system w a s c a l c u l a t e d b y Sabo a n d D r a n o f f (31),
w h o s e w o r k also i n c l u d e d the e s t i m a t i o n
of regions of a s y m p t o t i c s t a b i l i t y b y a p p l i c a t i o n of L i a p u n o v ' s
direct
method. I n a theoretical study w h i c h accompanied experimental work, G r a z i a n i et al. (32)
a n a l y z e d the B e l o u s o v - Z h a b o t i n s k i i r e a c t i o n u s i n g a k i n e t i c
s c h e m e v e r y s i m i l a r to the 10-reaction m o d e l of F i e l d , K o r o s , a n d N o y e s (33).
T h e results, s h o w n i n F i g u r e 3, p r e d i c t " h a r d " o s c i l l a t o r y b i f u r c a -
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
tions (that is, the e l i m i n a t i o n of stable l i m i t cycles b y coalescence w i t h unstable ones). M a n y p u b l i c a t i o n s h a v e f o c u s e d o n t h e p r o b l e m of a u t o m a t i c c o n t r o l , specifically the p o s s i b i l i t y of s t a b i l i z i n g a n i n h e r e n t l y u n s t a b l e state b y a f e e d b a c k c o n t r o l scheme. Some of the v e r y e a r l y papers this p r o b l e m ( J O , 34, 35, 36).
considered
M o r e r e c e n t l y , s t a b i l i z i n g c o n t r o l has b e e n
c o n s i d e r e d b y D e m o et al. (37),
w h o a n a l y z e d the p o s s i b i l i t y of s t a b i l i z -
i n g a n u n s t a b l e state b y m a n i p u l a t i n g the s t i r r i n g s p e e d i n a n o n a d i a b a t i c reactor; b y H y u n a n d A r i s ( 3 8 ) , w h o e x a m i n e d t h e effects of hysteresis i n the f e e d b a c k l o o p ; a n d b y L u y b e n ( 3 9 ) , i n a s t u d y of the effect of the r e a c t i o n v e l o c i t y constant o n reactor s t a b i l i t y . Interest i n the m u l t i p l i c i t y a n d s t a b i l i t y of steady states i n i s o t h e r m a l
0.001
0.01 F/V
0.1 (sec )
1
-1
AlChE Meeting
Figure 3. Predicted behavior for the Belousov-Zhabotinskii reaction in a CSTR at 25°C. Solid curves represent stable states; dashed sections, unstable states. Dots represent the amplitudes of stable limit cycles (amplitudes not shown to scale) and X's, amplitudes of unstable ones (32).
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
scHMiTz
Multiplicity,
Stability,
and
Sensitivity
165
systems has i n c r e a s e d n o t a b l y i n recent years. T w o studies of the B e l o u s o v - Z h a b o t i n s k i i r e a c t i o n have a l r e a d y b e e n c i t e d . I n a d d i t i o n , H i g g i n s (40)
discussed v a r i o u s i s o t h e r m a l k i n e t i c m o d e l s i n d i c a t i n g m u l t i p l i c i t y
of states a n d o s c i l l a t o r y b e h a v i o r i n m a n y cases. H i s p a p e r w a s a i m e d at b i o l o g i c a l r e a c t i o n m e c h a n i s m s , as w e r e others (see, 41, 42, 43).
for e x a m p l e , Refs.
F u r t h e r d i s c u s s i o n of m u l t i p l i c i t y a n d s t a b i l i t y i n b i o l o g y is
i n c l u d e d later. M a t s u u r a a n d K a t o (44)
presented a t h e o r e t i c a l s t u d y
s h o w i n g m u l t i p l e states i n a n i s o t h e r m a l C S T R , b a s i n g t h e i r k i n e t i c m o d e l o n the a u t o c a t a l y t i c o x i d a t i o n of i s o p r o p y l a l c o h o l . K n o r r a n d O ' D r i s c o l l (45)
p o i n t e d out that v i s c o s i t y effects o n the t e r m i n a t i o n of the p o l y m e r i -
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
z a t i o n of styrene gives the a p p e a r a n c e of a u t o c a t a l y c i t y a n d causes m u l t i p l e steady states. F u t u r e w o r k i n this area w i l l p r o b a b l y b e addressed m o r e a n d m o r e t o w a r d c o m p l i c a t e d systems of reactions. H o p e f u l l y this w i l l l e a d to some means of c a t e g o r i z i n g or c l a s s i f y i n g r e a c t i o n systems so t h a t o n l y the t y p i c a l b e h a v i o r of e a c h class n e e d b e e l u c i d a t e d . S i n g l e reactions s e e m to b e a p p r o p r i a t e l y d i v i d e d i n t o t w o classes: ( 1 ) those for w h i c h c h e m i c a l rates increase w i t h a n increase i n the extent of r e a c t i o n over some range of the extent ( a c c e l e r a t i n g r e a c t i o n s ) a n d ( 2 ) those for w h i c h rates m o n o t o n i c a l l y decrease w i t h i n c r e a s i n g extent ( d e c e l e r a t i n g r e a c t i o n s ) .
To
the
f o r m e r class b e l o n g e x o t h e r m i c a n d a u t o c a t a l y t i c reactions as examples and
to the latter, e n d o t h e r m i c
and isothermal mass-action
reactions.
B a r r i n g the p o s s i b i l i t y of some v e r y u n u s u a l p h y s i c a l effects, a sufficient c o n d i t i o n for the u n i q u e c o n d i t i o n a n d s t a b i l i t y of steady-state solutions is that the r e a c t i o n b e l o n g to the d e c e l e r a t i n g class. A n o t h e r i m p o r t a n t d i s t i n c t i o n b e t w e e n the t w o classes is t h a t the progress of a c c e l e r a t i n g reactions m a y be f a v o r e d b y b a c k m i x i n g w h i l e d e c e l e r a t i n g reactions are best d o n e u n d e r segregated or p l u g - f l o w c o n d i t i o n s . T h e r e does not seem to b e a u s e f u l a n a l o g y i n terms of a c c e l e r a t i n g or d e c e l e r a t i n g systems of reactions, a n d the task of d e f i n i n g easily i d e n t i f i a b l e classifications appears formidable.
R e c e n t w o r k b y H o r n (46),
H o r n a n d J a c k s o n (47),
F e i n b e r g a n d H o r n ( 48 ) represents a step t o w a r d s u c h a goal.
and
Reaction
m e c h a n i s m s c o n s i d e r e d i n those studies w e r e i s o t h e r m a l systems w h i c h o b e y mass-action kinetics. T h e p r i n c i p a l notions i n v o l v e d w e r e those of w e a k r e v e r s i b i l i t y a n d deficiency of a m e c h a n i s m .
T h e essential r e s u l t
of interest here is a t h e o r e m w h i c h states t h a t a sufficient c o n d i t i o n for a m a s s - a c t i o n m e c h a n i s m to h a v e a u n i q u e a n d g l o b a l l y stable steady state i n a n o p e n , p e r f e c t l y m i x e d system is that i t h a v e a deficiency of z e r o a n d be w e a k l y r e v e r s i b l e . B o t h t h e deficiency a n d w e a k r e v e r s i b i l i t y c a n b e r e a d i l y d e t e r m i n e d f r o m the r e a c t i o n m e c h a n i s m a n d are i n d e p e n d e n t of the r e a c t i o n v e l o c i t y constants. T h e p r o o f i n v o l v e s a n elegant m a t h e m a t i c a l structure essentially a i m e d at e s t a b l i s h i n g c o n d i t i o n s u n d e r w h i c h the n a t u r e of steady a n d transient states i n a n o p e n r e a c t i n g system is the
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
166
CHEMICAL
REACTION ENGINEERING REVIEWS
same as that d i c t a t e d b y t h e r m o d y n a m i c l a w s for closed systems n e a r equilibrium.
F o r t u n a t e l y for most interested readers the g e n e r a l results
h a v e b e e n a p p l i e d i n a m a n n e r most easily a p p r e c i a t e d i n the last of the a b o v e three references as w e l l as i n three other p a p e r s b y H o r n (49).
The
results seem to b e u s e f u l for m o d e l s i n w h i c h the system is o p e n as a c o n s e q u e n c e of a s s u m i n g t h a t c e r t a i n c o m p o n e n t s
are present i n
ficti-
t i o u s l y constant c o n c e n t r a t i o n — a n a s s u m p t i o n c o m m o n l y i n v o k e d i n b i o l o g i c a l a p p l i c a t i o n s . H o w e v e r , this author's l i m i t e d testing of the t h e o r e m w i t h c o n t i n u o u s flow r e a c t i o n models suggests that i t is q u i t e conservative i n its present f o r m . C e r t a i n l y v a r i a t i o n s a n d modifications of this a p p r o a c h
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
as w e l l as e n t i r e l y different approaches w i l l be f o r t h c o m i n g . Experimental Studies. T h o u g h l o n g d e l a y e d i n t i m e f r o m the theor e t i c a l w o r k of V a n H e e r d e n a n d others, a n u m b e r of papers p r e s e n t i n g e x p e r i m e n t a l d a t a o n steady-state m u l t i p l i c i t y a n d s t a b i l i t y i n the C S T R h a v e a p p e a r e d , m o s t l y w i t h i n the past three or f o u r years.
[ F o r purposes
of o r g a n i z a t i o n h e r e , papers w h i c h i n c l u d e e x p e r i m e n t a l d a t a are r e f e r r e d to i n separate subsections.
M o s t of t h e m also c o n t a i n some c o n t r i b u t i o n
to or d i s c u s s i o n of a n u n d e r l y i n g theory.]
T a b l e I gives a list of t h e
a b o v e - m e n t i o n e d papers a l o n g w i t h a b r i e f d e s c r i p t i o n of e a c h system s t u d i e d a n d the observations r e p o r t e d .
[ T o m y k n o w l e d g e , the lists of
e x p e r i m e n t a l reactor studies g i v e n i n tables i n this r e v i e w are c o m p l e t e . H o w e v e r , the b o l d c l a i m of no omissions is not m a d e a n d m o s t l i k e l y w o u l d not be correct.]
T h e list contains studies of single-phase systems
( l i q u i d a n d g a s ) , of t w o - p h a s e systems ( e m u l s i o n p o l y m e r i z a t i o n , g a s l i q u i d a n d g a s - s o l i d ) , of e x o t h e r m i c , a n d of i s o t h e r m a l processes. gas-solid cases represent s o l i d - c a t a l y z e d reactions.
These
[The
experiments
u s e d a r e c i r c u l a t i o n reactor ( or r e c y c l e or l o o p reactor ) w h i c h approaches
Table I. Experimental Studies of Steady-State Multiplicity, Instabilities, and Control in Well-Mixed Reactors" Reference
Experimental
System
0
1. H o f m a n n , D e c o m p o s i t i o n of H2O2 i n l i q u i d phase 1965 (50) in nonadiabatic C S T R 2. H a f k e a n d G i l l e s , L i q u i d phase o x i d a t i o n of e t h y l a l c o h o l 1968 (51) by H 0 i n nonadiabatic C S T R D e c o m p o s i t i o n of N 0 o n copper oxide 3. H u g o , 1968 (52) catalyst i n adiabatic circulating reactor V a p o r phase c h l o r i n a t i o n of m e t h y l 4. B u s h , 1969 (53) chloride i n nonadiabatic C S T R 5. F u r u s a w a et al., H y d r a t i o n of p r o p y l e n e oxide i n l i q u i d phase i n a d i a b a t i c C S T R 1969 (54) 6. B a c c a r o et al., H y d r o l y s i s of a c e t y l chloride i n l i q u i d 1970 (55) phase i n n o n a d i a b a t i c C S T R 2
2
2
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
m
c
7.
scHMiTZ
Multiplicity,
Stability, T a b l e I.
(56)
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
8. V e j t a s a a n d Schmitz, 1970 (57) 9. G e r r e n s et al., 1971 (58) 10. H o r a k et al., 1971 (59)
11. H a n c o c k a n d Kenny, 1972 (60) 12. H o r a k a n d Jiracek, 1972 (61) 13. H u g o a n d Jakubith, 1972 (62) 14. L o a n d C h o l e t t e , 1972 (63) 15. D u b i l a n d G a u b e , 1973 (64) 16. E c k e r t , H l a v a cek, a n d M a r e k , 1973 (65) 17. E c k e r t et al., 1973 (66) 18. G r a z i a n i et al., 1973 (32) 19. M a r e k , 1973 (67) 20. C h a n g a n d Schmitz, 1974 (68) 21. D i n g , S h a r m a , and Luss, 1974 (69) 22. G u h a a n d A g n e w , 1974 (70) 23. W e i s s a n d J o h n , 1974 (71)
167
Sensitivity
Continued
Experimental
Reference 7. H u g o , 1970
and
System
o
E x o t h e r m i c d e c o m p o s i t i o n of N 0 o n copper oxide c a t a l y s t a n d i s o t h e r m a l o x i d a t i o n of C O o n p l a t i n u m c a t a l y s t i n c i r c u l a t i n g reactor L i q u i d phase r e a c t i o n between N a S 0 and H 0 i n adiabatic C S T R 2
2
2
2
m
c
χ
x
3
2
E m u l s i o n p o l y m e r i z a t i o n of styrene i n three-stage series of isothermal C S T R ' s (three stable states observed) L i q u i d phase a u t o c a t a l y t i c r e a c t i o n of bistrichlormethyl trisulfide w i t h a n i line i n one- a n d two-stage i s o t h e r m a l C S T R system C h l o r i n a t i o n of m e t h y l a l c o h o l i n i s o thermal gas-liquid system
χ
χ
χ
H y d r o g e n - o x y g e n reaction on p l a t i n u m catalyst i n adiabatic recirculating re actor I s o t h e r m a l o x i d a t i o n of c a r b o n m o n oxide o n p l a t i n u m c a t a l y s t i n r e c i r c u l a t i n g reactor L i q u i d phase r e a c t i o n between N a S 0 a n d H 0 i n series of a d i a b a t i c C S T R ' s Oxo reaction i n a nonadiabatic reactor m o d e l e d as a C S T R O x i d a t i o n of C O o n C u O / A l 0 c a t a l y s t i n a d i a b a t i c c i r c u l a t i n g reactor 2
2
2
χ
χ
χ
χ
x
3
2
2
3
χ χ
χ
χ
χ
O x i d a t i o n of C O o n C u O / A l 0 c a t a l y s t i n a d i a b a t i c c i r c u l a t i n g reactor L i q u i d phase B e l o u s o v - Z h a b o t i n s k i i r e action i n isothermal C S T R L i q u i d phase B e l o u s o v - Z h a b o t i n s k i i r e action in isothermal C S T R L i q u i d phase r e a c t i o n between N a S 0 and H 0 i n nonadiabatic C S T R 2
3
2
2
2
3
χ χ χ
χ
χ
2
C h l o r i n a t i o n of n-decane i n g a s - l i q u i d mixture i n nonadiabatic C S T R
χ
L i q u i d phase r e a c t i o n between N a S 0 χ and H 0 i n adiabatic C S T R L i q u i d phase f o r m a l d e h y d e condensaχ t i o n t o c a r b o h y d r a t e s is i s o t h e r m a l CSTR Column headings: ο stands for sustained oscillations, m for steady-state multi plicity, and c for feedback control of unstable states; χ in the columns indicates the behavior observed. 2
2
2
3
2
β
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
168
CHEMICAL
REACTION ENGINEERING REVIEWS
C S T R b e h a v i o r at h i g h r e c i r c u l a t i o n rates. F o r purposes of m a t h e m a t i c a l analysis, t h e y are f r e q u e n t l y d e s c r i b e d b y t h e u s u a l C S T R
equations.]
B o t h s u s t a i n e d o s c i l l a t o r y b e h a v i o r a n d hysteresis effects r e s u l t i n g f r o m m u l t i p l e steady states h a v e b e e n s t u d i e d , b e a r i n g out some of t h e theo r e t i c a l results. G e n e r a l l y i n t h e studies o f steady-state m u l t i p l i c i t y , t w o stable states w e r e o b t a i n e d .
E x c e p t i o n s w e r e r e p o r t e d b y H o r a k et al.
( 5 9 ) , i n w h i c h t w o C S T R ' s i n series r e s u l t e d i n t h r e e stable states; b y H o r a k a n d J i r a c e k ( 6 1 ) , i n w h i c h t h e h i g h - c o n v e r s i o n state as w e l l as the i n t e r m e d i a t e state w a s u n s t a b l e — a s i t u a t i o n r e s e m b l i n g t y p e C of F i g u r e s 1 a n d 2; a n d i n a s t u d y o f t h e i s o t h e r m a l s o l i d c a t a l y z e d o x i d a t i o n Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
of c a r b o n m o n o x i d e b y H u g o a n d J a k u b i t h ( 6 2 ) , i n w h i c h s u s t a i n e d oscillations w e r e o b s e r v e d
around h i g h conversion
states, r e s e m b l i n g
situations o f t y p e F . I n a l l other studies, o n l y situations of types A , B , a n d Ε have been reported. T h e d a t a s h o w n i n F i g u r e 4 are t y p i c a l of t h e results of experiments b y G r a z i a n i et al. (32)
w i t h the Belousov-Zhabotinskii reaction. T h e
e x p e r i m e n t a l c o n d i t i o n s i n c l u d e t h e r a n g e over w h i c h b o t h stable a n d unstable l i m i t cycles w e r e p r e d i c t e d a c c o r d i n g to t h e t h e o r e t i c a l c u r v e i n
1.10 h
1.05
? >
100
0
2
—
oscillations (peak to peak)
•
experimental stable states
4
6
10
8
Flow Rate (ml/min) AlChE Meeting
Figure 4. Experimental results showing the readings from a platinum electrode immersed in a CSTR (volume 25 ml) for the BehusovZhabotinskii reaction at 25°C (32)
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
SCHMITZ
Multiplicity,
Stability,
and
169
Sensitivity
F i g u r e 3. T h e d a t a suggest t h a t t h e oscillations a r e h a r d since t h e y d o not a p p e a r to s h r i n k to zero a m p l i t u d e at t h e e n d of t h e o s c i l l a t o r y r e g i o n , a n d hence t h a t situations o f t y p e D exist; h o w e v e r ,
extensive
e x p e r i m e n t a l testing d i d n o t e s t a b l i s h this c o n c l u s i v e l y . 60 h 50 h 40
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
3
ο 30 α> α. Ε |2 20 α> ο 55
CO
10
Theoretical — Steady States u Region of Unstable States for L=0 Experimental Δ • 30
J
Stable Unstable (Controlled) I
40
L
J
50
60
I
70
L _ J
L
80
Residence Time (sec) Chemical Engineering Science
Figure 5. Experimental results of Chang and Schmitz (68) showing unique unstable (controlled) states for the thiosulfate-peroxide reaction in a nonadiabatic CSTR C h a n g a n d S c h m i t z (68) u s e d a s i m p l e f e e d b a c k c o n t r o l s c h e m e i n a n o n a d i a b a t i c system to s t a b i l i z e u n s t a b l e states—i.e., to e l i m i n a t e t h e l i m i t cycles i n cases of s u s t a i n e d oscillations a n d to s t a b i l i z e t h e i n t e r m e d i a t e states ( s a d d l e p o i n t s ) i n t h e regions o f m u l t i p l e steady s t a t e s — i n a n e x p e r i m e n t a l a n a l o g of t h e e a r l y t h e o r e t i c a l studies b y A r i s a n d A m u n d s o n (10).
F i g u r e s 5, 6, a n d 7 illustrate some e x p e r i m e n t a l obser
vations of C h a n g a n d S c h m i t z a n d s h o w some c o m p a r i s o n s w i t h theo r e t i c a l p r e d i c t i o n s f o r the second-order
reaction between sodium thio-
sulfate a n d h y d r o g e n p e r o x i d e . E x c e p t f o r t h e a u t o m a t i c c o n t r o l aspect, these observations r e s e m b l e those d e s c r i b e d i n m a n y o f t h e other entries i n T a b l e I . S t e a d y states o n t h e range o f residence
times s h o w n i n
F i g u r e 5 are u n i q u e , b u t over a p o r t i o n of t h a t residence t i m e r a n g e t h e y are p r e d i c t e d to b e unstable. T h e u n s t a b l e states w e r e o b t a i n e d e x p e r i -
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
170
CHEMICAL
REACTION ENGINEERING REVIEWS
mentally b y a conventional proportional-integral feedback controller used as s h o w n s c h e m a t i c a l l y i n F i g u r e 5. C h a n g a n d S c h m i t z u s e d t w o different reactors w h i c h d i f f e r e d o n l y i n t h e i r w a l l t h i c k n e s s — t h a t is, i n the effective v a l u e o f L i n E q u a t i o n 2. F o r the d a t a s h o w n i n F i g u r e 5, L was e s t i m a t e d to b e a b o u t 1.02. F o r the other r e a c t o r L w a s ca. 1 . 1 — l a r g e e n o u g h to cause a l l o f t h e steady states i n F i g u r e 5 to b e stable w i t h o u t f e e d b a c k c o n t r o l . F i g u r e 6 shows
a n experimental limit cycle for the uncontrolled
r e a c t o r o n t h e phase p l a n e a n d t h e course o f t h e t r a n s i e n t f o l l o w i n g t h e initiation of feedback control action.
[ T h e phase p l a n e shows t h e t e m
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
p e r a t u r e vs. its t i m e d e r i v a t i v e as o p p o s e d to t h e u s u a l t e m p e r a t u r e c o n c e n t r a t i o n plots. T r a n s i e n t concentrations w e r e not m e a s u r e d i n these experiments.]
F i g u r e 7 presents t h e o r e t i c a l a n d e x p e r i m e n t a l results f o r 50 r-
d. 25 feedback control J
I
I
I
I
I
I
I
I
20
L
40
Time (min)
I
0
I
I
ι
ι
ι
I
I
25
I
I
I
50
Temp (°C) Chemical Engineering Science
Figure 6. Sustained oscilla tions and the effect of feedback control with the thiosulfateperoxide reaction in a CSTR. In the lower diagram, Curve (1) represents the limit cycle, and the dashed curve starting at (2) shows the trajectory fol lowing the initiation of feed back control (68).
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
SCHMITZ
Multiplicity,
Stability,
and
c o n d i t i o n s u n d e r w h i c h m u l t i p l e steady states exist. p o i n t s for the i n t e r m e d i a t e states w e r e
171
Sensitivity
T h e experimental
again obtained b y stabilizing
f e e d b a c k c o n t r o l . B o t h the h i g h a n d l o w t e m p e r a t u r e states i n F i g u r e 5 w e r e i n h e r e n t l y stable. I n those cases for w h i c h c o m p a r i s o n s w e r e m a d e , agreement b e t w e e n t h e o r e t i c a l p r e d i c t i o n s a n d e x p e r i m e n t a l results h a v e b e e n g e n e r a l l y satis f a c t o r y , at least i n a q u a l i t a t i v e sense.
A n a c c u r a t e d e s c r i p t i o n of the
c h e m i c a l k i n e t i c s is u n d o u b t e d l y the l i m i t i n g factor i n this r e g a r d i n almost a n y s i t u a t i o n . A g o o d e x a m p l e is the w o r k of H u g o a n d J a k u b i t h (62)
o n the o s c i l l a t o r y b e h a v i o r i n the s o l i d - c a t a l y z e d o x i d a t i o n of c a r b o n
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
monoxide.
O t h e r p a p e r s , t h o u g h not r e p o r t i n g e x p e i m e n t a l d a t a , h a v e
closely l i n k e d t h e i r analysis to a c t u a l r e a c t i o n systems or at least u s e d r e a l k i n e t i c d a t a (36, 44, 45, 72, 73, 74, 75, 76, 77, 78).
L i m i t e d space does
n o t p e r m i t a d e s c r i p t i o n or l i s t i n g of the v a r i o u s topics c o v e r e d i n these papers. The Catalyst
Particle
Problem
M a t h e m a t i c a l Models a n d Theoretical Studies. T h e starting point for most t h e o r e t i c a l studies of c h e m i c a l r e a c t i o n w i t h t h e r m a l effects i n porous catalyst p a r t i c l e s has b e e n the f o l l o w i n g system of dimensionless diffusion equations, w r i t t e n here for
$ - ( Ε * Μ δ
first-order
Arrhenius kinetics:
+ ϊδ)-*-ρ|>(ι-£)] + ΐ£)+'*Η:('-έ)]
3
(4)
where 0 for slab geometry
!
1
cylindrical
2
spherical
w i t h boundary conditions:
2
=
0 : ^
=
3^
= 0 (for s y m m e t r i c profiles)
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
(5)
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
172
CHEMICAL
^
REACTION ENGINEERING REVIEWS
Experimental Δ Stable • Unstable (controlled)
\γ
10
•Α
Λ
-
Δ
Α
Ά
_L
0
20
40
60
80
Coolant Flow Rate (ml/sec) Chemical Engineering Science
Figure 7. Stable and unstable (controlled) states for the thiosulfate-per oxide reaction in a CSTR. The arrowheads extending from the unstable states indicate the extent of fluctuations in the reactor temperature dur ing controlled operation (68).
T h e q u a n t i t y u l t i m a t e l y of interest i n most a p p l i c a t i o n s is t h e p a r t i c l e effectiveness factor, η, w h i c h is o b t a i n e d f r o m t h e s o l u t i o n profiles a n d d e p e n d s , of course, o n a l l parameters i n t h e d e s c r i b i n g equations. F e w studies h a v e u s e d these equations as w r i t t e n .
Various special
cases are d e d u c i b l e d e p e n d i n g , f o r e x a m p l e , o n w h e t h e r ( 1 ) t h e L e w i s n u m b e r , Le, is t a k e n to b e u n i t y , ( 2 ) s l a b , c y l i n d r i c a l o r s p h e r i c a l g e o m e t r y is a d o p t e d , ( 3 ) t h e N u s s e l t a n d S h e r w o o d n u m b e r s are finite, ( 4 ) t h e Nusselt a n d Sherwood numbers are equal, ( 5 ) internal concentration a n d / o r t e m p e r a t u r e gradients are c o n s i d e r e d a n d ( 6 ) t h e a s s u m p t i o n of s y m m e t r i c profiles, e m b o d i e d i n E q u a t i o n 5, is r e t a i n e d .
M o s t of the
c o m b i n a t i o n s of these s p e c i a l cases either m a k e sense p h y s i c a l l y i n c e r t a i n
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
SCHMITZ
Multiplicity,
Stability,
and
Sensitivity
173
a p p l i c a t i o n s or l e a d to m a t h e m a t i c a l l y convenient p r o b l e m s .
Obviously
the n u m b e r of different versions of the basic p r o b l e m is l a r g e ; a l i t e r a t u r e search w o u l d s h o w that questions r e g a r d i n g steady-state m u l t i p l i c i t y a n d s t a b i l i t y h a v e b e e n p u r s u e d for m a n y of these. S o m e versions l e n d t h e m selves to s p e c i a l m a t h e m a t i c a l methods
not a p p l i c a b l e to others, a n d
c e r t a i n d i s t i n c t i v e properties of solutions of some are not f o u n d i n others. A l l i n a l l , i t is difficult i n a b r i e f r e v i e w to o r g a n i z e a n d sort out the a p p l i c a b l e m a t h e m a t i c a l m e t h o d s , as w e l l as the effects of the m a n y parameters, a n d to i n c l u d e c o n c l u s i v e statements, m a n y of w h i c h m u s t b e q u a l i f i e d b y a list of restrictions. T h e f o l l o w i n g a c c o u n t is i n t e n d e d o n l y Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
to b r i n g out essential facts a n d , w h e r e possible, to relate b e h a v i o r a l c h a r acteristics for this p r o b l e m to those of the C S T R . A v e r y c o m p r e h e n s i v e t r e a t m e n t of the p o r o u s catalyst p a r t i c l e p r o b l e m m a y b e f o u n d i n the book by Aris (5). F o r t y p i c a l c o m m e r c i a l p o r o u s catalysts u s e d i n i n d u s t r i a l reactors some of the s p e c i a l cases i n d i c a t e d a b o v e w o u l d not b e r e a l i s t i c . F o r e x a m p l e , the r a t i o Sh/Nu
c a n c o v e r s e v e r a l orders of m a g n i t u d e w i t h
the l o w e r l i m i t b e i n g a p p r o x i m a t e l y 10. u n i t y — a n average of p e r h a p s 30.
Le is also m u c h greater t h a n
( P a r a m e t e r s values for some specific
e x o t h e r m i c reactions w e r e t a b u l a t e d b y H l a v a c e k et al. (80).)
Such con-
siderations l e a d to a p r a c t i c a l w o r k i n g m o d e l i n w h i c h the t e m p e r a t u r e is a s s u m e d to be u n i f o r m t h r o u g h o u t the p a r t i c l e , a n y heat exchange resistance b e i n g confined to a n outer transfer resistance is i n t e r n a l .
fluid
film,
a n d i n w h i c h a l l mass
B e c a u s e of the l a r g e Le, it is r e a s o n a b l e
i n the w o r k i n g m o d e l also to assume that the c o n c e n t r a t i o n profile is i n a p s e u d o - s t e a d y state at a l l t i m e s — t h a t is, that it is g o v e r n e d b y the steady f o r m of E q u a t i o n 3. M o r e is s a i d later r e g a r d i n g this m o d e l . M o s t theor e t i c a l studies h a v e not b e e n r e s t r i c t e d to these p r a c t i c a l ranges of c o n ditions a n d j u s t i f i a b l y so, for one s h o u l d a d o p t a b r o a d v i e w of
the
p r o b l e m as essentially b e i n g a m a t h e m a t i c a l d e s c r i p t i o n of a n y t w o state variables i n a general reaction-diffusion problem.
F o r example,
with
a p p r o p r i a t e k i n e t i c expressions a n d i n t e r p r e t a t i o n of the v a r i o u s p a r a m e ter g r o u p s , the equations s h o w n a b o v e m a y d e s c r i b e the c o n c e n t r a t i o n profiles of t w o species i n a n i s o t h e r m a l s y s t e m for w h i c h the m a g n i t u d e s of p a r a m e t e r groups c o r r e s p o n d i n g to Le
a n d Sh/Nu
m a y be
greater
t h a n , less t h a n , or e q u a l to u n i t y . T h e catalyst p a r t i c l e p r o b l e m d e s c r i b e d b y E q u a t i o n s 3 - 6 bears a great d e a l of s i m i l a r i t y to the C S T R p r o b l e m , the flow terms i n the latter r e p l a c e d b y d i f f u s i o n terms i n the f o r m e r .
Aris
similarities i n s t u d y i n g the p r o b l e m for Nu, Sh->
(81) oo.
explored
these
S o m e parameters
s u c h as Nu, Sh a n d a, do n o t h a v e o b v i o u s counterparts i n the C S T R p r o b l e m , b u t one w o u l d expect a priori that, l i k e the C S T R p r o b l e m , t h e catalyst p a r t i c l e w o u l d possess m u l t i p l e s t e a d y states a n d u n s t a b l e states
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
174
CHEMICAL
u n d e r some conditions.
If, i n fact,
REACTION ENGINEERING REVIEWS
i n t e r n a l gradients
are
neglected
e n t i r e l y or i f r e a c t i o n is a s s u m e d to o c c u r o n l y o n the e x t e r n a l surface a n d the t e m p e r a t u r e of the s o l i d is a s s u m e d u n i f o r m , the m a t h e m a t i c a l p r o b l e m takes o n a f o r m i d e n t i c a l to t h a t of the C S T R . T h e m u l t i p l i c i t y of states a n d s t a b i l i t y considerations for this v e r s i o n of the p r o b l e m w e r e studied b y W a g n e r (12) 86).
a n d others (see,
for e x a m p l e , Refs. 82, 83, a n d
C o m p u t a t i o n s of steady-state profiles b y W e i s z a n d H i c k s
O s t e r g a r d (88),
A m u n d s o n a n d R a y m o n d (89),
(87),
a n d others, f r o m e q u a -
tions s i m i l a r to E q u a t i o n s 3 a n d 4, h a v e d e m o n s t r a t e d the m u l t i p l i c i t y of states a n d h e n c e the m u l t i p l i c i t y of the effectiveness
factor w h e n i n t r a -
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
p a r t i c l e effects are i n v o l v e d . S o m e studies h a v e b e e n a i m e d at e s t a b l i s h i n g sufficient c o n d i t i o n s for u n i q u e n e s s a n d i n some instances sufficient conditions for s t a b i l i t y as w e l l . S u c h c o n d i t i o n s are p o t e n t i a l l y v a l u a b l e because the c o m p u t a t i o n s i n v o l v e d i n s e a r c h i n g for a l l possible steady profiles r e q u i r e the s o l u t i o n of a n o n l i n e a r b o u n d a r y v a l u e p r o b l e m — a f r e q u e n t l y difficult a n d e x p e n sive task. A s c e r t a i n i n g the s t a b i l i t y of a g i v e n profile is even m o r e p r o b lematic.
I n a p r a c t i c a l s i t u a t i o n , i f one c a n r u l e out the p o s s i b i l i t y of
m u l t i p l e solutions a n d i n s t a b i l i t i e s b y easily a p p l i e d sufficient c o n d i t i o n s , the d e s i g n a n d o p e r a t i o n of a c a t a l y t i c reactor is s o m e w h a t s i m p l i f i e d . M a n y s u c h c o n d i t i o n s are a v a i l a b l e — a l l r e s t r i c t e d to c e r t a i n cases a n d some untested insofar as t h e i r c o n s e r v a t i s m is c o n c e r n e d .
It is o n l y a
slight exaggeration to c l a i m that the l i s t i n g a n d c o m p a r i n g of these a n d m e n t i o n i n g the v a r i o u s m a t h e m a t i c a l m e t h o d s p u t to use i n d e r i v i n g t h e m w o u l d r e q u i r e a r e v i e w p a p e r itself. T o cite some of these: c r i t e r i a g i v e n b y L u s s (90)
for Nu, Sh->
oo a p p e a r to be the least conservative a n d the
most g e n e r a l i n the sense t h a t t h e y a p p l y to the various geometries that a n a r b i t r a r y f o r m of t h e rate expression c a n be J a c k s o n (91)
and
accommodated;
p r e s e n t e d sufficient c o n d i t i o n s for uniqueness for a case of
finite Nu a n d Sh for slab geometry.
K a s t e n b e r g (92)
showed that L u s s '
c r i t r i o n for uniqueness w i t h Nu, Sh —» oo also g u a r a n t e e d g l o b a l s t a b i l i t y for Le = for
1. L i o u et al. (93)
o b t a i n e d sufficient c o n d i t i o n s for s t a b i l i t y
Le^l. A w a r e of the results of the C S T R p r o b l e m , one w o u l d expect the
m u l t i p l i c i t y of solutions of the steady-state forms of E q u a t i o n s 3 - 6 to be three over s o m e ranges of the parameters a n d u n i t y over others.
While
this is the case w i t h Nu, Sh - » oo for the infinite slab a n d i n f i n i t e c y l i n d e r geometries, i t is not necessarily the case for spheres. T a k i n g Nu, Sh —» oo f o r a s p h e r i c a l p a r t i c l e , C o p e l o w i t z a n d A r i s (95)
f o u n d as m a n y as 15
steady s o l u t i o n profiles, a n d M i c h e l s e n a n d V i l l a d s e n ( 9 6 ) f o u n d 21 p r o files.
T h i s great m u l t i p l i c i t y was f o u n d o n l y over a v e r y n a r r o w p a r a m e t e r
r a n g e i n b o t h cases. E a r l i e r , H l a v a c e k a n d M a r e k (97)
had found
five
steady profiles f o r s p h e r i c a l geometry w i t h a z e r o - o r d e r k i n e t i c m o d e l .
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
SCHMITZ
Multiplicity,
Stability,
M i c h e l s e n a n d V i l l a d s e n (96)
and
175
Sensitivity
s h o w e d that there m a y b e infinitely m a n y
states i n the s p h e r i c a l p a r t i c l e , a c o n c l u s i o n r e a c h e d also b y G e l r a n d a n d F u j i t a (99)
(98)
i n studies of a closely r e l a t e d m a t h e m a t i c a l p r o b
l e m . A l l of the solutions o b t a i n e d b y C o p e l o w i t z a n d A r i s a n d b y M i c h e l sen a n d V i l l a d s e n h a v e b e e n s h o w n s u b s e q u e n t l y to be u n s t a b l e except for the h i g h a n d l o w c o n v e r s i o n profiles (96,
100).
E v e n t h o u g h this
great m u l t i p l i c i t y exists o n l y over a v e r y n a r r o w a n d i m p r a c t i c a l range of p a r a m e t e r s a n d a l l b u t t w o profiles are u n s t a b l e , the fact t h a t t h e y do o c c u r is of great interest because ( 1 ) n e i t h e r g e o m e t r y effects nor m u l t i p l i c i t i e s greater t h a n three for a p r o b l e m of this t y p e are suggested Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
C S T R results a n d ( 2 )
by
they alert researchers to the fact that w h i l e the
well-studied C S T R p r o b l e m provides tremendous theoretical insight, not a l l q u a l i t a t i v e features of the b e h a v i o r of o p e n c h e m i c a l l y r e a c t i n g sys tems i n g e n e r a l are c o n t a i n e d t h e r e i n . O t h e r t h e o r e t i c a l discoveries, l a b e l l e d as s u r p r i s i n g w h e n against C S T R b e h a v i o r , a r e :
(1)
viewed
t h a t five steady-state solutions exist
u n d e r some c o n d i t i o n s w h e n Nu/Sh
< 1 (101)
and (2)
that i f ( a )
the
i m p o s e d c o n d i t i o n i n E q u a t i o n 5 at the p a r t i c l e center is r e m o v e d a n d the c o n d i t i o n g i v e n i n E q u a t i o n 6 is i m p o s e d i n s t e a d at χ = geometry,
(b)
Sh > Nu,
a n d b o t h are finite a n d ( c )
—1 for s l a b
the p r o b l e m as
d e s c r i b e d b y E q u a t i o n s 3 - 6 has three steady-state solutions, t h e n the slab m a y h a v e six a d d i t i o n a l profiles ( a c t u a l l y three sets of m i r r o r - i m a g e p a i r s ) w h i c h are not s y m m e t r i c a b o u t the centerline. T h e p o s s i b l e existence of s u c h profiles was s h o w n b y P i s m e n a n d K h a r a t s (102) (103).
a n d H o r n et al.
T h e a s y m m e t r i c profiles h a v e also b e e n the subject of
recent papers (104,
105, 106, 107, 108, 109).
other
T h i s r e s u l t is a p p a r e n t l y
g e o m e t r y d e p e n d e n t ; n o analogous findings for the infinite c y l i n d e r o r the sphere h a v e b e e n r e p o r t e d . A r i g o r o u s s t u d y of the s t a b i l i t y of steady-state solutions is u n w i e l d l y , c a l l i n g for a n analysis of the eigenvalues of a n o n s e l f - a d j o i n t system i n w h i c h coefficients are functions of steady-state profiles. T h e p r o b l e m is s i m p l i f i e d i n cases f o r w h i c h Le is t a k e n to b e infinity, u n i t y or z e r o w i t h Nu = Sh because a l l eigenvalues c a n be s h o w n to be r e a l , a n d w e l l - k n o w n m a t h e m a t i c a l theorems
can be
applied.
C o n s i d e r a t i o n of
large-scale
transients r e q u i r e s s t u d y i n g the solutions of c o u p l e d n o n l i n e a r p a r t i a l d i f f e r e n t i a l equations i n general. S o m e examples of s t a b i l i t y analyses a n d transient s i m u l a t i o n s i n v o l v i n g v a r i o u s a n a l y t i c a l a n d n u m e r i c a l tools a n d b a s e d o n a n u m b e r of v a r i a t i o n s of the p r o b l e m expressed b y E q u a t i o n s 3 - 6 are c o n t a i n e d i n Refs. 83, 84, 85, 89,100,110, c l u d e d i n some of these (112, 113)
111, 112, 113,114).
In
are n u m e r i c a l solutions for cases w i t h
Le < 1 h a v i n g a u n i q u e u n s t a b l e profile a b o u t w h i c h the state v a r i a b l e s oscillate c o n t i n u o u s l y . T h e oscillations r e s e m b l e l i m i t cycles i n the C S T R problem.
I n g e n e r a l , studies of steady-state s t a b i l i t y a n d of l a r g e scale
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
176
CHEMICAL
REACTION ENGINEERING REVIEWS
transient b e h a v i o r f o r t h e catalyst p a r t i c l e p r o b l e m h a v e s h o w n n o b e h a v i o r that is not analogous to C S T R results. T h i s posteriori
o b s e r v a t i o n is
n o t meaningless because ( 1 ) there is n o g e n e r a l t h e o r e m f o r d i s t r i b u t e d m o d e l s w h i c h ensures that l i n e a r i z e d equations y i e l d t h e correct answers e v e n f o r i n f i n i t e s i m a l p e r t u r b a t i o n s as d o L i a p u n o v ' s theorems f o r l u m p e d m o d e l s a n d ( 2 ) Poincaré's theorems g u a r a n t e e i n g l i m i t cycles i n a phase p l a n e f o r second-order l u m p e d m o d e l s h a v i n g a u n i q u e u n s t a b l e state d o n o t necessarily c a r r y over to d i s t r i b u t e d p r o b l e m s . C e r t a i n p h y s i c a l effects n o t d e s c r i b e d i n E q u a t i o n s 3 - 6 h a v e b e e n s t u d i e d i n some p u b l i c a t i o n s . T h e s e i n c l u d e n o n u n i f o r m e x t e r n a l c o n d i Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
tions (94, 115) to w h i c h a p a r t i c l e i n a fixed b e d reactor w i l l g e n e r a l l y b e s u b j e c t e d a n d changes i n m o l a r d e n s i t y as a result of c h e m i c a l r e a c t i o n (116,
117).
T h e s e a n d other s u c h effects w o u l d b e e x p e c t e d to g i v e r i s e
o n l y to q u a n t i t a t i v e changes, w h i c h m a y b e i m p o r t a n t i n p r a c t i c a l s i t u a tions b u t w o u l d n o t b e e x p e c t e d to ( a n d h a v e n o t b e e n s h o w n t o ) a d d or t a k e a w a y a n y c h a r a c t e r i s t i c features of t h e p r o p e r t i e s of solutions to E q u a t i o n s 3 - 6 . T h e p a p e r b y J a c k s o n (117) is of f u n d a m e n t a l interest, h o w e v e r , because i t points o u t that a d d i t i o n a l terms m a y b e l o n g i n t h e transient equations i f a change i n m o l a r i t y is associated w i t h t h e c h e m i c a l reaction. I t w a s p o i n t e d out a b o v e that e v e n t h o u g h w i d e p a r a m e t e r ranges h a v e b e e n e x p l o r e d i n t h e o r e t i c a l studies, p r a c t i c a l considerations these ranges c o n s i d e r a b l y f o r n o n i s o t h e r m a l p r o b l e m s .
limit
A very useful,
s i m p l e a n d p l a u s i b l e m o d e l f o r p r a c t i c a l purposes m a y b e d e d u c e d
from
E q u a t i o n s 3 - 6 i f i t is a s s u m e d that a l l of t h e resistance to heat exchange resides i n t h e external fluid film a n d t h a t t h e species profile is a l w a y s i n a pseudo-steady
state r e l a t i v e to t h e instantaneous t e m p e r a t u r e profile.
I n v o k i n g these assumptions, one m a y integrate E q u a t i o n 4 t e r m b y t e r m over t h e p a r t i c l e v o l u m e to o b t a i n
L
e
ΪΡ
= ( Β —> C a n d f o u n d five steady-state profiles i n some cases. C r e s s w e l l a n d P a t e r s o n (120) ( 121,122,
and McGreavy and Thornton
126 ) also w o r k e d w i t h m o d e l s w h i c h a c c o u n t e d f o r m o r e t h a n
one r e a c t i o n i n s t u d y i n g m u l t i p l i c i t y , s t a b i l i t y , a n d s e n s i t i v i t y p r o b l e m s . H a r t m a n et al. ( 128 ) i n c o r p o r a t e d a d u a l - s i t e i s o t h e r m a l L a n g m u i r - H i n s h e l w o o d m o d e l i n t o t h e diffusion equations a n d s h o w e d that three steady states w e r e possible.
Similar problems were worked b y Mitshka a n d
S c h n e i d e r (129, 130).
S u c h reactions, n o t o b v i o u s l y a u t o c a t a l y t i c i n a
strict sense, s h o w a c c e l e r a t i n g b e h a v i o r as t h e r e a c t i o n extent increases o w i n g to a d e p l e t i o n of a reactant w h i c h tends to d o m i n a t e t h e a c t i v e sites.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
178
CHEMICAL
M e h t a a n d A r i s (131,
132)
REACTION ENGINEERING REVIEWS
p r e s e n t e d a d e t a i l e d s t u d y of the p t h - o r d e r
i s o t h e r m a l r e a c t i o n a n d s h o w e d m u l t i p l i c i t y for ρ < 0. Lumped Models.
T h e emphasis t h r o u g h the p r e c e d i n g section was
o n t h e o r e t i c a l studies w h i c h u s e d E q u a t i o n s 3 - 6 deduced therefrom)
( o r of s p e c i a l cases
a n d w h i c h u s e d m e t h o d s of a n a l y z i n g t h e m or of
g e n e r a t i n g n u m e r i c a l solutions.
I n recent years m u c h effort has
been
d e v o t e d to the d e v e l o p m e n t a n d a p p l i c a t i o n of m e t h o d s w h i c h c o n v e r t the b a s i c d i s t r i b u t e d m o d e l to a n a p p r o x i m a t e l u m p e d m o d e l — a process to w h i c h the t e r m l u m p i n g has b e e n a p p l i e d .
[Some workers have used
the t e r m l u m p i n g to i n d i c a t e the r e p l a c e m e n t of a p a r t i a l d i f f e r e n t i a l
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
e q u a t i o n i n a n a p p r o x i m a t e sense b y a single o r d i n a r y d i f f e r e n t i a l e q u a t i o n . I t seems m o r e consistent w i t h u s u a l t e r m i n o l o g y to refer to l u m p i n g g e n e r a l l y as the process of c o n v e r t i n g a d i s t r i b u t e d system to a l u m p e d system, e v e n t h o u g h the n u m b e r of equations i n the latter m a y exceed t h a t of the f o r m e r . ]
E s s e n t i a l l y these m e t h o d s i n v o l v e r e p l a c i n g those terms
c o n t a i n i n g d e r i v a t i v e s w i t h respect to p o s i t i o n b y a l i n e a r c o m b i n a t i o n of t h e d e p e n d e n t v a r i a b l e e v a l u a t e d at specific s p a t i a l positions. T h e n u m b e r Ν of s u c h positions is a r b i t r a r y except insofar as l i m i t a t i o n s m a y b e p l a c e d o n the a c c u r a c y of solutions; p r e s u m a b l y as Ν is i n c r e a s e d , t h e exact s o l u t i o n is a p p r o a c h e d .
T h u s a single p a r t i a l d i f f e r e n t i a l e q u a t i o n is
c o n v e r t e d to Ν o r d i n a r y d i f f e r e n t i a l equations. T h e advantages of w o r k i n g w i t h the l u m p e d v e r s i o n are o b v i o u s : t h e k n o w l e d g e g a i n e d f r o m studies of the C S T R p r o b l e m c a r r y over d i r e c t l y , a n d m a t h e m a t i c a l tools f o r s t u d y i n g n e w b e h a v i o r are r e a d i l y a v a i l a b l e . F o u r m e t h o d s of l u m p i n g h a v e b e e n d e s c r i b e d : (2)
difference m e t h o d s , ( 3 )
(1)
linearization,
orthogonal collocation, a n d (4)
averaging.
A l l f o u r h a v e b e e n a p p l i e d to the catalyst p a r t i c l e p r o b l e m i n c o n n e c t i o n w i t h studies of steady-state m u l t i p l i c i t y a n d s t a b i l i t y .
The
orthogonal
c o l l o c a t i o n m e t h o d has r e c e i v e d the greatest a m o u n t of attention. It was first u s e d for s t u d y i n g t h e catalyst p a r t i c l e p r o b l e m b y V i l l a d s e n a n d S t e w a r t ( 1 3 3 ) , w h o s h o w e d that s p a t i a l d e r i v a t i v e operators c o u l d
be
r e p l a c e d b y m a t r i c e s , the elements of w h i c h d e p e n d o n the c o l l o c a t i o n points.
T h e c o l l o c a t i o n p o i n t s are u s u a l l y t a k e n to b e the roots of a n
o r t h o g o n a l p o l y n o m i a l . O r t h o g o n a l c o l l o c a t i o n is one of t h e m e t h o d s of w e i g h t e d r e s i d u a l s a n d is d e s c r i b e d i n d e t a i l , w i t h examples, b y F i n l a y s o n ( 134 ). T h e first a p p l i c a t i o n of the m e t h o d to steady-state m u l t i p l i c i t y i n a catalyst p a r t i c l e w a s r e p o r t e d b y S t e w a r t a n d V i l l a d s e n (135).
It has
s u b s e q u e n t l y b e e n u s e d i n m a n y studies of the catalyst p a r t i c l e p r o b l e m , i n c l u d i n g those r e p o r t e d i n Refs. 136, 137, 138, 139, 140, 141, 142,
143,
w h i c h a d d r e s s e d p r o b l e m s of steady-state m u l t i p l i c i t y , s t a b i l i t y , a n d t o t a l transient b e h a v i o r .
I n most cases tested, the o r i g i n a l p a r t i a l d i f f e r e n t i a l
equations m a y b e r e p r e s e n t e d b y a r a t h e r l o w o r d e r system of o r d i n a r y d i f f e r e n t i a l equations b y the c o l l o c a t i o n m e t h o d .
R a r e l y are m o r e t h a n
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
SCHMITZ
Multiplicity,
Stability,
and
179
Sensitivity
three or f o u r c o l l o c a t i o n points r e q u i r e d , a l t h o u g h V a n D e n B o s c h a n d P a d m a n a b h a n (144)
f o u n d it necessary to use a 14-point r e p r e s e n t a t i o n
to attain g o o d a c c u r a c y i n c a l c u l a t i n g v e r y steep steady profiles a n d a seventh-order system for s t a b i l i t y d e t e r m i n a t i o n s . L i n e a r i z a t i o n a n d difference H l a v a c e k a n d others
methods
have been used m a i n l y b y
at the P r a g u e s c h o o l
(79, 145,
146,
147,
148).
[ L i n e a r i z a t i o n here is the t e r m associated w i t h the p a r t i c u l a r l u m p i n g m e t h o d p r o p o s e d b y H l a v a c e k a n d c o - w o r k e r s i n the papers c i t e d .
It
has n o t h i n g to do w i t h l i n e a r i z i n g n o n l i n e a r terms i n the system e q u a tions.] Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
T h e a v e r a g i n g m e t h o d was i n t r o d u c e d b y L u s s a n d L e e (149)
in
e x a m i n i n g the s t a b i l i t y of the steady-state profiles for a p a r t i c l e w h o s e t e m p e r a t u r e was a s s u m e d u n i f o r m .
It b a s i c a l l y involves r e p l a c i n g the
terms i n the o r i g i n a l d i s t r i b u t e d m o d e l b y q u a n t i t i e s a v e r a g e d over the p a r t i c l e v o l u m e or over subsections of i t . T h e s p a t i a l d e r i v a t i v e operators take o n the f o r m of o v e r a l l transfer coefficients. u s e d b y L e e et al.
T h i s m e t h o d w a s also
(150).
I n m a n y of the p u b l i c a t i o n s c i t e d above, comparisons are m a d e of one l u m p i n g m e t h o d vs. others or of results a n d c o m p u t a t i o n a l l a b o r asso c i a t e d w i t h l u m p i n g methods vs. those of other m e t h o d s of h a n d l i n g the o r i g i n a l p a r t i a l d i f f e r e n t i a l equations (see, v a t i o n is that
first-order
for e x a m p l e , Refs. 79, 80,
140,
A v e r y i n t e r e s t i n g a n d p r o m i s i n g obser
141,142,143,144,146,147,149).
l u m p i n g is s u i t a b l e for m a n y purposes.
In
first-
order l u m p i n g w i t h the c o l l o c a t i o n m e t h o d , for e x a m p l e , one w o u l d use o n l y one i n t e r i o r c o l l o c a t i o n p o i n t . I n this a p p r o a c h the p a r t i a l differen t i a l equations i n E q u a t i o n s 3 a n d 4 are e a c h r e p l a c e d b y a single o r d i n a r y d i f f e r e n t i a l e q u a t i o n , the s p a t i a l d e r i v a t i v e t e r m i n E q u a t i o n 3 r e p l a c e d b y A ( l — c ), c
s
and in Equation 4 by A ( l — f ). t
s
T h e coefficients A a n d c
A d e p e n d o n the p a r t i c u l a r l u m p i n g m e t h o d u s e d , a n d c a n d t are c o n H
t
s
s i d e r e d to be average values or values at a specific p o i n t . I n the o r t h o g o n a l c o l l o c a t i o n m e t h o d , c a n d t are a p p r o x i m a t i o n s to t h e exact solutions s
s
at the single i n t e r i o r c o l l o c a t i o n p o i n t , a n d A a n d A are g i v e n b y the c
t
following relationships
λο
where n i and n
2
(10)
=
d e p e n d o n the p a r t i c l e geometry.
Equations 3-6 then
r e d u c e s i m p l y to = X (1 c
c) -
φ c 2
s
exp
and
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
(11)
180
C H E M I C A L
Le ~p = λ ,
(1
-
R E A C T I O N
Q + β' φ c exp 2
a
[ 7
E N G I N E E R I N G
R E V I E W S
( l -
(12)
T h e s e are i m m e d i a t e l y r e c o g n i z e d as b e i n g e q u i v a l e n t to t h e a d i a b a t i c C S T R p r o b l e m ; i n fact, t h e y c a n r e a d i l y b e p u t i n t h e f o r m of E q u a t i o n s 1 a n d 2 w i t h L r e p l a c e d b y Le Ac/At, Da b y A , a n d β b y / ? ' A / A . T h e n 2
c
C
t
a l l of the i n f o r m a t i o n c o n t a i n e d i n F i g u r e s 1 a n d 2 a n d i n t h e e a r l i e r d i s c u s s i o n r e l a t e d to t h e m c a r r y o v e r to the present s i t u a t i o n . I n fact, several of t h e p u b l i c a t i o n s r e f e r r e d to earlier h a v e u s e d equations of t h e f o r m of E q u a t i o n s 11 a n d 12 a n d h a v e d i s p l a y e d m a n y of t h e transient
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
features p r e v i o u s l y e x p l o r e d for the C S T R . I f o n e judges the a d e q u a c y of s i m p l i f i e d versions of the p r o b l e m , s u c h as t h a t d e s c r i b e d b y E q u a t i o n s 11 a n d 12 o r of other l o w - o r d e r l u m p i n g forms i n terms of q u a n t i t a t i v e agreement w i t h t h e o r i g i n a l p r o b l e m , h e w o u l d c o n c l u d e that they are i n a d e q u a t e i n m a n y situations (see,
for
e x a m p l e , s u c h c o m p a r i s o n s i n t h e papers b y V a n d e n B o s c h a n d P a d m a n a b h a n (144).)
R e m e m b e r , h o w e v e r , that t h e o r i g i n a l equations are
themselves h i g h l y i d e a l i z e d m a t h e m a t i c a l descriptions of a c o m p l i c a t e d u n d e r l y i n g p h y s i c a l system.
W h i l e they m a y be basically sound for
r e a c t i o n i n a system of p a r a l l e l pores of e q u a l cross-section, l e n g t h , a n d a c t i v i t y , there has b e e n v e r y l i t t l e e x p e r i m e n t a l testing of t h e i r a d e q u a c y i n d e s c r i b i n g t h e q u a n t i t a t i v e b e h a v i o r of a h i g h l y n o n l i n e a r r e a c t i o n process i n structures r e s e m b l i n g t y p i c a l c o m m e r c i a l catalysts. T h e r e f o r e , the o r i g i n a l d e s c r i p t i o n itself s h o u l d b e v i e w e d as u s e f u l m a i n l y f o r q u a l i t a t i v e purposes at present, a n d there is l i t t l e justification f o r t e r m i n g as i n a d e q u a t e t h e s i m p l i f i e d l u m p e d versions as l o n g as t h e y p r e d i c t t h e same q u a l i t a t i v e trends. F r o m E q u a t i o n s 11 a n d 12, one w o u l d c o n c l u d e , f o r e x a m p l e , b y a n a l o g y to t h e C S T R p r o b l e m t h a t s u s t a i n e d o s c i l l a t o r y b e h a v i o r is n o t possible as l o n g as Le > 1 i f Sh = Nu o r i f Nu, Sh - » oo ; i n these cases t h e slope c o n d i t i o n is necessary a n d sufficient f o r s t a b i l i t y d e t e r m i n a t i o n s . T h e y l e a d to the same c o n c l u s i o n for finite a n d u n e q u a l values of t h e N u s s e l t a n d S h e r w o o d n u m b e r s unless Nu > Sh.
These
results a r e consistent w i t h present k n o w l e d g e of t h e b e h a v i o r of solutions of E q u a t i o n s 3 - 6 .
C e r t a i n q u a l i t a t i v e features of t h e solutions of the
o r i g i n a l d i s t r i b u t e d system, h o w e v e r , c a n n o t b e p r e d i c t e d b y t h e s i m p l e s t l u m p e d f o r m , a n d i t is i m p o r t a n t t h a t researchers o r p o t e n t i a l users of t h e s i m p l i f i e d forms b e a w a r e of these.
F o r e x a m p l e , s u c h features d i s
cussed e a r l i e r as a s y m m e t r i c steady profiles a n d a m u l t i p l i c i t y greater t h a n three f o r a
first-order
Arrhenius reaction require a higher-order
a p p r o x i m a t i o n . I t also appears t h a t e x t r e m e l y steep c o n c e n t r a t i o n profiles are n o t easily d e s c r i b e d b y these m e t h o d s .
F o r these, a t w o - z o n e m o d e l
d e s c r i b e d b y P a t e r s o n a n d C r e s s w e l l (139)
appears to b e a g o o d a l t e r n a
tive. I n this m o d e l , a r e a c t i o n z o n e t h r o u g h w h i c h t h e c o n c e n t r a t i o n of
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
SCHMITZ
Multiplicity,
Stability,
and
181
Sensitivity
1.0 0.8 h
Vto
0.6 0.4 h 0.2 h 0
0
0.2
0.4
0.6
0.8
10
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
X Chemical Engineering Science
Figure 8. Multiple steady-state concentration profiles in a catalyst slab obtained through numerical integration ( ) and orthogonal collocation: · ( N = 1), A ( N = 2), M(N = 3). L e = J ; γ = 20; β' = 0.7; φ = 0.16; N u = Sh = oo (140).
Figure 9. Sustained oscillations in a spherical particle obtained through or thogonal collocation ( ) with Ν = 1 by Hellinckx et al. (140) and through numerical solution (·) by Lee and Luss (113). L e = 0.1; y = 30; β' = 0.15; φ = 1.1; N u = Sh = oo. a l i m i t i n g reagent decreases to z e r o is a s s u m e d to exist n e a r t h e p a r t i c l e surface a n d is d e s c r i b e d m a t h e m a t i c a l l y b y l o w - o r d e r c o l l o c a t i o n e q u a tions. C h e m i c a l r e a c t i o n does not take p l a c e i n the i n n e r z o n e . V a n d e n B o s c h a n d P a d m a n a b h a n (144)
f o u n d this t e c h n i q u e to b e u s e f u l i n
d e s c r i b i n g steep gradients a n d i n p r e d i c t i n g t h e results of H a t f i e l d a n d A r i s ( m e n t i o n e d p r e v i o u s l y ) w h i c h s h o w a m u l t i p l i c i t y of
five.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
182
CHEMICAL
REACTION ENGINEERING REVIEWS
E v i d e n c e that q u a l i t a t i v e l y a n d q u a n t i t a t i v e l y accurate i n f o r m a t i o n m a y b e o b t a i n e d i n s o m e cases w i t h s i m p l e l u m p e d m o d e l s w a s s h o w n w e l l b y H e l l i n c k x et al. (140),
from w h i c h Figures 8 a n d 9 were taken
for illustration. A l l i n a l l , t h e results of studies of s i m p l i f i e d m o d e l s are e n c o u r a g i n g . L i t t l e significant progress is i m m i n e n t a l o n g t h e lines of e x t e n d i n g o u r g e n e r a l k n o w l e d g e to m o r e c o m p l e x c h e m i c a l reactions or of p u t t i n g o u r present k n o w l e d g e to p r a c t i c a l use i n d e s i g n w o r k unless these or other simplifications c a n b e p r o v e d u s e f u l . Related Problems. C l o s e l y r e l a t e d to t h e p r o b l e m s of porous catalyst Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
p a r t i c l e s are those w i t h r e a c t i o n o n e x t e r n a l surfaces i n c l u d i n g c a t a l y t i c w i r e s a n d gauzes. T h e latter at least h a v e l o n g b e e n of c o n c e r n i n i n d u s t r i a l a p p l i c a t i o n s . I n fact, t h e t h r u s t of L i l j e n r o t h ' s p a p e r i n 1918
(11)
was t o w a r d t h e i g n i t i o n a n d e x t i n c t i o n characteristics of a m m o n i a o x i d a t i o n o n a c a t a l y t i c gauze.
I n recent years, L u s s a n d co-workers
studied
with
various problems
m u l t i p l i c i t y a n d s t a b i l i t y (151),
catalytic wires temperature
a n d s t a n d i n g w a v e solutions (155). d a t a ( 151,153,154).
flickering
have
steady-state
(152, 153,
154),
S o m e of these i n c l u d e e x p e r i m e n t a l
F l i c k e r i n g , a cause of inefficient i n d u s t r i a l o p e r a t i o n ,
is a p p a r e n t l y c a u s e d b y c o n c e n t r a t i o n or m i x i n g p i n g i n g stream.
including
R a y et al. (156)
fluctuations
i n the i m -
p o i n t e d o u t that t h e l a r g e t h e r m a l
c a p a c i t y of t h e w i r e s a n d gauzes w o u l d most l i k e l y cause a l l oscillations a r i s i n g f r o m i n t r i n s i c i n s t a b i l i t i e s to d a m p . M a t h e m a t i c a l solutions w h i c h c o r r e s p o n d to s p a t i a l l y s t a n d i n g waves a l o n g t h e w i r e l e n g t h i n cases of a n infinite l e n g t h o r i n s u l a t e d ends are possible b u t h a v e b e e n s h o w n to b e u n s t a b l e (155,
157).
T h e p r o b l e m of steady-state m u l t i p i l i c i t y a n d s t a b i l i t y w i t h diffusion a n d c o n d u c t i o n to a s p h e r i c a l c a t a l y t i c surface has b e e n s t u d i e d i n d e t a i l ( 158,159,160).
A cognate subject is that of n o n c a t a l y t i c
fluid-solid
reac-
tions. I t is n o t possible here to p r o b e the d i s t i n g u i s h i n g characteristics of the m a t h e m a t i c a l models a n d the solutions f o r s u c h systems.
Discussions
of t h e m as w e l l as l i t e r a t u r e references are i n Refs. 161, 162, 163. Experimental Studies.
There have been only a few published re-
ports of experiments w i t h single catalyst particles t h a t h a v e d e m o n s t r a t e d steady-state m u l t i p l i c i t y a n d / o r i n s t a b i l i t i e s . T h o s e of w h i c h t h e a u t h o r is a w a r e a r e l i s t e d a l o n g w i t h b r i e f descriptions i n T a b l e I I . E x c e p t for the s t u d y of c a r b o n m o n o x i d e o x i d a t i o n b y B e u s c h et al. (first e n t r y i n the t a b l e ) , a l l of the studies i n v o l v e d l a r g e t h e r m a l effects, a n d t h e p r i m a r y e x p e r i m e n t a l m e a s u r e m e n t w a s of t h e t e m p e r a t u r e at the center of the catalyst p a r t i c l e . C o m m o n l y the e x p e r i m e n t a l setup w a s one i n w h i c h a gas s t r e a m c o n t a i n i n g t h e reactants
flowed
catalyst p a r t i c l e b y f o r c e d c o n v e c t i o n .
I n some of t h e experiments b y
past a freely
suspended
W i c k e ' s g r o u p , t h e p a r t i c l e w a s i m b e d d e d i n a l a y e r of i n e r t p a r t i c l e s .
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
SCHMITZ Table II.
Multiplicity,
Stability,
and
183
Sensitivity
Experimental Studies of Steady-State Multiplicity and Instabilities with Single Catalyst Particles"
Reference
Experimental
1. B e u s c h , F i e g u t h , a n d W i c k e , 1970, 1972 (164,165)
System
o
m
(a) O x i d a t i o n of h y d r o g e n o n suspended P t / s i l i c a / a l u m i n a particle (b) O x i d a t i o n of h y d r o g e n o n single p a r ticle i m b e d d e d i n a l a y e r of i n e r t particles (c) O x i d a t i o n of C O (nearly isothermal) o n suspended P t / A l 0 3 pellet O x i d a t i o n of h y d r o g e n o n a suspended P t / A l 0 catalyst particle E t h y l e n e hydrogénation o n a suspended pellet of A d k i n ' s c a t a l y s t O x i d a t i o n of h y d r o g e n o n a P t / a l u m i n a pellet
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
2
2. H o r a k a n d J i r a c e k , 1970 (166) 3. F u r u s a w a a n d K u n i i , 1971 (167) 4. J i r a c e k , H a v l i c e k , and Horak, 1971 (168) 5. H o r a k a n d J i r a c e k , 1972 (61) 6. J i r a c e k , H o r a k , and H a j k o v a , 1973 (169) a
2
Oxidation particle tubular Oxidation particle
3
of h y d r o g e n o n P t / a l u m i n a i n a b a c k m i x reactor a n d flow reactor of h y d r o g e n o n a P t / a l u m i n a i n a b a t c h recycle-flow reactor
Column headings are defined in Table I. A l t h o u g h these e x p e r i m e n t a l reports d o not c o n t a i n t h o r o u g h q u a n t i -
tative c o m p a r i s o n s w i t h t h e o r e t i c a l p r e d i c t i o n s , the q u a l i t a t i v e features of the l a b o r a t o r y observations are r e a d i l y a p p r e c i a t e d i n v i e w of k n o w n theoretical behavior. T h e c a r e f u l e x p e r i m e n t a l w o r k of W i c k e a n d his c o - w o r k e r s 165)
warrants special comment.
(164,
F i g u r e s 10 a n d 11 demonstrate some of
t h e i r results, i n c l u d i n g t e m p e r a t u r e oscillations w i t h the h y d r o g e n - o x y g e n reaction
( F i g u r e 10)
a n d m u l t i p l e steady states i n experiments
c a r b o n m o n o x i d e o x i d a t i o n ( F i g u r e 1 1 ) . A recent p a p e r b y W i c k e
with (170)
s u m m a r i z e s these a n d other c o n t r i b u t i o n s f r o m his g r o u p at M u n s t e r . T h a t o s c i l l a t o r y states exist is n o t s u r p r i s i n g i n v i e w of
aforementioned
t h e o r e t i c a l studies, b u t the oscillations o b s e r v e d i n these experiments do n o t seem to b e e x p l a i n a b l e i n terms of interactions of t r a n s p o r t processes — i n t e r n a l a n d e x t e r n a l — a n d w i t h a s i m p l e one-step k i n e t i c m e c h a n i s m of the t y p e a s s u m e d i n a l l t h e o r e t i c a l studies of p a r t i c l e oscillations to date. B e u s c h et al. (164,165) suggested that c o m p l i c a t e d surface k i n e t i c s , n o t r e d u c i b l e to a single rate expression, are i n v o l v e d . I t is also possible that the a d s o r p t i v e species c a p a c i t a n c e of the c a t a l y t i c surface, w h i l e n o t e n t e r i n g i n t o the steady-state p i c t u r e , affects the s t a b i l i t y characteristics a p p r e c i a b l y . T h i s c a p a c i t a n c e , w h i c h is u n a c c o u n t e d for i n t h e p r e c e d i n g equations, is c o m m o n l y o v e r l o o k e d .
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
184
CHEMICAL
REACTION ENGINEERING REVIEWS
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
Time (min) Figure 10. Temperature oscillations in a single 8-mm spherical catalyst particle (Ft/ silica/alumina) during hydrogen oxidation in air (3.14 vol % H,) (164, 165)
0
1
2
3
4
5
6
vol. % CO in feed Figure 11. Multiple steady states (hysteresis) in the oxidation of CO in air in a single 3X3 mm cylindrical catalyst particle (Pt/Al 0 ) (164, 165) 2
3
A n e x p e r i m e n t a l s t u d y b y B e n h a m a n d D e n n y (171)
deserves
com-
m e n t because i t i n c l u d e s q u a n t i t a t i v e c o m p a r i s o n s of e x p e r i m e n t a l measu r e m e n t s of u n s t e a d y t e m p e r a t u r e profiles w i t h t h e o r e t i c a l p r e d i c t i o n s . T h e experiments i n v o l v e d t h e o x i d a t i o n of c a r b o n m o n o x i d e o n a c y l i n d r i c a l p e l l e t of C u O / A l 0 2
mocouples
3
catalyst i n f o r c e d c o n v e c t i o n
w e r e i m b e d d e d i n the pellet.
flow.
Seven ther-
T h e w o r k w a s n o t a i m e d at
s t u d y i n g steady-state m u l t i p l i c i t y or i n s t a b i l i t i e s ; i t is p e r t i n e n t to this d i s c u s s i o n because i t demonstrates the d i f f i c u l t y a n d p e r h a p s t h e a c c u r a c y
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
SCHMITZ
Multiplicity,
Stability,
and
Sensitivity
185
w h i c h one m i g h t expect to find i n a t t e m p t i n g to p r e d i c t catalyst p a r t i c l e behavior quantitatively. B e n h a m a n d D e n n y point out that variations i n transfer rates o v e r the p a r t i c l e surface l e a d to m a r k e d l y n o n i s o t h e r m a l a n d a s y m m e t r i c p a r t i c l e profiles. T h e s e measurements w i t h a r e a l catalyst p a r t i c l e therefore a d d emphasis to some of t h e c o m m e n t s a b o v e to the effect that the u s u a l m a t h e m a t i c a l m o d e l g i v e n b y E q u a t i o n s 3 - 6 be considered
u s e f u l p r i m a r i l y for q u a l i t a t i v e purposes
should
a n d that this
s h o u l d be r e m e m b e r e d w h e n s i m p l i f i e d versions are e v a l u a t e d . I n o t h e r e x p e r i m e n t a l studies w i t h a single catalyst p a r t i c l e , K e h o e a n d B u t t (172, 173)
d e m o n s t r a t e d reasonable, t h o u g h r o u g h ,
agreement
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
w i t h results c a l c u l a t e d f r o m a m o d e l s i m i l a r to that g i v e n b y E q u a t i o n s 3 a n d 4. N o steady-state m u l t i p l i c i t y or i n s t a b i l i t i e s w e r e o b s e r v e d i n those experiments.
C e r t a i n l y there is a n e e d for f u r t h e r c a r e f u l e x p e r i m e n t a l
w o r k o n these p r o b l e m s . Tubular
and Fixed-Bed
Mathematical
Reactors
Models and Theoretical Studies.
N e a r l y a l l of
the
m a t h e m a t i c a l models w h i c h h a v e b e e n u s e d i n studies of m u l t i p l e states, s t a b i l i t y , a n d s e n s i t i v i t y of t u b u l a r or
fixed-bed
reactors
use
balance
equations o n the fluid phase of the f o l l o w i n g f o r m or of f o r m s r e a d i l y deduced
therefrom: dCf m
1
1
dc
d Cf
w. w ~ w ~
=
2
{
D
' n Q
1
(
v
1 • À S' -1 + * - oo, E q u a t i o n s 1 3 - 1 6 , 19, a n d 2 0 h a v e a u n i q u e s o l u c
t
tion for given conditions i f f
a
is constant o r w i t h c o c u r r e n t f l o w of a
coolant. O t h e r reactor configurations, h o w e v e r , s u c h as those w i t h c o u n t e r c u r r e n t c o o l i n g , heat exchange b e t w e e n effluent a n d f e e d , a n d w i t h r e c y c l e streams, w h i c h p r o v i d e a means of t h e r m a l f e e d b a c k , c a n g i v e ris to steady-state m u l t i p l i c i t y a n d s t a b i l i t y p r o b l e m s . V a n H e e r d e n
(7,8)
a n d B i l o u s a n d A m u n d s o n (212) c o n s i d e r e d s o m e of these cases.
There
h a v e b e e n a n u m b e r of other t h e o r e t i c a l studies of these p r o b l e m s ( 146, 191, 196, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225 I n t h e r e c e n t l i t e r a t u r e these m o d e l s
226, 227, 228, 229, 230, 231, 232). Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
h a v e r e c e i v e d r e l a t i v e l y little a t t e n t i o n , b u t m u l t i p l i c i t y a n d s t a b i l i t y p r o b l e m s c a u s e d b y t h e effects c o n t a i n e d i n t h e m m a y b e m u c h m o r e f r e q u e n t l y e n c o u n t e r e d i n present i n d u s t r i a l processes t h a n b y t h e effects of a x i a l d i s p e r s i o n o r r e a c t i o n i n porous catalyst p a r t i c l e s . A n e x a m p l e c o m m o n l y r e f e r r e d to is the synthesis of a m m o n i a i n p a c k e d reactors w i t h heat exchange b e t w e e n the r e a c t i n g fluid a n d the f e e d (7, 214, 215, 229). I n t h e s i m p l e h o m o g e n e o u s p l u g flow reactor m o d e l w i t h o u t a n y m e c h a n i s m of t h e r m a l feedback,
severe d e s i g n p r o b l e m s w i t h r e a c t o r
s e n s i t i v i t y m a y b e e n c o u n t e r e d even t h o u g h steady states a r e stable a n d unique.
S e n s i t i v i t y to s m a l l changes i n a p a r a m e t e r o r o p e r a t i n g c o n d i
t i o n is v e r y l i k e l y t h e e x p l a n a t i o n f o r m o s t i n c i d e n t s of " r u n a w a y " c o n d i tions i n i n d u s t r i a l reactors. B a r k e l e w (233) first p r e s e n t e d some g u i d e lines f o r d e s i g n i n g reactors to a v o i d r u n a w a y s c a u s e d b y sensitivity. O t h e r c r i t e r i a f o r a v o i d i n g e x t r e m e l y sensitive c o n d i t i o n s h a v e g i v e n b y D e n t e a n d C o l l i n a (234), senaere
a n d F r o m e n t (236). 70
and V a n W e l -
T h e agreement between
these v a r i o u s
1
60 -
ο 0^
50
À
i / //
1
1
€D /DS
- ψ
0.2004-
40 30
been
H l a v a c e k et al. (235),
1 a n d Pe , Pe - » oo, s u i t a b l y c
m o d i f i e d to i n c l u d e m o r e t h a n one r e a c t i o n .
t
T h e results p r e d i c t e d b y
t h e i r m o d e l s h o w v e r y g o o d agreement w i t h t h e i r e x p e r i m e n t a l d a t a . I n
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
SCHMITZ
Multiplicity,
t h e i r experiments Pe
c
Stability,
and
195
Sensitivity
v a r i e d f r o m 300 to 1200, c o n s i d e r a b l y b e y o n d the
v a l u e f o r w h i c h one w o u l d expect to encounter a n y a p p r e c i a b l e effect of a x i a l d i s p e r s i o n a n d , therefore, steady-state m u l t i p l i c i t y . I n the experiments of H a n s e n a n d Jorgenson, the P e c l e t n u m b e r w a s s o m e w h a t l o w e r (Pe
c
~ 270, Pe
t
~ 1 1 5 ) , a n d these w o r k e r s u s e d a h o m o -
geneous a x i a l d i s p e r s i o n m o d e l to describe transients i n t h e h y d r o g e n o x y g e n r e a c t i o n i n a n a d i a b a t i c reactor p a c k e d w i t h P t / a l u m i n a catalyst. A c c o r d i n g to the c a l c u l a t i o n s of H l a v a c e k et al. ( 189 ) for Pe =^= Pe , c
v a l u e of Pe
c
t
the
i n these experiments is a b o u t t w i c e the v a l u e at the u p p e r
l i m i t of m u l t i p l i c i t y .
H a n s e n a n d J o r g e n s o n do not r e p o r t a n y o b s e r v a -
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
tions of steady-state m u l t i p l i c i t y . T h e authors p o i n t out t h a t the e x p e r i m e n t a l l y o b s e r v e d transients i n the last p a r t of the reactor are n o t w e l l d e s c r i b e d b y t h e i r m o d e l . T h i s o b s e r v a t i o n suggests questions as to the a d e q u a c y of the d i s p e r s i o n m o d e l , p a r t i c u l a r l y for d e s c r i b i n g the u n s t e a d y state. A s i n most r e a l c h e m i c a l systems, s u c h d i s c r e p a n c i e s c a n b e the result of a n i n a c c u r a t e r e p r e s e n t a t i o n of c h e m i c a l r a t e processes, as the authors suggest. E i g e n b e r g e r describes a n i n t e r e s t i n g t h e o r e t i c a l s t u d y of the effects of the t h e r m a l c a p a c i t a n c e a n d c o n d u c t a n c e of t h e reactor w a l l o n the d y n a m i c b e h a v i o r i n h o m o g e n e o u s p l u g - f l o w t u b u l a r reactors.
Both a
l i q u i d r e a c t i o n a n d a gas-phase r e a c t i o n are c o n s i d e r e d , a n d the w a l l is n o t a s s u m e d to be i n t h e r m a l e q u i l i b r i u m w i t h the
fluid.
T w o results are
p a r t i c u l a r l y i n t e r e s t i n g : ( 1 ) for a l i q u i d r e a c t i o n , l o n g i t u d i n a l c o n d u c t i o n i n the w a l l is not significant; yet, o w i n g to the heat c a p a c i t y of the w a l l , some features of the d y n a m i c response are s i m i l a r to the w a n d e r i n g p r o files d e s c r i b e d earlier for fixed b e d s ; ( 2 )
for a gas phase r e a c t i o n , w a l l
c o n d u c t i v i t y effects are i m p o r t a n t a n d l e a d to m u l t i p l e steady states u n d e r some c o n d i t i o n s . A recent p u b l i c a t i o n b y E i g e n b e r g e r (252)
gives a d d i -
t i o n a l a t t e n t i o n to w a l l effects o n t u b u l a r reactor d y n a m i c s . H l a v a c e k a n d V o t r u b a r e p o r t some i n t e r e s t i n g results o n the o x i d a t i o n of C O . T h e i r experiments i n v o l v e d v a r i o u s catalysts i n fixed beds a n d i n m o n o l i t h i c h o n e y c o m b structures.
S u c h reactors h a v e b e e n
discussed
extensively earlier i n this s y m p o s i u m i n the r e v i e w p a p e r o n c a t a l y t i c mufflers b y W e i a n d are also the p r i n c i p a l t o p i c of a p a p e r i n Session I X b y Y o u n g a n d F i n l a y s o n . T h e y differ f r o m the u s u a l c o m m e r c i a l c a t a l y t i c r e a c t o r i n that the P e c l e t a n d R e y n o l d s n u m b e r s are s m a l l ( l a m i n a r Hlavacek
a n d V o t r u b a r e p o r t e x p e r i m e n t a l observations
flow).
of m u l t i p l e
steady states i n b o t h types of reactors. T h e o b s e r v a t i o n of m u l t i p l e states i n the flow of reactants t h r o u g h channels w i t h c a t a l y t i c w a l l s ( as i n the h o n e y c o m b s t r u c t u r e ) does not seem to h a v e b e e n r e p o r t e d p r e v i o u s l y , t h o u g h the experiments b y K i l g e r c i t e d i n T a b l e I I I w e r e s i m i l a r . T h i s p a r t i c u l a r o b s e r v a t i o n b y H l a v a c e k a n d V o t r u b a is i n t e r e s t i n g i n v i e w of t h e t h e o r e t i c a l results of Y o u n g a n d F i n l a y s o n ; the latter authors s h o w
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
196
CHEMICAL
REACTION ENGINEERING REVIEWS
essentially that w h i l e a s i m p l e o n e - d i m e n s i o n a l
heterogeneous
model
i n c o r p o r a t i n g constant heat a n d mass transfer coefficients c a n h a v e m u l t i p l e steady solutions, a m o r e exact t w o - d i m e n s i o n a l s o l u t i o n u s i n g a f u l l y d e v e l o p e d v e l o c i t y d i s t r i b u t i o n is a l w a y s u n i q u e . Y o u n g a n d F i n l a y s o n d i d not a c c o u n t for l o n g i t u d i n a l heat c o n d u c t i o n i n the reactor w a l l , b u t t h e y p o i n t out t h a t this m a y b e i m p o r t a n t i n some cases.
The
t h e o r e t i c a l results of Y o u n g a n d F i n l a y s o n as w e l l as those of E i g e n b e r g e r ( c i t e d a b o v e , r e g a r d i n g w a l l effects), suggest that w a l l c o n d u c t i o n ( w h i c h i n effect is a n a x i a l d i s p e r s i o n m e c h a n i s m ) is the p h y s i c a l process r e s p o n sible for m u l t i p l i c i t y i n the experiments w i t h the h o n e y c o m b structure.
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
H l a v a c e k a n d V o t r u b a do n o t discuss t w o - d i m e n s i o n a l m o d e l s b u t c o n s i d e r s e v e r a l v a r i a t i o n s of the g e n e r a l o n e - d i m e n s i o n a l m o d e l g i v e n above. T h e p a p e r i n this session b y M c G r e a v y a n d A d d e r l e y focuses o n the p r o b l e m of d e s i g n i n g
fixed-bed
reactors to a v o i d p a r a m e t r i c s e n s i t i v i t y
a n d m u l t i p l e steady states. E a r l y w o r k o n the s e n s i t i v i t y p r o b l e m dealt e n t i r e l y w i t h h o m o g e n e o u s m o d e l s a n d m o r e recent w o r k b y M c G r e a v y a n d c o - w o r k e r s e m p h a s i z e d possible i m p o r t a n c e of t r a n s p o r t l i m i t a t i o n s i n this r e g a r d . I n t h e i r p a p e r at this s y m p o s i u m , M c G r e a v y a n d A d d e r l e y extend this n o t i o n to o b t a i n c r i t e r i a i n g r a p h i c a l f o r m i n terms of o p e r a t i n g p a r a m e t e r s . T h e results p e r m i t a designer to d e t e r m i n e w h e t h e r o p e r a t i n g p a r a m e t e r s are s u c h t h a t the reactor w i l l b e r e l a t i v e l y insensitive to s m a l l p a r a m e t e r changes a n d w i l l h a v e u n i q u e states.
It is f u r t h e r suggested
t h a t these results m i g h t be r e a d i l y i m p l e m e n t e d i n the c o m p u t e r c o n t r o l or o p t i m i z a t i o n of a g i v e n reactor. Mixing
and Modeling—Effects
on Multiplicity
and
Stability
B y h e u r i s t i c a r g u m e n t s , V a n H e e r d e n ( 8 ) a d v a n c e d the n o t i o n t h a t a necessary c o n d i t i o n for m u l t i p l i c i t y of steady states i n a n e x o t h e r m i c r e a c t i n g system w a s that some p h y s i c a l m e c h a n i s m for heat f e e d b a c k to exist. H e d e m o n s t r a t e d this p o i n t b y w o r k i n g o u t examples of a C S T R , a p l u g - f l o w t u b u l a r reactor w i t h feed-effluent heat exchange, a n d a t u b u l a r reactor w i t h axial dispersion.
O b v i o u s l y the general requirement
of
f e e d b a c k s h o u l d n o t be r e s t r i c t e d to e x o t h e r m i c systems b u t m u s t a p p l y to a c c e l e r a t i n g reactions i n g e n e r a l . purpose
T h e n o t i o n has s e r v e d a u s e f u l
a l t h o u g h n o precise d e f i n i t i o n of f e e d b a c k has b e e n
offered.
T h e n o t i o n is i n t e r w o v e n i n m u c h of the f o l l o w i n g d i s c u s s i o n of m i x i n g effects a n d m o d e l i n g c o n s i d e r a t i o n s — a d i s c u s s i o n a p p r o p r i a t e l y b r i e f a n d l i m i t e d to i n t r i n s i c h y d r o d y n a m i c effects. C l e a r l y i n o r d e r for i n t r i n s i c f e e d b a c k i n a g i v e n r e a c t i n g flow system to b e possible, the residence times m u s t b e d i s t r i b u t e d so that fluid e l e ments of different ages c a n i n t e r m i x . R e s i d e n c e - t i m e d i s t r i b u t i o n i n f o r m a t i o n , h o w e v e r , describes o n l y m a c r o s c o p i c m i x i n g features a n d b y itself
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
SCHMITZ
Multiplicity,
Stability,
and
197
Sensitivity
tells n o t h i n g a b o u t m i x i n g at t h e m i c r o s c o p i c level—i.e., a b o u t t h e state of segregation as d e s c r i b e d b y D a n c k w e r t s (253).
I f f l u i d elements i n
a n y r e a c t i n g f l o w s i t u a t i o n are c o m p l e t e l y segregated w i t h r e g a r d to b o t h heat a n d mass exchange, there c a n b e n o f e e d b a c k regardless of t h e macroscopic
picture.
( M a t h e m a t i c a l l y , c o m p l e t e l y segregated
systems
g i v e rise to p r o b l e m s of the i n i t i a l - v a l u e type. ) T h u s b o t h m a c r o s c o p i c a n d m i c r o s c o p i c effects w a r r a n t c o n s i d e r a t i o n . N e v e r t h e l e s s , almost a l l m a t h e m a t i c a l m o d e l s w h i c h h a v e b e e n u s e d to s t u d y m u l t i p l i c i t y , s t a b i l i t y , a n d s e n s i t i v i t y of states are b a s e d o n m a c r o s c o p i c considerations. I n t h e a x i a l d i s p e r s i o n m o d e l of a t u b u l a r or fixed-bed reactor, f o r e x a m p l e , t h e Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
effective a x i a l diffusivity c a n b e chosen to d e s c r i b e m a c r o s c o p i c
effects,
a n d once i t is chosen, the l e v e l of m i c r o s c o p i c m i x i n g is also fixed. I n Session V I I Y a n g a n d W e i n s t e i n describe a w a y to s t u d y t h e o r e t i c a l l y b o t h m a c r o s c o p i c a n d m i c r o s c o p i c effects.
T h e y maintain that
t w o adjustable p a r a m e t e r s , η a n d R, i n a h y p o t h e t i c a l reactor m o d e l c o n sisting of η C S T R ' s i n series a n d a r e c y c l e s t r e a m ( w i t h r e c y c l e r a t i o R ) c a n b e separately a n d s i m u l t a n e o u s l y m a n i p u l a t e d so that t h e m o d e l c a n describe given residence-time distribution data a n d still provide flexibility i n c o v e r i n g a r a n g e of m i c r o m i x i n g c o n d i t i o n s b e t w e e n c o m p l e t e segreg a t o n a n d m a x i m u m m i x e d n e s s — t h e extreme m i x i n g situations d e s c r i b e d b y Z w i e t e r i n g (254).
F u r t h e r m o r e , t h e m o d e l is q u i t e a m e n a b l e to
m a t h e m a t i c a l analysis a n d seems w e l l s u i t e d f o r e m p i r i c a l reactor m o d e l i n g i n m a n y p r a c t i c a l situations. Y a n g a n d W e i n s t e i n present results of c a l c u l a t i o n s s h o w i n g t h e effect of m i c r o m i x i n g o n steady-state m u l t i plicity i n an exothermic reaction. A p p a r e n t l y the o n l y p r i o r s t u d y of the effects of m i c r o m i x i n g o n m u l t i p l i c i t y a n d s t a b i l i t y w a s that b y Y a m a z a k i a n d I c h i k a w a (255);
they
e x a m i n e d the extreme cases of c o m p l e t e segregation of b o t h heat a n d mass a n d of m a x i m u m mixedness f o r a n a r b i t r a r y r e s i d e n c e - t i m e d i s t r i b u t i o n . T h e i r c o n c l u s i o n w a s that steady states i n t h e first case are a l w a y s u n i q u e a n d stable a n d that those i n the s e c o n d are stable i f a p e r f e c t l y m i x e d reactor h a v i n g the same m e a n r e s i d e n c e t i m e as t h e g i v e n r e a c t o r is stable. T h e d i s c u s s i o n of m o d e l i n g a n d the n o t i o n of f e e d b a c k i n c o n n e c t i o n w i t h steady-state m u l t i p l i c i t y a n d instabilities c a n b e p u r s u e d f u r t h e r a l o n g s o m e w h a t different lines. A d m i t t e d l y a n y r e a l c h e m i c a l l y r e a c t i n g system has a n u n d e r l y i n g m a t h e m a t i c a l d e s c r i p t i o n w h i c h i n its exact f o r m — i f a n exact f o r m c a n e v e n b e c o n s t r u c t e d — i s f a r too c o m p l e x to a n a l y z e . Simplifications a n d approximations must be made.
Thought-provoking
questions t h e n arise as to h o w one c a n b e r e a s o n a b l y c e r t a i n that t h e s i m p l i f i c a t i o n s a n d a p p r o x i m a t i o n s h e i n t r o d u c e s d o n o t also i n t r o d u c e spurious q u a l i t a t i v e features i n t o t h e solutions of the m a t h e m a t i c a l m o d e l — f e a t u r e s that h a v e n o c o u n t e r p a r t either i n t h e r e a l p h y s i c a l system o r
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
198
CHEMICAL
REACTION ENGINEERING REVIEWS
i n the solutions of the m o r e exact m a t h e m a t i c a l p r o b l e m . ( S i m p l i f i c a t i o n s , of course, m a y also e l i m i n a t e i m p o r t a n t q u a l i t a t i v e features.)
There
p r o b a b l y is no g e n e r a l a n s w e r to s u c h questions, b u t as a reasonable g u i d e l i n e , i t appears that one s h o u l d b e w a r y w h e n e v e r a n a p p r o x i m a t i o n changes the b a s i c m a t h e m a t i c a l f o r m . S o m e examples are r e a d i l y a v a i l able.
O n e is i n the a f o r e m e n t i o n e d p a p e r b y Y o u n g a n d F i n l a y s o n i n
Session I X . L a m i n a r flow t h r o u g h a c a t a l y t i c d u c t w i t h n e g l i g i b l e a x i a l d i f f u s i o n or c o n d u c t i o n gives rise to a n o n l i n e a r p a r a b o l i c system
of
equations w h e n f o r m u l a t e d p r o p e r l y i n terms of r a d i a l a n d a x i a l p o s i t i o n v a r i a b l e s . F o r this p r o b l e m , as i n most p a r a b o l i c p r o b l e m s , the solutions
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
are u n i q u e a n d s t a b l e — n o f e e d b a c k m e c h a n i s m exists. If, h o w e v e r , as Y o u n g a n d F i n l a y s o n s h o w , the p r o b l e m is s i m p l i f i e d to a o n e - d i m e n s i o n a l f o r m i n w h i c h r a d i a l v a r i a t i o n s are a c c o u n t e d for o n l y i n terms of c o n stant heat a n d mass transfer coefficients t o the c a t a l y t i c d u c t w a l l , u n i q u e ness c a n no longer be g u a r a n t e e d .
I n fact, this s i m p l i f i e d v e r s i o n m a y
h a v e a n infinite n u m b e r of solutions as discussed i n some p u b l i c a t i o n s c i t e d earlier. T h e r e a l p h y s i c a l s i t u a t i o n m a y i n d e e d h a v e n o n - u n i q u e solutions
(the
experiments d e s c r i b e d i n the p a p e r b y
Hlavacek and
V o t r u b a i n Session V I I s h o w this to b e t r u e ) , b u t these m u s t b e the result of a x i a l w a l l c o n d u c t i o n ( or of m o l e c u l a r c o n d u c t i o n a n d diffusion a x i a l l y i n the t u b e ) a n d not solely of t r a n s p o r t b e t w e e n the c a t a l y t i c w a l l a n d the f l u i d i n l a m i n a r flow. T h e use of constant transfer coefficients is v a l i d o n l y f o r u n i f o r m l y accessible surfaces.
Catalyst particles i n a p a c k e d
b e d m a y p r o v i d e areas t h a t are n e a r l y u n i f o r m l y accessible because of the n a t u r e of the
flow.
I n a p a p e r a d d r e s s e d to these same matters, L i n d b e r g a n d S c h m i t z (256)
c o n s i d e r e d a t h e o r e t i c a l p r o b l e m of
flow
past a n o n u n i f o r m l y
accessible c a t a l y t i c s u r f a c e — n a m e l y b o u n d a r y l a y e r flow past w e d g e s h a p e d solids. T h e c o n c l u s i o n was s i m i l a r to t h a t of Y o u n g a n d F i n l a y s o n ; t h e s o l u t i o n of the b o u n d a r y l a y e r p r o b l e m w a s s h o w n to b e u n i q u e , b u t t h e s o l u t i o n of a s i m p l i f i e d v e r s i o n u s i n g constant heat a n d mass transfer coefficients
was m u l t i v a l u e d . L i n d b e r g and Schmitz i n c l u d e d a dis-
cussion of the g e n e r a l m o d e l i n g p r o b l e m a n d of t h e possible p i t f a l l s t h a t one w o u l d h o p e to a v o i d . C o n s i d e r , as another e x a m p l e , f u l l y
developed
constant-property
l a m i n a r flow i n a t u b u l a r reactor w i t h h o m o g e n e o u s e x o t h e r m i c r e a c t i o n a n d n e g l i g i b l e a x i a l c o n d u c t i o n a n d d i f f u s i o n of h e a t a n d mass b o t h i n the fluid a n d i n the w a l l . T h e t w o - d i m e n s i o n a l steady-state m a t e r i a l a n d e n e r g y balances are of the p a r a b o l i c f o r m
(an initial-boundary value
p r o b l e m ) , a n d solutions are u n i q u e for r e a l i s t i c r e a c t i o n k i n e t i c m o d e l s . N o m e c h a n i s m of t h e r m a l f e e d b a c k exists. I f the n o t i o n of T a y l o r d i f f u s i o n is i n t r o d u c e d (to a c c o u n t for d i s p e r s i o n effects a r i s i n g f r o m r a d i a l v e l o c i t y g r a d i e n t s ) , t h e n the m o d e l is c o n v e r t e d to the o n e - d i m e n s i o n a l
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
SCHMITZ
Multiplicity,
Stability,
and
Sensitivity
199
a x i a l d i s p e r s i o n f o r m , a n o n l i n e a r b o u n d a r y v a l u e system.
A feedback
m e c h a n i s m has b e e n i n t r o d u c e d t h r o u g h the s i m p l i f i c a t i o n p r o c e d u r e , a n d the uniqueness a n d s t a b i l i t y of steady-state solutions c a n n o l o n g e r b e g u a r a n t e e d . I n l i g h t of these c o m m e n t s , the e x p e r i m e n t a l observations of B u t a k o v a n d M a k s i m o v (see
T a b l e I I I ) , w h i c h i n v o l v e d the l a m i n a r
flow of l i q u i d reactants w i t h n o o b v i o u s i n t r i n s i c m e c h a n i s m of f e e d b a c k other t h a n those of m o l e c u l a r diffusion a n d c o n d u c t i o n , are s u r p r i s i n g . A l l s u c h considerations s h o u l d r e m i n d researchers n o t to lose sight of the u n d e r l y i n g p h y s i c a l p r o b l e m w h e n a t t a c k i n g the m a t h e m a t i c a l one. C l e a r l y they also m u s t b e k e p t i n m i n d i f e x p e r i m e n t a l observations Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
are to be c a r e f u l l y a n d c o r r e c t l y i n t e r p r e t e d . Other Areas of
Application
Steady-state m u l t i p l i c i t y , i n s t a b i l i t i e s , a n d o s c i l l a t o r y b e h a v i o r i n r e a c t i n g systems are also of interest i n b i o l o g y , c o m b u s t i o n , a n d electroc h e m i s t r y . I n e a c h of these areas a large l i t e r a t u r e has d e v e l o p e d — a l l i n p a r a l l e l for the most p a r t w i t h f e w points of contact. F r o m a m a t h e m a t i c a l v i e w p o i n t , at least, p r o b l e m s i n these areas closely r e s e m b l e those c o n n e c t e d w i t h c h e m i c a l reactor d e s i g n . It seems a p p r o p r i a t e , therefore, to d e s c r i b e some of the research a n d the i n t e r e s t i n g p r o b l e m s
encompassed
i n these areas, e v e n t h o u g h the coverage m u s t b e b r i e f a n d i n a d e q u a t e . I n b i o l o g i c a l a p p l i c a t i o n s the major interest has b e e n i n o s c i l l a t i n g systems. T h e p i o n e e r i n g w o r k i n this r e g a r d w a s b y L o t k a (257, 258) i n the e a r l y 1900's o n the oscillations i n p r e d a t o r - p r e y i n t e r a c t i o n s . S i n c e t h e n , o s c i l l a t o r y b e h a v i o r at a l l levels of b i o l o g i c a l a c t i v i t y has
been
o b s e r v e d a n d s t u d i e d . It is f r e q u e n t l y suggested i n these studies t h a t i n t r i n s i c instabilities i n b i o c h e m i c a l reactions are responsible for c i r c a d i a n ( d a i l y ) a n d other r h y t h m s so p r e v a l e n t i n l i v i n g systems. A recent r e v i e w b y N i c o l i s a n d P o r t n o w (259)
covers c h e m i c a l oscillators w i t h p a r t i c u l a r
r e g a r d to b i o l o g i c a l a p p l i c a t i o n s . A n u m b e r of books h a v e b e e n d e v o t e d to b i o l o g i c a l r h y t h m s ; a recent one b y P a v l i d i s (260)
emphasizes
the
m a t h e m a t i c a l analysis of t h e m . Steady-state m u l t i p i l i c i t y has b e e n i n v o k e d i n b i o l o g i c a l p r o b l e m s to e x p l a i n s w i t c h i n g a n d t h r e s h o l d p h e n o m e n a i n b i o c h e m i c a l p a t h w a y s a n d the d e v e l o p m e n t a l processes w h e r e b y a d e v e l o p e d
organism com-
p o s e d of m a n y different types of cells ( different " f i n a l " states ) emanates f r o m a single, n e a r l y u n i f o r m f e r t i l i z e d egg c e l l (see, b o o k b y R o s e n (261)
a n d papers b y E d e l s t e i n (262)
for e x a m p l e , the
a n d L a v e n d a (263).)
E x p l a n a t i o n s for the d e v e l o p m e n t of f o r m a n d s t r u c t u r e i n l i v i n g systems has also b e e n offered i n terms of s p a t i a l or " s y m m e t r y b r e a k i n g " instabilities i n systems i n v o l v i n g diffusion a n d r e a c t i o n . T h i s p h e n o m e n a w a s s t u d i e d first b y T u r i n g (264)
a n d later b y P r i g o g i n e a n d c o - w o r k e r s
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
200
CHEMICAL
(265, 266, 267, 2 6 8 )
REACTION ENGINEERING REVIEWS
a n d Scriven a n d co-workers
the books b y Glansdorff a n d Prigogine (271)
(269, 270)
(see
and Aris (5)).
also
I n such
t h e o r e t i c a l studies, questions are p o s e d as to w h e t h e r s p a t i a l l y d e p e n d e n t p e r t u r b a t i o n s , i m p o s e d o n a n i n i t i a l l y u n i f o r m steady state, g r o w
(or
d e c a y ) u n i f o r m l y or i n s t e a d g r o w i n t i m e w i t h a c e r t a i n p r e f e r r e d s p a t i a l structure. dicted.
U n d e r c e r t a i n c o n d i t i o n s a s p a t i a l l y p e r i o d i c g r o w t h is p r e -
E v i d e n c e that such
instabilities actually occur
in
biological
systems m a y b e f o u n d i n v a r i o u s d e s c r i p t i o n s of p a t t e r n a n d a g g r e g a t i v e m o v e m e n t of cells i n c u l t u r e s u c h as those d e s c r i b e d b y E l s d a l e
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
a n d B o n n e r (273)
(see
(272)
also t h e a f o r e m e n t i o n e d b o o k b y P a v l i d i s ) .
Figure 14. Traveling chemical waves in a diffusion tube during the Belousov-Zhabotinskii reaction (with Fe ). The light bands (waves) are blue; the dark regions are red. Waves, initiated by oscillations in the stirred beaker (at left of photo), are about 4 mm apart and are traveling at a speed of about 0.5 cm/min (280). 3+
M o s t m a t h e m a t i c a l m o d e l s u s e d i n studies r e l a t e d to b i o l o g i c a l a p p l i cations are for i s o t h e r m a l k i n e t i c s , a n d t h e y a l l o w for the exchange
of
m a t e r i a l w i t h the s u r r o u n d i n g s , or "openness," b y i n v o k i n g the a s s u m p t i o n t h a t some species concentrations h a v e fixed constant values. T h e r e s u l t i n g m a t h e m a t i c a l descriptions are s i m i l a r to those of t h e u s u a l c o n t i n u o u s f l o w c h e m i c a l reactor m o d e l s , b u t the u n d e r l y i n g p h y s i c a l p i c t u r e differs. T h e r e s u l t i n g steady states are a c t u a l l y pseudo-steady states i f the system is t r u l y closed, or t h e y represent steady states i n extreme cases of
open
systems for w h i c h some components c a n b e e x c h a n g e d w i t h t h e s u r r o u n d ings w i t h o u t resistance.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
SCHMITZ Though
Multiplicity, not a
Stability,
biological
and
reaction,
201
Sensitivity the isothermal
liquid-phase
B e l o u s o v - Z h a b o t i n s k i i r e a c t i o n has a t t r a c t e d great interest a m o n g
biolo-
gists a n d b i o p h y s i c i s t s as w e l l as chemists m a i n l y because t h e i n t r i g u i n g b e h a v i o r w h i c h i t d i s p l a y s is r e m i n i s c e n t of b i o l o g i c a l b e h a v i o r .
(Refs.
19 a n d 23, w h i c h c o n t a i n studies of this r e a c t i o n i n a n o p e n , w e l l - m i x e d system, h a v e b e e n c i t e d i n a n e a r l i e r section. ) O s c i l l a t i o n s , i n d i c a t e d b y s h a r p color changes f r o m r e d to b l u e ( w h e n F e
3 +
is u s e d as t h e m e t a l i o n )
w i t h t h e r e a c t i o n p r o c e e d i n g i n a closed s t i r r e d b e a k e r , w e r e b y Z h a b o t i n s k i i (274).
described
S p a t i a l l y p e r i o d i c b e h a v i o r , v i s i b l e as a n a s s e m b l y
of t r a v e l l i n g w a v e s , i n t h e absence of s t i r r i n g , w e r e later r e p o r t e d b y Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
Busse (275)
a n d Z a i k e n a n d Z h a b o t i n s k i i (276).
A detailed physical
d e s c r i p t i o n of t h e f o r m a n d interactions of these t r a v e l l i n g w a v e s has b e e n g i v e n b y W i n f r e e (277, 278, 279),
t h e latter reference c o n t a i n i n g
s o m e b e a u t i f u l color p h o t o g r a p h s of s p i r a l l i n g w a v e s .
T h e propagation
of these waves t h r o u g h a s m a l l diffusion t u b e w a s s t u d i e d e x p e r i m e n t a l l y b y T a t t e r s o n a n d H u d s o n (280)
(see F i g u r e 1 4 ) . A t h o r o u g h s t u d y of
this system b y F i e l d et al. (33)
r e v e a l e d that i t consists of 10 c o u p l e d
reactions i n c l u d i n g a n a u t o c a t a l y t i c sequence.
A t present there is n o
p r o o f that t h e o b s e r v e d s p a t i a l l y p e r i o d i c p h e n o m e n a
are t h e r e s u l t of
s p a t i a l or " s y m m e t r y b r e a k i n g " instabilities of t h e t y p e s t u d i e d t h e o r e t i c a l l y i n references c i t e d above.
Rather the waves
which
propagate
t h r o u g h stagnant m i x t u r e s seem to emanate f r o m b o u n d a r y p e r t u r b a t i o n s , s u c h as dust o r m i n u t e p a r t i c l e s . A g e n e r a l t h e o r e t i c a l analysis of t h e effects of p e r t u r b a t i o n s of this t y p e has b e e n g i v e n b y O r t o l e v a a n d Ross (281) . I n other studies m o t i v a t e d b y b i o l o g i c a l a p p l i c a t i o n s , A r i s a n d K e l l e r (282)
a n d B a i l e y a n d L u s s (283)
h a v e suggested that a s y m m e t r i c c o n -
c e n t r a t i o n profiles t h r o u g h m e m b r a n e s , s i m i l a r to those d e s c r i b e d e a r l i e r for catalyst p a r t i c l e s , r e s u l t i n g f r o m t h e p o s s i b i l i t y of m u l t i p l e states i n e n z y m a t i c reactions m a y have a b e a r i n g o n active transport. A v e r y i n t e r e s t i n g p a p e r i n the c o m b u s t i o n l i t e r a t u r e b y G r a y et al. (284)
crosses the b o u n d a r i e s of c o m b u s t i o n , c h e m i c a l reactor, a n d b i o -
l o g i c a l a p p l i c a t i o n s . A m o n g t h e v a r i o u s topics i n c l u d e d a n d a n a l y z e d are h y p e r t h e m i a i n w a r m - b l o o d e d a n i m a l s — d e s c r i b e d as a t h e r m a l r u n a w a y w h e n the b o d y t e m p e r a t u r e exceeds a c r i t i c a l v a l u e — a n d h i b e r n a t i o n w h i c h is e x p l a i n e d i n terms of the f o r m of t h e heat g e n e r a t i o n curves f o r h i b e r n a t i n g a n i m a l s w h i c h p e r m i t m u l t i p l e states, t h e t w o stable ones b e i n g the h i b e r n a t i n g state a n d t h e active state. M o s t of the t h e o r y of m u l t i p l e states, i n s t a b i l i t i e s , a n d s e n s i t i v i t y f o r c h e m i c a l reactors c a n b e a p p l i e d to c o m b u s t i o n p r o b l e m s .
I n combustible
systems, m u l t i p l e steady states i n o p e n processes are t h e r u l e r a t h e r t h a n the e x c e p t i o n ; the r e g i o n of m u l t i p l i c i t y corersponds
to c o n d i t i o n s o v e r
w h i c h t h e m i x t u r e c a n b e b r o u g h t either to a steady i g n i t e d state or to
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
202
CHEMICAL
REACTION ENGINEERING REVIEWS
a n e x t i n g u i s h e d o n e b y a p p r o p r i a t e p e r t u r b a t i o n s or start-up c o n d i t i o n s . S t a n d a r d references f o r the t r e a t m e n t a n d d i s c u s s i o n of these a n d r e l a t e d t o p i c s are the books b y F r a n k - K a m e n e t s k i ( 2 8 5 ) a n d V u l i s (286). of the t h e o r y a n d e x p e r i m e n t a l i n f o r m a t i o n p e r t a i n to closed
Much
systems—
i.e., to situations i n w h i c h reactants are c h a r g e d to a vessel, subjected to a p r e d e t e r m i n e d pressure a n d a m b i e n t t e m p e r a t u r e , a n d o b s e r v e d t h r o u g h a n e n s u i n g transient. E v e n f o r s u c h cases, h o w e v e r , t h e t h e o r y u s u a l l y is a p p l i e d to a " p s e u d o " steady-state v e r s i o n of t h e p r o b l e m , a n d w h e n gradients are n e g l e c t e d , t h e results r e s e m b l e those d e s c r i b e d e a r l i e r i n this p a p e r for t h e C S T R (see, Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
(287).
f o r e x a m p l e , a recent r e v i e w b y B e r l a d
L o n g w e l l a n d W e i s s (288)
i n t r o d u c e d the c o n t i n u o u s - f l o w , w e l l -
s t i r r e d c o m b u s t o r , s i m i l a r to a C S T R , as a c o n v e n i e n t e x p e r i m e n t a l t o o l a n d d e m o n s t r a t e d its u t i l i t y b y u s i n g e x t i n c t i o n data—i.e., the l i m i t of steady-state m u l t i p l i c i t y c o r r e s p o n d i n g to a t r a n s i t i o n f r o m a h i g h t e m p e r a t u r e state to a l o w o n e — t o d e d u c e k i n e t i c parameters. S i m i l a r theor e t i c a l a n d e x p e r i m e n t a l studies i n d i s t r i b u t e d - p a r a m e t e r flow systems h a v e also b e e n r e p o r t e d (289, 290, 291). Instabilities
a n d m u l t i p l e steady
states
occur
i n electrochemical
systems because of h i g h l y n o n l i n e a r c u r r e n t - p o t e n t i a l r e l a t i o n s h i p s .
A
d e s c r i p t i o n b y W o j t o w i c z (292) is a g o o d reference source. I n i t methods of L i a p u n o v a n d Poincaré are u s e d to a n a l y z e d y n a m i c s , a n d b e h a v i o r a l features are d e s c r i b e d w h i c h h a v e analogs i n c h e m i c a l reactor b e h a v i o r . A c c o r d i n g to this b o o k the first cases of p e r i o d i c b e h a v i o r i n electroc h e m i c a l systems w e r e r e p o r t e d as e a r l y as 1828. A l k i r e a n d N i c o l a i d e s (293, 294)
r e c e n t l y d i s c o v e r e d that t h e equations g o v e r n i n g a c e r t a i n
d i s t r i b u t e d m o d e l of the a e r a t i o n c o r r o s i o n of a m e t a l u n d e r a m o i s t
film
possess at least 13 steady-state profiles for t h e c u r r e n t d i s t r i b u t i o n . F u r t h e r m o r e , some of these l e a d to v e r y h i g h l y l o c a l i z e d r e a c t i o n rates a n d suggest a p o s s i b l e e x p l a n a t i o n or m e c h a n i s m for the l o c a l i z e d c o r r o s i v e attack of metals. P r o b l e m s of i n t r i n s i c i n s t a b i l i t i e s arise i n m a n y other situations w h i c h d o n o t i n v o l v e c h e m i c a l rate processes.
I t is n o t possible to
d e s c r i b e these i n d e t a i l here, b u t t h e y are w o r t h y of n o t e because t h e m a t h e m a t i c a l m e t h o d s u s e d to s t u d y t h e m a n d the p h e n o m e n a of interest are often v e r y s i m i l a r to those d e s c r i b e d here f o r c h e m i c a l systems. A m o n g these a r e p r o b l e m s i n h y d r o d y n a m i c s a n d c r y s t a l l i z a t i o n . D e n n (6)
treats t h e f o r m e r a n d p r o v i d e s s o m e u n i f i c a t i o n of these p r o b l e m s
w i t h those of c h e m i c a l reactors. T h e o c c u r r e n c e of s u s t a i n e d oscillations i n perfectly m i x e d crystallizers was studied from a theoretical v i e w p o i n t b y S h e r w i n et al. i n 1967 ( 2 9 5 ) a n d m o r e r e c e n t l y b y R a n d o l p h et al. (296).
E x p e r i m e n t a l studies of these oscillations h a v e also b e e n r e p o r t e d
(297,298).
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
SCHMITZ
Concluding
Multiplicity,
Stability,
and
203
Sensitivity
Remarks
O n e n o t i c e a b l e recent t r e n d has b e e n the increase i n e x p e r i m e n t a l i n f o r m a t i o n . U n t i l v e r y r e c e n t l y there was a d e a r t h of e x p e r i m e n t a l d a t a or reports of a c t u a l c h e m i c a l reactor b e h a v i o r to s u p p o r t t h e l a r g e n u m b e r of t h e o r e t i c a l studies. M a n y t h e o r e t i c a l results h a v e n o w b e e n b o r n e out b y e x p e r i m e n t s , a n d l a b o r a t o r y d a t a definitely a d d a t o n e of r e a l i s m to p r o b l e m s i n this area. S t i l l , t h e o r y leads e x p e r i m e n t a l fact b y a c o n s i d e r a b l e m e a s u r e a l t h o u g h s o m e e x p e r i m e n t a l observations h a v e
sug-
gested, a n d p r o b a b l y w i l l c o n t i n u e to suggest, questions f o r f u r t h e r t h e o -
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
r e t i c a l investigations. T h e n e e d for a d d i t i o n a l l a b o r a t o r y studies is most evident i n distributed problems where some viewpoints need clarification a n d w h e r e p r e d i c t i o n s of the u s u a l m a t h e m a t i c a l m o d e l s c o u l d b e q u a l i tatively incorrect. F r o m a t h e o r e t i c a l v i e w p o i n t , at least, the p r o b l e m of e l u c i d a t i n g the p o s s i b l e b e h a v i o r a l features i n systems of reactions ( w i t h o u t h a v i n g to h a n d l e e a c h case i n d i v i d u a l l y ) is a c h a l l e n g i n g o n e — e v e n for the l u m p e d C S T R case.
U n t i l n o w , the vast m a j o r i t y of w o r k has b e e n w i t h a single
exothermic reaction.
E m p h a s i s has b e e n o n the effects of i n t e r a c t i n g
p h y s i c a l rate processes. S o m e of the e x p e r i m e n t a l observations of o s c i l l a tions i n s i n g l e catalyst p a r t i c l e s a n d of the f a s c i n a t i n g c o n d u c t of
the
B e l o u s o v - Z h a b o t i n s k i i system, d e s c r i b e d i n studies c i t e d a b o v e , as w e l l as a p p l i c a t i o n s i n some k e y areas of b i o l o g y , m a y s t i m u l a t e m o r e effort i n t h e d i r e c t i o n of c o m p l e x r e a c t i n g systems. O n l y a v e r y s m a l l p e r c e n t a g e of t h e papers b e i n g p u b l i s h e d o n the subjects of this r e v i e w are f r o m industry.
A s a result, the present p r a c t i c a l a p p l i c a b i l i t y of
academic
r e s e a r c h to i n d u s t r i a l reactor d e s i g n a n d its i m p a c t t h e r e o n are u n c e r t a i n . Acknowledgments H e l p f u l comments w e r e o b t a i n e d f r o m D a n L u s s , James D o u g l a s , Gerhart Eigenberger, and John Villadsen, who kindly reviewed a prel i m i n a r y v e r s i o n of this p a p e r . Nomenclature
f
g e o m e t r i c constant; 0 for slab, 1 for c y l i n d e r , 2 for sphere area for heat losses p e r u n i t reactor v o l u m e c h a r a c t e r i s t i c l e n g t h ; h a l f - w i d t h for slab, r a d i u s of c y l i n d e r or sphere dimensionless c o n c e n t r a t i o n of reactant i n the b u l k fluid phase,
B
dimensionless c o n c e n t r a t i o n of reactant i n p a r t i c l e pores,
a a b
y
c
CAT/C
c
AO
CAT/CAO
C C
A P
c o n c e n t r a t i o n of reactant heat c a p a c i t y
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
204
C H E M I C A L
R E A C T I O N
E N G I N E E R I N G
R E V I E W S
b i n a r y diffusion coefficient effective a x i a l d i f f u s i v i t y of r e a c t a n t p o r e d i f f u s i v i t y of reactant D a m k o h l e r n u m b e r g i v e n b y Κτ exp ( —y) or Κ τ a c t i v a t i o n energy v o l u m e t r i c flow r a t e fluid-particle h e a t transfer coefficient b a s e d o n s u p e r f i c i a l exter n a l p a r t i c l e surface area ( — Δ Η ) heat of r e a c t i o n ( p o s i t i v e f o r e x o t h e r m i c r e a c t i o n ) k effective a x i a l fluid t h e r m a l c o n d u c t i v i t y k fluid-particle mass transfer coefficient b a s e d o n s u p e r f i c i a l exter n a l p a r t i c l e surface area k effective t h e r m a l c o n d u c t i v i t y of catalyst p a r t i c l e Κ p r e - e x p o n e n t i a l factor f o r r e a c t i o n rates p e r u n i t of reactor volume V K' p r e - e x p o n e n t i a l factor for r e a c t i o n rates p e r u n i t of p o r e v o l u m e K o , Kq r e a c t i o n v e l o c i t y constants at t e m p e r a t u r e T , g i v e n b y Κ exp ( — γ ) a n d K' exp ( — γ ) , r e s p e c t i v e l y I t u b u l a r reactor l e n g t h
D D D Da Ε F h f
g
0
t
m
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
B
Q
L
dimensionless c a p a c i t y factor, 1 -\
Le m rii, n Ν
Lewis number, p C D /k mass l u m p i n g constants n u m b e r of s p a t i a l positions ( e.g., c o l l o c a t i o n points ) i n l u m p i n g procedure N u s s e l t n u m b e r ( B i o t n u m b e r ) , hb/k P e c l e t n u m b e r f o r mass d i s p e r s i o n , vl/D P e c l e t n u m b e r f o r heat d i s p e r s i o n , vlc p /k rate f u n c t i o n s u n i v e r s a l gas constant Sherwood number, k b/e D dimensionless t e m p e r a t u r e of b u l k fluid phase, T /T dimensionless t e m p e r a t u r e w i t h i n catalyst p a r t i c l e , T /T temperature o v e r a l l coefficient f o r heat losses f r o m the reactor average i n t e r s t i t i a l fluid v e l o c i t y v o i d reactor volume dimensionless distance, y'/b distance variable measured from reactor inlet distance v a r i a b l e m e a s u r e d f r o m center of catalyst p a r t i c l e time dimensionless coefficient f o r reactor heat losses Ua^r/p±C t dimensionless a d i a b a t i c t e m p e r a t u r e rise i n fluid phase, ( — Δ Η ) C o/ptCptTo dimensionless a d i a b a t i c t e m p e r a t u r e rise i n catalyst p a r t i c l e , (-&H)e D C /T k dimensionless a c t i v a t i o n energy, E/R T r e a c t o r v o i d f r a c t i o n , r a t i o o f b u l k fluid v o l u m e to t o t a l v o l u m e p o r o s i t y of catalyst p a r t i c l e a
2
Nu Pe Pe R Ro R Sh tf t Τ U ν V χ y y' ζ α β c t
u g
s
ps
s
p
*
p a
s
s
t
vi
m
s
{
t
s
t
Q
B
v
A
β'
s
γ c e
s
o
0
e
g
s
Q
0
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
SCHMITZ
η
Multiplicity,
c
9
t
205
and Sensitivity
effectiveness factor f o r catalyst p a r t i c l e r e l a t i v e to r e a c t i o n rate at C , T dimensionless t i m e f o r C S T R a n d t u b u l a r reactors, ζ/τ dimensionless t i m e f o r catalyst p a r t i c l e , ζ/τ' l u m p i n g constants defined i n E q u a t i o n 10 dimensionless distance, y/l density c h a r a c t e r i s t i c t i m e f o r C S T R a n d t u b u l a r reactors, V/F c h a r a c t e r i s t i c t i m e f o r catalyst p a r t i c l e , b /D T h i e l e m o d u l u s , b y/ K ' / D A f
Θ θ' A, A ξ ρ τ r φ
Stability,
f
2
0
a
s
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
Subscripts a f ο s
ambient or coolant conditions b u l k fluid phase f e e d conditions state w i t h i n catalyst p a r t i c l e o r s u b m e r g e d s o l i d m a t e r i a l
Literature Cited 1. Gavalas, G. R., "Nonlinear Differential Equations of Chemically Reacting Systems," Springer-Verlag, New York, 1968. 2. Ray, W. H., 5th European/2nd Int. Symp. Chem. Reaction Eng., Amster dam, 1972, p. A8-1, (1972). 3. Perlmutter, D. D., "Stability of Chemical Reactors," Prentice-Hall, Englewood Cliffs, 1972. 4. Oppelt, W., Wicke, E., Eds., "Grundlagen der Chemischen Prozessregelung," Oldenbourg Verlag, Munich, 1964. 5. Aris, R., "The Mathematical Theory of Diffusion and Reaction in Per meable Catalysts," Vols. I and II, Clarendon Press, Oxford, 1975. 6. Denn, M. M., "Stability of Reaction and Transport Processes," Prentice -Hall,Englewood Cliffs, 1975. 7. Van Heerden, C., Ind. Eng. Chem. (1953) 45, 1242. 8. Van Heerden, C., Chem. Eng. Sci. (1958) 8, 133. 9. Bilous, O., Amundson, N. R., AIChE J. (1955) 1, 513. 10. Aris, R., Amundson, N. R., Chem. Eng. Sci. (1958) 7, 121, 132, 148. 11. Liljenroth, F. G., Chem. Met. Eng. (1918) 19, 287. 12. Wagner, C., Chem. Techn. (1945) 18, 28. 13. Poore, A. B., Arch. Rational Mech. Anal. (1973) 52, 358. 14. Uppal, Α., Ray, W. H., Poore, A. B., Chem. Eng. Sci. (1974 ) 29, 967. 15. Gilles, Ε. D., Hofmann, H., Chem. Eng. Sci. (1961) 15, 328. 16. Schmitz, R. Α., Amundson, N. R., Chem. Eng. Sci. (1963) 18, 265, 391, 415. 17. Skryabin, Β. N., Dokl. Akad.NaukSSSR (1968) 179, 400. 18. Hlavacek, V., Kubicek, M., Jelinek, J., Chem. Eng. Sci. (1970) 25, 1441. 19. Othmer, H., Math. Biosciences, in press. 20. Shastry, J. S., Fan, L. T., Chem. Eng. J. (1973) 6, 129. 21. Heberling, P. V., Gaitonde, Ν. Y., Douglas, J. M., AIChE J. (1971) 17, 1506. 22. Rayzak, R. J., Luus, R., AIChE J. (1971) 17, 435. 23. Luus, R., Lapidus, L., AIChE J. (1972) 18, 1060. 24. Douglas, J. M., Rippin, D. W. T., Chem. Eng. Sci. (1966) 21, 305. 25. Bailey, J. E., Chem. Eng. Commun. (1973) 1, 111. 26. Goldstein, R. P., Amundson, N. R., Chem. Eng. Sci. (1965) 20, 195, 449, 477, 501. 27. Elnashaie, S., Yates, J. G., Chem. Eng. Sci. (1973) 28, 515.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
206
CHEMICAL
REACTION ENGINEERING
REVIEWS
28. Bukur, D. B., Wittmann, C. V., Amundson, N. R., Chem. Eng. Sci. (1974) 29, 1173. 29. Newbold, F. R., Amundson, N. R., Chem. Eng. Sci. (1973) 28, 1731. 30. Hlavacek, V., Kubicek, M., Visnak, K., Chem. Eng. Sci. (1972) 27, 719. 31. Sabo, D. S., Dranoff, J. S., AIChE J. 16, 211. 32. Graziani, K. R., Hudson, J. L., Schmitz, R. Α., 66th Ann. Meetg. AIChE, Philadelphia, 1973; Joint GVC-AIChE Meetg., Munich, 1974. 33. Field, R. J., Körös, E., Noyes, R. M., J. Amer. Chem. Soc. (1972) 94, 8649. 34. Aris, R., Amundson, N. R., Chem. Eng. Progr. (1957) 53 (5), 227. 35. Nemanic, D. J., Tierney, J. W., Aris, R., Amundson, N. R., Chem. Eng. Sci. (1959) 11, 199. 36. Hoftyzer, P. J., Zwietering, Th. N., Chem. Eng. Sci. (1961) 14, 251. 37. Demo, H . R., Iglesias, Ο. Α., Farina, I. Η., Willis, E., DeSantiago, M., Chem. Eng. Sci. (1972) 27, 2151. 38. Hyun, J. C., Aris, R., Chem. Eng. Sci. (1972) 27, 1341, 1361. 39. Luyben, W. L., AIChE J. (1974) 20, 175. 40. Higgins, J., Ind. Eng. Chem. (1967) 59 (5), 19. 41. Gross, B., Kim, Y. G., Bull. Math. Biophys. (1969) 31, 441. 42. O'Neill, S. P., Lilly, M. D., Rowe, P. N., Chem. Eng. Sci. (1971) 26, 173. 43. Chi, C. T., Howell, J. Α., Pawlowsky, U., Chem. Eng. Sci. (1974) 29, 207. 44. Matsuura, T., Kato, M., Chem. Eng. Sci. (1967) 22, 171. 45. Knorr, R. S., O'Driscoll, K. F., J. Appl. Polymer Sci. (1970) 14, 2683. 46. Horn, F., Arch. Rational Mech.Anal.(1972) 49, 172. 47. Horn, F., Jackson, R., Arch. Rational. Mech. Anal. (1972) 47, 81. 48. Feinberg, M., Horn, F. J. M., Chem. Eng. Sci. (1974) 29, 775. 49. Horn, F., Proc. Roy. Soc. Lond. (1973) A334, 299, 313, 331. 50. Hofmann, H., 3rd European Symp. Chem. Reaction Eng., Amsterdam, 1964, p. 235 (1965). 51. Hafke, C., Gilles, E. D., Mess. Steuern Reg. (1968) 11, 204. 52. Hugo, P., 4th European Symp. Chem. Reaction Eng., Brussels, 1968, p. 459 (1971). 53. Bush, S. F., Proc. Roy. Soc. (1969) A309, 1. 54. Furusawa, T., Nishimura, H., Miyauchi, T., J. Chem. Eng. Japan (1969) 2, 95. 55. Baccaro, G. P., Gaitonde, Ν. Y., Douglas, J. M., AIChE J. (1970) 16, 249. 56. Hugo, P., Ber. Bunsen-Gesellschaft (1970) 74, 121. 57. Vejtasa, S. Α., Schmitz, R. Α., AIChE J. (1970) 16, 410. 58. Gerrens, H., Kuchner, K., Ley, G., Chem. Ing. Tech. (1971) 43, 693. 59. Horak, J., Jiracek, F., Krausova, L., Chem. Eng. Sci. (1971) 26, 1. 60. Hancock, M. D., Kenney, C. N., 5th European/2nd Int. Symp. Chem. Reaction Eng., Amsterdam, 1972, p. B3-47 (1972). 61. Horak, J., Jiracek, F., 5th European/2nd Int. Symp. Chem. Reaction Eng., Amsterdam, 1972, p. B8-1 (1972). 62. Hugo, P., Jakubith, M., Chem. Ing. Tech. (1972) 44, 383. 63. Lo, S. N., Cholette, Α., Can. J. Chem. Eng. (1972) 50, 71. 64. Dubil, H., Gaube, J., Chem. Ing. Tech. (1973) 45, 529. 65. Eckert, E., Hlavacek, V., Marek, M., Chem. Eng. Commun. (1973) 1, 89. 66. Eckert, E., Hlavacek, V., Kubicek, M., Sinkule, J., Chem. Ing. Tech. (1973) 45, 83. 67. Marek, M., "Scientific Papers of Institute of Chemical Technology, Prague, in press. 68. Chang, M., Schmitz, R. Α., Chem. Eng. Sci. (1975) 30, 21 (second paper will appear in same journal). 69. Ding, J. S. Y., Sharma, S., Luss, D., Ind. Eng. Chem., Fundamentals (1974) 13, 76. 70. Guha, Β. K., Agnew, J. B., Ind. Eng. Chem. Proc. Des. Dev., in press.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
7.
SCHMITZ
71. 72. 73. 74. 75. 76. 77.
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120.
Multiplicity,
Stability,
and Sensitivity
207
Weiss, A. H., John, T., J. Catal. (1974) 32, 216. Westerterp, K. R., Chem. Eng. Sci. (1962) 17, 423. Dassau, W. J., Wolfang, G. H., Chem. Eng. Progr. (1963) 59 (4), 43. Cowley, P. Ε. Α., Johnson, D. E., ISA J. (Feb. 1965) 81. Herbrich, D., Thiele, R., Lucas, K., Chem. Tech. (1968 ) 20, 75. Iscol, L., Proc. JACC (1970), paper 23-13. Schmeal, W. R., Barkelew, C. H., 63rd Ann. Meetg. AIChE, Chicago, 1970, paper 23d. Lee, W., Kugelman, A. M., Ind. Eng. Chem., Product Res. Dev. (1973) 12, 197. Hlavacek, V., Kubicek, M., Marek, M., J. Catal. (1969) 15, 17. Ibid., p. 31. Aris, R., Chem. Eng. Sci. (1969) 24, 149. Spalding, D. B., Chem. Eng. Sci. (1959) 11, 53. Kuo, J. C. W., Amundson, N. R., Chem. Eng. Sci. (1967) 22, 49. Ibid., p. 443. Ibid., p. 1185. Elnashaie, S. S. Ε. H., Cresswell, D. L., Can. J. Chem. Eng. (1973) 51, 201. Weisz, P. B., Hicks, J. S., Chem. Eng. Sci. (1962) 17, 265. Ostergaard, K., Chem. Eng. Sci. (1963) 18, 259. Amundson, N. R., Raymond, L. R., AIChE J. (1965) 11, 339. Luss, D., Chem. Eng. Sci. (1971) 26, 1713. Jackson, R., Chem. Eng. Sci. (1972) 27, 2205. Kastenberg, W. E., Chem. Eng. Sci. (1973) 28, 1691. Liou, C. T., Lim, H. C., Weigand, W. Α., AIChE J. (1973) 19, 321. Copelowitz, I., Aris, R., Chem. Eng. Sci. (1970) 25, 885. Ibid., p. 906. Michelsen, M. L., Villadsen, J., Chem. Eng. Sci. (1972) 27, 751. Hlavacek, V., Marek, M., Chem. Eng. Sci. (1968) 23, 865. Gel'fand, I. M., Amer. Math. Soc. Transl. (1963) 29, 295. Fujita, H., Bull. Amer. Math. Soc. (1969) 75, 132. Jackson, R., Chem. Eng. Sci. (1973) 28, 1355. Hatfield, B., Aris, R., Chem. Eng. Sci. (1969) 24, 1213. Pis'men, L. M., Kharats, Y. I., Dokl. Akad. Nauk SSSR (1968) 178, 901. Horn, F. J. M., Jackson, R., Martel, Ε., Patel, C., Chem. Eng. J. (1970) 1, 79. Bailey, J. E., Chem. Eng. Sci. (1972) 27, 1055. Jackson, R., Horn, F. J. M., Chem. Eng. J. (1972) 3, 83. Luss, D., Bailey, J. E., Sharma, S., Chem. Eng. Sci. (1972) 27, 1555. Patel, C., Jackson, R., 5th European/2nd Int. Symp. Chem. Reaction Eng., Amsterdam, 1972, p. 135-49 (1972). Yang, R. Y. K., Padmanabhan, L., Lapidus, L., Chem. Eng. J. (1972) 2, 218. Yang, R. Y. K., Lapidus, L., Chem. Eng. Sci. (1973) 28, 875. Wei, J., Chem. Eng. Sci. (1965) 20, 729. Gavalas, G. R., Chem. Eng. Sci. (1966) 21, 477. Hlavacek, V., Marek, M., 4th European Symp. Chem. Reaction Eng., 1968, p. 107 (1971). Lee, J. C. M., Luss, D., AIChE J. (1970) 16, 621. Yang, R. Y. K., Lapidus, L., Chem. Eng. Sci. (1974) 29, 1567. Hlavacek, V., Kubicek, M., Chem. Eng. Sci. (1970) 25, 1527. Lih, M. M., Lin, K., AIChE J. (1973) 19, 832. Jackson, R., Chem. Eng. Sci. (1974) 29, 1413. Hansen, K. W., Chem. Eng. Sci. (1971) 26, 1555. Cresswell, D. L., Chem. Eng. Sci. (1970) 25, 267. Cresswell, D. L., Paterson, W. R., Chem. Eng. Sci. (1970) 25, 1405.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
208
121. 122. 123. 124. 125. 126. 127. 128.
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165. 166. 167.
C H E M I C A L REACTION ENGINEERING
REVIEWS
McGreavy, C., Thornton, J. M., ADVAN. CHEM. SER. (1972) 109, 607. McGreavy, C., Thornton, J. M., Chem. Eng. Sci. (1970) 25, 303. McGreavy, C., Thornton, J. M., Can. J. Chem. Eng. (1970) 48, 187. McGreavy, C., Thornton, J. M., Chem. Eng. J. (1970) 1, 296. McGreavy, C., Soliman, Μ. Α., Chem. Eng. Sci. (1973) 28, 1401. McGreavy, C., Thornton, J. M., Chem. Eng. J. (1973) 6, 91. McGreavy, C., Adderley, C. I., Chem. Eng. Sci. (1973) 28, 577. Hartman, J. S., Roberts, G. W., Satterfield, C. N., Ind. Eng. Chem., Fundamentals (1967) 6, 80. Mitschka, P., Schneider, P., Coll. Czech. Chem. Comm. (1970) 35, 1617. Ibid. (1971) 36, 54. Mehta, Β. N., Aris, R., J. Math. Anal. Appl. (1971) 36, 611. Mehta, Β. N., Aris, R., Chem. Eng. Sci. (1971) 26, 1699. Villadsen, J. V., Stewart, W. E., Chem. Eng. Sci. (1967) 22, 1483. Finlayson, Β. Α., "The Method of Weighted Residuals and Variational Principles," Academic Press, New York, 1972. Stewart, W. E., Villadsen, J. V., AIChE J. (1969) 15, 28. Ferguson, Ν. B., Finlayson, Β. Α., Chem. Eng. J. (1970) 1, 327. Hlavacek, V., Kubicek, M., J. Catal. (1971) 22, 364. McGowin, C. R., Perlmutter, D. D., Chem. Eng. Sci. (1971) 26, 275. Paterson, W. R., Cresswell, D. L., Chem. Eng. Sci. (1971) 26, 605. Hellinckx, L., Grootjans, J., Van Den Bosch, B., Chem. Eng. Sci. (1972) 27, 644. Michelsen, M. L., Villadsen, J., Chem. Eng. Sci. (1972) 27, 751. Sorensen, J. P., Guertin, E. W., Stewart, W. E., AIChE J. (1973) 19, 969. Karanth, N. G., Koh, H. P., Hughes, R., Chem. Eng. Sci. (1974) 29, 451. Van Den Bosch, B., Padmanabhan, L., Chem. Eng. Sci. (1974) 29, 805, 1217. Hlavacek, V., Marek, M., Kubicek, M., Coll. Czech. Chem. Comm. (1970) 35, 2124. Hlavacek, V., Kubicek, M., Caha, J., Chem. Eng. Sci. (1971) 26, 1743. Hlavacek, V., Kubicek, M., Chem. Eng. Sci. (1971) 26, 1737. Mitschke, P., Schneider, P., Coll. Czech. Chem. Comm. (1972) 37, 196, 2506. Luss, D., Lee, J. C. M., Chem. Eng. Sci. (1971) 26, 1433. Lee, J. C. M., Padmanabhan, L., Lapidus, L., Ind. Eng. Chem., Funda mentals (1972) 11, 117. Cardoso, Μ. Α. Α., Luss, D., Chem. Eng. Sci. (1969) 24, 1699. Ervin, Μ. Α., Luss, D., Chem. Eng. Sci. (1972) 27, 339. Edwards, W. M., Worley, Jr., F. L., Luss, D., Chem. Eng. Sci. (1973) 28, 1479. Edwards, W. M., Zuniga-Chaves, J. E., Worley, Jr., F. L . , Luss, D., AIChE J. (1974) 20, 571. Luss, D., Ervin, Μ. Α., Chem. Eng. Sci. (1972) 27, 315. Ray, W. H., Uppal, Α., Poore, A. B., Chem. Eng. Sci. (1974) 29, 1330. Jackson, R., Chem. Eng. Sci. (1972) 27, 2304. Petersen, Ε. E . , Friedly, J. C., De Vogelaere, R. J., Chem. Eng. Sci. (1964) 19, 683. Friedly, J. C., Petersen, Ε. E., Chem. Eng. Sci. (1964) 19, 783. Winegardner, D. K., Schmitz, R. Α., AIChE J. (1968) 14, 301. Ishida, M., Wen, C. Y., Chem. Eng. Sci. (1971) 26, 1043. Wang, S. C., Wen, C. Y., AIChE J. (1972) 18, 1231. Knapp, R. H., Aris, R., Arch. Rational Mech. Anal. (1972) 44, 165. Beusch, H., Fieguth, P., Wicke, E., ADVAN. CHEM. SER. (1972) 109, 615. Beusch, H., Fieguth, P., Wicke, E., Chem. Ing. Tech. (1972) 44, 445. Horak, J., Jiracek, F., Chem. Tech. (1970) 22, 393. Furusawa, T., Kunii, D., J. Chem. Eng. Japan (1971) 4, 274.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
7.
SCHMITZ
Multiplicity,
Stability,
and Sensitivity
209
168. Jiracek, F., Havlicek, M., Horak, J., Coll. Czech. Chem. Comm. (1971) 36, 64. 169. Jiracek, F., Horak, J., Hajkova, M., Coll. Czech. Chem. Comm. (1973) 38, 185. 170. Wicke, E., Chem. Ing. Tech. (1974) 46, 365. 171. Benham,C.B., Denny, V. E., Chem. Eng. Sci. (1972) 27, 2163. 172. Kehoe, J. P. G., Butt, J. B., AIChE J. (1972) 18, 347. 173. Kehoe, J. P. G., Butt, J. B., 5th European/2nd Int. Symp. Chem. Reaction Eng., Amsterdam, 1972, p. B8-13 (1972). 174. Froment, G. F., Chem. Ing. Tech. (1974) 46, 374. 175. Lubeck, B., Chem. Eng. J. (1974) 7, 29. 176. Raymond, L. R., Amundson, N. R., Can. J. Chem. Eng. (1964) 48, 173. 177. Amundson, N. R., Can. J. Chem. Eng. (1965) 43, 49. 178. Luss, D., Amundson, N. R., Chem. Eng. Sci. (1967) 22, 253. 179. Luss, D., Amundson, N. R., Can. J. Chem. Eng. (1967) 45, 341. 180. Ibid. (1968) 46, 424. 181. Markus, L., Amundson, N. R., J. Diff. Eqns. (1968) 4, 102. 182. Varma, Α., Amundson, N. R., Chem. Eng. Sci. (1972) 27, 907. 183. Varma, Α., Amundson, N. R., Can. J. Chem. Eng. (1972) 50, 470. 184. Ibid. (1973) 51, 206. 185. Ibid., p. 459. 186. Matsuyama, H., J. Chem. Eng. Japan (1973) 6, 276. 187. Han, C. D., Agrawal, S., Chem. Eng. Sci. (1973) 28, 1617. 188. Froment, G. F., ADVAN. C H E M . SER. (1972) 109, 1.
189. Hlavacek, V., Hofmann, H., Votruba, J., Kubicek, M., Chem. Eng. Sci. (1973) 28, 1897. 190. Vortmeyer, D., Schaefer, R. J., Chem. Eng. Sci. (1974) 29, 485. 191. Cohen, D. Α., Summer Inst. Nonlinear Math. Battelle, Seattle, 1972. 192. Hlavacek, V., Hofmann, H., Chem. Eng. Sci. (1970) 25, 173. 193. Ibid., p. 1517. 194. McGowin, C. R., Perlmutter, D. D., AIChE J. (1971) 17, 831. 195. Ibid., p. 837. 196. Ibid., p. 842. 197. Hlavacek, V., Hofmann, H., Kubicek, M., Chem. Eng. Sci. (1971) 26, 1629. 198. Chen, M. S. K., AIChE J. (1972) 18, 849. 199. Wicke, E., Vortmeyer, D., Z. Elektrochem. (1959) 63, 145. 200. Wicke, Ε., Z. Elektrochem. (1961) 65, 267. 201. Liu, S. L., Amundson, N. R., Ind. Eng. Chem., Fundamentals (1962) 1, 200. 202. Ibid. (1963) 2, 183. 203. Liu, S. L., Aris, R., Amundson, N. R., Ind. Eng. Chem., Fundamentals (1963) 2, 12. 204. Aris, R., Schruben, D. L., Chem. Eng. J. (1971) 2, 179. 205. Farina, I. H., Aris, R., Chem. Eng. J. (1972) 4, 149. 206. Eigenberger, G., Chem. Eng. Sci. (1972) 27, 1909, 1917. 207. Padberg, G., Wicke, E., Chem. Eng. Sci. (1967) 22, 1035. 208. Vanderveen, J. W., Luss, D., Amundson, N. R., AIChE J. (1968) 14, 636. 209. Rhee, Η. K., Foley, D., Amundson, N. R., Chem. Eng. Sci. (1973) 28, 607. 210. Vortmeyer, D., Jahnel, W., Chem. Ing. Tech. (1971) 43, 461. 211. Vortmeyer, D., Jahnel, W., Chem. Eng. Sci. (1972) 27, 1485. 212. Bilous, O., Amundson, N. R., AIChE J. (1956) 2, 117. 213. Douglas, J. M., Orcutt, J. C., Berthiaume, P. W., Ind. Eng. Chem., Fundamentals (1962) 1, 253. 214. Baddour, R. F., Brian, P. L. T., Loglais, Β. Α., Eymery, J. P., Chem. Eng. Sci. (1965) 20, 281.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
210
CHEMICAL
REACTION ENGINEERING
REVIEWS
215. Brian, P. L. T., Baddour, R. F., Eymery, J. P., Chem. Eng. Sci. (1965) 20, 297. 216. Reilly, M. J., Schmitz, R. Α., AIChE J. (1966) 12, 153. 217. Ibid. (1967) 13, 519. 218. Wang, F. S., Perlmutter, D. D., Proc. JACC, Philadelphia, 1967, p. 107. 219. Wang, F. S., Perlmutter, D. D., AIChE J. (1968) 14, 976. 220. Inoue, H., Komiya, T., Int. Chem. Eng. (1968) 8, 749. 221. Mukosei, V. I., Pis'men, L. M., Kharkats, Y. I., Int. Chem. Eng. (1968) 8, 17. 222. Pareja, G., Reilly, M. J., Ind. Eng. Chem., Fundamentals (1969) 8, 442. 223. Pismen, L. M., Fiz. Goreniya i Vzryva (1969) 5, 239. 224. Matsuyama, H., J. Chem. Eng. Japan (1970) 3, 248. 225. McGowin, C. R., Perlmutter, D. D., Chem. Eng. J. (1971) 2, 125. 226. Matsuyama, H., J. Chem. Eng. Japan (1972) 5, 197. 227. Volin, Y-M., Ostrovskii, G. M., Slin'ko, M. G., Dokl. Akad. Nauk SSSR (1972) 204, 648. 228. Caha, J., Hlavacek, V., Kubicek, M., Chem. Ing. Tech. (1973) 45, 1308. 229. Stephens, A. D., Richards, R. J., Automatica (1973) 9, 65. 230. Liou, C. T., Weigand, W. Α., Lim, H. C., Int. J. Control (1974) 19, 561. 231. Liou, C. T., Lim, H. C., Weigand, W. Α., Chem. Eng. Sci. (1974) 29, 705. 232. Oh, S. H., Schmitz, R. Α., Chem. Eng. Comm. (1974) 1, 199. 233. Barkelew, C. H., Chem. Eng. Progr. Symp. Ser. (1959) 55 (25), 38. 234. Dente, M., Collina, Α., Chim. Ind. (1964) 46, 1445. 235. Hlavacek, V., Marek, M., John, T. M., Coll. Czech. Chem. Comm. (1969) 34, 3868. 236. Van Welsenaere, R. J., Froment, G. F., Chem. Eng. Sci. (1970) 25, 1503. 237. McGreavy, C., Cresswell, D. L., 4th European Symp. Chem. Reaction Eng., Brussels, 1968, p. 59 (1971). 238. McGreavy, C., Adderley, C. I., Chem. Eng. Sci. (1974) 29, 1054. 239. Volter, Β. V., Proc. Int. Fed. Automatic Control Congr., 1963, p. 507/1. 240. Wicke, E., Padberg, G., Arens, H., 4th European Symp. Chem. Reaction Eng., Brussels, 1968, p. 425 (1971). 241. Kilger, H., Chem. Ing. Tech. (1969) 41, 862. 242. Root, R. B., Schmitz, R. Α., AIChE J. (1969) 15, 670. 243. Ibid. (1970) 16, 356. 244. Fieguth, P., Wicke, E., Chem. Ing. Tech. (1971) 43, 604. 245. Luss, D., Medellin, P., 5th European/2nd Int. Symp. Chem. Reaction Eng., Amsterdam, 1972, p. 134 (1972). 246. Butakov, Α. Α., Maksimov, Ε. I., Dokl. Akad. Nauk SSSR (1973) 209, 643. 247. Votruba, J., Hlavacek, V., Chem. Prunysl (1973) 11, 541 [English transla tion in Int. Chem. Eng. (1974) 14, 461]. 248. Ausikaitis, J., Engel, A. J., AIChE J. (1974) 20, 256. 249. Vortmeyer, V. D., Z. Elektrochem. (1961) 65, 282. 250. Berty, J. M., Bricker, J. H., Clark, S. W., 5th European/2nd Int. Symp. Chem. Reaction Eng., Amsterdam, 1972, p. B8-27 (1972). 251. Venkatachalam, P., Kershenbaum, L., Grossmann, E., Earp, R., 5th European/2nd Int. Symp. Chem. Reaction Eng., Amsterdam, 1972, p. B8-39 (1972). 252. Eigenberger, G., Chem. Ing. Tech. (1974) 46, 11. 253. Danckwerts, P. V., Chem. Eng. Sci. (1958) 8, 93. 254. Zwietering, Th. N., Chem. Eng. Sci. (1959) 11, 1. 255. Yamazaki, H., Ichikawa, Α., J. Chem. Eng. Japan (1969) 2, 100. 256. Lindberg, R. C., Schmitz, R. Α., Chem. Eng. Sci. (1969) 24, 1113. 257. Lotka, Α., J. Phys. Chem. (1910) 14, 271. 258. Lotka, Α., Proc. Nat. Acad. Sci. U.S. (1920) 6, 410. 259. Nicolis, G., Portnow, J., Chem. Rev. (1973) 73, 365.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by COLUMBIA UNIV on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch007
7.
SCHMITZ
Multiplicity, Stability, and Sensitivity
211
260. Pavlidis, T., "Biological Oscillators: Their Mathematical Analysis," Aca demic Press, New York, 1973. 261. Rosen, R., "Dynamical System Theory in Biology," Wiley-Interscience, New York, 1970. 262. Edelstein, Β. B., J. Theor.Biol.(1972) 37, 221. 263. Lavenda, Β. H., Quart. Rev. of Biophys. (1972) 5 (4), 429. 264. Turing, A. M., Phil.Trans.of the Roy. Soc. (1952) B237, 37. 265. Prigogine, I., Nicolis, G., J. Chem. Phys. (1967) 46, 3542. 266. Prigogine, I., Lefever, R., J. Chem. Phys. (1968) 48, 1695. 267. Prigogine, I., Lefever, R., Goldbeter, Α., Herschkowitz-Kaufman, M., Nature (1969) 233, 913. 268. Prigogine, I., Babloyantz, Α., "Analysis and Simulation of Biological Sys tems," H. C. Hemker and B. Hess, Eds., American Elsevier, New York, 1972. 269. Gmitro, J. I., Scriven, L. E., "Intracellular Transport," Κ. B. Warren, Ed., Academic Press, New York, 1966. 270. Othmer, H. C., Scriven, L. E., J. Theor. Biol. (1971) 32, 507. 271. Glansdorff, P., Prigogine, I., "Thermodynamic Theory of Structure, Sta bility and Fluctuations," Wiley-Interscience, New York, 1971. 272. Elsdale, T., "Towards a Theoretical Biology," C. H. Waddington, Ed., Vol. 4, p. 95, 1972. 273. Bonner, J. T., Ann. Rev. Microbiol., C. E. Clifton, Ed., (1971) 25, 75. 274. Zhabotinskii, A. M., Dokl. Akad. Nauk SSSR (1964) 157, 392. 275. Busse, H. G., J. Phys. Chem. (1969) 73, 750. 276. Zaikin, A. N., Zhabotinskii, A. M., Nature (1970) 225, 535. 277. Winfree, A. T., Science (1972) 175, 634. 278. Ibid. (1972) 181, 937. 279. Winfree, A. T., Sci. Am. (1974) 230 (6), 82. 280. Tatterson, D. F., Hudson, J. L., Chem. Eng. Commun. (1973) 1, 3. 281. Ortoleva, P., Ross, J., J. Chem. Phys. (1973) 58, 5673. 282. Aris, R., Keller, Κ. H., Proc. Nat. Acad. Sci. (1972) 69, 777. 283. Bailey, J. E., Luss, D., Proc. Nat. Acad. Sci. (1972) 69, 1460. 284. Gray, B. R., Gray, P., Kirwan, Ν. Α., Combust. Flame (1972) 18, 439. 285. Frank-Kamenetskii, D. Α., "Diffusion and Heat Transfer in Chemical Kinetics," 2nd ed., Plenum Press, New York, 1961. 286. Vulis, L. Α., "Thermal Regimes of Combustion," McGraw-Hill, New York, 1961. 287. Berlad, A. L., Combust. Flame (1973) 21, 275. 288. Longwell, J. P., Weiss, Μ. Α., Ind. Eng. Chem. (1955) 47, 1634. 289. Smith, H. W., Schmitz, R. Α., Ladd, R. G., Comb. Sci. Tech. (1971) 4, 131. 290. Fang, M., Schmitz, R. Α., Ladd, R. G., Comb. Sci. Tech. (1971) 4, 143. 291. Williams, F. Α., Ann. Rev. Fluid Mech. (1971) 3, 171. 292. Wojtowicz, J., "Modern Aspects of Electrochemistry," J. O'M. Bockris and Β. E. Conway, Eds., Vol. 8, p. 47, 1972. 293. Alkire, R., Nicolaides, G., J. Electrochem. Soc. (1974) 121, 183. 294. Alkire, R., Nicolaides, G., J. Electrochem. Soc. (1975) 122, 25. 295. Sherwin, M. B., Shinnar, R., Katz, S., AIChE J. (1967) 13, 1141. 296. Randolph, A. D., Beer, G. L., Keener, J. P., AIChE J. (1973) 19, 1140. 297. Randolph, A. D., Beckman, J., 67th Ann. Meetg. AIChE, Washington, 1974, paper 100b. 298. Douglas, J. M., Song, Y. H., 67th Ann. Meetg. AIChE, Washington, 1974, paper 100c. RECEIVED December 4, 1974. Work supported by the National Science Founda tion and the Army Research Office, Durham, N. C.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.