3 Contacting Effectiveness in Trickle Bed Reactors
Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
CHARLES
N.
SATTERFIELD
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Mass. 02139
The
use of trickle
reviewed,
typical
laboratory
and
version
liquid
plug
Models
be based models
pilot
in a trickle
for an ideal rates.
bed
residence
in industrial
conditions
plant
studies
flow reactor
catalyst
time distribution,
are analyzed
critically
limitations
highest
Con-
liquid
performance
wetting
reactant
flow may
characteristics,
or axial dispersion;
and compared.
when
is
recent
comes closest to that
at the
in the vapor phase are considered
/
are summarized.
and to predict
holdup,
processing
are cited, and
bed reactor usually
to explain
on liquid
of transport
reactors
operating
Some
is present
these effects
partially
briefly.
T p h e c e n t r a l p r o b l e m i n d e s i g n , scale-up, a n d u n d e r s t a n d i n g o f t h e A
o p e r a t i o n of t r i c k l e b e d reactors is d e t e r m i n i n g t h e effectiveness
with
w h i c h t h e r e a c t i n g l i q u i d is b r o u g h t i n t o contact w i t h t h e s o l i d catalyst. T h e l i q u i d a n d gas f l o w rates u s e d b y t h e laboratories, p i l o t p l a n t s , a n d c o m m e r c i a l operations v a r y greatly, a n d t h e w i d e r a n g e i n l i q u i d
flow
rate i n p a r t i c u l a r is a p r i m a r y cause of t h e v a r i a t i o n i n b e h a v i o r w i t h scale of o p e r a t i o n . A b r i e f r e v i e w of i n d u s t r i a l p r a c t i c e s a n d t h e reasons therefore sets t h e stage f o r c o n s i d e r a t i o n of t h e effect o f l i q u i d flow rate o n p e r f o r m a n c e a n d f o r c h a r a c t e r i z a t i o n of t h e effectiveness
o f catalyst
c o n t a c t i n g i n a t r i c k l e b e d reactor. Industrial Petroleum Refining. reactor
"Processing T h e t e r m t r i c k l e b e d as u s e d here means a
in which a liquid
phase
a n d a gas p h a s e
flow
cocurrently
d o w n w a r d t h r o u g h a fixed b e d of catalyst p a r t i c l e s w h i l e r e a c t i o n takes p l a c e . T h e s e reactors h a v e b e e n u s e d t o a m o d e r a t e extent i n c h e m i c a l 50 In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
3.
SATTERFIELD
Trickle
Bed
Reactors
51
p r o c e s s i n g , b u t most of the p u b l i s h e d i n f o r m a t i o n a b o u t t h e i r i n d u s t r i a l applications
concerns p e t r o l e u m
processing,
i n p a r t i c u l a r the
hydro-
d e s u l f u r i z a t i o n or h y d r o c r a c k i n g of h e a v y or r e s i d u a l o i l stocks a n d the h y d r o f i n i s h i n g or h y d r o t r e a t i n g of
l u b r i c a t i n g oils.
A c c o r d i n g to
D e e m t e r ( J ) , a t r i c k l e b e d h y d r o d e s u l f u r i z a t i o n process w a s by Vlugter, Hoog,
a n d their co-workers
A m s t e r d a m after W o r l d W a r
van
developed
at t h e S h e l l L a b o r a t o r i e s i n
I I , a n d the
first
commercial
unit
was
b r o u g h t o n stream i n 1955. T h e S h e l l process w a s d e s c r i b e d f u r t h e r b y L e N o b e l and Choufoer
(2).
Similar developments
less s i m u l t a n e o u s l y at other p e t r o l e u m companies. Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
mixed-phase
d e s u l f u r i z e r reactors that w e r e
occurred
Lister (3)
developed
more
or
described
b y the
British
P e t r o l e u m C o . a n d p u t i n t o o p e r a t i o n d u r i n g the 1950's; h e g a v e c o n siderable detail about
various e n g i n e e r i n g
design problems
and
how
t h e y w e r e o v e r c o m e . I n the P r o c e e d i n g s of the v a r i o u s W o r l d P e t r o l e u m Congresses and
w e r e p u b l i s h e d g e n e r a l descriptions
h y d r o d e s u l f u r i z a t i o n processes d e v e l o p e d
U n i o n O i l , a n d other
of the
hydrocracking
b y Chevron, Esso, Gulf,
companies.
T r i c k l e bed processing
is less costly t h a n c o m p l e t e l y
vapor-phase
o p e r a t i o n since less heat is r e q u i r e d for feedstock v a p o r i z a t i o n a n d less gas m u s t be r e c y c l e d a n d h e a t e d to r e a c t i o n t e m p e r a t u r e . trickle bed residual
operation
oils
that
allows t h e p r o c e s s i n g
cannot
react
as
vapors.
of
heavy
Moreover,
distillates a n d
Hydrocracking
processes
are u s u a l l y p r e c e d e d b y a h y d r o d e s u l f u r i z a t i o n r e a c t i o n t h a t reduces t h e content of o r g a n o s u l f u r a n d o r g a n o n i t r o g e n
c o m p o u n d s to a suffi-
c i e n t l y l o w l e v e l so that they c a n be t o l e r a t e d b y t h e h y d r o c r a c k i n g catalyst. I n these processes, as i n l u b r i c a t i n g o i l treatment, t h e r e a c t i o n is b e t w e e n h y d r o g e n a n d a p e t r o l e u m stock, a n d h i g h h y d r o g e n pressures are u s e d i n order to o b t a i n l o n g catalyst l i f e . T h e l u b r i c a t i n g o i l processing
m a y be a s o - c a l l e d h y d r o f i n i s h i n g t h a t r e m o v e s p r i m a r i l y o r g a n i c
sulfur a n d n i t r o g e n c o m p o u n d s a n d i m p r o v e s
c o l o r w i t h little h y d r o -
génation of the p e t r o l e u m feedstock, or i t m a y b e a m o r e severe h y d r o t r e a t m e n t w h i c h causes not o n l y s u l f u r a n d n i t r o g e n r e m o v a l b u t also r i n g hydrogénation a n d subsequent
h y d r o c r a c k i n g of one
or m o r e
of
the s a t u r a t e d rings ( h a v i n g started w i t h a m u l t i p l e - r i n g a r o m a t i c
feed-
stock)
In
some
the
fluid
systems,
to p r o d u c e l u b r i c a t i n g oils of e.g.
h i g h viscosity
some h y d r o d e s u l f u r i z a t i o n reactions,
index.
much
of
present m a y be near or a b o v e t h e c r i t i c a l p o i n t a n d phase b e h a v i o r is uncertain. An
alternate a n d closely r e l a t e d f o r m of
g a s - l i q u i d upflow. processing
of
c o n t a c t i n g is
cocurrent
It a p p a r e n t l y has not b e e n u s e d i n d u s t r i a l l y f o r the
petroleum
fractions, b u t i t has b e e n a p p l i e d i n some
c h e m i c a l operations.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
52
CHEMICAL REACTION ENGINEERING
REVIEWS
Chemical and Petrochemical Processing. T r i c k l e b e d reactors h a v e also b e e n u s e d o n a s u b s t a n t i a l scale for c h e m i c a l a n d p e t r o c h e m i c a l processing,
b u t i n f o r m a t i o n is f r a g m e n t a r y .
synthesis of l i q u i d fuels f r o m m i x t u r e s of H
2
I n the F i s c h e r - T r o p s c h a n d C O , v a r i o u s means of
r e m o v i n g the s u b s t a n t i a l heat of r e a c t i o n h a v e b e e n
tried including
r e c y c l e of i n e r t hot o i l t h r o u g h the reactor b e d as w e l l as the use of hot-gas r e c y c l e a n d s l u r r y - t y p e reactors. son (4)
Storch, G o l u m b i c , a n d A n d e r -
t r e a t e d i n d e t a i l t h e c h e m i s t r y a n d t e c h n o l o g y of t h e F i s c h e r -
T r o p s c h synthesis as i t w a s d e v e l o p e d i n G e r m a n y b e f o r e a n d d u r i n g W o r l d W a r I I , together w i t h c o n t r i b u t i o n s f r o m other sources. Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
h o t - o i l r e c y c l e v e r s i o n of this process w a s d e v e l o p e d D u f t s c h m i d a n d co-workers
The
i n the 1930s b y
at I. G . F a r b e n i n d u s t r i e ; t h e y r e l i e d o n
e v a p o r a t i v e c o o l i n g of the hot o i l to r e m o v e a p o r t i o n of the h e a t b y u t i l i z i n g c o c u r r e n t u p f l o w t h r o u g h t h e catalyst b e d .
A later v e r s i o n of
t h e U n i t e d States B u r e a u of M i n e s also o p e r a t e d b y c o c u r r e n t u p f l o w b u t w i t h l i t t l e or no e v a p o r a t i v e c o o l i n g , a n d i t w a s r e g a r d e d as p r o b a b l y m o r e efficient. It w a s r e p o r t e d that this f o r m of c o n t a c t i n g gives better temperature control than trickle-type operation, but the upflow version w a s s h o r t l y thereafter s u p e r s e d e d b y a n e b u l l i a t i n g b e d reactor b e c a u s e of difficulties w i t h catalyst c e m e n t a t i o n i n the fixed b e d .
T h e industrial
scale F i s c h e r - T r o p s c h processes u s e d i n G e r m a n y a n d elsewhere a l l i n v o l v e d c o m p l e t e l y v a p o r - p h a s e o p e r a t i o n , b u t the o i l - r e c y c l e process w a s s t u d i e d i n G e r m a n y i n converters as l a r g e as 50 f t
3
and by
the
U n i t e d States B u r e a u of M i n e s i n a 5 0 - b b l / d a y c a p a c i t y p l a n t ( 5 , 6, 7 ) . A process for synthesis of b u t y n e d i o l ( H O C H C = = C C H O H ) f r o m 2
2
aqueous f o r m a l d e h y d e a n d acetylene uses t r i c k l e b e d flow over a c o p p e r a c e t y l i d e catalyst a n d r e c y c l e of the p r o d u c t s t r e a m for heat r e m o v a l . O n e i n d u s t r i a l reactor was r e p o r t e d to b e 58.5 ft h i g h a n d 4.9 ft i n d i a m e t e r ( 8 ). O t h e r t r i c k l e b e d studies of this r e a c t i o n are g i v e n b y B i l l , a reported by B o n d i (9). K r o n i g ( J O ) d e s c r i b e d a t r i c k l e b e d process t h a t is u s e d i n one or m o r e c o m m e r c i a l plants for selective hydrogénation of acetylene i n o r d e r to r e m o v e i t i n the presence of b u t a d i e n e i n C O p e r a t i o n at 1 0 - 2 0 ° C a n d 2 - 6
kg/cm
2
4
h y d r o c a r b o n streams.
pressure a l l o w s l i q u i d - p h a s e
p r o c e s s i n g w h i c h r e p o r t e d l y gives l o n g catalyst l i f e , u n l i k e
gas-phase
p r o c e s s i n g i n w h i c h p o l y m e r s r a p i d l y b u i l d u p o n the catalyst. A p a t e n t b y P o r t e r (11)
describes some i n t e r e s t i n g o p e r a t i n g aspects
of a t r i c k l e b e d catalyst h y d r o g e n a t o r u s e d to convert a n a l k y l a n t h r a q u i n o n e to the h y d r o q u i n o n e f o r m , w h i c h is one step i n a c y c l i c process for manufacturing hydrogen peroxide.
( U p o n subsequent contact w i t h
o x y g e n , t h e h y d r o q u i n o n e y i e l d s the q u i n o n e p l u s h y d r o g e n
peroxide,
a n d the q u i n o n e is t h e n r e c y c l e d . )
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
3.
SATTERFIELD
Trickle
Bed
53
Reactors
Recent Experimental Studies.
I n v i e w of t h e w i d e s p r e a d use
of
t r i c k l e b e d reactors o n a v e r y l a r g e scale i n the p e t r o l e u m i n d u s t r y , it is s u r p r i s i n g t h a t so l i t t l e w a s p u b l i s h e d a b o u t the d e v e l o p m e n t , and
o p e r a t i o n of this t y p e of reactor.
design,
A u s e f u l g e n e r a l r e v i e w of
l i q u i d - p a r t i c l e operations b y 0 s t e r g a a r d (12)
gas-
cites the l i t e r a t u r e u p to
a b o u t 1965-1966 o n c o n t a c t i n g b e t w e e n a gas a n d a l i q u i d i n fixed beds. U n f o r t u n a t e l y for present purposes, most of this l i t e r a t u r e is m o r e r e l e v a n t to a b s o r p t i o n systems t h a n to c h e m i c a l reactors. l a b o r a t o r y scale
studies of
reactors w e r e r e p o r t e d (see
specific
A small number
c h e m i c a l reactions
T a b l e I w h i c h also i n c l u d e s a recent, r e p r e -
sentative, l a b o r a t o r y scale, p e t r o l e u m p r o c e s s i n g s t u d y ) . Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
of
in trickle-bed A number
of
other l a b o r a t o r y or p i l o t p l a n t scale studies of p e t r o l e u m r e f i n i n g r e a c tions w e r e d e s c r i b e d b y H e n r y a n d G i l b e r t (23), w h i c h are s u m m a r i z e d i n T a b l e I I .
the most p e r t i n e n t of
I n some t r i c k l e b e d
studies
of
c h e m i c a l reactions, a t t e n t i o n w a s d i r e c t e d p r i m a r i l y to c a t a l y t i c b e h a v i o r or c h e m i c a l k i n e t i c s , a n d these investigations h a v e b e e n o m i t t e d unless some p o r t i o n of t h e w o r k focussed o n p h y s i c a l effects. Comparison with Slurry Reactors. fixed
b e d w i t h two-phase
flow,
T h e p r i n c i p a l a l t e r n a t i v e to a
either u p w a r d or d o w n w a r d , is a s l u r r y
reactor or e b u l l i a t i n g b e d i n w h i c h t h e catalyst p a r t i c l e s , w h i c h m u s t b e s u b s t a n t i a l l y s m a l l e r , are i n m o t i o n .
T h e s e are also sometimes
termed
three-phase fluidized b e d reactors or s u s p e n d e d b e d reactors. T h e s e h a v e the following advantages: temperature control, ( b )
(a)
a h i g h heat c a p a c i t y to p r o v i d e
good
a p o t e n t i a l l y h i g h r a t e of r e a c t i o n p e r u n i t
v o l u m e of reactor i f the catalyst is h i g h l y a c t i v e , ( c ) easy h e a t r e c o v e r y , (d)
a d a p a b i l i t y to either b a t c h or flow p r o c e s s i n g , ( e )
a catalyst that
is r e a d i l y r e m o v e d a n d r e p l a c e d i f its w o r k i n g l i f e is r e l a t i v e l y short, and
(f)
p o s s i b l e o p e r a t i o n at catalyst effectiveness
factors
approaching
u n i t y w h i c h is of s p e c i a l i m p o r t a n c e i f d i f f u s i o n l i m i t a t i o n s cause r a p i d catalyst d e g r a d a t i o n or p o o r e r selectivity. follows:
(a)
T h e i r disadvantages
are as
the residence t i m e d i s t r i b u t i o n patterns are close to those
of a C S T R w h i c h makes i t difficult to o b t a i n h i g h degrees of c o n v e r s i o n except b y s t a g i n g ; ( b )
catalyst r e m o v a l b y
filtration
m a y pose p r o b l e m s
w i t h possible p l u g g i n g difficulties w i t h filters ( a n d the costs of
filtering
systems m a y b e a s u b s t a n t i a l p o r t i o n of the c a p i t a l i n v e s t m e n t ) ; a n d ( c ) t h e h i g h r a t i o of l i q u i d to s o l i d i n a s l u r r y reactor a l l o w s h o m o g e n e ous side reactions to b e c o m e m o r e i m p o r t a n t , i f a n y are possible. I n the t r i c k l e b e d reactor, the catalyst b e d is fixed, the flow p a t t e r n is m u c h closer to p l u g flow, a n d the r a t i o of l i q u i d to s o l i d present is m u c h smaller. I f heat effects are s u b s t a n t i a l , t h e y c a n b e c o n t r o l l e d b y r e c y c l e of t h e l i q u i d p r o d u c t s t r e a m a l t h o u g h this m a y n o t b e p r a c t i c a l if a v e r y h i g h p e r c e n t c o n v e r s i o n is d e s i r e d ( as i n h y d r o d e s u l f u r i z a t i o n ) or i f the p r o d u c t is n o t r e l a t i v e l y stable u n d e r r e a c t i o n c o n d i t i o n s .
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
The
54
CHEMICAL REACTION
ENGINEERING
Table I.
Reaction
Recent
Reference
O x i d a t i o n of S 0 on w e t t e d C Hydrogénation of c r o t o n a l d e h y d e I s o m e r i z a t i o n of c y c l o p r o p a n e Hydrogénation of « - C H styrene Hydrogénation of benzene Hydrogénation of « - C H styrene Hydrotreating 2
3
3
Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
REVIEWS
H a r t m a n & C o u g h l i n (13) K e n n e y & S e d r i c k s (14,15) Way (16,17) Pelossof {18,19) S a t t e r f i e l d & O z e l (20) G e r m a i n , et al. {21) M e a r s (22) * b
d
F o r ρ = 1.0, 1 k g / m sec = 0.1 cm/se c. Flow over a vertical string of spheres, L calculated for a bed of spheres touching in a square pattern. e
2
6
Table II.
Pertinent Laboratory Scale Petroleum
Reaction
Reference
H y d r o c r a c k i n g of a h e a v y gas o i l H y d r o d e n i t r o g e n a t i o n of v a r i o u s compounds and of a c a t a l y t i c a l l y c r a c k e d l i g h t furnace o i l H y d r o d e n i t r o g e n a t i o n of a lube o i l d i s t i l l a t e
H e n r y & G i l b e r t (23) F l i n n , et al. (24)
Hydrogénation of a r o m a t i c s i n a n a p h t h e n i c lube o i l d i s t i l l a t e
Henry & Gilbert
a
Gilbert & Kartzmark
°There are no data points in original reference; recorded.
(25)
(23)
highest flow rates were not
m o s t c o m m o n t y p e of t r i c k l e b e d p r o c e s s i n g is hydrogénation, a n d most of the subsequent d i s c u s s i o n refers to this t y p e of r e a c t i o n . T h e other r e a c t a n t m a y be essentially a l l i n t h e l i q u i d p h a s e or i n b o t h the l i q u i d and
t h e gas phases, a n d the d i s t r i b u t i o n of reactant a n d p r o d u c t s
t w e e n gas a n d l i q u i d phases m a y v a r y w i t h d e g r e e of c o n v e r s i o n .
beIn a
f e w c i r c u m s t a n c e s , as i n some versions of the F i s c h e r - T r o p s c h process, the l i q u i d is i n e r t a n d serves as a heat-transfer m e d i u m , a n d the r e a c t i o n occurs b e t w e e n reactants i n s o l u t i o n a n d the catalyst. Industrial Operating Conditions. T r i c k l e b e d reactors i n the p e t r o l e u m i n d u s t r y m a y b e o p e r a t e d u n d e r a w i d e v a r i e t y of c o n d i t i o n s t h a t d e p e n d o n t h e properties of the feedstock a n d the n a t u r e of the r e a c t i o n . T h e less r e a c t i v e fractions, w h i c h t e n d to b e i n the h i g h e r b o i l i n g r a n g e and
m o r e viscous at a m b i e n t temperatures, are t y p i c a l l y processed
at
the l o w e r l i q u i d flow rates. R e p r e s e n t a t i v e s u p e r f i c i a l l i q u i d velocities, L , are 1 0 - 1 0 0 f t / h r ( 0 . 8 3 - 8 . 3 k g / m
2
sec for a d e n s i t y of 1) f o r l u b r i c a t -
i n g oils, h e a v y gas oils, a n d r e s i d u a l fractions a n d 1 0 0 - 3 0 0 f t / h r ( 8 . 3 - 2 5
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
3.
SATTERFIELD
Trickle
Bed
Reactors
55
Laboratory Scale Studies Superficial Flow kg/m
Liquid Rate; sec
2
Gas Flow Rate kg X V J m sec 3
2
Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
0.0043-0.06 0.038 0.26-2.1 1.4-8.7 0.9-3.0 0.08-1.6 0.19-0.76 c
15.4 0.47 3-28
- 0.04^8
28° 0.14-3.3 1.6-7.2
16-55 2-8
G for H plus benzene vapor. Countercurrent flow. A t 100 atm pressure; all other studies at 1 atm. 2
d e
Refining Studies Cited by H e n r y and Gilbert (23) L , kg/m
2
sec
Conversion,
0.07-0.5 lowest : 0.07 l o w e s t : ' 0.035
61-20 9 9 . 8 % [furnace o i l reacted at 371 ° C ( 7 0 0 ° F ) ] 8 0 % [ q u i n o l i n e reacted at 3 1 6 ° C ( 6 0 0 ° F ) ]
a
0.025-0.14 0.025-0.06 0.03-0.25
9 7 - 7 0 % (low t e m p e r a t u r e reaction) 9 8 . 5 - 9 5 % (high t e m p e r a t u r e reaction) 8 0 - 3 0 % (low pressure) 9 5 - 4 0 % (high pressure)
6 6
b
b
%
Taking reactor height as 3 ft; true height was not published.
kg/m
2
sec) for n a p h t h a fractions w h e n c a l c u l a t e d w i t h the a s s u m p t i o n
that the f e e d is e n t i r e l y i n t h e l i q u i d phase.
F o r l i g h t e r fractions, this
is not g e n e r a l l y the case, a n d m u c h of the f e e d is a c t u a l l y present as vapor. T h e hydrogen terms of v o l u m e of H
2
flow-to-liquid
flow
r a t i o is c o m m o n l y expressed i n
[expressed i n s t a n d a r d c u b i c feet (scf ) at s t a n d a r d
t e m p e r a t u r e a n d pressure ( S T P ) ] p e r b a r r e l of f e e d p r o c e s s e d The
(scf/bbl).
s u p e r f i c i a l gas flow rate, G , becomes a b o u t (L) ( s c f / b b l ) G = 5.6 n
w h e r e L is l i k e w i s e i n c m / s e c .
/ cm/sec
R e p r e s e n t a t i v e values are
2000-3000
s c f / b b l for h y d r o d e s u l f u r i z a t i o n of a h e a v y gas o i l , 5000 s c f / b b l
for
h y d r o d e s u l f u r i z a t i o n of a h e a v y r e s i d u e , a n d 5000-10,000 s c f / b b l for a hydrocracker.
F o r m i l d h y d r o g e n t r e a t m e n t , h y d r o f i n i s h i n g , the h y d r o -
gen-to-feedstock
ratios m a y b e c o n s i d e r a b l y s m a l l e r .
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
56
C H E M I C A L REACTION ENGINEERING REVIEWS
L i s t e r ( 3 ) s u m m a r i z e d the characteristics of seven B r i t i s h P e t r o l e u m C o . d e s u l f u r i z e r s that w e r e d e s i g n e d b e t w e e n 1952 a n d 1962. O p e r a t i n g c o n d i t i o n s r a n g e as f o l l o w s :
l i q u i d h o u r l y space v e l o c i t y
(volume
of
l i q u i d f e d e a c h h o u r p e r v o l u m e of r e a c t o r ) , L H S V , 1.4-8.0 h r " ; oper1
a t i n g t e m p e r a t u r e , 6 9 0 ° - 7 9 0 ° F ( 3 6 5 ° - 4 2 0 ° C ) ; pressure, 50O-1000 p s i g ; r e c y c l e r a t e , 1000-4000 s c f / b b l ; a n d s i n g l e catalyst b e d d e p t h , 8 - 2 1 ft. O n e reactor consisted of t h r e e beds, e a c h 10 ft 10 i n . d e e p ; a s e c o n d u n i t consisted of three i d e n t i c a l reactors
i n series, e a c h
8 ft 9 i n . deep.
R e a c t o r d i a m e t e r s r a n g e d f r o m 4 to 7 ft. Present d a y units m a y be considerably larger, a n d m u l t i p l e - b e d Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
reactors
are f r e q u e n t l y
used.
The
q u a n t i t y of
catalyst is t y p i c a l l y
d i v i d e d i n t o one to five beds, e a c h 1 0 - 2 0 ft d e e p ; i n m u l t i p l e - b e d reactors, h y d r o g e n is i n j e c t e d b e t w e e n the beds for t e m p e r a t u r e c o n t r o l — s o - c a l l e d c o l d shot c o o l i n g .
I n m u l t i p l e - b e d reactors, the catalyst beds m a y
be
e q u a l i n d e p t h . M o r e c o m m o n l y , t h e y increase i n d e p t h as t h e r e a c t i o n p r o c e e d s , a n d the q u a n t i t y of h y d r o g e n i n j e c t e d at e a c h p o i n t is a d j u s t e d i n order to a c h i e v e the d e s i r e d a x i a l t e m p e r a t u r e profile w h i c h is s p e c i fied so as to l i m i t the a d i a b a t i c t e m p e r a t u r e rise a l o n g e a c h b e d to s o m e maximum
[ t y p i c a l l y ~ 2 8 ° C ( 5 0 ° F ) or l e s s ] .
thus increases w i t h
flow
T h e gas-to-liquid ratio
t h r o u g h successive b e d s , a n d the a m o u n t
gas i n j e c t e d for c o o l i n g c a n r e a d i l y e x c e e d t h a t f u r n i s h e d i n i t i a l l y . q u a n t i t y of H
2
f u r n i s h e d u s u a l l y far exceeds t h a t n e e d e d
of The
for s t o i c h i o -
m e t r i c r e a c t i o n , a n d i t is u s u a l l y d e t e r m i n e d p r i m a r i l y b y t h e r e q u i r e ments for t e m p e r a t u r e c o n t r o l a n d p e r h a p s sometimes to h e l p better l i q u i d h e i g h t of
d i s t r i b u t i o n or to p r o l o n g
a single catalyst b e d
catalyst life.
The
achieve
maximum
is d e t e r m i n e d b y t h e i m p o r t a n c e
of
a c h i e v i n g r e d i s t r i b u t i o n of l i q u i d a n d gas after some l i m i t i n g b e d d e p t h is t r a v e r s e d or b y the c r u s h i n g strength of the catalyst. I n present p r a c t i c e , this m a x i m u m seems to b e a b o u t 2 0 - 2 5 ft. R e p r e s e n t a t i v e o p e r a t i n g c o n d i t i o n s for p e t r o l e u m r e f i n i n g processes are t y p i c a l l y t o t a l pressures of 5 0 0 - 1 5 0 0
psi (substantially higher i n a
f e w cases) a n d t e m p e r a t u r e s of 3 4 5 ° - 4 2 5 ° C
(650°-800°F).
Catalyst
p a r t i c l e s are t y p i c a l l y 1 / 8 - 1 / 3 2 i n . ( 0 . 3 2 - 0 . 0 8 c m ) i n d i a m e t e r . O f c o n s i d e r a b l e i m p o r t a n c e i n a n a l y z i n g d a t a o n t r i c k l e b e d reactors is t h e fact t h a t i n p i l o t p l a n t s the 2 - 6 - f t h i g h reactors diameter)
(1-1.5 in. in
are t y p i c a l l y o p e r a t e d at a b o u t the same L H S V
as is u s e d
c o m m e r c i a l l y . F o r a specified v a l u e of L H S V , the t r u e l i q u i d s u p e r f i c i a l v e l o c i t y is thus p r o p o r t i o n a l to r e a c t o r
length.
A
large
commercial
r e a c t o r of r e c e n t d e s i g n m a y h a v e as m u c h as 6 0 - 8 0 ft t o t a l d e p t h of catalyst; d a t a f o r this scale-up m a y h a v e b e e n o b t a i n e d i n a p i l o t u n i t at the same L H S V b u t therefore at 1 / 1 0 - 1 / 1 5 of the s u p e r f i c i a l l i q u i d
flow
rate a n d at a c o r r e s p o n d i n g l y l o w e r gas rate. S i n c e the p i l o t u n i t a n d the
commercial
unit may
operate
under
somewhat
different
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
hydro-
3.
SATTERFIELD
Trickle
57
Bed Reactors
d y n a m i c flow c o n d i t i o n s , t h e i r c o n t a c t i n g efficiencies m a y b e s i g n i f i c a n t l y different.
I n most reports o f l a b o r a t o r y studies o f a n y t y p e o f r e a c t i o n ,
the l i q u i d a n d gas flow rates w e r e m u c h l o w e r t h a n those u s e d
com-
m e r c i a l l y (see T a b l e s I , I I , a n d I I I ) . S o m e o f t h e r e c e n t l y r e p o r t e d l a b o r a t o r y scale studies i n v o l v e d r a p i d e x o t h e r m i c reactions at l o w l i q u i d flow rates; c o n s e q u e n t l y , heat effects w e r e e s p e c i a l l y significant. C a t a l y s t pellets w e r e o n l y p a r t i a l l y w e t t e d , a n d reactants w e r e r e l a t i v e l y v o l a t i l e so that r e a c t i o n o c c u r r e d i n b o t h l i q u i d a n d v a p o r phases (see
below).
T h e b e h a v i o r o f these systems m a y b e s i g n i f i c a n t l y different f r o m those i n w h i c h the r e a c t a n t is e x c l u s i v e l y i n t h e l i q u i d phase ( to w h i c h subseDownloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
quent discussion pertains).
Table III.
Representative Limiting Flow Conditions for Petroleum Processing Superficial
Reactor
Liquid
kg/m
ft/hr
2
Superficial Gas Velocity kg/m sec" 0
sec
0
to 25.0
300 Pilot plant
0.083
1
6
to 2.5
30
2
0.0132 0.066 0.395 1.97 0.0013 0.0066 0.0395 0.197
0.83
10
Commercial
Velocity
"Values of G were calculated for 1000 and 5000 scf H / b b l ; it was assumed that all hydrocarbon is in the liquid phase. Length of pilot plant reactor was assumed to be 1/10 that of commercial reactor. 2
6
0
1 l b / h r ft = 1 . 3 6 X 10" k g / m sec. 2
3
2
A n o t h e r p r e c a u t i o n i n i n t e r p r e t a t i o n stems f r o m t h e fact t h a t a l m o s t a l l o f the p u b l i s h e d i n f o r m a t i o n o n p e r f o r m a n c e o f i n d u s t r i a l t r i c k l e b e d reactors has dealt w i t h p e t r o l e u m refinery operations s u c h as h y d r o d e sulfurization. reactivities, kinetics.
T h e w i d e s p e c t r u m o f c o m p o u n d s present, w i t h different requires
some
arbitrariness i n describing
the intrinsic
F o r five fractions of a flashed p e t r o l e u m d i s t i l l a t e , B o n d i ( 9 )
r e p o r t e d h y d r o d e s u l f u r i z a t i o n d i f f e r e n t i a l r e a c t i o n rates over a C o / M o / A1 0 2
and
3
catalyst t h a t v a r i e d b y as m u c h as a f a c t o r o f 4 at 4 0 %
conversion
b y a factor o f 7 o r so a t 8 0 % c o n v e r s i o n . I f these a r e a l l t r e a t e d as
one c o m p o u n d i n reactor analysis, t h e effect is t o increase t h e a p p a r e n t o r d e r o f r e a c t i o n . A m i x t u r e o f s e v e r a l species w i t h different r e a c t i v i t y ,
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
58
CHEMICAL
each exhibiting true
first-order
REACTION ENGINEERING REVIEWS
k i n e t i c s , appears to f o l l o w s o m e h i g h e r
o r d e r r e a c t i o n o v e r a w i d e r a n g e of c o n v e r s i o n since the less r e a c t i v e species persist l o n g e r t h a n the m o r e r e a c t i v e ones. O n t h e other h a n d , a group
of
species
w i t h similar reactivity can frequently be
a d e q u a t e l y w h e n t h e y are d e e m e d to f o l l o w l i m i t e d r a n g e of c o n v e r s i o n .
first-order
treated
kinetics over a
T h e best p r o c e d u r e to f o l l o w varies w i t h
circumstances.
Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
Models for
Design and
Analysis
The Ideal T r i c k l e Bed Reactor.
T h e analysis of t r i c k l e b e d
per
f o r m a n c e u n d e r i d e a l circustances a n d w i t h the a s s u m p t i o n of s i m p l e first-order cases.
k i n e t i c s p r o v i d e s a p o i n t of d e p a r t u r e for analysis of
W e assume the f o l l o w i n g : ( a )
real
p l u g flow of l i q u i d , i.e. n o d i s
p e r s i o n i n t h e a x i a l or r a d i a l d i r e c t i o n ; ( b )
no mass or h e a t t r a n s f e r
l i m i t a t i o n s b e t w e e n gas a n d l i q u i d , b e t w e e n l i q u i d a n d s o l i d catalyst, or i n s i d e catalyst p a r t i c l e s ( t h e l i q u i d s a t u r a t e d w i t h gas at a l l t i m e s ) ; (c)
first-order
i s o t h e r m a l , i r r e v e r s i b l e r e a c t i o n w i t h respect to
(gaseous r e a c t a n t present i n great e x c e s s ) ; pletely bathed w i t h liquid; phase; and (f)
(e)
(d)
catalyst pellets
liquid com
t h e r e a c t a n t c o m p l e t e l y i n the l i q u i d
n o v a p o r i z a t i o n or c o n d e n s a t i o n .
I f w e c o n s i d e r a d i f f e r e n t i a l v o l u m e e l e m e n t across the r e a c t o r a n d set the rate of r e a c t i o n i n t h a t element e q u a l to the d i s a p p e a r a n c e of r e a c t a n t as t h e l i q u i d passes t h r o u g h the element, t h e n : Fc dx
=
in
where F =
l i q u i d flow r a t e i n c m / s e c , c 3
i n entering l i q u i d i n m o l e s / c m , χ = 3
dV = of
rdV
(1)
i n
=
c o n c e n t r a t i o n of r e a c t a n t
f r a c t i o n a l c o n v e r s i o n of r e a c t a n t ,
r e a c t o r v o l u m e i n slice u n d e r c o n s i d e r a t i o n i n c m , a n d r = 3
reaction i n moles/sec
cm
3
of
reactor volume.
rate
I f the r e a c t i o n is
first-order: fc c(l
r = where it =
v
c m of l i q u i d / c m of catalyst p e l l e t v o l u m e sec. 3
v
(2)
— c)
3
Substituting
E q u a t i o n 2 i n E q u a t i o n 1, w e o b t a i n Fc dx in
Since c =
c
i n
(1 —
=
fc (l v
—
e)cdv
x),
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
3.
Trickle
SATTERFIELD
59
Bed Reactors
or , l
c n
V
i n
^
F
=
fe (l
-c)
T
M
1
-
i
3600fc (l - « )
.
Y
LHSV
Lfh
)
(
3
)
w h e r e V is the v o l u m e of t h e t r i c k l e b e d p a c k e d w i t h catalyst. If t h e same s i m p l i f y i n g assumptions a g a i n h o l d , w e s h o u l d b e a b l e to o b t a i n t h e same values o f t h e r e a c t i o n rate constant k
Y
i n a s t i r r e d autoclave.
f r o m studies
I n the autoclave, w e measure change i n concen-
t r a t i o n w i t h t i m e whereas i n t h e t r i c k l e b e d reactor t h e c h a n g e is i n Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
c o n c e n t r a t i o n w i t h distance. H o w e v e r , t h e a u t o c l a v e a n d t h e t r i c k l e b e d reactor s h o u l d g i v e t h e same v a l u e of k
because t h e r e is a one-to-one
v
c o r r e l a t i o n b e t w e e n t i m e i n t h e autoclave a n d d i s t a n c e t r a v e r s e d i n t h e t r i c k l e b e d . ( F o r a specified f l o w rate, t h e distance t r a v e r s e d is i n v e r s e l y p r o p o r t i o n a l to t h e d y n a m i c l i q u i d h o l d u p , b u t i t is unnecessary t o k n o w this i n t h e i d e a l cease—see subsequent
d i s c u s s i o n o n residence
time
distribution. ) I n the a u t o c l a v e : _
de _
r(v
cat
dt
+ v)
^
m
Vu
q
w h e r e r is m o l e s / ( s e c ) ( c m l i q u i d + c m catalyst i n a u t o c l a v e ) , t> 3
3
v o l u m e of catalyst pellets i n a u t o c l a v e i n c m , v 3
autoclave i n c m , a n d t = 3
m
cat
=
= v o l u m e of l i q u i d i n
t i m e i n sec. B y s u b s t i t u t i n g E q u a t i o n 2 i n
E q u a t i o n 4, w h e r e ( 1 — c) is n o w t h e v o l u m e f r a c t i o n of s o l i d catalyst i n t h e l i q u i d s l u r r y i n the a u t o c l a v e , w e o b t a i n :
dt v
cat
Integration gives:
Although i n principle k
Y
^i"it
Vcatkyt
C final
^liq
from Equation 5 should equal k
y
E q u a t i o n 3, i n p r a c t i c e t h a t d e r i v e d f r o m
from
E q u a t i o n 5 is f r e q u e n t l y
greater t h a n that c a l c u l a t e d f r o m t r i c k l e b e d studies because o f a loss of c o n t a c t i n g effectiveness i n t h e t r i c k l e b e d . B e f o r e this c o n c e p t is d i s c u s s e d , h o w e v e r , other p o s s i b l e reasons f o r these differences s h o u l d b e n o t e d .
Homogeneous
reactions, i f t h e y are
possible, are more likely to be encountered i n the autoclave than i n the t r i c k l e b e d b e c a u s e of the m u c h h i g h e r r a t i o of l i q u i d to catalyst v o l u m e . T h i s c o u l d p o s s i b l y l e a d to v a r i o u s unforeseen
consequences s u c h as
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
60
C H E M I C A L REACTION ENGINEERING REVIEWS
m o r e f o r m a t i o n of s i d e - p r o d u c t a n d p o l y m e r s t h a t m i g h t b l o c k
pores.
C a t a l y s t p o i s o n i n g w o u l d also p r o b a b l y cause t h e t w o r e a c t o r systems to b e h a v e differently. I n the a u t o c l a v e , p o i s o n i n g w o u l d o c c u r u n i f o r m l y o v e r a l l the catalyst p a r t i c l e s w h e r e a s i n the t r i c k l e b e d poisons w o u l d u s u a l l y be
adsorbed
p r e f e r e n t i a l l y onto the top-most
catalyst layers
l e a v i n g most of the b e d c l e a n for t h e m a i n r e a c t i o n . T h e net effect c o u l d w e l l be a slower drop i n reactivity w i t h time i n the trickle b e d than w o u l d be e x p e c t e d f r o m the a u t o c l a v e studies. T h e d i s t r i b u t i o n of p o i s o n t h r o u g h a n i n d i v i d u a l catalyst p a r t i c l e m a y also b e a f u n c t i o n of p a r t i c l e s i z e as w e l l as of t i m e a n d e n v i r o n m e n t . Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
I f the r e a c t i o n is n o t a c t u a l l y
first-order,
the values of k
v
as c a l c u -
l a t e d f r o m E q u a t i o n s 3 a n d 5 s h o u l d b e t h e same i f the other a s s u m p tions h o l d a n d i f c o m p a r i s o n is b e i n g m a d e for the same i n i t i a l a n d concentrations.
I n g e n e r a l this m a y n o t b e the case, b u t , f o r
final many
systems of interest w h e r e a h i g h percent of c o n v e r s i o n is n o t r e q u i r e d , t h e k i n e t i c s of the r e a c t i o n m a y be r e p r e s e n t e d satisfactorily as a
first-
o r d e r process e v e n w h e n the t r u e k i n e t i c s are s u b s t a n t i a l l y different. E q u a t i o n 3 is the same expression t h a t is o b t a i n e d for single-phase f l o w except t h a t k
y
is b a s e d o n catalyst p e l l e t v o l u m e a n d h e n c e a f a c t o r
( 1 — c ) appears. N o t e t h a t l i q u i d h o l d u p as s u c h , or t h e t r u e r e s i d e n c e t i m e of l i q u i d i n t h e reactor, does n o t a p p e a r i n this expression. N e i t h e r does the aspect r a t i o of t h e reactor ( r a t i o of l e n g t h to d i a m e t e r ) .
The
significance of these points is discussed b e l o w . Contacting
Effectiveness
A t sufficiently l o w l i q u i d a n d gas flow rates, the l i q u i d t r i c k l e s over t h e p a c k i n g i n essentially a l a m i n a r film or i n r i v u l e t s , a n d t h e gas c o n t i n u o u s l y t h r o u g h the v o i d s i n the b e d .
T h i s is sometimes
flows
termed
the gas c o n t i n u o u s r e g i o n or h o m o g e n e o u s flow, a n d i t is the t y p e that is u s u a l l y e n c o u n t e r e d i n l a b o r a t o r y a n d p i l o t scale operations.
A s gas
a n d / o r l i q u i d flow rates are i n c r e a s e d , one encounters b e h a v i o r w h i c h is d e s c r i b e d as r i p p l i n g , s l u g g i n g , or p u l s i n g
flow,
a n d this m a y
c h a r a c t e r i s t i c of t h e h i g h e r o p e r a t i n g rates e n c o u n t e r e d
be
in petroleum
p r o c e s s i n g . A t h i g h l i q u i d rates a n d sufficiently l o w gas rates, the l i q u i d p h a s e becomes continuous a n d the gas passes i n the f o r m of b u b b l e s — this is sometimes t e r m e d d i s p e r s e d b u b b l e
flow.
T h i s is c h a r a c t e r i s t i c of
some c h e m i c a l p r o c e s s i n g i n w h i c h l i q u i d rates are s u b s t a n t i a l , b u t t h e g a s - t o - l i q u i d ratios are c o n s i d e r a b l y b e l o w those e n c o u n t e r e d i n m u c h petroleum processing.
F l o w patterns a n d t h e transitions f r o m one f o r m
to a n o t h e r as a f u n c t i o n of gas a n d l i q u i d flow rates w e r e d e s c r i b e d b y s e v e r a l authors a n d w e r e r e c e n t l y s u m m a r i z e d b y Sato a n d c o - w o r k e r s (26).
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
3.
Trickle
SATTERFIELD
Bed
61
Reactors
I f d a t a are o b t a i n e d o v e r a r a n g e of l i n e a r velocities i n a t r i c k l e b e d , i t is u s u a l l y f o u n d that k
v
as c a l c u l a t e d f r o m E q u a t i o n 3 increases
as the l i q u i d flow rate is i n c r e a s e d . I n different terms, i f b o t h h a n d L are d o u b l e d
( w h i c h keeps L H S V c o n s t a n t ) , the p e r c e n t c o n v e r s i o n is
increased although E q u a t i o n 3 predicts there should be
no
change.
F u r t h e r m o r e , i n t h e absence of c o m p l i c a t i o n s as c i t e d a b o v e , the v a l u e of k at the h i g h e s t flow rates approaches the v a l u e o b t a i n e d i n a s t i r r e d y
autoclave
where
the
catalyst is c o m p l e t e l y
surrounded
with
liquid.
C l e a r l y , i n most t r i c k l e b e d reactors there is a loss i n w h a t is t e r m e d c o n t a c t i n g effectiveness
b e l o w t h a t w h i c h c a n b e o b t a i n e d i n the i d e a l
Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
reactor, a n d this loss is greatest at t h e lowest l i q u i d flow rates. I n the past, designers
of t r i c k l e b e d reactors
fact t h a t c o n t a c t i n g effectiveness
generally used
improves w i t h l i q u i d
flow
b u i l t - i n factor of safety b y s c a l i n g - u p f r o m p i l o t p l a n t to p l a n t size o n t h e basis of e q u a l values of L H S V .
the
rate as a commercial
Since commercial reac
tors m a y b e 5 - 1 0 times longer t h a n p i l o t u n i t s , this w o u l d r e s u l t i n p l a n t units o p e r a t i n g at 5 - 1 0 times the l i q u i d s u p e r f i c i a l v e l o c i t y u s e d i n the p i l o t plants for t h e same v a l u e of L H S V .
H o w e v e r , the s i t u a t i o n w a s
c o n f u s e d b y t h e f a c t that i n some cases, as r e p o r t e d b y Ross (27),
the
c o m m e r c i a l u n i t p e r f o r m e d m o r e p o o r l y t h a n t h e p i l o t p l a n t u n i t i n spite of the use of h i g h e r l i n e a r l i q u i d velocities. T h i s a p p a r e n t l y w a s c a u s e d b y p o o r e r l i q u i d d i s t r i b u t i o n a n d was c h a r a c t e r i z e d b y t h e l i q u i d h o l d u p w a s p o o r e r i n the large u n i t (27).
finding
that
(This method
of
scale-up is u n l i k e l y to i n t r o d u c e difficulties f r o m mass transfer l i m i t a t i o n s unless the catalyst p a r t i c l e size is i n c r e a s e d at the same t i m e w h i c h , h o w e v e r , the designer m a y b e t e m p t e d to d o i n o r d e r to a v o i d excessive pressure d r o p . ) L e t us n o w use the t e r m a p p a r e n t r e a c t i o n r a t e constant,
fc , app
to
refer to the v a l u e of the r e a c t i o n r a t e constant as c a l c u l a t e d f r o m E q u a t i o n 3 or the e q u i v a l e n t , a p p l i e d to results f r o m a r e a l t r i c k l e b e d , a n d r e t a i n the s y m b o l
k
y
to refer to the i n t r i n s i c v a l u e .
We
shall
now
consider m e t h o d s of p r e d i c t i n g the effect of t h e l i q u i d flow r a t e o n k . &vv
B o n d i (9) to cause fc
app
infinity.
developed
a n e m p i r i c a l r e l a t i o n s h i p of s u c h a f o r m as
to a p p r o a c h ky as t h e s u p e r f i c i a l l i q u i d v e l o c i t y
approaches
H i s e q u a t i o n , expressed i n terms of r e a c t i o n rate constants, i s : 1 app
F o r a n u m b e r of systems, 0.5 < 2/3.
ky b
k,t
A reactor efficiency c a n t h e n b e defined as ( t /1 p
t
=
Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
m
and
where t
v
m
) 100 w h e r e :
(14)
Œ(t)dt
Γ ο
is the residence t i m e as c a l c u l a t e d f r o m E q u a t i o n 13 t h a t
w o u l d p r o d u c e t h e same f r a c t i o n a l c o n v e r s i o n as t h a t f o u n d
experi
mentally. E q u a t i o n s 12 a n d 13 treat the system as t h o u g h i t w e r e h o m o g e n e o u s and
thus k' =
k (l y
— e)/H
sec" w h e r e the h o l d u p H is a s s u m e d to b e 1
constant w i t h l e n g t h a n d , strictly, n e e d not b e k n o w n . H o w e v e r , i t c a n b e c a l c u l a t e d f r o m the E(t) and
f u n c t i o n b y the expression H =
t (F/V), m
i t p r o v i d e s a u s e f u l measure of catalyst c o n t a c t i n g . F o r l a r g e c o m
m e r c i a l reactors, tracer measurements a p p e a r to be the o n l y p r a c t i c a b l e w a y to d e t e r m i n e h o l d u p . R e a c t o r efficiency c a n also b e defined e q u i v a l e n t l y as the r a t i o of the l e n g t h of a n i d e a l ( p l u g
flow)
reactor to t h a t of a r e a l
reactor
r e q u i r e d to p r o d u c e the same specified p e r c e n t c o n v e r s i o n w h e r e the true v a l u e of k' c a n b e c a l c u l a t e d f r o m E q u a t i o n 12. A n e x a m p l e of t h e use of this m e t h o d to a n a l y z e t r i c k l e b e d p e r f o r m a n c e M u r p h r e e et al.
(32).
For 90%
p i l o t reactor o p e r a t e d at 9 0 %
efficiency a n d t h a t a c o m m e r c i a l d e s u l -
f u r i z a t i o n reactor o p e r a t e d at 4 0 - 6 0 % poor operation and 7 0 - 8 0 %
was g i v e n b y
c o n v e r s i o n , t h e y f o u n d that a s m a l l efficiency u n d e r c o n d i t i o n s
of
efficiency u n d e r g o o d o p e r a t i n g c o n d i t i o n s .
T h e same m e t h o d of analysis was also a p p l i e d b y C e c i l et al. (33)
in a
s t u d y of the d e s u l f u r i z a t i o n of gas o i l or r e s i d u a l f u e l o i l i n a s m a l l p i l o t r e a c t o r at l i q u i d rates of 3 5 - 1 5 0 0 l b / h r f t
2
( a b o u t 0.05-2.2 k g / m
2
sec).
T h e c o n c e p t of reactor efficiency as u s e d h e r e m a y b e subject t o m i s i n t e r p r e t a t i o n since i t is v e r y sensitive to t h e p e r c e n t c o n v e r s i o n
chosen
for c o m p a r i s o n at h i g h degrees of c o n v e r s i o n . T h u s , a m o d e r a t e degree of d e v i a t i o n f r o m p l u g flow b e h a v i o r c a n be i n s i g n i f i c a n t at 9 0 % v e r s i o n b u t serious at 9 9 %
con
conversion.
T h i s a p p r o a c h demonstrates the effect of R T D o n reactor
effective
ness, b u t i t does not address itself d i r e c t l y to c o n t a c t i n g per se; the p o r t i o n of the b e d that is not c o n t a c t e d effectively cannot b e i d e n t i f i e d .
The
use of E q u a t i o n s 12 a n d 13 is r i g o r o u s l y correct i f t h e r e a c t i o n is s t r i c t l y
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
68
C H E M I C A L REACTION ENGINEERING REVIEWS
first-order
a n d i f t h e r e are n o r a d i a l c o n c e n t r a t i o n gradients. A s e m p h a
sized b y Schwartz and Roberts
(34),
the d e s i r e d R T D is t h a t of
the
l i q u i d e x t e r n a l to the catalyst pores, b u t a tracer m e a s u r e m e n t u s e d to d e t e r m i n e t h e Ε ( ΐ ) c u r v e w i l l u s u a l l y i n c l u d e as w e l l some c o n t r i b u t i o n f r o m the l a r g e i n t e r n a l h o l d u p w h i c h exhibits itself i n t h e f o r m
of
increased tailing. A x i a l Dispersion. A s a n a l t e r n a t i v e to the use of R T D , s m a l l d e v i a tions f r o m p l u g flow c a n b e d e s c r i b e d i n s t e a d b y the a x i a l d i s p e r s i o n m o d e l w h i c h i n v o l v e s o n l y one p a r a m e t e r , the a x i a l d i s p e r s i o n coefficient, w h i c h is u s u a l l y expressed as a P e c l e t n u m b e r . T h e d i s p e r s i o n coefficient Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
is o b t a i n e d b y a s s u m i n g t h a t a l l the m i x i n g processes i n v o l v e d f o l l o w the same f u n c t i o n a l r e l a t i o n s h i p as F i c k ' s l a w s regardless of the a c t u a l m e c h a n i s m , a n a s s u m p t i o n that becomes i n c r e a s i n g l y d u b i o u s w i t h l a r g e degrees of d e v i a t i o n f r o m p l u g flow b e h a v i o r . R T D measurements i n t r i c k l e b e d s are better fitted b y a t w o - p a r a m e t e r cross-flow m o d e l s u c h as that u s e d b y H o o g e n d o o r n a n d L i p s ( 3 5 ) , H o c h m a n a n d E f f r o n ( 3 6 ) , a n d others. T h i s m o d e l assumes that the h o l d u p consists of stagnant pockets a n d l i q u i d i n p l u g flow, a n d the t w o adjustable p a r a m e t e r s are t h e f r a c t i o n of t h e t o t a l l i q u i d i n p l u g flow a n d a n e x c h a n g e coefficient. Roberts
(34)
Schwartz and
m a d e a d e t a i l e d c o m p a r i s o n of the effect o n p r e d i c t e d
reactor performance
of v a r i o u s R T D d a t a c o r r e l a t e d i n terms of
the
d i s p e r s i o n m o d e l vs. the cross-flow or a n e q u i v a l e n t m o d e l . I f one takes the R T D d a t a of H o c h m a n a n d E f f r o n , w h i c h are p r o v i d e d i n b o t h f o r m s , for representative reactor cases c o r r e s p o n d i n g to R e
L
values of
8 a n d 66, t h e r a t i o of r e q u i r e d catalyst v o l u m e c a l c u l a t e d b y the d i s p e r s i o n m o d e l to that c a l c u l a t e d b y the cross-flow m o d e l is 1.03-1.09 at 80%
c o n v e r s i o n a n d 1.11-1.22 at 9 0 %
conversion.
T h i s suggests that
t h e a x i a l d i s p e r s i o n m o d e l m a y b e the m o r e conservative i n general. It is also a d e q u a t e for i n i t i a l estimates- as to w h e t h e r d e v i a t i o n f r o m p l u g flow w i l l b e significant i n a n y specific case. M e a r s (22, h/d
v
28)
presents the f o l l o w i n g c r i t e r i o n for the m i n i m u m
r a t i o that is r e q u i r e d i n o r d e r to h o l d the reactor l e n g t h to w i t h i n
5 % of t h a t n e e d e d for p l u g
flow.
h 20m C ~r > - 5 — In 77— a Jre Wut i n
p
where P e
L
=
d L/Di p
- v
(15) n
L
a n d m is the o r d e r of r e a c t i o n . T h u s , the m i n i m u m
r e a c t o r h e i g h t increases w i t h the o r d e r of r e a c t i o n , a n d i t is v e r y sensitive to f r a c t i o n a l c o n v e r s i o n at h i g h degrees of c o n v e r s i o n . H o c h m a n a n d E f f r o n (36)
r e p o r t e d d i s p e r s i o n d a t a for
cocurrent
m e t h a n o l a n d n i t r o g e n flow of 6 0 0 - 5 0 0 0 l b / f t h r ( 0 . 8 - 7 k g / m 2
2
sec) i n
a 6 - i n . c o l u m n p a c k e d w i t h 3 / 1 6 - i n . glass spheres. P e c l e t n u m b e r s for the l i q u i d v a r i e d f r o m a b o u t 0.15 at R e = 4 to a b o u t 0.40 at R e == 70 w i t h L
L
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
3.
SATTERFIELD
considerable
Trickle
scatter.
Bed
69
Reactors
A p p a r e n t l y there w e r e significant, b u t r a n d o m ,
v a r i a t i o n s i n d i s p e r s i o n f r o m p o i n t to p o i n t a n d d a y to d a y . T h e effect of gas rate ( u p to 8.35 c m / s e c ) w a s s m a l l . T h e s e values of P e
L
are 1 / 3 to
1/6 those for single-phase l i q u i d flow at the same R e y n o l d s n u m b e r a n d can
be c o m p a r e d to P e = 2 for f u l l y d e v e l o p e d single-phase t u r b u l e n t
flow
i n p a c k e d beds. C h a r p e n t i e r a n d c o - w o r k e r s
reported P e
L
(37,
38, 39)
likewise
values for t r i c k l e flow d o w n to a n o r d e r of m a g n i t u d e less
t h a n t h a t for single-phase flow at t h e same l i q u i d R e y n o l d s n u m b e r , b u t w i t h m u c h scatter.
E q u a t i o n 15 demonstrates that, for r e p r e s e n t a t i v e
l a b o r a t o r y scale t r i c k l e b e d reactors of the o r d e r of a foot or so i n l e n g t h , Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
a x i a l d i s p e r s i o n m a y cause a significant d e v i a t i o n f r o m p l u g flow b e h a v i o r w h e n conversions are r o u g h l y 9 0 % or m o r e . T h e r e are a b o u t
15 other r e p o r t e d studies of l i q u i d - p h a s e a x i a l
d i s p e r s i o n , b u t these g e n e r a l l y i n v o l v e d c o u n t e r c u r r e n t a i r - w a t e r systems, almost i n v a r i a b l y w i t h R a s c h i g r i n g a n d o c c a s i o n a l l y w i t h
Berl
s a d d l e p a c k i n g , a n d f r e q u e n t l y w i t h flow c o n d i t i o n s outside the r a n g e of interest i n t r i c k l e b e d reactors. A s u m m a r y l i s t i n g w a s g i v e n b y M i c h e l l and
F u r z e r (40)
w h o also p r e s e n t e d a r e c o m m e n d e d c o r r e l a t i o n b a s e d
o n c o n s i d e r a b l e w o r k of t h e i r o w n . Re',
T h i s involves a Reynolds number,
b a s e d o n the i n t e r s t i t i a l r a t h e r t h a n o n the s u p e r f i c i a l v e l o c i t y w h i c h
m u s t therefore be c o m b i n e d w i t h a n expression for t h e d y n a m i c h o l d u p , H, t
to relate s u p e r f i c i a l a n d i n t e r s t i t i a l velocities. T h e r e l a t i o n s h i p s a r e : Pe
L
=
(Re ') - Ga-°0
L
7 0
— (0.68)Re °- Ga-°- ad
H
t
80
L
44
w h e r e G a is the G a l i l e o n u m b e r , d g p /^ , 3
p
i n the d e f i n i t i o n of R e
L
(16)
3 2
c
2
(17)
p
a n d the l i q u i d v e l o c i t y u s e d
2
is the s u p e r f i c i a l v e l o c i t y . T h e s e r e l a t i o n s h i p s r e p -
resent a refinement over s i m i l a r correlations d e v e l o p e d K u n i g i t a (41)
a n d O t a k e a n d O k a d a (42).
by Otake and
R e p r e s e n t a t i v e values of P e
L
for c o u n t e r c u r r e n t a i r - w a t e r flow t h r o u g h 0.25-in. R a s c h i g rings are 0.25 at R e
=
L
10 a n d 0.5 at R e
L
=
100 (43),
values w h i c h are r e a s o n a b l y
close to those r e p o r t e d b y H o c h m a n a n d E f f r o n . P e c l e t n u m b e r s for the gas phase, as r e p o r t e d b y H o c h m a n a n d E f f r o n , w e r e c o r r e l a t e d b y the e x p r e s s i o n : Pe for R e
G
G
=
1.8Re - - 10-° G
0
7
0 0 5 R e
L
values of 11 a n d 22 a n d for a range of R e
T h i s leads to P e
G
(18) L
values f r o m 5 to 80.
values one to t w o orders of m a g n i t u d e less t h a n those
e n c o u n t e r e d i n single-phase gas flow, w h i c h are a t t r i b u t e d , as w a s s u g gested earlier b y D e M a r i a a n d W h i t e (44),
to the gas p h a s e " s e e i n g "
agglomerates of particles c o v e r e d w i t h a b r i d g e of l i q u i d as a n effectively
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
70
C H E M I C A L REACTION ENGINEERING REVIEWS
l a r g e r p a r t i c l e . T h i s e x p l a n a t i o n is s u p p o r t e d b y the facts t h a t w e t p a c k i n g i n the absence of
flowing
l i q u i d gives a l a r g e increase i n d i s p e r s i o n
over d r y p a c k i n g a n d t h a t P e
decreases w i t h i n c r e a s e d R e .
G
However,
L
gas-phase d i s p e r s i o n is not of c o n c e r n o r d i n a r i l y i n t r i c k l e b e d p r o c e s s i n g . M e t h o d s of e s t i m a t i n g w h e n s i g
Mass and Heat Transfer Effects.
n i f i c a n t c o n c e n t r a t i o n gradients exist b e t w e e n gas a n d l i q u i d ,
between
l i q u i d a n d s o l i d , or w i t h i n the porous catalyst are t r e a t e d elsewhere I n t e r n a l diffusion l i m i t a t i o n s are c o m m o n l y the catalyst effectiveness
(45).
expressed i n terms
of
factor, η, w h i c h is defined as t h e r a t i o of t h e
o b s e r v e d rate of r e a c t i o n to t h a t w h i c h w o u l d b e o b s e r v e d i n the absence Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
of a n y i n t e r n a l c o n c e n t r a t i o n or t e m p e r a t u r e gradients. M e t h o d s of e s t i m a t i n g η h a v e n o w b e e n d e v e l o p e d i n great d e t a i l (46, 47).
For a
first-
order reaction, internal diffusion w i l l be insignificant if (rf /2) r(l- ) 2
p
where c
s
c
1
( 1 9 )
is the c o n c e n t r a t i o n of the k e y reactant i n the l i q u i d ( u s u a l l y
t h e d i s s o l v e d gas)
at the s o l i d - l i q u i d interface.
U n l e s s the size of the
d i f f u s i n g molecules is c o m p a r a b l e to that of the pores, Deff=— τ
(20)
w h e r e θ is the catalyst v o i d f r a c t i o n a n d τ is the tortuosity factor w h i c h u s u a l l y has a v a l u e of ~ 4 ( extreme values for the u s u a l catalyst s t r u c tures are a b o u t 2 - 7 ) .
Effectiveness factors for c o m m e r c i a l h y d r o d e s u l
f u r i z a t i o n reactors are t y p i c a l l y 0.36-0.6 for catalyst p a r t i c l e s 5 - 6 m m i n d i a m e t e r , w h i c h is a m i l d d e g r e e of diffusion l i m i t a t i o n . C o n s i d e r n o w some effects that m a y o c c u r i f reactant is present i n b o t h the l i q u i d a n d the v a p o r phases.
T h e m a x i m u m steady-state t e m
p e r a t u r e difference b e t w e e n the center a n d the outside of a catalyst p e l l e t , Δ Γ , occurs w h e n diffusion is sufficiently l i m i t i n g so that reactant c o n c e n t r a t i o n i n the p e l l e t center approaches zero. Δ
Γ
=
^ - Δ # ) Α
ί
ΐ
£
Then
(48)
1
( 2 1 )
λ w h e r e λ is the t h e r m a l c o n d u c t i v i t y of the porous s o l i d . E v e n w i t h a h i g h l y e x o t h e r m i c r e a c t i o n , i t is u n l i k e l y that Δ Γ w i l l exceed m o r e t h a n a f e w degrees i f the pores r e m a i n filled w i t h l i q u i d , unless the gas is m u c h m o r e s o l u b l e t h a n h y d r o g e n i n most l i q u i d s . A n e x a m p l e illustrates t h i s : take the e n t h a l p y c h a n g e and
a hydrogen
s o l u b i l i t y of
on reaction 10~
4
- Δ Η = 5 Χ 10
g mole/cm , 3
4
which would
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
cal/mole require
3.
SATTERFIELD
Trickle
Bed
71
Reactors
e l e v a t e d pressure i n t y p i c a l h y d r o c a r b o n s . terms are D
e f f
= 2 X 10'
5
T y p i c a l values of the other
cm /sec and λ = 3 X 10' 2
cal/sec cm°K.
4
ΔΓ
is 0.33°C. If pores are filled w i t h v a p o r , h o w e v e r , t e m p e r a t u r e differences i n the h u n d r e d s of degrees are q u i t e possible b e c a u s e D
eit
values for v a p o r s
are t h r e e to f o u r orders of m a g n i t u d e greater t h a n those for solutes a n d gas-phase concentrations are not l o w e r e d b y as large a factor.
The key
l i m i t i n g c o m p o n e n t is t h e n u s u a l l y v a p o r i z e d reactant r a t h e r t h a n h y d r o gen. R e p r e s e n t a t i v e c o n d i t i o n s are as f o l l o w s : — Δ Η = 5 Χ 1 0 (this is n o w p e r m o l e of v a p o r i z e d r e a c t a n t ) , D
ett
=
4
cal/mole
10" c m / s e c , c 2
2
s
=
3 X 10~ ( r e p r e s e n t i n g v a p o r i z e d reactant present i n s m a l l m o l e f r a c t i o n Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
5
but superatmospheric 50°C.
total pressure),
a n d λ as before.
ΔΓ
becomes
T h i s s i t u a t i o n w i l l not d e v e l o p , of course, i f the reactant does not
h a v e a n a p p r e c i a b l e v a p o r pressure. If a r e a c t i o n is s u b s t a n t i a l l y d i f f u s i o n - l i m i t e d w h e n pores are
filled
w i t h l i q u i d reactant, t h e n circumstances that cause the pores to b e c o m e filled
i n s t e a d w i t h v a p o r i z e d reactant c a n cause a m a r k e d increase i n
r e a c t i o n rate w h i c h is associated w i t h the m a r k e d increase i n d i f f u s i v i t y . I n d e e d , this was f o u n d e x p e r i m e n t a l l y b y S e d r i c k s a n d K e n n e y i n a s t u d y of the hydrogénation of c r o t o n a l d e h y d e .
(15)
L i q u i d - p h a s e reac-
t i o n c o u l d p r e s u m a b l y s w i t c h to v a p o r - p h a s e r e a c t i o n at a c r i t i c a l v a l u e of t h e l o c a l l i q u i d flow r a t e b e l o w w h i c h the heat e v o l v e d c o u l d l o n g e r b e c a r r i e d a w a y b y the
flowing
liquid.
w i t h l i q u i d flow to cause t e m p e r a t u r e i n s t a b i l i t i e s i n v a r i o u s w a y s . m a i n a n d co-workers
(21)
no
T h i s effect c a n i n t e r a c t Ger-
d e s c r i b e d a c y c l i c a n d i r r e g u l a r b e h a v i o r of
a t r i c k l e b e d i n w h i c h α-methylstyrene was h y d r o g e n a t e d
to
this c o u l d b e e x p l a i n e d p l a u s i b l y b y p o s t u l a t i n g that c o m p l e t e l y
cumene; wetted
pellets h a d l o w r e a c t i o n rates whereas p a r t l y w e t t e d pellets g r e w hotter because of insufficient heat transfer to
flowing
l i q u i d , w h i c h l e d to h i g h
a c t i v i t y a n d f o r m a t i o n of p o l y m e r i c b y - p r o d u c t s .
These i n turn reduced
c a t a l y t i c a c t i v i t y , w h i c h a l l o w e d the p e l l e t to b e c o m e c o o l a n d w e t t e d again.
R e m o v a l of p o l y m e r b y s o l u t i o n i n the
flowing
liquid
allowed
a c t i v i t y to b e restored a n d the c y c l e to r e c o m m e n c e . Q u a n t i t a t i v e analysis of these types of c o u p l i n g effects m i g h t b e v e r y h e l p f u l i n r e v e a l i n g p o s sible causes of i n s t a b i l i t i e s i n t r i c k l e b e d reactors i n general. Summary
and
Conclusions
M a n y factors of i m p o r t a n c e i n t h e d e s i g n a n d c h a r a c t e r i z a t i o n of t r i c k l e b e d reactors h a v e not b e e n c o v e r e d i n this r e v i e w . T h e s e i n c l u d e a d e s c r i p t i o n of the h y d r o d y n a m i c flow regions, c h a r a c t e r i z a t i o n of p r e s sure d r o p a n d l i q u i d h o l d u p , a n d mass transfer l i m i t a t i o n s t h a t m a y exist b e t w e e n gas a n d l i q u i d , b e t w e e n l i q u i d a n d s o l i d , or w i t h i n t h e
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
72
CHEMICAL REACTION ENGINEERING
REVIEWS
catalyst p a r t i c l e s . C o n d i t i o n s i n w h i c h r e a c t a n t is d i s t r i b u t e d b e t w e e n t h e l i q u i d a n d v a p o r phases c a n g i v e r i s e t o b e h a v i o r characteristics w h i c h were only mentioned.
M e t h o d s of c h a r a c t e r i z i n g t h e c o n t a c t i n g
effectiveness of t r i c k l e b e d reactors, h o w e v e r , are c e n t r a l to p r e d i c t i n g their performance
a n d the recent
developments
reviewed here
give
p r o m i s e of p u t t i n g these m e t h o d s of c h a r a c t e r i z a t i o n o n a m u c h m o r e f u n d a m e n t a l basis t h a n heretofore. Acknowledgments
Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
Discussions w i t h a n d comments f r o m m a n y individuals, i n c l u d i n g Peter Kehoe, D a v i d W . Mears, George Roberts, a n d Thomas K . Sher w o o d , are g r e a t l y a p p r e c i a t e d . Nomenclature S o m e s y m b o l s that w e r e u s e d o n l y o n c e are d e f i n e d at p o i n t of use a n d are n o t i n c l u d e d i n this list. c
=
D
=
D dp F G Ga g H
B= = = = = .= «=
h k
= =
l
c
c o n c e n t r a t i o n , g m o l e / c m ; c , c o n c e n t r a t i o n at l i q u i d - s o l i d interface m o l e c u l a r d i f f u s i v i t y , c m / s e c ; D f f , effective d i f f u s i v i t y i n p o r ous catalyst ( E q u a t i o n 2 0 ) a x i a l d i s p e r s i o n coefficient, c m / s e c catalyst p a r t i c l e d i a m e t e r , c m l i q u i d flow rate, c m / s e c ( E q u a t i o n s 1 a n d 3 ) gas s u p e r f i c i a l flow rate, c m / s e c at S T P or k g / m sec G a l i l e o n u m b e r , d g p / / x ( E q u a t i o n s 16 a n d 17) c o n v e r s i o n constant h o l d u p , c m l i q u i d / c m e m p t y r e a c t o r v o l u m e ; ff , free d r a i n i n g or d y n a m i c h o l d u p h e i g h t of reactor, c m , or d e p t h of p a c k e d b e d , c m first-order r e a c t i o n rate constant; fc , i n t r i n s i c first-order r e a c t i o n rate constant p e r u n i t v o l u m e of catalyst p e l l e t , c m l i q u i d / c m catalyst p e l l e t v o l u m e sec; fc , a p p a r e n t v a l u e as f o u n d e x p e r i m e n t a l l y ; fc = fc (l — e)/H, sec" ( E q u a tions 12 a n d 13 ) ; fc A v = c o n t a c t i n g effectiveness l i q u i d s u p e r f i c i a l flow rate, c m / s e c or k g / m sec l i q u i d h o u r l y space v e l o c i t y , v o l u m e of l i q u i d f e d t o r e a c t o r e a c h h o u r p e r v o l u m e of reactor, = 3600 L/h hi' o r d e r of r e a c t i o n P e c l e t n u m b e r f o r l i q u i d phase, d L/Di r a t e of r e a c t i o n , g m o l e / s e c c m reactor v o l u m e R e y n o l d s n u m b e r f o r l i q u i d flow = d^Lp/μ; R e f o r gas flow = dpGp/μ temperature, ° C t i m e , sec 3
s
2
e
2
3
2
p
c
2
3
2
3
f
v
3
3
apP
7
1
v
apP
L = LHSV =
2
1
m Pe^ r Ret,
= — = =
Τ t
— =
p
3
g
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
3.
SATTERFiELD
V
Trickle
73
Bed Reactors
—
reactor volume, c m
= = =
v o l u m e o f catalyst pellets i n a u t o c l a v e , c m volume of l i q u i d i n autoclave, c m fractional conversion of reactant
ν c
= =
η
=
μ Ρ
= =
k i n e m a t i c v i s c o s i t y = μ/ρ v o i d f r a c t i o n i n catalyst b e d , same as f r a c t i o n o f r e a c t o r v o l u m e n o t o c c u p i e d b y c a t a l y s t p a r t i c l e s ; ( 1 — c) = r a t i o o f c a t a lyst p e l l e t v o l u m e to e m p t y reactor v o l u m e effectiveness factor, r a t i o o f a c t u a l rate o f r e a c t i o n i n a p o r o u s c a t a l y s t to t h a t w h i c h w o u l d o c c u r i f p e l l e t i n t e r i o r w e r e a l l e x p o s e d t o reactants at t h e same c o n c e n t r a t i o n a n d t e m p e r a t u r e as t h a t e x i s t i n g a t t h e outside surface o f t h e p e l l e t v i s c o s i t y , poises density, g / c m
τ θ
= =
t o r t u o s i t y factor ( E q u a t i o n 2 0 ) v o i d f r a c t i o n i n p o r o u s catalyst p a r t i c l e
ucat #iiq
χ
3
3
3
Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
Greek
3
Literature Cited 1. van Deemter, J. J., Chem. Reaction Eng., 3rd Eur. Symp., 1964, 215. 2. LeNobel, J. W., Choufoer, J. H., Proc. 5th World Pet. Congr. Sect. III, Paper 18, Fifth World Petroleum Congr., New York, 1959. 3. Lister, Α., Chem. Reaction Eng., 3rd Eur. Symp., 1964, 225. 4. Storch, H . H., Golumbic, N., Anderson, R. B., "The Fischer-Tropsch and Related Syntheses," Wiley, New York, 1951. 5. Crowell, J. H., Benson, Η. E., Field, J. H., Storch, Η. H., Ind. Eng. Chem. (1950) 42, 2376. 6. Benson, Η. E., Field, J. H., Bienstock, D., Storch, Η. H., Ind. Eng. Chem. (1954) 46, 2278. 7. Kastens, M. L., Hirst, L. L., Dressler, R. G., Ind. Eng. Chem. (1952) 44, 450. 8. Brusie, J. P., Hort, Ε. V., "Kirk-Othmer Encyclopedia of Chemical Tech nology," 2nd ed., Vol. 1, p. 609, Interscience, New York, 1967. 9. Bondi, Α., Chem. Tech. (March 1971) 185. 10. Krönig, W., 6th World Pet. Congr., 1963, Sect.IV,Paper 7. 11. Porter, D. H., FMC Corp., U.S. Patent 3,009,782 (1961). 12. Østergaard, K., Adv. Chem. Eng. (1968) 7, 71. 13. Hartman, M., Coughlin, R. W., Chem. Eng. Sci. (1972) 27, 867. 14. Kenney, C. N., Sedricks, W., Chem. Eng. Sci. (1972) 27, 2029. 15. Sedricks, W., Kenney, C. N., Chem. Eng. Sci. (1973) 28, 559. 16. Way, P. F., Ph.D. Dissertation, Massachusetts Institute of Technology, 1971. 17. Satterfield, C. N., Way, P. F., AIChE J. (1972) 18, 305. 18. Pelossof, Α. Α., Ph.D. Dissertation, Massachusetts Institute of Technology, 1967. 19. Satterfield, C. N., Pelossof, Α. Α., Sherwood, T. K., AIChE J. (1969) 15, 226. 20. Satterfield, C. N., Őzel, F., AIChE J. (1973) 19, 1259. 21. Germain, A. H., LeFebvre, A. G., L'Homme, G. Α., ADV. C H E M . SER. (1974) 133, 164. 22. Mears, D., Chem. Eng. Sci. (1971) 26, 1361.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.
Downloaded by UNIV QUEENSLAND on June 17, 2013 | http://pubs.acs.org Publication Date: June 1, 1975 | doi: 10.1021/ba-1975-0148.ch003
74
C H E M I C A L REACTION ENGINEERING
REVIEWS
23. Henry, H. C., Gilbert, J. B., Ind. Eng. Chem. Process Des. Dev. (1973) 12, 328. 24. Flinn, R. Α., et al., Hydrocarbon Process Pet. Refiner (1963) 42 (9), 129. 25. Gilbert, J. B., Kartzmark, R., Proc. Am. Inst. Pet. (1965) 45 (3), 29. 26. Sato, Y., Hirose, T., Takahashi, F., Toda, M., Hashiguchi, Y., J. Chem. Eng. Jpn. (1973) 6, 315. 27. Ross, L. D., Chem. Eng. Prog. (1965) 61 (10), 77. 28. Mears, D. E., ADV. CHEM. SER. (1974) 133, 218. 29. Puranik, S. S., Vogelpohl, Α., Chem. Eng. Sci. (1974) 29, 501. 30. Hobler, T., "Mass Transfer and Absorbers," Engl. transl., pp. 219-230, Pergamon, London, 1966. 31. Wijffels, J.-B., Verloop, J., Zuiderweg, F. J., ADV. CHEM. SER. (1974) 133, 151. 32. Murphree, Ε. V., Voorhies, Α., Mayer, F. X., Ind. Eng. Chem. Process Des. Dev. (1964) 3, 381. 33. Cecil, R. R., Mayer, F. X., Cart, Jr., Ε. N., unpublished data. 34. Schwartz, J. G., Roberts, G. W., Ind. Eng. Chem. Process Des. Dev. (1973) 12, 262. 35. Hoogendoorn, C. J., Lips, J., Can. J. Chem. Eng. (1965) 43, 125. 36. Hochman, J. M., Effron, E., Ind. Eng. Chem. Fundam. (1969) 8, 63. 37. Charpentier, J. C., Prost, C., LeGoff, P., Chem. Eng. Sci. (1969) 24, 1777. 38. Bakos, M., Charpentier, J. C., Chem. Eng. Sci. (1970) 25, 1822. 39. Charpentier, J. C., Prost, C., LeGoff, P., Chim. Ind. Genie Chim. (1968) 100, 653. 40. Michell, R. W., Furzer, I. Α., Chem. Eng. J. (1972) 4, 53. 41. Otake, T., Kunigita, E., Kagaku Kogaku (1958) 22, 144. 42. Otake, T., Okada, K., Kagaku Kogaku (1953) 17, 176. 43. Furzer, I. Α., Michell, R. W., AIChE J. (1970) 16, 380. 44. De Maria, F., White, R. R., AIChE J. (1960) 6, 473. 45. Satterfield, C. N., AIChE J., (1975) 21, 209. 46. Petersen, Ε. E., "Chemical Reaction Analysis," Prentice-Hall, Englewood Cliffs, N.J., 1965. 47. Satterfield, C. N., "Mass Transfer in Heterogeneous Catalysis," paperback edition, Dept of Chemical Engineering, Massachusetts Institute of Tech nology, Cambridge, 1970. 48. Prater, C. D., Chem. Eng. Sci. (1958) 8, 284. RECEIVED December 4, 1974. Work supported by the National Science Foun dation.
In Chemical Reaction Engineering Reviews; Hulburt, H.; Advances in Chemistry; American Chemical Society: Washington, DC, 1975.